WO2003092929A1 - Buse de moulage par coulee continue d'un acier calme a l'aluminium et procede de moulage par coulee continue - Google Patents

Buse de moulage par coulee continue d'un acier calme a l'aluminium et procede de moulage par coulee continue Download PDF

Info

Publication number
WO2003092929A1
WO2003092929A1 PCT/JP2003/005558 JP0305558W WO03092929A1 WO 2003092929 A1 WO2003092929 A1 WO 2003092929A1 JP 0305558 W JP0305558 W JP 0305558W WO 03092929 A1 WO03092929 A1 WO 03092929A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
refractory
cao
alumina
killed steel
Prior art date
Application number
PCT/JP2003/005558
Other languages
English (en)
French (fr)
Inventor
Koji Ogata
Koichi Shimizu
Keisuke Asano
Toshiyuki Hokii
Joki Yoshitomi
Original Assignee
Krosakiharima Corporation
Lwb Refractories Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosakiharima Corporation, Lwb Refractories Company filed Critical Krosakiharima Corporation
Priority to MXPA04010796A priority Critical patent/MXPA04010796A/es
Priority to EP03721000A priority patent/EP1504831B1/en
Priority to KR1020047017476A priority patent/KR100835398B1/ko
Priority to AU2003235985A priority patent/AU2003235985A1/en
Priority to DE60326948T priority patent/DE60326948D1/de
Priority to BRPI0309646-7A priority patent/BR0309646B1/pt
Priority to US10/513,186 priority patent/US20050200057A1/en
Publication of WO2003092929A1 publication Critical patent/WO2003092929A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths

Definitions

  • the present invention relates to a nozzle for continuous production of aluminum-killed steel and a use form thereof.
  • alumina adheres to the inner surface of the nozzle (hereinafter referred to as “nozzle”) used for the construction, and the adhered alumina combines to form large inclusions, which together with the molten steel flow. It is taken into the piece and becomes a defect of the piece, thus deteriorating the quality.
  • the refractory material constituting the nozzle itself has a function of preventing the adhesion of alumina.
  • CaO is contained in a brick, and the CaO is reacted with the adhered alumina to form a low-melt material, thereby preventing further alumina adherence.
  • a refractory mainly composed of a raw material combining graphite and sintering power Lucia, electrofused calcia, or another ceramic raw material containing a CaO component was used.
  • a manufacturing nozzle is disclosed.
  • the nozzles for injecting molten steel from the TD into the mold are divided into a single nozzle as shown in Fig. 1 and a single nozzle as shown in Fig. 2.
  • the split nozzle is a combination of the upper nozzle 2 attached to the bottom opening of the tundish 1, the sliding nozzle 3, the lower nozzle 4, and the immersion nozzle 5 immersed in the mold 6.
  • the flow rate into the mold 6 is controlled by adjusting the degree of opening of the opening.
  • This split nozzle has an excellent flow control function and the surface level is stable. For this reason, stable construction under certain conditions is possible, and it is also widely used because of its excellent safety.
  • the single type nozzle has a flow path from the bottom opening of the tundish 1 into the mold 6 formed by a single long immersion nozzle 8, and a long stopper 7 arranged in the tundish 1, Adjust the degree of opening of the bottom opening of the tundish 1 to control the flow into the mold 6.
  • the material containing Ca ⁇ is applied to the inner surface of the above two types of nozzles, the adhesion of alumina to the inner surface of the single type nozzle as shown in Fig. And large alumina-based inclusions.
  • large alumina-based inclusions in the piece tend to be larger than when applied to a single-type nozzle. I knew it would be.
  • the molten steel passing through the nozzle hardly comes into contact with air, but in the split type, air flows in from the joint of the nozzle, and particularly, a sliding nozzle (hereinafter referred to as SN). ) Must be slid during use, so it is difficult to seal between the faces, and air will enter from between the faces.
  • SN sliding nozzle
  • Aluminum-killed steel has aluminum dissolved in molten steel, and when oxidized when in contact with air, forms alumina.
  • the alumina generated in this way is taken into the piece and becomes alumina-based inclusions.
  • Divided by multiple nozzles In the case of the split type nozzle, even if a CaO-containing refractory is applied to a specific nozzle, alumina adheres to the nozzle to which the CaO-containing refractory is not applied, and coalesces there. Large-sized alumina is taken in the piece. Disclosure of the invention
  • An object of the present invention is to apply a material containing CaO to a nozzle for manufacturing aluminum killed steel, not only in a single type but also in a split type or the like, in a large piece in a piece.
  • An object of the present invention is to provide a nozzle capable of reducing the amount of alumina-based inclusions.
  • Still another object is to provide a method for producing aluminum-killed steel that can significantly reduce the content of large alumina-based inclusions in a piece and reduce the quality defect rate.
  • the present invention relates to the content of large alumina-based inclusions in a piece obtained by applying a Ca-containing refractory to each inner surface of a nozzle of each type for injecting molten steel from a tundish into a mold.
  • the content has a very strong correlation between the total area of the bore surface of the nozzle and the amount of Ca ⁇ in the applied refractory, and this specific numerical condition is applied. It was completed by that.
  • the present invention relates to a refractory containing 50% or more of the total area of the inner hole surface of a nozzle used for injecting molten steel from a tundish into a mold, and 20% or more of CaO by mass. It is formed by:
  • the refractory containing 20% by mass or more of CaO By applying a refractory containing 20% by mass or more of CaO to 50% or more of the total area of the inner surface of the nozzle through which molten steel flows, the refractory containing 20% by mass or more of CaO
  • the refractory containing Ca0 to the inner surface of the nozzle at least 50% of the total area of the inner surface. If it is less than 50%, the effect of reducing the amount of alumina flowing into the mold is small, and the effect of reducing the content of large alumina-based inclusions in the piece is small. It is preferably at least 60%, and most preferably, the entire inner surface of all nozzles is made of a CaO-containing refractory.
  • the use of refractories containing CaO causes erosion, abrasion, etc., and causes problems in use, conform to the conditions of use, such as the use of conventional refractories corresponding to them. It is important to choose.
  • the entire nozzle is composed of an upper nozzle and an immersion nozzle, or an SN and an immersion nozzle, or an upper nozzle and an SN and an immersion nozzle, and as shown in FIG.
  • the Ca0-containing refractory makes up 50% or more of the total area of the inner hole surface of the entire nozzle. If so, it is applicable in any case.
  • the above-described split type can be similarly applied to a case where the upper nozzle and the SN or the nozzle including the SN and the lower nozzle are integrated.
  • the CaO content of the refractory applied to the inner bore surface of the nozzle is less than 20% by mass, the adsorption capacity of alumina and the ability to prevent alumina adhesion are small, and the content of large alumina-based inclusions in the piece is improved. Is small, it is necessary to be at least 20% by mass.
  • MgO—CaO-based refractories and MgO—CaO—C-based refractories are more preferable because of their excellent alumina adsorption capacity.
  • the Ca0-containing refractory is applied to at least the inner surface of each nozzle where the molten steel contacts, and the other parts than the inner surface may be made of the same material as this inner surface,
  • the refractory used for the nozzle may be applied as it is.
  • FIG. 1 shows, as an example of a nozzle to which the present invention can be applied, the structure of a split-type nozzle including a plurality of nozzles equipped with SNs.
  • FIG. 2 shows a structural example of a single type nozzle as an example of a nozzle to which the present invention can be applied.
  • Figure 3 shows the relationship between the area ratio of the CaO-containing refractory occupying the entire inner bore surface of the nozzle and the large alumina-based inclusions present in the obtained piece.
  • Fig. 4 shows the relationship between the average CaO content of the refractory forming the inner bore surface of the nozzle and the large alumina-based inclusions present in the obtained piece.
  • FIG. 1 shows an embodiment in which the present invention is applied to the divided nozzle shown in FIG. ⁇ table 1 ⁇
  • Table 1 shows the composition of the material applied to each of the nozzles constituting the split nozzle shown in FIG.
  • Materials A and B shown in the same table are CaO-containing materials according to the present invention, and materials C and D are materials that do not contain Ca0 for comparison.
  • a to D materials are molded into a sleeve with a thickness of 1 Omm, fired, and processed to produce a refractory molded body, which is inserted into the inner hole of the nozzle and bonded with mortar, and the nozzle shown in Fig. 1 And Materials A and C were applied to the immersion nozzle, and B and D were applied to the upper nozzle, sliding nozzle (SN), and lower nozzle.
  • Table 2 shows the area of the inner surface of each nozzle to which the refractory containing CaO was applied as the inner surface area.
  • the effect of the material used for the nozzle on the quality of the piece was investigated, and the effect of the application of Ca-containing refractories was examined.
  • the combination of the nozzles was changed, the pot capacity was 250 ton, the TD capacity was 45 ton, and the chip withdrawing speed was 1.0 1.3 m / min.
  • the effect was investigated by the number of large alumina-based inclusions of 50 m or more contained in the obtained piece per area.
  • Table 3 shows the results of the survey.
  • the number of large alumina-based inclusions in the piece obtained by the split nozzle of Comparative Example 1 was 100, and
  • FIG. 3 is a chart of the results of Table 3, and shows the relationship between the area ratio of the Ca0-containing refractory occupying the entire inner hole surface of the nozzle and the number of large alumina-based inclusions.
  • the quality of the piece is determined by the area ratio of the refractory containing Ca0.
  • Table 4 shows examples of CaO-containing refractories having the compositions shown in E to L in addition to the compositions of A and B shown in Table 1. From these refractories containing Ca0, as in the case of the materials shown in Table 1 above, molded, fired and processed refractory molded bodies with a thickness of 10 mm were prepared and inserted into the nozzle. The test nozzle was adhered with mortar. In FIG. 1, A, E, F, G, and H were applied to the immersion nozzle 5, and B, I, J, K, and L were applied to the upper nozzle 2, SN3, and the lower nozzle 4. The surface area of the inner hole of each nozzle is the same as in Table 2.
  • Table 5 shows the results of investigations on the quality of pieces by making a structure under the same conditions as above using the split nozzle shown in FIG.
  • the quality evaluation method is the same as in Table 3.
  • the present invention can be applied to various types of nozzles irrespective of a split type or a single type in order to greatly reduce the content of large alumina-based inclusions in a piece when aluminum killed steel is produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

明 細 書 アルミキルド鋼の連続鐯造用ノズルと連続鍀造法 技術分野
本発明はアルミキルド鋼の連続铸造用ノズルとその使用形態に関する。 背景技術
アルミキルド鋼の铸造に際しては、 その铸造に使用するノズル (以下ノ ズルという) の内孔面にアルミナが付着し、 その付着したアルミナは合体 して大型の介在物になり、 それが溶鋼流と共に錶片内に取り込まれて鐯片 の欠陥となり品質を低下させることになる。
近年、 とくに薄板等の高級鋼として铸造されるアルミキルド鋼について は、 鋼材品質の厳格化が要求されるようになり、 それに伴い、 連続铸造に おいては、 タンディッシュ (以下 T Dと言う) からモールドに溶鋼を注入 する際に使用されるノズルの内孔へのアルミナ付着を防止することに多く の努力が払われている。
その対策の一つとして、 ノズルの内面からアルゴンガスを溶鋼中に吹き 込んで物理的にアルミナの付着を防止する方法がある。 しかし、 この方法 の実施に際しては、 アルゴンガスの吹き込み量が多すぎると気泡が溶鋼中 に取り込まれて錡片内のピンホールとなり欠陥となる。 従って、 このアル ゴンガスの吹き込みは、 ガスの吹き込み量に制約をもたらし、 アルミナの 付着を防止する手段として必ずしも十分な対策とはなり得ない。
また、 その前記対策の一つとして、 ノズルを構成する耐火材自身にアル ミナ付着防止機能を持たせる手法もある。 これは、 れんが中に C a Oを含 有させ、 この C a Oを付着したアルミナと反応させて低融物を生成させて、 それ以上のアルミナの付着を防ぐもので、 例えば、 特公昭 6 1—4 4 8 3 6号公報には、 黒鉛と焼結力ルシア、 電融カルシア、 または C a O成分を 含む他の窯業用原料を組み合わせた原料を主成分とした耐火物を使用した 铸造用ノズルが開示されている。
通常、 鋼を铸造する際に、 T Dからモールドへ溶鋼を注入するノズルと しては図 1に示される分割された複数のノズルを組み合わせた分割型のも のと、 図 2に示される単一のノズルからなる単一型のものがある。
分割型のノズルは、 タンディッシュ 1の底部開口に取り付けられた上部 ノズル 2と、 スライディングノズル 3と、 下部ノズル 4と、 モールド 6内 に浸漬した浸漬ノズル 5を組み合わせたもので、 スライディングノズル 3 の開口部の開口度合いを調整することによってモールド 6内への流量を制 御する。 この分割型のノズルは、 優れた流量制御機能を持ち、 また、 湯面 も安定する。 このため、 一定条件の下での安定した錡造が可能なほか、 安 全性の点でも優れており広く普及している。
また、 単一型のノズルは、 タンディッシュ 1の底部開口からモールド 6 内への流路を一本の長い浸漬ノズル 8によって形成したもので、 タンディ ッシュ 1内に配置されたロングストッパー 7によって、 タンディッシュ 1 の底部開口部の開口度合いを調整し、 モールド 6内への流鍅を制御する。 前記の C a〇を含有する材質を、 上記 2つの型のノズルの内孔面に適用 すると、 図 2に示すような単一型のノズルの場合には内孔面へのアルミナ 付着は確かに減少し、 大型アルミナ系の介在物も減少する。 ところが、 図 1に示す分割型の一部の箇所のノズルに適用した場合においては、 単一型 のノズルに適用した場合と比較して、 铸片内の大型のアルミナ系介在物が 多くなる傾向になることが分かつた。
前記単一型のノズルを用いた鍀造方法では、 ノズル内を通過する溶鋼と 空気はほとんど接触しないが、 分割型では、 ノズルのつなぎ目から空気が 流入し、 とくに、 スライディングノズル (以下 S Nと言う) は使用中に摺 動させる必要があるので面間のシールが難しく面間から空気の侵入が起こ る。
アルミキルド鋼は溶鋼中にアルミニウムが溶解しており、 空気と接触す ると酸化されてアルミナを生成する。 このようにして生成したアルミナは 铸片内に取り込まれてアルミナ系介在物となる。 複数のノズルで分割され ている分割型のノズルの場合、 特定のノズルに C a O含有系耐火物を適用 しても、 アルミナが C a O含有系耐火物を適用していないノズルに付着し て、 そこで合体して大型化したアルミナが铸片内に取り込まれる。 発明の開示
本発明の目的は、 アルミキルド鋼を錶造するためのノズルに C a Oを含 有させた材質を適用するに際して、 単一型のみならず分割型等の型を問わ ず、 鍀片内で大型のアルミナ系介在物の量を低減させることができるノズ ルを提供することにある。
さらに他の目的は、 铸片中の大型のアルミナ系介在物の含有量を大幅に 低減でき、 品質不良率を低減するアルミキルド鋼の铸造法を提供すること にある。
本発明は、 タンディッシュからモールドへ溶鋼を注入する各型のノズル のそれぞれの内孔面に C a〇含有耐火物を適用して得られた铸片内の大型 のアルミナ系介在物の含有量を調査した結果、 その含有量は、 ノズルの内 孔面の総面積と適用した耐火物中の C a〇量との間に非常に強い相関性が あり、 この具体的な数値条件を適用することによつて完成した。
すなわち、 本発明は、 タンディッシュからモールドに溶鋼を注入するた めに使用されるノズルの内孔面の総面積の 5 0 %以上を、 C a Oを 2 0質 量%以上含有する耐火物によって形成するものである。
前記の図 1に示す分割型のノズルの場合、 C a O含有系耐火物を内孔面 に単位部分的に適用しても、 C a O含有系耐火物を適用していないノズル にアルミナが付着し、 付着したアルミナが合体して大型化したアルミナが 铸片内に取り込まれてしまう。
溶鋼が流下するノズルの内孔面の総面積の 5 0 %以上の内孔面に C a O を 2 0質量%以上含有する耐火物を適用することによって、 C a Oを含有 する耐火物が有するアルミナを吸着する作用と、 C a〇とアルミナが反応 して生成される低融物が液相を呈するために内孔面を平滑にする作用と、 アルミナの付着を防止してアルミナの合体を防止する作用との相乗効果に より、 得られた铸片内のアルミナ系大型介在物の含有量が飛躍的に減少す る。
その相乗効果を発揮させるには、 C a 0を含有する耐火物はノズルの内 孔面の総面積の 5 0 %以上の内孔面に適用することが必要である。 5 0 % 未満ではモールド内へ流れ込むアルミナの量を減少させる作用が小さく铸 片内のアルミナ系大型介在物の含有量を低減する改善効果は小さい。 好ま しくは 6 0 %以上であり、 最も好ましいのは全てのノズルの内孔面全体を C a O含有耐火物で構成することである。 ただし、 C a Oを含有する耐火 物を使用することによって溶損、 摩耗等が発生して使用上問題が生じる箇 所には、 それに対応する従来の耐火物を使用する等の使用条件に合わせて 選択することが重要である。
本発明は、 ノズル全体が、 上部ノズルと浸漬ノズル、 または、 S Nと浸 漬ノズル、 または、 上部ノズルと S Nと浸漬ノズル、 さらには、 図 1に示 すように上部ノズルと S Nと下部ノズルと浸漬ノズルが組み合わされてい るいわゆる分割型の場合でも、 また、 図 2に示す浸漬ノズル単体からなる 場合でも、 C a 0含有耐火物がノズル全体の内孔面の総面積の 5 0 %以上 を占めるのであれば、 何れの場合でも適用可能である。 さらに、 前記分割 型においても、 上部ノズルと S N、 あるいは S Nと下部ノズルが一体とな つたノズルを含む場合も同様に適用することができる。 さらに、 前記一体 型において、 ノズル内孔面の一部に C a 0含有耐火物を適用しても、 ノズ ル全体の内孔面の総面積の 5 0 %以上になるように適用すれば铸片品質の 大幅な改善効果が得られる。
ノズルの内孔面に適用する耐火物の C a O含有量は、 2 0質量%未満で はアルミナの吸着能力とアルミナ付着防止能力が小さく铸片内のアルミナ 系大型介在物の含有量の改善の程度は小さいので、 2 0質量%以上である ことが必要である。
铸片中の大きいアルミナ介在物の存在を低減する効果からいうと耐火物 に含有される C a O量の上限はないが、 C a Oが多くなると溶損が大きく なったり、 消化しやすくなる場合があるので、 使用条件に応じて適宜調整 することが重要である。 一般的な踌造条件においては C a O量は 60質量 %程度あれば十分である。
好ましい耐火物の例を示すと、 1^ 0—じ &0系耐火物、 MgO— C a O— C系耐火物、 Z r 02— C aO系耐火物、 Z r〇 2— C a 0— C系耐火 物などが挙げられる。 とくに、 MgO— C aO系耐火物、 MgO— C aO 一 C系耐火物はアルミナの吸着能力に優れておりより好ましい。
C a 0含有耐火物は各ノズルの少なくとも溶鋼が接触する内孔面に適用 されていることが重要であり、 内孔面以外の部位は、 この内孔面と同一材 質でも良いし、 一般のノズルに使用されている耐火物をそのまま適用して も良い。 図面の簡単な説明
図 1は、 本発明が適用できるノズルの例として、 SNが装着された複数 のノズルからなる分割型ノズルの構造を示す。
図 2は、 本発明が適用できるノズルの例として、 単一型ノズルの構造例 を示す。
図 3は、 ノズルの内孔面全体に占める C a O含有耐火物の面積割合と得 られた铸片中に存在した大型アルミナ系介在物の関係を示す。
図 4は、 ノズルの内孔面を形成する耐火物の平均 C a O含有量と得られ た铸片中に存在した大型アルミナ系介在物の関係を示す。 発明を実施するための最良の形態
本発明を図 1に示す分割ノズルに適用した実施例を示す。 【表 1】
Figure imgf000008_0001
表 1は、 図 1に示す分割ノズルを構成するそれぞれのノズルに適用した 材質の組成を A〜Dによって示す。 同表に示す材質 Aと Bは、 本発明に係 る C a O含有材質であり、 材質 Cと Dは比較のための C a 0を含まない材 質である。
A〜Dの材質を、 厚さ 1 O mmのスリーブ状に成形 ·焼成 ·加工した耐 火物成形体を作製し、 ノズルの内孔に揷入してモルタルで接着して図 1に 示すノズルとした。 材質 Aと Cを浸漬ノズルに、 Bと Dを上部ノズルとス ライディングノズル ( S N ) と下部ノズルに適用した。
表 2は、 C a O含有耐火物を適用した各ノズルの内孔面の面積を内孔表 面積として示す。 【表 2】
Figure imgf000009_0001
これらのノズルを図 1に示す上部ノズル 2 S N 3、 下部ノズル 4、 そ れに浸漬ノズル 5を組み合わせて、 分割型の連続铸造用のノズルとした。
このノズルに使用した材質が铸片の品質に及ぼす影響を調査し、 C a〇 含有耐火物の適用の効果を調べた。 調查はノズルの組み合わせを変えて、 鍋容量 2 5 0 t o n T D容量 4 5 t o n、 铸片の引き抜き速度 1 . 0 1 . 3 m/分の銬造条件下でアルミキルド鋼の銬造を行い、 得られた铸片 に含まれる 5 0 m以上の大型のアルミナ系介在物の面積当たりの個数に よってその効果を調べた。
Figure imgf000010_0001
* 1 内孔総面積に対する内孔部の C a 0含有材質の占める面積割合
* 2 大型アルミナ系介在物の個数 (比較例 1を 1 0 0とした指数)
¾3 表 3にその調査結果を示す。 同表において、 比較例 1の分割型ノズルで 得られた鐯片内の大型のアルミナ系介在物の個数を 1 0 0として、 各例の
個数を指数によって示した。 したがって、 指数が小さいほど大型のアルミ
ナ系介在物の少ない品質良好な铸片であることを示す。
図 3は、 表 3の結果を図表化したもので、 ノズルの内孔面全体に占める C a 0含有耐火物の面積割合と大型アルミナ系介在物の個数の関係を示す。
同図から、 ノズルの内孔面全体に占める C a 0含有耐火物の面積割合が 5 0 %以上になると大幅に介在物の個数が減少し铸片の品質が良好になつ
ていることがわかる。 そして、 铸片の品質は C a 0含有耐火物の面積割合
10 が、 さらに、 増加するに従って良好となり、 全てのノズル内孔面に C a O
含有耐火物を適用することが最も好ましいことが分かる。
次ぎに、 図 1に示すノズルの構造において、 C a 0含有耐火物中の C a
Figure imgf000011_0001
O含有量が铸片の品質に及ぼす影響を調査した。
【表 4】
材質 A B E F G H I J L
Figure imgf000011_0002
組 C a 0 4 0 5 0 1 0 1 5 2 0 3 0 1 0 1 5 2 0 3 0
表 4は、 表 1に示す A、 Bの組成に加えて、 E〜Lに示す組成の C a O 含有耐火物の例を示す。 これらの C a 0含有耐火物から、 先の表 1に示す 材質の場合と同様に、 厚さ 1 0 mmのスリーブ状に成形 ·焼成 ·加工した 耐火物成形体を作製し、 ノズルに内挿してモルタルで接着して試験用のノ ズルとした。 図 1において、 A、 E、 F、 G、 Hを浸漬ノズル 5に、 B、 I、 J、 K、 Lを上部ノズル 2と、 S N 3と、 下部ノズル 4に適用した。 各ノズルの内孔の表面積は表 2と同様である。
表 5にこれらのノズルを組み合わせた図 1に示す分割型ノズルによって 前記と同じ条件による鍀造を行い錡片の品質を調査した結果を示す。 品質 の評価方法は表 3の場合と同様である。
【表 5】
Figure imgf000012_0001
* 1 介在物個数は比較例 1を 1 0 0とした指数で示す < 表 5の結果を図 4にまとめ、 ノズルの内孔耐火物の平均 C a O含有量と 大型アルミナ系介在物の個数の関係を示した。 この図に示すように、 内孔 耐火物中の C a Oの平均含有量が 2 0質量%以上であれば铸片の品質が大 幅に改善されることが明らかである。 産業上の利用可能性
本発明は、 アルミキルド鋼の铸造の際の、 銬片中の大型アルミナ系介在 物の含有量を大幅に低減するために分割型、 単一型を問わず各種ノズルに 適用できる。

Claims

1 . タンディッシュからモ一ルドに溶鋼を注入するために使用される全て の連続铸造用ノズルの内孔面の総面積の 5 0 %以上を、 C a Oを 2 0質量 %以上含有す'る耐火物によって形成したアルミキルド鋼の連続铸造用ノズ ル。
2 . C a〇を 2 0質量%以上含有する耐火物をスリープ状に成形し、 焼成 し、 これを前記ノズルの内孔に揷入した請求の範囲第 1項に記載のアルミ キルド鋼の連続錡造用ノズル。
3 . 連続铸造用ノズルが分割型または単一型である請求の範囲第 1項に記 載のアルミキルド鋼の連続鎳造用ノズル。葷
4 . 内孔面に C a〇含有耐火物を適用した連囲続铸造用ノズルを介してタン ディッシュからモールドに溶鋼を注入して得られた铸片内の大型アルミナ 系介在物を、 前記ノズルの内孔面に適用した C a〇含有耐火物中の C a 0 含有量と、 内孔面への C a O含有耐火物の適用割合を調整することによつ て低減するアルミキルド鋼の連続鍀造法。
5 . 内孔面に適用した C a O含有耐火物中の C a O含有量が 2 0質量%以 上であり、 且つ、 内孔面への C a 0含有耐火物の適用割合が連続铸造用ノ ズルの内孔面の総面積の 5 0 %以上である請求の範囲第 4項に記載のアル ミキルド鋼の連続铸造法。
PCT/JP2003/005558 2002-04-30 2003-04-30 Buse de moulage par coulee continue d'un acier calme a l'aluminium et procede de moulage par coulee continue WO2003092929A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MXPA04010796A MXPA04010796A (es) 2002-04-30 2003-04-30 Unidad de boquilla para moldeado continuo de acero desoxidado con aluminio y metodo de moldeado continuo.
EP03721000A EP1504831B1 (en) 2002-04-30 2003-04-30 method for continuous casting of aluminum killed steel
KR1020047017476A KR100835398B1 (ko) 2002-04-30 2003-04-30 알루미늄 킬드강의 연속 주조용 노즐과 연속 주조법
AU2003235985A AU2003235985A1 (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method
DE60326948T DE60326948D1 (de) 2002-04-30 2003-04-30 Stranggiessenverfahren von aluminiumberuhigtem stahl
BRPI0309646-7A BR0309646B1 (pt) 2002-04-30 2003-04-30 unidade de bocal para lingotamento contìnuo de aço acalmado com alumìnio.
US10/513,186 US20050200057A1 (en) 2002-04-30 2003-04-30 Nozzle for continuous casting of aluminum killed steel and continuous casting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002128337A JP4249940B2 (ja) 2002-04-30 2002-04-30 アルミキルド鋼の鋳造方法
JP2002-128337 2002-04-30

Publications (1)

Publication Number Publication Date
WO2003092929A1 true WO2003092929A1 (fr) 2003-11-13

Family

ID=29397265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005558 WO2003092929A1 (fr) 2002-04-30 2003-04-30 Buse de moulage par coulee continue d'un acier calme a l'aluminium et procede de moulage par coulee continue

Country Status (10)

Country Link
US (1) US20050200057A1 (ja)
EP (1) EP1504831B1 (ja)
JP (1) JP4249940B2 (ja)
KR (1) KR100835398B1 (ja)
CN (1) CN1305602C (ja)
AU (1) AU2003235985A1 (ja)
BR (1) BR0309646B1 (ja)
DE (1) DE60326948D1 (ja)
MX (1) MXPA04010796A (ja)
WO (1) WO2003092929A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736258A1 (en) * 2004-03-15 2006-12-27 Krosakiharima Corporation Nozzle for use in continuous casting
CN100372633C (zh) * 2003-08-22 2008-03-05 黑崎播磨株式会社 钢的连续铸造用浸渍管及使用其的钢的连续铸造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926819B2 (ja) * 2006-05-26 2012-05-09 新日本製鐵株式会社 鋼の連続鋳造方法
KR101310737B1 (ko) 2008-07-28 2013-09-25 신닛테츠스미킨 카부시키카이샤 연속 주조용 노즐
WO2011138831A1 (ja) * 2010-05-07 2011-11-10 黒崎播磨株式会社 耐火物、その耐火物を使用した連続鋳造用ノズル及びその連続鋳造用ノズルの製造方法、並びにその連続鋳造用ノズルを使用した連続鋳造方法
JP6228524B2 (ja) * 2013-09-27 2017-11-08 日新製鋼株式会社 連続鋳造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494851A (ja) 1990-08-09 1992-03-26 Akechi Ceramics Kk 連続鋳造用ノズル
JPH04158963A (ja) 1990-10-19 1992-06-02 Nippon Steel Corp 連続鋳造用ノズル
JPH0532456A (ja) 1991-07-29 1993-02-09 Tokyo Yogyo Co Ltd 耐火材料
JPH05154627A (ja) 1991-08-19 1993-06-22 Shinagawa Refract Co Ltd 非金属介在物付着堆積防止用耐火組成物
JPH05285612A (ja) 1992-04-13 1993-11-02 Kurosaki Refract Co Ltd 連続鋳造用ノズル内孔体
JPH0839214A (ja) 1994-07-30 1996-02-13 Kurosaki Refract Co Ltd 連続鋳造用ノズル
JP2003040672A (ja) * 2001-05-21 2003-02-13 Shinagawa Refract Co Ltd 鋼の連続鋳造耐火部材用耐火物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568007A (en) * 1984-01-23 1986-02-04 Vesuvius Crucible Company Refractory shroud for continuous casting
JP2542585B2 (ja) * 1986-08-08 1996-10-09 東芝セラミツクス株式会社 連続鋳造用浸漬ノズル
US5151201A (en) * 1988-07-01 1992-09-29 Vesuvius Crucible Company Prevention of erosion and alumina build-up in casting elements
US5100035A (en) * 1989-05-01 1992-03-31 Ferro Corporation Permeable MgO nozzle
JPH07214259A (ja) * 1994-01-25 1995-08-15 Akechi Ceramics Kk 溶鋼の連続鋳造用ノズル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494851A (ja) 1990-08-09 1992-03-26 Akechi Ceramics Kk 連続鋳造用ノズル
JPH04158963A (ja) 1990-10-19 1992-06-02 Nippon Steel Corp 連続鋳造用ノズル
JPH0532456A (ja) 1991-07-29 1993-02-09 Tokyo Yogyo Co Ltd 耐火材料
JPH05154627A (ja) 1991-08-19 1993-06-22 Shinagawa Refract Co Ltd 非金属介在物付着堆積防止用耐火組成物
JPH05285612A (ja) 1992-04-13 1993-11-02 Kurosaki Refract Co Ltd 連続鋳造用ノズル内孔体
JPH0839214A (ja) 1994-07-30 1996-02-13 Kurosaki Refract Co Ltd 連続鋳造用ノズル
JP2003040672A (ja) * 2001-05-21 2003-02-13 Shinagawa Refract Co Ltd 鋼の連続鋳造耐火部材用耐火物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1504831A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372633C (zh) * 2003-08-22 2008-03-05 黑崎播磨株式会社 钢的连续铸造用浸渍管及使用其的钢的连续铸造方法
EP1736258A1 (en) * 2004-03-15 2006-12-27 Krosakiharima Corporation Nozzle for use in continuous casting
EP1736258A4 (en) * 2004-03-15 2007-09-26 Krosakiharima Corp TIP FOR CONTINUOUS CASTING

Also Published As

Publication number Publication date
US20050200057A1 (en) 2005-09-15
AU2003235985A1 (en) 2003-11-17
JP4249940B2 (ja) 2009-04-08
JP2003320444A (ja) 2003-11-11
BR0309646B1 (pt) 2012-11-27
KR20050006214A (ko) 2005-01-15
DE60326948D1 (de) 2009-05-14
MXPA04010796A (es) 2005-07-05
EP1504831A1 (en) 2005-02-09
KR100835398B1 (ko) 2008-06-04
CN1649684A (zh) 2005-08-03
CN1305602C (zh) 2007-03-21
EP1504831B1 (en) 2009-04-01
BR0309646A (pt) 2005-03-01
EP1504831A4 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JP2001353561A (ja) 鋼の連続鋳造方法
JP4410796B2 (ja) 連続鋳造ノズル
EP1671721B1 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the immersion nozzle
WO2003092929A1 (fr) Buse de moulage par coulee continue d&#39;un acier calme a l&#39;aluminium et procede de moulage par coulee continue
CN111940715B (zh) 防堵塞浸入式水口
JP6172226B2 (ja) 連続鋳造用浸漬ノズル
JP6546148B2 (ja) ノズル
JP2004074242A (ja) 連続鋳造用耐火物およびそれを用いる連続鋳造方法
WO2004082868A1 (ja) 連続鋳造ノズル
JP4315847B2 (ja) 難付着性の良好な連続鋳造用浸漬ノズル
WO1998050184A1 (fr) Ajutage pour coulage continu d&#39;acier
JP7380900B2 (ja) 鋼の連続鋳造方法
JP3328803B2 (ja) 鋼の連続鋳造用ノズル
JPH03138054A (ja) 連続鋳造用浸漬ノズル
JP2021126679A (ja) 連続鋳造用ノズル
JP4493612B2 (ja) アルミキルド鋼の連続鋳造方法
JPS63166752A (ja) ガス吹込み用耐火物
JPH11246265A (ja) 高耐食性溶融シリカ含有耐火物
JP2006068805A (ja) ジルコニア含有難付着性連続鋳造ノズル
JP2000225448A (ja) 鋼の連続鋳造方法
JP2002035902A (ja) アルミナ付着防止連続鋳造用耐火物
JPH1112034A (ja) ジルコニア質鋳造用耐火物
JP2003290885A (ja) 溶鋼中の介在物の粗大化を防止した浸漬ノズル
JPH08215811A (ja) 溶鋼の連続鋳造用ノズル
JPH08215812A (ja) 溶鋼の連続鋳造用ノズル

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1602/KOLNP/2004

Country of ref document: IN

Ref document number: 01602/KOLNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/010796

Country of ref document: MX

Ref document number: 20038096293

Country of ref document: CN

Ref document number: 1020047017476

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003721000

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10513186

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020047017476

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003721000

Country of ref document: EP