WO2003099437A1 - Verfahren und vorrichtung zur erneuten aktivierung wabenförmig aufgebauter katalysatorelemente für die entstickung von rauchgasen - Google Patents

Verfahren und vorrichtung zur erneuten aktivierung wabenförmig aufgebauter katalysatorelemente für die entstickung von rauchgasen Download PDF

Info

Publication number
WO2003099437A1
WO2003099437A1 PCT/DE2003/001094 DE0301094W WO03099437A1 WO 2003099437 A1 WO2003099437 A1 WO 2003099437A1 DE 0301094 W DE0301094 W DE 0301094W WO 03099437 A1 WO03099437 A1 WO 03099437A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
catalyst elements
drying
bubble bath
wet
Prior art date
Application number
PCT/DE2003/001094
Other languages
English (en)
French (fr)
Inventor
Peter Schneider
Walter Bastuck
Original Assignee
Saar Energie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saar Energie Gmbh filed Critical Saar Energie Gmbh
Priority to AU2003229508A priority Critical patent/AU2003229508A1/en
Publication of WO2003099437A1 publication Critical patent/WO2003099437A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/92Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/50Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids
    • B01J38/58Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids and gas addition thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths

Definitions

  • the invention relates to a method and a device for cleaning and / or regenerating fully or partially deactivated catalysts for denitrification of flue gases from fossil-fired boiler systems, in particular from coal-fired large-scale power plant boiler systems, in which the catalytic converter elements are first removed by mechanical cleaning, then wet. dry cleaned and then subjected to drying.
  • the flue gases from fossil-fired boiler systems especially from coal-fired large-scale power plant boiler systems, have to be subjected to extensive cleaning, i.e. primarily dedusting, desulfurization and denitrification.
  • denitrification, then dedusting using an electrostatic filter and finally desulfurization in a wet scrubber are usually carried out by reaction of the S0 4 2 " ions which form in the scrubber with Ca 2+ ions to form CaSO 4.
  • the denitrification of the flue gases takes place at temperatures between about 300 - 400 ° C by reaction of the nitrogen oxides (NO x ) with ammonia to form molecular nitrogen and water.
  • the denitrification reactor integrated in the 703 MW hard coal-fired power plant Weiher operated by the applicant consists of four catalyst levels, which are equipped with a total of four catalyst layers.
  • Each catalyst layer in turn consists of a number of individual catalyst elements in the order of magnitude of approximately 1.35 m in height, 0.95 m in width and 0.95 m in depth.
  • These catalyst elements have a honeycomb structure with a cross-sectional area of approximately 10 mm 2 per honeycomb.
  • the Weiher power plant uses tungsten-containing catalysts based on titanium dioxide with another active component, vanadium pentoxide. To improve the mechanical strength of the elements, calcium-aluminum-silicate support fibers are mixed in during the manufacture of the titanium dioxide-containing base material.
  • the loss of activity of the catalysts increases particularly strongly with the use of dried sewage sludge and the co-combustion of animal meal, which can be attributed to the high phosphorus content of these secondary fuels.
  • the total potential of the extraction reactor drops to a minimum, which can be demonstrated by the greatly increased proportion of ammonia in the fly ash.
  • WO 00/12211 therefore proposes a process for cleaning catalyst elements by washing the catalysts with a solution of surface-active substances in a liquid with the simultaneous addition of metal compounds which create active centers.
  • lead sulfates and phosphates have sizes in the nanometer range and therefore have a high adhesive force on the catalyst surface. These adhesive forces cannot be eliminated to a sufficient degree simply by washing, even with the help of special surface-active substances.
  • the invention is therefore based on the object of developing a method by means of which used catalyst elements, the activity of which is restricted, in particular, by phosphate and lead sulfate deposits, can be reactivated and thus used again for flue gas denitrification.
  • This object is achieved according to the invention in that the wet-chemical cleaning of the catalyst elements takes place in a bubble bath, which consists of a basin filled with a cleaning liquid, into which a gas under pressure is fed.
  • the circulation of the liquid with the fluid in the bubble bath removes the particles from the catalyst honeycomb, since it reduces the solubility of the agglomerate particles adhering to the catalyst surface due to adhesive forces.
  • reaction time should be provided in a further embodiment of the invention in addition to a sufficiently acidic pH of the liquid. This is the only way to ensure the solid-liquid equilibrium shift in the ionic cleavage of the lead sulfate and the phosphates to a sufficient degree.
  • a reaction time in the bubble bath of at least 8 hours has proven to be advantageous.
  • a pH of about 1.9 is set, which rises slightly to 2.2 by the end of the cleaning process in the bubble bath and thus indicates the end of the cleaning process.
  • demineralized water As the cleaning liquid. This is the only way to determine pH values that depend solely on the cleaning process, and on the other hand to prevent undesired chemical dissolving processes from salts present in normal process water or in other liquids.
  • each individual catalyst element is wetted with about 5% sulfuric acid as an additive additive.
  • the pool is filled with deionized water again until the catalyst elements are flooded and the air circulation is started for a further 4 hours. After completing the dive cleaning, the pool is completely emptied.
  • the catalyst elements were then sprayed out individually using high-pressure cleaners and fully demineralized water.
  • the subsequent drying is expediently carried out in a warm air stream, the catalyst elements in the experiments being treated with an air stream at a temperature of about 55 ° C. for about eight hours.
  • Drying is also possible in two stages, the free moisture on the inner surface of the catalyst elements being removed for about 30 minutes in a first drying stage using oil and water-free compressed air (approx. 5 bar) and then in a second drying stage using a warm air flow the further drying takes place.
  • the activity of the used catalyst elements could be increased again from less than 50% of the original activity to more than 85% of the original activity by the treatment according to the invention.
  • the chemical examination of a treated honeycomb has shown that the deactivating surface barrier layer made of phosphates and lead sulfate could be removed almost completely.
  • the alkali and alkaline earth elements on the surface are also significantly minimized.
  • the concentration of the active catalyst elements vanatium pentoxide and tungsten dioxide and the acidic honeycomb surface are retained.
  • Examination of the chemical composition of the cataly- satormaterials also showed that no catalyst poisons are diffused into the inner structure by washing the honeycomb.
  • Drying the catalyst elements to a minimum residual moisture level also has the advantage that when the block is put back into operation there is no time delay due to the drying of the reactivated catalyst elements and thus no increased starting heat consumption due to additional drying.
  • First measured values at full load operation show that already in the newly activated first catalytic converter position about 90% of the chemical reduction of NO x to N 2 takes place in the direction of flow of the flue gas.
  • the impregnation of the catalyst elements with activity-increasing additives is additionally proposed according to the invention. After drying, it is first necessary to determine the activity of the cleaned catalysts in order to be able to dimension the subsequent treatment sufficiently.
  • a basin (1) which is shown schematically in Figures 1 and 2, serves as the reaction space for the regeneration.
  • Figure 1 shows the basin (1) in plan and Figure 2 in elevation along the section line A - A shown in Figure 1.
  • the catalyst elements (2) are placed in several rows on supporting beams (4), between which the perforated hoses (3) for the supply of the sparkling gas (for example air) are laid in the center.
  • the sparkling gas for example air
  • the basin (1) is filled with a cleaning liquid (preferably fully demineralized water) (6) until the catalyst elements (2) are just flooded.
  • the air circulation is then started up by means of a fan (5) via the air lines (3) laid under the installed catalyst elements (2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Reinigen und/oder Regenerie­ren von ganz oder teilweise deaktivierten Katalysatoren zur Entstickung von Rauchgasen aus fossil befeuerten Kesselanlagen, insbesondere aus kohlebefeuerten Großkraftwerks­kesselanlagen, bei dem die Katalysatorelemente im ausgebauten Zustand zunächst einer mechanischen Reinigung, anschließend einer naß-chemischen Reinigung und dann einer Trocknung unterzogen werden, wobei die naß-chemische Reinigung der Katalysatorelemente in einem Sprudelbad erfolgt, das aus einem mit einer Reinigungsflüssigkeit (6) gefüll­ten Becken (1) besteht, in das ein unter Druck stehendes Gas zugeführt wird.

Description

Verfahren und Vorrichtung zur erneuten Aktivierung wabenförmig aufgebauter Katalysatorelemente für die Entstickung von Rauchgasen
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Reinigen und/oder Regenerieren von ganz oder teilweise deaktivierten Katalysatoren zur Entstickung von Rauchgasen aus fossil befeuerten Kesselanlagen, insbesondere aus kohlebefeuerten Großkraftwerkskesselanlagen, bei dem die Katalysatorelemente im ausgebauten Zustand zunächst einer mechanischen Reinigung, anschließend einer naß-chemischen Reinigung und dann einer Trocknung unterzogen werden.
Die Rauchgase aus fossilbefeuerten Kesselanlagen, insbesondere aus kohlebefeuerten Großkraftwerkskesselanlagen, müssen aus Gründen des Umweltschutzes einer umfassenden Reinigung , das heißt in erster Linie einer Entstaubung, einer Entschwefelung und einer Entstickung unterzogen werden.
Dabei wird im Kraftwerksbereich meist zunächst die Entstickung, dann die Entstaubung mittels Elektrofilter und schließlich die Entschwefelung in einem Naßwäscher durch Reaktion der im Wäscher sich bildenden S04 2" - Ionen mit Ca2+ - Ionen zu CaSO4 durchgeführt. Die Entstickung der Rauchgase erfolgt bei Temperaturen zwischen etwa 300 - 400 °C durch Reaktion der Stickoxide (NOx) mit Ammoniak zu molekularem Stickstoff und Wasser.
Zur Erreichung zufriedenstellender Umsetzungsgeschwindigkeiten und Umsetzungswirkungsgraden ist es dabei unerläßlich, daß die Entstickungsreaktionen durch geeignete Katalysatoren unterstützt werden.
Beispielsweise besteht der in dem von der Anmelderin betriebenen 703 MW Steinkohlekraftwerk Weiher integrierte Entstickungsreaktor aus vier Katalysatorebenen, die mit insgesamt vier Katalysatorlagen bestückt sind. Jede Katalysatorlage wiederum besteht aus einer Anzahl einzelner Katalysatorelemente in der Größenordnung von etwa 1 ,35 m Höhe, 0,95 m Breite und 0,95 m Tiefe. Diese Katalysatorelemente sind wabenförmig aufgebaut mit einer Querschnittsfläche von etwa 10 mm2 pro Wabe. Im Kraftwerk Weiher sind wolframhaltige Katalysatoren auf Titandioxidbasis mit einer weiteren Aktivkomponente Vanadiumpentoxid im Einsatz. Zur Verbesserung der mechanischen Belastbarkeit der Elemente werden bei der Fertigung der titandioxidhaltigen Grundmasse calcium-aluminium-silicatische Stützfasern zugemischt. Im Betrieb des Kraftwerks Weiher hat sich gezeigt, daß die Aktivität der Katalysatorelemente bereits nach wenigen tausend Betriebsstunden sehr stark zurückgegangen ist. Neben der dadurch verringerten Reduktion der Stickoxyde führt eine derart verringert Aktivität zu einem stark erhöhten Ammoniakschlupf, das heißt, daß den Entstickungsreaktor verlassende Rauchgas enthält noch merkliche Mengen Ammoniak, die in nachgeschalteten Anlagenteilen, wie z. B. im Luftvorwärmer zu Verschmutzungen durch Ammoniumsalzbildung sowie zu einer Verunreinigung der Flugasche führen können. Darüber hinaus hat sich in der letzten Zeit gezeigt, daß außer einer erhöhten Calciumsulfatbildung zunehmend auch Bleisulfatbeläge die Reinigungsleistung der Entstickungsreaktoren herabsetzen.
Besonders stark steigt der Aktivitätsverlust der Katalysatoren mit Einsatz von getrocknetem Klärschlamm und der Mitverbrennung von Tiermehl an, was auf den hohen Phosphoranteil dieser Sekundärbrennstoffe zurückzuführen ist. Untersuchungen haben gezeigt, daß die Katalysatoren durch Phosphatbeläge nach wenigen tausend Betriebsstunden deaktivierten, d.h. die Betriebszeit verringert sich um mehr als 70 %. Das Gesamtpotential des Entsti- ckungsreaktors sinkt dabei auf ein Minimum, was sich durch den stark gestiegenen Anteil an Ammoniak in der Flugasche nachweisen läßt.
Bisher ist es gängige Praxis, derartig verbrauchte Katalysatorelemente, deren Aktivität beispielsweise auf weniger als ein Drittel der Ursprungsaktivität zurückgegangen ist, durch neue zu ersetzen, oder nachträglich eine weitere Lage neuer Katalysatorelemente vorzusehen. Neben Problemen mit der Entsorgung der verbrauchten Elemente entstehen durch die Neubestückung für den Kraftwerksbetreiber erhebliche Kosten. Beispielsweise kostet derzeit die Neubestückung einer Ebene im Reaktor des Kraftwerks Weiher etwa 2,5 Mio €.
WO 00/12211 schlägt deshalb ein Verfahren zur Reinigung von Katalysatorelementen durch Waschen der Katalysatoren mit einer Lösung von oberflächenaktiven Substanzen in einer Flüssigkeit unter gleichzeitigem Zusatz von aktive Zentren schaffenden Metallverbindungen vor. Bleisulfate und Phosphate besitzen jedoch Größen im Nanometerbereich und damit eine hohe Adhäsionskraft an die Katalysatoroberfläche. Diese Adhäsionskräfte sind allein durch Waschvorgänge, selbst mit Hilfe spezieller oberflächenaktiver Substanzen nicht in ausreichendem Maße aufhebbar.
Darüber hinaus führt der Zusatz von Komplexbildnern und Tensiden im Reinigungsprozeß zu Problemen bei der weiteren Verwendung der Regenerierabwässer. Es ist nicht möglich, derartige Abwässer im weiteren Rauchgasreinigungsprozeß zu benutzen, da in diesem Falle insbesondere durch Schaumbildung die Leistung der Rauchgasreinigung stark herabgesetzt würde.
Desweiteren entsteht durch die Entsorgung der mit Tensiden belasteten Abwässer eine hohe Belastung der Umwelt.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zu entwickeln, mit dessen Hilfe verbrauchte Katalysatorelemente, deren Aktivität insbesondere durch Phosphat- und Bleisulfatbeläge eingeschränkt ist, reaktiviert und damit erneut zur Rauchgasentstickung eingesetzt werden können.
Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß die naß-chemische Reinigung der Katalysatorelemente in einem Sprudelbad erfolgt, das aus einem mit einer Reinigungsflüssigkeit gefüllten Becken besteht, in das ein unter Druck stehendes Gas zugeführt wird.
Versuche bei der Anmelderin haben gezeigt, daß verbrauchte Katalysatorelemente mit einer Restaktivität unter 50 % der Neuaktivität erneut auf über 85 % der Neuaktivität gebracht werden können. Die auf diese Weise neuaktivierten Katalysatorelemente können nochmals eingesetzt werden, wodurch sich deren Standzeit bei gleichzeitigen Kostensenkungen für den Kraftwerksbetreiber deutlich erhöht.
Die in dem Sprudelbad erfolgende Umwälzung der Flüssigkeit mit dem Fluid, für das in seiner einfachsten Ausführung Umgebungsluft benutzt wird, entfernt die Partikel aus den Katalysatorwaben, da sie die Löslichkeit der auf der Katalysatoroberfläche durch Adhäsionskräfte anhaftenden Agglomeratpartikel herabsetzt.
Da sowohl Bleisulfat als auch die Phosphatbeläge chemisch nur sehr schwer zu entfernen sind, sollte in einer weiteren Ausgestaltung der Erfindung neben einem ausreichend sauren pH-Wert der Flüssigkeit auch eine lange Reaktionszeit vorgesehen werden. Nur dadurch ist die fest-flüssige Gleichgewichtsverschiebung bei der lonenspaltung des Bleisulfates und der Phosphate in ausreichendem Maße zu gewährleisten. Hierbei hat sich eine Reaktionszeit im Sprudelbad von mindestens 8 Stunden als vorteilhaft erwiesen. Zu Beginn des Reinigungsprozesses stellt sich dabei ein pH-Wert von etwa 1 ,9 ein, der bis Ende des Reinigungsvorganges im Sprudelbad leicht auf 2,2 ansteigt und damit das Ende des Reinigungsvorganges anzeigt. Zur Steuerung und Überwachung des Reinigungsvorganges hat es sich deshalb als zweckmäßig erwiesen, als Reinigungsflüssigkeit vollentsalztes Wasser zu benutzen. Nur dadurch ist es möglich, einerseits pH-Werte zu ermitteln, die allein vom Reinigungsvorgang abhängen, und andererseits unerwünschte chemische Lösungsvorgänge durch in normalem Brauchwasser oder in anderen Flüssigkeiten vorhandenen Salzen zu verhindern.
Im Anschluß an den Reinigungsvorgang im Sprudelbecken wird dieses entleert und so die ausgelösten Ionen entfernt.
In einer weiteren Ausgestaltungsform der Erfindung hat sich als besonders vorteilhaft erwiesen, wenn nun eine zweite naß-chemische Reinigungsstufe folgt, bei der jedes einzelne Katalysatorelement mit etwa 5%-iger Schwefelsäure als Additivzusatz benetzt wird. Nach einer Einwirkzeit von mindestens 4 Stunden auf die Restbeläge wird das Becken wieder mit vollentsalztem Wasser bis zur Überflutung der Katalysatorelemente gefüllt und die Luftumwälzung weitere 4 Stunden in Betrieb genommen. Nach Abschluß der Tauchreinigung wird das Becken vollkommen entleert.
In den Versuchen wurden anschließend die Katalysatorelemente einzeln mit Hochdruckreinigern und vollentsalztem Wasser ausgespritzt.
Zweckmäßigerweise erfolgt die anschließende Trocknung in einem warmen Luftstrom, wobei in den Versuchen die Katalysatorelemente mit einem Luftstrom mit einer Temperatur von etwa 55 °C etwa acht Stunden lang behandelt wurden.
Möglich ist auch die Trocknung in zwei Stufen, wobei zunächst in einer ersten Trocknungsstufe mittels öl- und wasserfreier Druckluft (ca. 5 bar) etwa 30 Minuten lang die freie Feuchte auf der inneren Oberfläche der Katalysatorelemente entfernt wird und dann in einer zweiten Trocknungsstufe mittels eines warmen Luftstromes die weitere Trocknung erfolgt.
Wie bereits erwähnt, konnte durch die erfindungsgemäße Behandlung die Aktivität der verbrauchten Katalysatorelemente von weniger als 50 % der Ursprungsaktivität auf mehr als 85 % der Ursprungsaktivität erneut angehoben werden. Die chemische Untersuchung einer behandelten Wabe hat gezeigt, daß die deaktivierende Oberflächensperrschicht aus Phosphaten und Bleisulfat nahezu vollständig entfernt werden konnte. Auch werden die Alkali- und Erdalkalielemente an der Oberfläche deutlich minimiert. Dabei bleiben die Konzentration der aktiven Katalysatorelemente Vanatiumpentoxid und Wolframdioxid und die saure Wabenoberfläche erhalten. Die Untersuchung der chemischen Zusammensetzung des Kataly- satormaterials ergab auch, daß durch das Waschen der Waben keine Katalysatorgifte in das innere Gefüge diffundiert sind.
Das Trocknen der Katalysatorelemente auf eine nur noch geringe Mindestrestfeuchte hat zudem den Vorteil, daß bei Wiederinbetriebnahme des Blockes keine zeitliche Verzögerung infolge Nachtrocknung der reaktivierten Katalysatorelemente und somit kein erhöhter Anfahrwärmeverbrauch aufgrund einer zusätzlichen Trocknung auftritt. Erste Meßwerte bei Vollastbetrieb zeigen, daß bereits in der neu aktivierten ersten Katalysatorlage in Strömungsrichtung des Rauchgases ca. 90 % der chemischen Reduktion von NOx zu N2 abläuft.
Um die volle Ursprungsaktivität wieder zu erreichen, wird erfindungsgemäß zusätzlich die Tränkung der Katalysatorelemente mit aktivitätssteigemden Additiven vorgeschlagen. Hierzu ist nach der Trocknung zunächst die Bestimmung der erreichten Aktivität der gereinigten Katalysatoren notwendig um die anschließende Behandlung ausreichend dimensionieren zu können.
Danach werden die gereinigten Katalysatorelemente in einem Becken mit voll-entsalztem Wasser, dem aktivitätssteigernde Additive zugegeben werden, gebadet. In den Versuchen hat sich als Additiv besonders Vanadium-Pentoxid als vorteilhaft erwiesen.
Der weitgehende Erhalt des aktiven Katalysatormaterials bei der vorstehend beschriebenen erfindungsgemäßen Behandlung läßt ein mehrmaliges Reinigen der Katalysatorelemente bis zu deren mechanischem Verschleiß zu.
Als Reaktionsraum für die Regenerierung dient ein Becken (1), das in den Abbildungen 1 und 2 schematisch dargestellt ist. Abbildung 1 zeigt das Becken (1) im Grundriß und Abbildung 2 im Aufriß entlang der in Abbildung 1 dargestellten Schnittlinie A - A.
In dem Becken (1) werden in mehreren Reihen die Katalysatorelemente (2) auf Unterlegbalken (4) abgesetzt, zwischen denen jeweils mittig die perforierten Schläuche (3) für die Zuführung des Sprudelgases (beispielsweise Luft) verlegt sind.
Das Becken (1) wird mit einer Reinigungsflüssigkeit (bevorzugt vollentsalztes Wasser) (6) gefüllt, bis die Katalysatorelemente (2) gerade überflutet sind. Anschließend wird die Luftumwälzung über die unter den aufgestellten Katalysatorelementen (2) verlegten Luftleitungen (3) mittels eines Gebläses (5) in Betrieb genommen. zeichenliste
Becken
Katalysatorelement
Perforierter Schlauch
Unterlegbalken
Gebläse
Reinigungsflüssigkeit

Claims

Patentansprüche
1. Verfahren zum Reinigen und/oder Regenerieren von ganz oder teilweise deaktivierten Katalysatoren zur Entstickung von Rauchgasen aus fossil befeuerten Kesselanlagen, insbesondere aus kohlebefeuerten Großkraftwerkskesselanlagen, bei dem die Katalysatorelemente im ausgebauten Zustand zunächst einer mechanischen Reinigung, anschließend einer naß-chemischen Reinigung und dann einer Trocknung unterzogen werden, dadurch gekennzeichnet, daß die naß-chemische Reinigung der Katalysatorelemente in einem Sprudelbad erfolgt, das aus einem mit einer Reinigungsflüssigkeit gefüllten Becken besteht, in das ein unter Druck stehendes Gas zugeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß als Reinigungsflüssigkeit vollentsalztes Wasser benutzt wird.
3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß als Gas überwiegend Umgebungsluft (Raumluft) verwendet wird.
4. Verfahren nach einem den Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Reinigungszeit im Sprudelbad mehr als 8 Stunden beträgt.
5. Verfahren nach einem den Ansprüche 1 bis 4, dadurch gekennzeichnet, daß nach Beendigung der Reinigungszeit im Sprudelbad die Reinigungsflüssigkeit aus dem Reinigungsbecken abgelassen wird.
6. Verfahren nach einem den Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die mechanische Reinigung mittels öl- und wasserfreier Druckluft erfolgt.
7. Verfahren nach einem den Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Katalysatorelemente mit Schwefelsäure benetzt werden, bevor sie in dem Sprudelbad gereinigt werden.
8. Verfahren nach einem den Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Einwirkzeit der Schwefelsäure nach der Benetzung der Katalysatorelemente mindestens vier Stunden beträgt, bevor sie in dem Sprudelbad gereinigt werden.
9. Verfahren nach einem den Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die naß-chemische Reinigung zweistufig durchgeführt wird, wobei in einer ersten Stufe die Katalysatorelemente ohne Vorbehandlung in dem Sprudelbad gereinigt werden und in einer zweiten Stufe die zuvor mit Schwefelsäure benetzten Katalysatorelemente in einem Sprudelbad gereinigt werden.
10. Verfahren nach einem den Ansprüche 1 bis 9, dadurch gekennzeichnet, daß im Anschluß an die naß-chemische Reinigung die Katalysatorelemente einzeln mit vollentsalztem Druckwasser nachgespült werden.
11. Verfahren nach einem den Ansprüche 1 bis 10, dadurch gekennzeichnet, daß mittels eines warmen Luftstromes die Trocknung der Katalysatorelemente erfolgt.
12. Verfahren nach einem den Ansprüche 1 bis 11 , dadurch gekennzeichnet, daß die Trocknung der Katalysatorelemente zweistufig erfolgt, wobei in einer ersten Trocknungsstufe mittels Druckluft zunächst die freie Feuchte auf der inneren Oberfläche der Katalysatorelemente entfernt wird und dann in einer zweiten Trocknungsstufe mittels eines warmen Luftstromes die Trocknung erfolgt.
13. Verfahren nach einem den Ansprüche 1 bis 12, dadurch gekennzeichnet, daß im Anschluß an die Trocknung die Katalysatorelemente mit einem aktivitätssteigemden Additiv getränkt werden.
14. Verfahren nach einem den Ansprüche 1 bis 13, dadurch gekennzeichnet, daß als aktivitätssteigerndes Additiv Vanadium-Pentoxid genommen wird.
5. Vorrichtung zum Reinigen und/oder Regenerieren von ganz oder teilweise deaktivierten Katalysatoren zur Entstickung von Rauchgasen aus fossil befeuerten Kesselanlagen, insbesondere aus kohlebefeuerten Großkraftwerkskesselanlagen, in einem Sprudelbad, dadurch gekennzeichnet, daß die Vorrichtung aus einem Becken zur Aufnahme einer Flüssigkeit und aus einer Zuführleitung zum Zuführen eines Sprudelmediums in die Flüssigkeit sowie aus einem Gebläse für das Sprudelmedium besteht.
PCT/DE2003/001094 2002-05-24 2003-04-03 Verfahren und vorrichtung zur erneuten aktivierung wabenförmig aufgebauter katalysatorelemente für die entstickung von rauchgasen WO2003099437A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003229508A AU2003229508A1 (en) 2002-05-24 2003-04-03 Method and device for reactivating honeycomb-shaped catalyst elements used to remove nitric acid from exhaust gases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10222915.5 2002-05-24
DE10222915A DE10222915B4 (de) 2002-05-24 2002-05-24 Verfahren zur erneuten Aktivierung wabenförmig aufgebauter Katalysatorelemente für die Entstickung von Rauchgasen

Publications (1)

Publication Number Publication Date
WO2003099437A1 true WO2003099437A1 (de) 2003-12-04

Family

ID=29557269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/001094 WO2003099437A1 (de) 2002-05-24 2003-04-03 Verfahren und vorrichtung zur erneuten aktivierung wabenförmig aufgebauter katalysatorelemente für die entstickung von rauchgasen

Country Status (3)

Country Link
AU (1) AU2003229508A1 (de)
DE (1) DE10222915B4 (de)
WO (1) WO2003099437A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723251B2 (en) 2008-03-11 2010-05-25 Evonik Energy Services Llc Method of regeneration of SCR catalyst
US7727307B2 (en) 2007-09-04 2010-06-01 Evonik Energy Services Gmbh Method for removing mercury from flue gas after combustion
US7741239B2 (en) 2008-03-11 2010-06-22 Evonik Energy Services Llc Methods of regeneration of SCR catalyst poisoned by phosphorous components in flue gas
US8063246B2 (en) 2007-05-02 2011-11-22 Evonik Energy Services Gmbh Method for purifying flue gases from combustion plants and then producing urea
US8153542B2 (en) 2005-12-16 2012-04-10 Steag Energy Services Gmbh Method for treating flue gas catalysts
US8187388B2 (en) 2005-01-05 2012-05-29 Steag Energy Services Gmbh Method for treating catalysts
US20200061538A1 (en) * 2018-08-22 2020-02-27 Shell Oil Company Selective catalytic reduction process and off-line regeneration of deactivated catalyst of the process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1913596U (de) * 1964-11-26 1965-04-08 Ludwig Baumann Sicherheitsvorrichtung fuer insbesondere mittels geblaese betriebene badesprudelmatten od. dgl.
DE1908663A1 (de) * 1968-02-29 1969-10-16 Ludwig Baumann Mittels eines Geblaesses,Kompressors od.dgl.betriebenes Sprudelbadgeraet,insbesondere zur Erzeugung von Vollschaumbaedern
DE3734199A1 (de) * 1987-10-09 1989-06-15 Marcant Pumpen Gmbh Wanne mit umwaelzanlage, insbesondere wirbelstrom-sprudel-wanne, massage- oder whirlpool zur hydrotherapie fuer sportpferde
DE3816600A1 (de) * 1988-05-14 1989-11-23 Huels Chemische Werke Ag Verfahren zur regeneration arsenkontaminierter katalysatoren und sorbentien
WO1998002248A1 (de) * 1996-07-12 1998-01-22 Energie-Versorgung Schwaben Ag Verfahren zum reinigen und/oder regenerieren von ganz oder teilweise desaktivierten katalysatoren zur entstickung von rauchgasen
US5900383A (en) * 1996-01-02 1999-05-04 New Life Catalyst, Inc. Process for increasing the activity of zeolite containing particulate solids
EP0974397A2 (de) * 1998-07-24 2000-01-26 Mitsubishi Heavy Industries, Ltd. Methode zur Regenerierung eines Denitrierungungskatalysators
WO2000012211A1 (de) * 1998-08-26 2000-03-09 Integral Umwelt- Und Anlagentechnik Gesellschaft Mbh VERFAHREN ZUR REGENERIERUNG VON GEBRAUCHTEN DeNOx- BZW. DeDIOXIN-KATALYSATOREN

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1913596U (de) * 1964-11-26 1965-04-08 Ludwig Baumann Sicherheitsvorrichtung fuer insbesondere mittels geblaese betriebene badesprudelmatten od. dgl.
DE1908663A1 (de) * 1968-02-29 1969-10-16 Ludwig Baumann Mittels eines Geblaesses,Kompressors od.dgl.betriebenes Sprudelbadgeraet,insbesondere zur Erzeugung von Vollschaumbaedern
DE3734199A1 (de) * 1987-10-09 1989-06-15 Marcant Pumpen Gmbh Wanne mit umwaelzanlage, insbesondere wirbelstrom-sprudel-wanne, massage- oder whirlpool zur hydrotherapie fuer sportpferde
DE3816600A1 (de) * 1988-05-14 1989-11-23 Huels Chemische Werke Ag Verfahren zur regeneration arsenkontaminierter katalysatoren und sorbentien
US5900383A (en) * 1996-01-02 1999-05-04 New Life Catalyst, Inc. Process for increasing the activity of zeolite containing particulate solids
WO1998002248A1 (de) * 1996-07-12 1998-01-22 Energie-Versorgung Schwaben Ag Verfahren zum reinigen und/oder regenerieren von ganz oder teilweise desaktivierten katalysatoren zur entstickung von rauchgasen
EP0974397A2 (de) * 1998-07-24 2000-01-26 Mitsubishi Heavy Industries, Ltd. Methode zur Regenerierung eines Denitrierungungskatalysators
WO2000012211A1 (de) * 1998-08-26 2000-03-09 Integral Umwelt- Und Anlagentechnik Gesellschaft Mbh VERFAHREN ZUR REGENERIERUNG VON GEBRAUCHTEN DeNOx- BZW. DeDIOXIN-KATALYSATOREN

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187388B2 (en) 2005-01-05 2012-05-29 Steag Energy Services Gmbh Method for treating catalysts
US8153542B2 (en) 2005-12-16 2012-04-10 Steag Energy Services Gmbh Method for treating flue gas catalysts
US8637417B2 (en) 2005-12-16 2014-01-28 Steag Energy Services Gmbh Method for treating flue gas catalysts
US8637418B2 (en) 2005-12-16 2014-01-28 Steag Energy Services Gmbh Method for treating flue gas catalyst
US8063246B2 (en) 2007-05-02 2011-11-22 Evonik Energy Services Gmbh Method for purifying flue gases from combustion plants and then producing urea
US8541619B2 (en) 2007-05-02 2013-09-24 Steag Energy Services Gmbh Method for purifying flue gases from combustion plants and then producing urea
US7727307B2 (en) 2007-09-04 2010-06-01 Evonik Energy Services Gmbh Method for removing mercury from flue gas after combustion
US7723251B2 (en) 2008-03-11 2010-05-25 Evonik Energy Services Llc Method of regeneration of SCR catalyst
US7741239B2 (en) 2008-03-11 2010-06-22 Evonik Energy Services Llc Methods of regeneration of SCR catalyst poisoned by phosphorous components in flue gas
US20200061538A1 (en) * 2018-08-22 2020-02-27 Shell Oil Company Selective catalytic reduction process and off-line regeneration of deactivated catalyst of the process
US10814277B2 (en) * 2018-08-22 2020-10-27 Shell Oil Company Selective catalytic reduction process and off-line regeneration of deactivated catalyst of the process

Also Published As

Publication number Publication date
DE10222915B4 (de) 2013-03-28
AU2003229508A1 (en) 2003-12-12
DE10222915A1 (de) 2004-01-15

Similar Documents

Publication Publication Date Title
DE19829916B4 (de) Verfahren zur Regeneration von Katalysatoren und regenerierte Katalysatoren
DE19805295B4 (de) Verfahren zur Regeneration eines Denitrierungskatalysators
DE19628212B4 (de) Verfahren zum Reinigen und/oder Regenerieren von ganz oder teilweise desaktivierten Katalysatoren zur Entstickung von Rauchgasen
EP1797954B1 (de) Verfahren zum Behandeln von Rauchgas-Katalysatoren
DE69006817T2 (de) Verfahren zur Reinigung von Abgasen.
DE2215177C3 (de) Verfahren zur Behandlung von schwefeldioxid enthalteden Abgasen
DE60029190T2 (de) Verfahren und anlage zur reinigung von abgas mittels photokatalyse
DE3232543C2 (de) Verfahren zum Entfernen von Schwefel- und Stickstoffoxiden aus einem Abgas
EP0927076B1 (de) Verfahren zur erneuten aktivierung wabenförmig aufgebauter katalysatorelemente für die entstickung von rauchgasen
DE69625887T2 (de) vERFAHREN ZUR ENTSTICKUNG UND ENTSCHWEFELUNG VON ABGAS
DE69421734T2 (de) Verfahren zur Schadstoffbeseitigung
DE69722511T2 (de) Stickstoffoxidentfernungskatalysator
DE102012214281A1 (de) Entschwefelungsvorrichtung für Abgase vom Nasstyp und thermisches Kraftwerk mit derselben
EP0824973A2 (de) Verfahren und Einrichtung zum Reinigen eines verunreinigten Gegenstands
DE60030661T2 (de) Verfahren zur Herstellung von Alkanolaminen und Vorrichtung zu ihrer Herstellung
EP0309742A2 (de) Verfahren zum Abscheiden von Stickoxiden aus einem Rauchgasstrom
DE10222915B4 (de) Verfahren zur erneuten Aktivierung wabenförmig aufgebauter Katalysatorelemente für die Entstickung von Rauchgasen
EP0318674B1 (de) Verfahren zum Entfernen von sauren Komponenten und Stickoxiden aus Abgasen industrieller Feuerungsanlagen
EP1350552A2 (de) Verfahren und Vorrichtung zur Beseitigung von Ammoniak aus Abgasen
DE10123402A1 (de) Verfahren zum Behandeln von ammoniakhaltigen Rauchgasen
DE69832649T2 (de) Verfahren zur Abgasbehandlung
EP0677320B1 (de) Verfahren zur katalytischen Reduktion von in den Rauchgasen einer Feuerung mit flüssigen Brennstoffen enthaltenen, Stickoxiden mit Ammoniak und Verfahren zur Regenerierung eines Katalysators
WO2016141988A1 (de) Rauchgasreinigungsanlage und verfahren zur reinigung von rauchgas
DE60120999T2 (de) Verfahren und vorrichtung zur behandlung von ammoniakhaltigem abwasser
DE60126530T2 (de) Verfahren zum Entfernen einer sauren Ablagerung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AU AZ BA BB BR BY BZ CA CN CO CR CU DM DZ EC GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL RO RU SC SD SG SL TJ TM TN TT TZ UA US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP