WO2003090978A1 - Dispositif de commande d'un robot mobile dote de jambes - Google Patents

Dispositif de commande d'un robot mobile dote de jambes Download PDF

Info

Publication number
WO2003090978A1
WO2003090978A1 PCT/JP2003/005446 JP0305446W WO03090978A1 WO 2003090978 A1 WO2003090978 A1 WO 2003090978A1 JP 0305446 W JP0305446 W JP 0305446W WO 03090978 A1 WO03090978 A1 WO 03090978A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
gait
reaction force
floor reaction
deviation
Prior art date
Application number
PCT/JP2003/005446
Other languages
English (en)
French (fr)
Inventor
Toru Takenaka
Takashi Matsumoto
Takahide Yoshiike
Kazushi Akimoto
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to JP2004501987A priority Critical patent/JP4225968B2/ja
Priority to KR1020047017292A priority patent/KR100956521B1/ko
Priority to EP03725697A priority patent/EP1502711B1/en
Priority to DE60336127T priority patent/DE60336127D1/de
Priority to US10/512,231 priority patent/US7664572B2/en
Publication of WO2003090978A1 publication Critical patent/WO2003090978A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages

Definitions

  • the present invention relates to a control device for a leg-type moving port.
  • the lopot was mainly used for walking movement.
  • the lopot can not only walk but also run or jump at a higher speed.
  • the actual floor reaction force vertical component proposed in Japanese Patent Application No. 11-300661 for controlling the floor reaction force vertical component is proposed.
  • the compliance control is used in which the tip (foot) of the leg is displaced vertically with respect to the upper body of the mouth pot (displaced from the position of the leg tip of the target gait) according to the condition. This is hereinafter referred to as vertical compliance control.
  • vertical compliance control Without vertical compliance control, the kicking force during jumps tended to be greatly affected by the floor hardness. For example, on a hard floor, the jumping power was sometimes insufficient on a carpet even if the proper jumping power was obtained.
  • the natural vibration generated by the flexural rigidity of the floor, the rigidity of the mouth pot, and the mass of the mouth pot was difficult to attenuate.
  • natural vibration was not attenuated for a long period of time, resulting in poor ground contact and slippage.
  • the actual body vertical position of the mouth port (hereinafter referred to as the actual body vertical position) tends to deviate from the target body vertical position, and Tended to be out of bed. For example, if the actual body vertical position is lower than the target body vertical position at the target leaving time, the floor reaction force vertical component does not become 0 even at the target leaving time, and the timing of leaving the bed is delayed. .
  • the actual body vertical position is higher than the target body vertical position slightly before the target leaving time, the floor reaction force vertical component becomes 0 before the target leaving time, and the user leaves the bed. Timing becomes earlier.
  • vertical compliance control is not used, the actual body vertical position almost coincides with the target body vertical position, so the timing of leaving the bed is unlikely to shift.
  • the present invention has been made in view of such a background, and enables a trajectory of a lopod tip end (foot) to a floor to approach a leg tip (foot) trajectory of a desired gait.
  • the mouth pot is set off at the timing of getting out of the gait according to the target gait to prevent the slip and spin of the mouth pot and the free leg from being caught on the floor.
  • An object of the present invention is to provide a control device for a legged mobile robot capable of reducing landing impact ( disclosed invention).
  • a first aspect of the legged mobile robot of the present invention is to generate a target gait of a legged mobile robot that moves by the movement of a leg, and control the operation of the robot so as to follow the target gait.
  • a desired gait generating means for generating a desired gait including at least a desired movement of the lopot, and a state of the desired gait with respect to a translational movement of the mouth pot in a predetermined direction.
  • a state quantity deviation calculating means for calculating a deviation between the amount and the actual state quantity of the lopot with respect to the translational movement in the predetermined direction as a state quantity deviation, wherein the target gait generating means comprises: Then, the target movement of the target gait of the lopot is determined so that the state quantity deviation approaches zero.
  • the state quantity deviation related to the translation in the predetermined direction is provided. Since the target torsion of the target gait of the lopot is determined so that the difference approaches zero, the consistency between the actual state quantity of the robot and the state quantity in the target gait related to the translational motion is improved. As a result, it is possible to match the actual timing of the actual motion relating to the translational movement of the mouth pot in the predetermined direction with the motion timing in the target gait, and the smooth movement of the mouth pot becomes possible.
  • the predetermined direction is, for example, a vertical direction or a direction connecting the center of gravity of the mouth pot and the desired ZMP of the desired gait. This is the same in any of the inventions described below.
  • the state quantity is preferably, for example, a position of a predetermined part of the lopot or a position of a center of gravity of the lopot, and in particular,
  • the site is preferably the upper body of the mouth pot (the base on which the legs extend). This is the same in any of the inventions described below.
  • the tip of the leg By determining the target movement of the desired gait such that the state quantity deviation (ie, position deviation) relating to the position of the upper body of the mouth pot or the position of the center of gravity approaches 0, the tip of the leg ( The actual trajectory of the foot can also be close to the trajectory of the target gait, and the timing of the operation of leaving and landing the leg can be adjusted to a desired timing (timing on the target gait). . As a result, it is possible to prevent slips and spins, the tip of the leg from being caught on the floor, and to prevent an excessive landing impact at the time of landing.
  • the state quantity deviation ie, position deviation
  • the target gait is a gait having an aerial period in which all legs of the mouth pot are floated in the air, that is, a gait for running or jumping a robot.
  • the position of a predetermined portion of the mouth pot or the position of the center of gravity of the lopot is set as the representative self position of the lopot, and the component of the representative self position in the predetermined direction is translated in the predetermined direction.
  • Predicted trajectory calculating means for calculating a predicted trajectory of the component of the gait.
  • the state quantity which is a deviation between the component of the representative self-position estimated in the predetermined direction and the component of the representative self-position of the eye gait in the predetermined direction so as to approach the expected trajectory by the end of the aerial period. It is preferable as one form to determine a target motion of the target gait in the aerial period according to the deviation (second invention).
  • an expected trajectory of a component in a predetermined direction of the representative self-position of the lopot in the aerial period is obtained, and the predetermined trajectory of the representative self-position in the target gait is determined at least by the end of the aerial period.
  • the target motion of the target gait is determined so that the target trajectory of the component in the direction (vertical direction, etc.) approaches.
  • the actual representative self-position is determined at the end of the aerial period, that is, at the time when the mouth pot lands.
  • the desired gait generating means includes at least a dynamic model representing a relationship between a force acting on the mouth port and a motion of the robot.
  • a virtual external force is determined in accordance therewith, and the target motion is determined by additionally inputting the virtual external force to the dynamic model (third invention).
  • a target motion that makes the state quantity deviation close to zero is determined.
  • the virtual external force may be determined by a feedback control law (PD control law or the like) from the state quantity deviation, for example. Since at least the reference floor reaction force and the virtual external force are input to the dynamic model, when the virtual external force is not zero, the target motion determined by the dynamic model is On the scientific model, the above-mentioned reference floor reaction force does not balance. That is, in the third invention, a motion that intentionally balances the reference floor reaction force on the dynamic model by inputting the virtual external force into the dynamic model (this is a robot under an ideal environment). Is determined, the target motion deviated from the target motion is determined, and thereby the state quantity deviation approaches zero.
  • a feedback control law PD control law or the like
  • the desired gait generating means determines an external force operation amount to be additionally input to the dynamic model in order to make the state quantity deviation close to 0 from the state quantity deviation by a feedback control law.
  • the virtual external force is determined to be 0, and when the value of the external force operation amount deviates from the dead band, It is preferable that the virtual external force is determined to a value at which the external force operation amount deviates from the dead zone (a fourth invention).
  • the virtual external force is set to 0.
  • the target motion determined by the dynamic model is closer to the motion that balances the reference floor reaction force on the dynamic model than when there is no dead zone.
  • the desired gait is a gait having a floor reaction force inactive period in which a floor reaction force acting on the mouth port is maintained at substantially 0
  • the desired gait generating means In the floor reaction force inactive period, it is preferable that the target motion is determined such that the state quantity deviation approaches 0 (fifth invention).
  • the desired gait generating means includes: It is preferable that the virtual external force is determined to be substantially zero within a period other than the inactive period (a sixth invention).
  • the target motion is determined so that the state quantity deviation approaches 0 during the floor reaction inactive period, and the actual motion and the target motion related to the translational motion of the robot in the predetermined direction are determined. While matching the behavior in the gait, during the period other than the floor reaction force inactive period, it is possible to determine the target motion that emphasizes the dynamic equilibrium condition of the robot.
  • the sixth invention by determining the virtual external force to be approximately 0 within a period other than the floor reaction force inactive period, similar to the fifth invention, in the floor reaction force inactive period, Translation of the mouth pot in said predetermined direction While matching the actual behavior related to the movement with the behavior in the desired gait, it is possible to determine the desired movement with emphasis on the dynamic equilibrium conditions of the lopot during periods other than the floor reaction force inactive period. Become.
  • the desired gait generating means determines the desired movement such that the desired movement approaches a predetermined reference movement at least during a period other than the floor reaction force inactive period. Is preferable (the seventh invention).
  • the desired gait generating means converts the target movement into a reference movement that balances the reference floor reaction force on the dynamic model at least within a period in which the virtual external force is determined to be substantially zero. It is preferable that the target exercise is determined so as to be closer (the eighth invention).
  • the seventh and eighth inventions during a period other than the floor reaction force inactive period (seventh invention) or during a period in which the virtual external force is determined to be substantially zero (eighth invention), It is possible to determine a target motion that emphasizes dynamic equilibrium conditions.
  • the desired gait generating means includes means for determining a desired floor reaction force of the mouth port, and the gait of the lopot is included in the desired movement and the desired floor reaction force. It is preferable to provide a compliance control means for operating the lopot so that the lopot is followed (ninth invention).
  • the desired gait generating means includes a desired floor reaction force of a lopot that is unbalanced on the dynamic model in the desired movement based on at least the reference floor reaction force.
  • the apparatus further includes compliance control means for operating the robot so that the gait of the robot follows the desired movement and the desired floor reaction force.
  • the target gait generating means determines the target floor reaction force such that the state quantity deviation approaches 0 at least according to the state quantity deviation. (Eleventh invention).
  • a twelfth invention of the present invention provides a desired gait generating means for generating a desired gait comprising a desired movement and a desired floor reaction force of a leg-type moving port moved by the movement of a leg, and the desired gait.
  • a state quantity deviation calculating means for obtaining, as a state quantity deviation, a deviation between the state quantity of the target and the gait relating to the translational movement in the direction and the actual state quantity of the lopot relating to the translational movement in the predetermined direction;
  • the gait generating means determines a set of a desired motion and a desired floor reaction force of the robot so that the state quantity deviation approaches 0 at least according to the state quantity deviation. It is.
  • the set of the desired movement of the lopot and the desired floor reaction force is determined so that the state quantity deviation approaches zero.
  • the target quantity deviation approaches zero. Since the combination of the exercise and the desired floor reaction force is operated, the agreement between the actual state quantity of the lopot related to the translation and the state quantity in the desired gait is improved as in the first invention. , The deviation of their state quantities (state quantity deviation) can quickly approach zero. As a result, the timing of the actual movement relating to the translational movement of the mouth pot in the predetermined direction can be adjusted to the movement timing in the target gait. Smooth movement of the pot becomes possible.
  • the desired gait generating means includes: a dynamic model representing a relationship between a floor reaction force acting on the robot and a movement of the robot; at least a floor to be acted on the robot; Means for inputting a reference floor reaction force as a reference target value of the reaction force and determining the target motion using the dynamic model; and at least in addition to the dynamic model in accordance with at least the state quantity deviation.
  • the target motion is determined by additionally inputting a virtual external force of the floor reaction force correction amount to the dynamic model, and the reference floor reaction force is corrected by the target floor reaction force correction amount. Determining the desired floor reaction Is preferable (the thirteenth invention).
  • the target operation is determined so that the state quantity deviation approaches 0 by additionally inputting the virtual external force to the dynamic model, and the target floor reaction is determined.
  • the target floor reaction force is determined so that the state quantity deviation approaches zero by correcting the reference floor reaction force with the force correction amount.
  • the difference between the desired floor reaction force correction amount and the virtual external force controls the translation of the lopot in the predetermined direction.
  • the means determines a target value of a difference between the target floor reaction force correction amount and the virtual external force according to the state amount deviation so that the state amount deviation approaches 0, and calculates the target value of the determined difference. It is preferable to determine a set of the target floor reaction force correction amount and the virtual external force so as to satisfy the condition (the 14th invention). This makes it possible to appropriately determine a set of the target operation and the target floor reaction force that can bring the state quantity deviation closer to zero.
  • the desired gait generating means includes: Means for determining an allowable range of the correction amount, wherein a set of the target floor reaction force correction amount and the virtual external force is determined so as to satisfy the target value of the difference and the allowable range of the target floor reaction force correction amount.
  • the target floor reaction force is the target value of the floor reaction force that actually acts on the mouth port, but there is a limit to the floor reaction force that can act on the lopot.
  • the allowable range of the correction amount of the target floor reaction force is determined as described above, and the target floor reaction force correction amount is set so as to satisfy the target value of the difference and the allowable range of the target floor reaction force correction amount.
  • the desired gait generating means assumes that the virtual external force corresponding to the target value of the difference is 0, and temporarily calculates the target floor reaction force correction amount.
  • Means for determining a value, and a target floor reaction force correction amount which is determined by limiting the provisional value to a value within the allowable range based on the provisional value of the target floor reaction force correction amount and the allowable range. It is preferable to include means and means for determining the virtual external force based on the determined desired floor reaction force correction amount and the determined difference target value (a sixteenth invention).
  • the target floor reaction force correction amount determined according to the target value of the difference assuming that the virtual external force is 0 exists within the allowable range, the virtual external force is determined to be 0. It will be. Therefore, the target floor reaction force of the target motion and the target floor reaction force is preferentially operated to make the state quantity deviation close to zero. That is, the state quantity deviation is eliminated by operating the floor reaction force within a range where the floor reaction force can be operated, and in a state where the state quantity deviation cannot be eliminated by the floor reaction force operation, The operation of the target movement by the virtual external force and the operation of the floor reaction force are used together. As a result, the target motion may deviate excessively from the motion that balances the reference floor reaction force on the dynamic model. Can be prevented.
  • the allowable range of the target floor reaction force correction amount in the fifteenth invention defines the dead zone of the virtual external force in the fourth invention.
  • the allowable range of the target floor reaction force correction amount is: It is preferable that the upper limit value and the lower limit value of the permissible range be determined to be substantially 0 at least in the aerial period (17th invention). According to this, in the aerial period in which a floor reaction force cannot be applied to the mouth pot, the state quantity deviation approaches 0 mainly by operating the target motion by the virtual external force. In the mid-air period when the actual floor reaction force is 0, the reference floor reaction force is naturally set to 0, and the target floor reaction force correction amount is also substantially 0 according to the allowable range. Therefore, the difference between the actual floor reaction force and the target floor reaction force in the aerial period is almost zero, so that the unnecessary operation of the compliance control is eliminated and the followability of the mouth port to the target movement is enhanced.
  • the desired gait generator includes a reference for balancing the desired movement with the reference floor reaction force on the dynamic model while satisfying the desired value of the difference. It is preferable to determine a set of the desired floor reaction force correction amount and the virtual external force so as to approach the movement (18th invention). According to this, it is possible to make a compromise between bringing the state quantity deviation closer to 0 and bringing the target motion closer to the reference motion that is balanced on the dynamics model with respect to the reference floor reaction force.
  • the desired gait generating means includes: means for determining a first floor reaction force operation amount based on a feedback control law for bringing the state quantity deviation closer to 0; On the dynamics model, the second floor reaction is performed based on the feedback control rule for approaching the reference motion that matches the reference floor reaction force.
  • the floor reaction force operation amount obtained by combining the first floor reaction force operation amount and the second floor reaction force operation amount is the target motion. Is substantially equal to the second floor reaction force operation amount for approaching the reference movement, so that a set of the target floor reaction force correction amount and the virtual external force is determined based on the second floor reaction force operation amount. Becomes Therefore, the desired floor reaction force correction amount and the virtual external force are determined so that the target motion approaches the reference motion. Further, if the target motion substantially coincides with the reference motion, the floor reaction force operation amount obtained by combining the first floor reaction force operation amount and the second floor reaction force operation amount is such that the state quantity deviation is 0.
  • the combination of the desired floor reaction force correction amount and the virtual external force is determined based on the first floor reaction force operation amount. . Therefore, the desired floor reaction force correction amount and the virtual external force are determined so that the state quantity deviation approaches zero. Therefore, to make the target movement close to the reference movement, that is, to secure the movement of the mouth pot with high dynamic stability, and to make the state quantity deviation close to 0, The behavior of the lopot related to the translational movement in the predetermined direction and the behavior of the desired gait can be both compromised.
  • the target floor reaction force is preferentially operated within the allowable range of the target floor reaction force correction amount.
  • the desired gait generating means causes the desired gait for a predetermined period to approach the desired gait for the predetermined period to a virtual periodic gait. (20th invention). This makes it possible to generate a target gait with high stability of the mouth pot.
  • the state quantity is a position of a predetermined portion of the robot or a position of a center of gravity of the robot (the twenty-first invention).
  • the predetermined portion is an upper body of the lopot (22nd invention).
  • a twenty-third invention of the legged moving port control device of the present invention is to generate a desired gait of the legged moving port moved by the movement of the leg, and to follow the desired gait.
  • a desired gait generator for generating the desired gait; a position of a predetermined portion of the robot and a position of a center of gravity of the robot.
  • At least one of the positions is a representative self-position of the lopot, self-position estimating means for estimating the representative self-position, the estimated representative self-position, and the representative self-position in the target gait.
  • a position deviation calculating means for obtaining a component in a predetermined direction as a position deviation in a predetermined direction of the difference between the two points, and a tip of a leg for performing a robot landing operation corresponding to a target landing point in the target gait.
  • a floor shape recognizing means for measuring a vertical position of a planned landing point on the floor, the target gait generating means comprising at least the predetermined direction position deviation obtained by the position deviation calculating means and the floor. The target gait is corrected based on a vertical position of the planned landing point measured by shape recognition means.
  • the positional deviation in the predetermined direction corresponds to the state quantity deviation of the first to twenty-second aspects.
  • the predetermined direction position deviation and the landing scheduled point measured by the floor shape recognition means are determined. Is corrected based on the vertical position of the target gait. Thereby, even if the vertical position (height) of the floor at the scheduled landing point is deviated from the vertical position assumed in the initially desired target gait, the positional deviation in the predetermined direction is eliminated and the actual floor of the floor is eliminated. A desired gait according to the height can be generated. As a result, it is possible to move the robot smoothly while aligning the actual timing of leaving the robot and the timing of landing evening with the timing on the target gait.
  • the predetermined portion is an upper body of the mouth pot.
  • the desired gait generating means sets the trajectory of the representative self-position in the desired gait based on at least the predetermined direction position deviation so that the predetermined direction position deviation approaches zero.
  • Means for correcting a prescribed target movement, and a target movement for defining a trajectory of a tip of a leg in the desired gait based on at least the measured vertical position of the planned landing point. 24th invention.
  • the positional deviation in the predetermined direction approaches 0 by a target movement that defines the trajectory of the representative self-position, for example, correction (operation) of the target movement of the upper body, and the vertical position of the floor at the scheduled landing point.
  • the landing of the leg can be smoothly performed by modifying (manipulating) the target motion that defines the trajectory of the tip of the leg.
  • the correction (operation) of the target motion that defines the trajectory of the representative self-position in the twenty-fourth invention is performed by regarding the position deviation in the predetermined direction as the state quantity deviation, and What should be done is as follows.
  • the desired gait generator includes at least a deviation between the measured vertical position of the planned landing point and a vertical position of a target landing point in the target gait;
  • the target motion defining the trajectory of the representative self-position in the target gait may be corrected based on the target gait such that these deviations approach zero (the twenty-fifth invention).
  • the trajectory of the representative self-position is defined so that both the deviation between the vertical position of the planned landing point and the vertical position of the target landing point in the target gait and the positional deviation in the predetermined direction approach zero.
  • the target movement for example, upper body target movement
  • the correction (operation) of the target motion that defines the trajectory of the representative self-position includes the deviation between the vertical position of the planned landing point and the vertical position of the target landing point in the target gait,
  • the sum of the positional deviation in the predetermined direction may be regarded as the state variable deviation, and may be performed as in the first to nineteenth aspects.
  • a twenty-sixth invention of the legged moving port control device of the present invention makes it possible to follow a desired gait consisting of a desired movement and a desired floor reaction force of a legged moving rod that moves by the movement of the leg.
  • Compliance control means for controlling the operation of the robot as described above.
  • the compliance control means grasps the floor reaction force actually acting on the mouth port, and compares the grasped floor reaction force with the compliance.
  • a leg type moving port pot for correcting the relative position of the tip of the leg with respect to the upper body of the robot from the relative position defined by the target motion according to the floor reaction force deviation which is a deviation from the target floor reaction force.
  • the target gait is a gait having an aerial period in which all of the legs of the lo-port are floated in the air
  • the compliance control means includes a tip of the leg with respect to the floor reaction force deviation. Part relative position It is characterized in reducing the gain of Seiryo just before the start of at least said floating period.
  • the gain (the gain of the compliance control means) of the correction amount of the relative position of the tip of the leg with respect to the floor reaction force deviation is reduced at least immediately before the start of the aerial period. Immediately before the start of the period, compliance control will be stiff. As a result, the ability of the tip end of the leg to follow the desired movement of the desired gait is enhanced, and the leg can be smoothly removed from the floor without stumbling.
  • a twenty-seventh invention of the legged moving port control device of the present invention generates a desired gait including at least a desired movement of a legged moving pot that moves by the movement of the leg, and In the control device for a legged locomotive locopot that controls the movement of the lopot so as to follow the locomotion, a target gait for generating the desired gait including an aerial period in which at least all the legs of the mouth port float in the air.
  • Estimating means position deviation calculating means for obtaining a component in a predetermined direction as a position deviation in a predetermined direction among differences between the estimated representative self position and the representative self position in the target gait;
  • position of the distal end of the leg of the robot is corrected from the position defined by the target gait such that the positional deviation in the predetermined direction approaches zero.
  • Means for correcting the position of the tip of the leg at least by the start of the aerial period of the target gait without depending on the positional deviation in the predetermined direction. It is characterized by being set to approximately 0. It is preferable that the predetermined portion is, for example, the upper body of a robot.
  • the tip end of the leg is set so that the positional deviation in the predetermined direction approaches zero. Is corrected (operated), but the correction amount is forcibly set to 0 by the beginning of the aerial period. For this reason, at the beginning of the aerial period, the trajectory of the leg tip is controlled to the position and orientation of the leg tip determined by the original target gait, that is, the position and orientation suitable for performing the bed-lifting operation. Become. As a result, the leg can be smoothly released from the floor without stumbling.
  • a twenty-eighth invention of the control device for a leg-type moving port is characterized in that: A legged locomotion robot that generates a desired gait consisting of a desired motion and a desired floor reaction force of a legged mobile robot moving by motion, and controls the operation of the robot so as to follow the desired gait.
  • a target gait generating means for generating the target gait including an aerial period in which at least all the legs of the mouth port are floated in the air, a position of a predetermined portion of the mouth port, and a position of the lopot.
  • a floor reaction force correcting means for correcting a desired floor reaction force of the desired gait, wherein the floor reaction force correction means comprises at least a target floor reaction force by the start of an aerial period of the target gait. Is forcibly set to approximately 0 without depending on the positional deviation in the predetermined direction.
  • the target gait before the start of the aerial period, that is, in the supporting leg period in which one of the legs is in contact with the ground, basically, the target gait is set so that the positional deviation in the predetermined direction approaches zero.
  • the target floor reaction force is corrected (operated), but the correction amount is forcibly set to 0 by the beginning of the aerial phase.
  • the target floor reaction force is determined to be the original target floor reaction force, that is, the target floor reaction force suitable for performing the robot's leaving operation.
  • the movement of the legs is controlled so as to follow the floor reaction force. As a result, the legs can be smoothly released from the floor without stumbling.
  • FIG. 1 is a diagram showing a bipedal transfer as a legged mobile lopot according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an outline of the overall configuration of the dynamic lopot
  • FIG. 2 is a schematic diagram schematically showing the configuration of a foot portion of each leg in FIG. 1
  • FIGS. 3 and 4 are foot diagrams of each leg respectively.
  • Fig. 5 is a block diagram showing the configuration of the control unit provided in the mouth port of Fig. 1
  • Figs. 6 and 7 are the head section of the mouth port.
  • Fig. 8 is a block diagram showing the functional configuration of the control unit in Fig. 5, and Figs. 9 (a) and 9 (b) are the floor reaction forces of the target gait, respectively.
  • FIG. 10 is a flowchart showing the processing of the body vertical position stabilization control unit in the first embodiment
  • FIG. 11 is a block diagram showing the details of the processing of FIG. Figures 12 (a) to (d) show the setting of the floor reaction force vertical component of the target gait, the target ZMP, the maximum allowable value of the compensating vertical floor reaction force for compliance control, and the minimum allowable value of the compensating vertical floor reaction force, respectively. It is a graph showing an example.
  • FIG. 13 is a block diagram showing another example of the processing of the body vertical position stabilization control unit in the first embodiment.
  • FIG. 14 (a) to (d) show the floor reaction force vertical component of the target gait, the target ZMP, and the gain in the processing of the body vertical position stabilization control unit, respectively ( Figures 14 (c) and (d)).
  • 6 is a graph showing an example of setting.
  • FIG. 15 is a flowchart showing a gait generation process and a self-position / posture estimation process of the first embodiment
  • FIG. 16 is a flowchart showing a subroutine process of a main part of FIG.
  • FIG. 17 is a flowchart showing the processing of the main part in the second embodiment
  • FIGS. 18 (a) and 18 (b) are graphs for explaining the processing of FIG.
  • FIG. 19 is a flowchart showing gait generation processing and self-position / posture estimation processing in the third embodiment.
  • FIG. 20 is a block diagram showing processing of a main part in the fourth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • a leg-type moving lo-po The control device of the mouse will be described.
  • a two-legged robot is taken as an example of a legged mobile robot.
  • FIG. 1 is a schematic view showing a bipedal moving robot as a legged moving robot according to this embodiment as a whole.
  • a two-legged moving port (hereinafter referred to as a port) 1 is a pair of left and right legs (leg links) extending downward from an upper body (the base of the port 1) 2 , 2 are provided.
  • the two legs 2 have the same structure, each having six joints.
  • the six joints are, in order from the upper body 3 side, joints for rotation (rotation) of the crotch (lumbar region) (for rotation in the Y direction relative to the upper body 3). These symbols mean that they correspond to the right and left legs, respectively. The same applies below), and the joints for rotation in the roll direction (around the X axis) of the crotch (lumbar region).
  • the foot (foot) 2 2 R (L) that constitutes the tip of each leg 2 is At the same time as being attached, the top of both legs 2 and 2 is connected via the three joints 10 R (L), 12 R (L) and 14 R (L) of the crotch of each leg 2.
  • the upper body 3 is attached. Inside the body 3, a control unit 60 and the like, which will be described in detail later, are stored. In FIG. 1, the control unit 60 is shown outside the body 3 for convenience of illustration.
  • the hip joint (or hip joint) is composed of joints 1 OR (L), 12 R (L), and 14 R (L), and the knee joint is joint 16 R (L).
  • the ankle joints are joints 18 R (L), 20 R (L) Consists of The hip joint and the knee joint are connected by a thigh link 24 R (L), and the knee joint and the ankle joint are connected by a lower leg link 26 R (L).
  • a pair of left and right arms 5, 5 are attached to both upper sides of the upper body 3, and a head 4 is disposed at the upper end of the upper body 3. Of these arms 5, 5 and head 4, arm 5 has no direct relation to the gist of the present invention, and therefore detailed description is omitted. The head 4 will be described later.
  • a well-known 6-axis force sensor 50 between the ankle joint 18 R (L) and 20 R (L) of each leg 2 and the foot 22 R (L). are interposed.
  • the 6-axis force sensor 50 is for detecting the presence / absence of landing on the foot 22 R (L) of each leg 2, the floor reaction force (ground load) acting on each leg 2, and the like. Yes, and outputs to the control unit 60 the detection signals of the three-directional components FX, Fy, Fz of the translational force of the floor reaction force and the three-directional components MX, My, Mz of the moment.
  • the body 3 is provided with an inclination sensor 54 for detecting the inclination (posture angle) of the body 3 with respect to the Z axis (vertical direction (gravity direction)) and its angular velocity. Is output from the tilt sensor 54 to the control unit 60.
  • the tilt sensor 54 includes a three-axis acceleration sensor and a three-axis gyro sensor (not shown). Detection signals from these sensors are used to detect the tilt of the body 3 and its angular velocity. Used to estimate the self-position and orientation of mouth port 1, although the detailed structure is not shown, each joint of the mouth port 1 is provided with an electric motor 64 (see FIG. 5) for driving the joint and a rotation amount of the electric motor 64 (see FIG. 5). (Rotary angle encoder) 65 (see FIG. 5) for detecting the joint rotation angle), and a detection signal of the encoder 65 is output from the encoder 65 to the control unit 60. You.
  • a joystick (operator) 73 (see FIG. 5) is provided at an appropriate position of the mouth port 1, and the joystick 73 is operated by operating the joystick 73. It is configured such that a request for the gait of the mouth port 1 can be input to the control unit 60 as needed, for example, by turning the lopot 1 moving straight.
  • FIG. 2 is a view schematically showing a basic configuration of a tip portion (including each foot 22 R (L)) of each leg 2 in the present embodiment.
  • a spring mechanism 70 is provided between the foot 22 and the 6-axis force sensor 50, and a sole (each foot 22) is provided.
  • An elastic sole 71 made of rubber or the like is affixed to the bottom surfaces of R and L).
  • the compliance mechanism 72 is constituted by the spring mechanism 70 and the sole elastic body 71.
  • a rectangular guide member (not shown in FIG. 2) attached to the upper surface of the foot 22 R (L) and an ankle joint 18 R (L) (The ankle joint 20 R (L) is omitted in FIG. 2) and attached to the 6-axis force sensor 50 side, and are housed in the guide member so as to be finely movable via an elastic material (rubber or spring).
  • a piston-like member (not shown in FIG. 2).
  • the foot 22 R (L) shown by a solid line in FIG. 2 shows a state when no floor reaction force is applied.
  • the spring mechanism 10 of the compliance mechanism 72 and the sole elastic body 71 are bent, and the foot 2 2 R (L) is illustrated by a dotted line in the figure. Move to such a position and orientation.
  • This compliance As described in detail in, for example, Japanese Patent Application Laid-Open No. H05-305558, previously proposed by the present applicant, the structure of the grounding mechanism # 2 is not only used to alleviate landing impact, but also to control. It is important to improve the quality.
  • FIG. 3 is a cross-sectional view of a side view of the foot mechanism 22 R (L)
  • FIG. 4 is a plan view of the foot mechanism 22 R (L) as viewed from the bottom side.
  • the foot mechanism 22 R (L) includes a substantially flat foot plate member 102 as a skeletal member.
  • the foot plate member 102 has a front end portion (toe portion) and a rear end portion (heel portion) that are slightly upwardly curved, but the other portions are flat and flat.
  • a guide member 103 having a rectangular cross section is fixed to the upper surface of the foot plate member 102 with its axis centered in the vertical direction.
  • a movable plate (piston-like member) 104 is provided inside the guide member 103 so as to be movable substantially vertically along the inner peripheral surface of the guide member 103.
  • the movable plate 104 is connected to the ankle joints 18 R (L) and 20 R (L) via a six-axis force sensor 50.
  • the movable plate 104 has a lower edge with a foot plate member 1 through a plurality of elastic members 106 (shown as springs) made of an elastic material such as a spring or rubber. 0 2. Therefore, the foot plate member 102 is connected to the ankle joint 18 R (L) via the elastic member 106, the movable plate 104 and the six-axis force sensor 50.
  • the inside of the guide member 103 (the space below the movable plate 104) is open to the atmosphere through holes and gaps (not shown). The member 103 can enter and exit freely.
  • the above guide member 103, movable plate 104 and the elastic member 106 constitute the spring mechanism 70 shown in FIG.
  • the ground member 71 as the sole elastic body 71 shown in FIG. 2 is attached to the bottom surface (lower surface) of the foot plate member 102.
  • the grounding member 71 is an elastic member interposed between the foot plate member 102 and the floor surface when the foot mechanism 22 R (L) is in the ground state.
  • the elastic members are fixed to the four corners of the foot contact surface of the foot plate member 102 (both sides of the toe portion of the foot plate member 102 and both side portions of the heel portion). ing.
  • the grounding member 71 is formed by vertically stacking a soft layer 107 a made of a relatively soft rubber material and a hard layer 107 b made of a relatively hard rubber material.
  • a hard layer 107 b is provided on the lowermost surface side as a grounding surface portion that comes into direct contact with the floor surface when the leg 2 is placed on the floor.
  • the foot mechanism 22 R (L) is provided with a landing shock absorbing device 108 in addition to the above configuration.
  • the landing shock absorbing device 108 includes a bag-like member 109 attached to the bottom surface of the foot plate member 102 and a compressive fluid with respect to the inside of the bag-like member 109. There is a flow passage 110 for letting in and out of the air (air in the atmosphere).
  • the bag-shaped member 109 is provided substantially at the center of the bottom surface of the foot plate member 102 such that the grounding member 71 exists around the bag-shaped member 109.
  • This bag-shaped member 109 is made of a flexible material such as rubber so as to be freely deformed. In a natural state where no plastic deformation occurs due to external force, as shown by a solid line in FIG. It has a container shape.
  • the bag-shaped member 109 has its open end fixed to the bottom surface of the foot plate member 102 over the entire circumference, and is closed by the foot plate member 102. Also, bag shape The member 109 is provided such that the bottom of the bag-like member 109 protrudes below the grounding member 71 in a natural state in the shape of a cylindrical container.
  • the height of 09 (the distance from the lower surface of the foot plate member 102 to the bottom of the bag-like member 109) is larger than the thickness of the grounding member 71. Therefore, in the state where the foot plate member 102 is grounded via the grounding member 71 (the landing state of the leg 2), the bag-like member 109 is not placed on the floor as shown by the phantom line in FIG. It is compressed in the height direction of the bag-shaped member 109 by the reaction force.
  • the natural state in which the bag-shaped member 109 has the shape of a cylindrical container is the inflated state of the bag-shaped member 109. Since the bag-shaped member 109 is made of a flexible material, it has a shape restoring force to a natural state (cylindrical container shape) when compressed.
  • the flow passage 110 constitutes inflow / outflow means for inflow / outflow of air to / from the bag-like member 109.
  • the inside of the bag-like member 109 and the guide A flow hole formed in the foot plate member 102 so as to communicate with the inside of the pad member 103.
  • the flow passage 110 connects the inside of the bag-like member 109 to the atmosphere side. It will be. Therefore, the air in the atmosphere can freely enter and exit through the flow passage 110 inside the bag-shaped member 109, and the bag-shaped member 109 is in an expanded state (natural state).
  • the flow passage 110 is a throttle passage so that when air enters and exits the inside of the bag-shaped member 109, a fluid resistance is generated.
  • FIG. 5 is a block diagram showing the configuration of the control unit 60.
  • the control unit 60 is constituted by a microcomputer, and includes a CPU.
  • the first arithmetic unit 90 and the second arithmetic unit 92, the AZD converter 80, the power supply 86, the DZA converter 96, the RAM 84, the ROM 94, and between It has a pass line 82 for sending and receiving data.
  • the output signals of the 6-axis force sensor 50, the tilt sensor 54 (acceleration sensor and rate gyro sensor), the joystick 73, etc. of each leg 2 are output by the AZD converter 80.
  • the output of the encoder 65 (mouth encoder) of each joint of the robot 1 is input to the RAM 84 via the counter 86.
  • the first arithmetic unit 90 generates a desired gait as described later and calculates an articulation angle displacement command (a displacement angle of each joint or a command value of a rotation angle of each electric motor 64). To send to. Further, the second arithmetic unit 92 reads the joint angle displacement command from the RAM 84 and the actual measured value of the joint angle detected based on the output signal of the encoder 65, and is necessary for driving each joint. The operation amount is calculated and output to the electric motor 64 that drives each joint via the DZA converter 96 and the servo amplifier 64 a.
  • FIG. 6 and FIG. 7 are drawings showing the internal structure of the head 4 of the robot 1.
  • FIG. 6 is a front view
  • FIG. 7 is a side view.
  • the head 4 is connected to the upper part of the upper body 3 via a neck joint 120 that rotates in the pan and tilt directions.
  • the neck joint 120 has motors 121, 122 with encoders (joint displacement detectors) and reduction gears 123, 124, and motors that are not shown. It is controlled to follow a joint displacement command from the control unit 60 via a control device.
  • the head 4 is equipped with two video cameras 1 2 5 and 1 2 5 on the left and right as environment recognition means so that the object can be stereoscopically viewed, Although not shown in FIG. 3, the outputs (imaging information) of the video cameras 125 and 125 are input to the control unit 60, and the control unit 60 outputs the imaging information in the imaging information. The distance to the target is recognized.
  • the following environment recognition means may be provided.
  • FIG. 8 is a block diagram showing the overall functional configuration of the control device for a legged mobile robot according to this embodiment.
  • the part other than the “real mouth pot” in FIG. 8 is constituted by the processing functions executed by the control unit 60 (mainly the functions of the first arithmetic unit 90 and the second arithmetic unit 92). It is something that is done.
  • the symbols R and L are omitted.
  • the control unit 60 includes a gait generator 200 that generates and outputs a desired gait of the robot 1 freely and in real time.
  • the gait generator 200 outputs
  • the desired gaits are the desired body position / posture trajectory (trajectory of the target position and target posture of the upper body 3), the desired foot position / posture trajectory (trajectory of the target position and target posture of each foot 22), and the target arm It consists of a posture trajectory (trajectory of the desired posture of each arm 5), a desired total floor reaction force center point (target ZMP) trajectory, and a desired total floor reaction force trajectory.
  • a target position / posture trajectory of a portion movable with respect to the body 3 other than the legs 2 and the arms 5 such as the head 4 may be added to the target gait as necessary.
  • the “trajectory” in the above gait means a temporal change pattern (time-series pattern), and in the following description, may be referred to as “pattern” instead of “trajectory”.
  • the “posture” of each part means the spatial orientation.
  • the body posture is defined by the inclination angle (posture angle) of the body 3 in the roll direction (around the X axis) with respect to the axis (vertical axis), and the inclination angle (the posture angle) of the body 3 in the pitch direction (around the Y axis) with respect to the Z axis.
  • the foot posture is expressed by the spatial azimuth of two axes fixed to each foot 22. Is done.
  • the target arm posture is represented by a posture relative to the body 3 with respect to all the parts of the arms 5, 5.
  • the body position means a predetermined position of the body 3, specifically, a position of a predetermined representative point of the body 3.
  • the foot position means the position of a predetermined representative point of each foot 22R, 22L.
  • the body speed means the moving speed of the representative point of the body 3, and the foot speed means the moving speed of the representative point of each of the feet 22 R and 22 L.
  • the desired gait such as the desired body position / posture
  • “goal” is often omitted in the following description if there is no risk of misunderstanding.
  • the components of the gait other than the components relating to the floor reaction force that is, the gaits relating to the movement of the mouth port 1, such as the foot position posture, the body position / posture, etc.
  • each foot floor reaction force The floor reaction force (floor reaction force consisting of translational force and moment) of each foot 22 is called “each foot floor reaction force”, and all (two) feet 22
  • the resultant of the R and 22 L floor reaction forces is called the “total floor reaction force”.
  • total floor reaction force the resultant of the R and 22 L floor reaction forces.
  • the desired floor reaction force is generally expressed by the point of action, the force acting on that point (translational force), and the moment of the force.
  • the point of action is good for everyone Innumerable expressions are conceivable for the same desired floor reaction force.
  • the moment of force is, except for the vertical axis component. , Becomes 0.
  • a desired gait is a set of a desired motion trajectory and a desired floor reaction force trajectory during one or more steps.
  • a desired gait in a narrow sense is a set of a desired motion trajectory during one step and its ZMP trajectory.
  • the target gait in a narrow sense is a set of the target motion trajectory during one step, its ZMP trajectory, and the floor reaction force vertical component trajectory.
  • the target gait will be used in the narrow sense of the target gait unless otherwise specified.
  • the term “one step” of the desired gait is used in the meaning from the time when one leg 2 of the mouth pot 1 lands to the time when the other leg 2 lands.
  • the robot 1 supports its own weight with both legs 2 and 2, and in the one-leg supporting period, the leg 2 with only one of the legs supports the own weight of the mouth port 1.
  • the period of support, aerial refers to the period during which both legs 2, 2 are off the floor (floating in the air).
  • the leg 2 on the side that does not support the own weight of the lopot 1 during the one-leg supporting period is called a “free leg”, and the leg 2 on the side supporting the own weight is called the “supporting leg”.
  • the two-leg supporting period and the one-leg supporting period are alternately repeated, and in the running of lo-pot 1, the one-leg supporting period and the aerial period are alternately repeated.
  • both legs 2 and 2 do not support the weight of mouth port 1, but legs 2 and 3, which were free legs in the one-leg support phase immediately before the aerial phase,
  • the legs 2 that were support legs are also referred to as a free leg and a support leg, respectively, even in the aerial period.
  • each part of the lopot 1 in the desired gait such as a desired body posture, a desired body position, a desired foot position and posture, and a desired arm posture
  • the support leg coordinate system is a coordinate system fixed to the floor having an origin near the ground contact surface of the support leg foot 22. More specifically, the supporting leg coordinate system does not slide the foot 22 of the supporting leg between the ground contact surface and the horizontal position as described in the applicant's patent No. 3273443.
  • the origin is a vertical projection point from the center of the ankle joint of the support leg to the contact surface when rotated.
  • the horizontal axis toward the toe of the feet 22 is the X axis
  • the vertical axis is the Z axis
  • the coordinate axes orthogonal to these X and Z axes is a coordinate system with the Y axis as the left-right axis.
  • the gait generator 200 receives a landing position / posture of the foot 22 of the free leg up to two steps ahead and a required value (a target value) of a landing time, and receives a target body position. Generates a desired gait consisting of a posture trajectory, a desired foot position / posture trajectory, a desired ZMP trajectory, a desired floor reaction force vertical component trajectory, and a desired arm posture trajectory. At this time, some of the parameters that define these trajectories (this is called gait parameters) are modified to satisfy the gait continuity (in addition, the gait generator 2).
  • 0 0 is the target gait of one step (target gait in a narrow sense) from the time one leg 2 of the mouth pot 1 lands to the time the other leg 2 lands.
  • the target gait for one step is generated in order.
  • the gait that is currently or about to be generated is “this gait”
  • the next gait is “next gait”
  • the next gait is called the “next-time gait.”
  • the target gait generated just before the “current gait” is called the “previous gait.”
  • the desired foot position / posture trajectory is calculated using a finite time setting filter disclosed in Japanese Patent No. 3233450 by the present applicant. Generated. In the process of generating the foot position / posture trajectory by the finite time setting file, for example, the foot position trajectory moves while gradually accelerating the foot 22 toward the target landing position (required value of the landing position). Is started, the speed is gradually reduced to 0 or almost 0 by the target landing time (required value of the landing time), and the target landing position is reached and stopped at the target landing time. The same applies to the foot posture trajectory.
  • the target foot position / posture trajectory generated in this way is particularly suitable for running at mouth port 1 because the ground speed at the moment of landing is 0 or almost 0. In this case, the landing impact at the time of landing from the mid-air period can be reduced.
  • the target floor reaction force vertical component trajectory and the target ZMP trajectory (specifically, the X-axis direction ( The target ZMP trajectory of the support leg foot 22 in the front-back direction) is set in the pattern shown by the solid line in Fig. 9 (a) and Fig. 9 (b), respectively.
  • the target floor reaction force vertical component trajectory is basically the upwardly convex path during the one-leg support period as shown by the solid line in Fig. 9 (a). It is maintained at 0 in the mid-air period.
  • the desired floor reaction force vertical component trajectory is set, for example, as shown by a two-dot chain line in FIG. 9 (a).
  • the upper convex part of the two-dot chain line corresponds to the two-leg supporting period
  • the lower convex part corresponds to the one-leg supporting period.
  • the target ZMP is basically set near the center of the contact surface of the leg 2 of the mouth pot 1 (more specifically, in the so-called support polygon) regardless of whether the vehicle is running or walking. .
  • a case where the vehicle travels mainly at the mouth port 1 will be described as an example.
  • the functional configuration of the control unit 60 shown in FIG. 8 is partially different from the first embodiment of the PCT application PCTZJP03Z00435 previously proposed by the present applicant. The difference is that the body vertical position stabilization control calculation unit 2 18 and the self-position / posture estimation unit 2 16 are newly added, and the gait generator 200 has a body vertical position stabilization.
  • a model vertical external force Fmdlz, which will be described later, is input from the control calculation unit 2 18, and the model vertical external force Fmdlz is taken into account in generating a gait of the gait generator 200.
  • the compensation vertical floor reaction force Fcnipnz for the compliance control is input from the upper body vertical position stabilization control calculation unit 2 18, and the composite compliance operation determination unit 204 selects the compensation vertical floor reaction force for the compliance control.
  • the difference is that the compliance operation is determined in consideration of the force Fcmpnz.
  • the remaining form is not different from the first embodiment of the PCT application PCT / JP03 / 00435.
  • the self-position / posture estimating unit 2 16 is an estimated value of the actual vertical position of the upper body 3 of the mouth port 1.
  • the estimated body vertical position is determined, and the body vertical position deviation, which is the difference between the estimated body vertical position and the target body vertical position, is determined.
  • the determination of the estimated body vertical position by the self-position / posture estimating unit 2 16 may be performed, for example, by filing the application on the same day as the present application (Japanese Patent Application No. 2002-1276 066 as the basis of the priority claim).
  • the estimated body vertical position may be determined by a known inertial navigation technique. Basically, any method that can determine the estimated body vertical position with the highest possible accuracy may be used.
  • the target body vertical position used for calculating the body vertical position deviation is the body vertical position of the target gait determined in the previous control cycle by the gait generator 200.
  • the self-position posture estimating unit 2 16 of the present embodiment also determines an estimated body posture as an estimated value of the actual posture of the body 3, and calculates a deviation between the estimated body posture and the target body posture.
  • the actual body posture angle deviation which is the tilt component (the tilt component with respect to the vertical axis), is also obtained.
  • the self-position / posture estimating unit 2 16 is provided with the inclination sensor 54 in order to determine the estimated body position / posture, and to calculate the body vertical position deviation and the actual body posture angle deviation.
  • a desired gait such as a desired body position and posture is provided from the gait generator 200.
  • the body vertical position stabilization control calculation unit 218 calculates the body vertical position deviation 46
  • a force is represented by a set of a translational force and a moment of a force.
  • a force represents only a translational force component.
  • the compensating vertical floor reaction force Fcmpnz for compliance control is input to the composite compliance operation determination unit 204 including the compliance control for the total floor reaction force vertical component.
  • the actual total floor reaction force (the resultant force of all foot floor reaction forces) is the total floor reaction force, which is the resultant force of the target foot floor reaction forces, and the compensation vertical floor reaction force for compliance control.
  • the model vertical external force Fmdlz is sent to the gait generator 200.
  • the gait generator 200 assuming that the model vertical external force Fmdlz acts on the robot, the motion of the target gait that satisfies the dynamic equilibrium conditions (Newton's equation and Euler's equation) Generated using That is, assuming that gravity and the model vertical external force Fmdlz act on the center of gravity of the dynamic model, a motion that satisfies the dynamic equilibrium condition is generated.
  • the kinetic model may be, for example, a simplified model described in PCT Publication WO / 02/40224, or a multi-mass model (full model) described in Japanese Patent Application Laid-Open No. 2002-326173 proposed by the present applicant. Model) can be used.
  • a dynamic model was generated using a dynamic model to satisfy the dynamic equilibrium condition.
  • the dynamic model is used. As long as the same floor reaction force acts on the robot and the actual port, no matter what floor reaction force is applied, the target motion and the actual robot The difference from the movement of the floor is hardly affected by the floor reaction force.
  • the floor reaction force acting on the dynamic model is not necessarily the force acting from the floor in contact.
  • a floor reaction force that cannot be generated in reality because the mouth pot does not contact the floor may act on the dynamic model. Therefore, it can be said that it is more natural to call it the target external force than the target floor reaction force, but in any case it is an imaginary force, so it does not matter which one you use.
  • FIG. 10 is a flowchart thereof
  • FIG. 11 which is a control block diagram thereof.
  • the difference between the estimated body vertical position and the target body vertical position (body vertical position deviation) ⁇ and its rate of change (time derivative) d dh / dt are determined.
  • Fdmdz is determined by the equation shown. That is, Fdmdz is determined from the body vertical position deviation according to the feedpack control law (PD control law in the present embodiment).
  • a compensating vertical floor reaction force Fcmpnz for compliance control and a model vertical external force Fmdlz are determined based on the total required vertical restoring force Fdmdz.
  • the minimum allowable value and the maximum allowable value of the compensating vertical floor reaction force Fcmpnz for compliance control are set as shown in Figs. 12 (c) and (d), and the minimum allowable value is set to the lower limit value.
  • the saturation means (limiter) 250 limits the maximum allowable value to the upper limit
  • the compensation vertical floor reaction force for compliance control Determine Fcmpnz.
  • Fcmpnz is equal to Fdmdz if the minimum permissible value ⁇ Fdmdz ⁇ maximum permissible value, and Fcmpnz is the minimum permissible value and the maximum permissible value if Fdmdz> maximum permissible value. Limited. Then, the model vertical external force Fmdlz is determined by subtracting the total required vertical restoring force Fdmdz from the compliance control compensated vertical floor reaction force Fcmpnz determined in this way. That is, Fcmpnz and Fmdlz are determined so that the difference between Fcmpnz and Fmdlz becomes Fdmdz.
  • the gain Kh and the gain Kdh in S4002 are negative values, and are set so that the difference ⁇ between the estimated body vertical position and the target body vertical position approaches (converges) 0. You.
  • the value of the gain may be changed according to a period such as a one-leg support period or an aerial period.
  • the minimum allowable value that defines the allowable range of the compensation vertical floor reaction force Fcmpnz for compliance control is a non-positive value
  • the maximum allowable value is a non-negative value.
  • the maximum permissible value and the minimum permissible value illustrated in FIGS. 12 (c) and (d) are examples when the robot 1 travels. In this example, the maximum permissible value and the minimum permissible value are between the above-mentioned minimum permissible value and maximum permissible value. Is set to 0 during the period from immediately before the aerial period to immediately after the start of the one-leg support period.
  • Figs. 9 (a) and 9 (b) The indicated target floor reaction vertical component and target ZMP are shown in Fig. 12 (a) and (b).
  • the compliance control cannot generate a compensating vertical floor reaction force Fcmpnz for compliance control.
  • Fcmpnz vertical floor reaction force
  • the compensation vertical floor reaction force for compliance control Fcmpiiz is a value other than 0 immediately before leaving the bed
  • the bed leaving time at which the floor reaction force becomes 0 (the start time of the aerial period) may deviate from the target bed leaving time. Therefore, it is better to set the minimum allowable value and the maximum allowable value to almost 0 immediately before leaving the bed.
  • the model vertical external force Fmdlz acts in the aerial period.
  • the compensation vertical floor reaction force Fcmpnz for compliance control mainly acts.
  • the gain Kh and the gain Kdh may be set to 0 or almost 0.
  • the floor reaction force changes according to the difference Ah between the estimated body vertical position and the target body vertical position and its derivative, and the estimated body vertical position and the target body This is because it has the effect of converging the difference ⁇ h from the vertical position to 0.
  • the model vertical external force Fmdlz and the compensating vertical floor reaction force Fcmpnz for compliance control may be determined using the following equation. That is, The model vertical external force Fmdlz and the compensating vertical floor reaction force Fcmpnz for compliance control may be determined separately from the body vertical position deviation ⁇ h by the feedback control law (PD control law in the example of Fig. 13). .
  • the gain Khc (proportional gain) related to the compensation vertical floor reaction force Fcmpnz for compliance control and the gain Khm (proportional gain) related to the model vertical external force Fmdlz are shown in Figs. 14 (c) and (d), respectively.
  • the gain Khc is set to Khc 0 at the time when the floor reaction force becomes 0 or almost 0, such as in the aerial period, immediately before the start (immediately before leaving the bed), or immediately after the start of the one-leg support period (immediately after landing). It is preferable to set.
  • the gain Khm is preferably set to Khm 0 during the supporting leg period.
  • FIGS. 14 (a) and 14 (b) show the desired floor reaction force vertical component and the desired ZMP (X-axis component) shown in FIG. 9, and Kdhc is the same as Khc in consideration of stability. Kdhm should have the same tendency as Khm.
  • the body vertical position stabilization control calculation unit 218 may combine a limiter such as the saturation means 250 with a variable gain.
  • a filter such as a low-pass filter may be inserted in the body vertical position stabilization control calculation section 218.
  • the model vertical external force Fmdlz and the compensating vertical floor reaction force Fcmpnz for compliance control may be determined by neuro control or fuzzy control.
  • the model vertical external force Fmdlz acts mainly in the aerial phase so that the difference ⁇ between the estimated body vertical position and the target body vertical position approaches 0, and mainly in the support leg phase.
  • the compensating vertical floor reaction force Fcmpnz for compliance control may be configured to act.
  • FIG. 15 shows a flowchart of the desired gait generation processing in the gait generator 200 and the self-position / posture estimation processing of the self-position / posture estimation unit 216.
  • the processing of the gait generator 200 and the self-position / posture estimating unit '216 will be described in detail below with reference to FIG.
  • the process proceeds to S 016, and the processing of the self-position / posture estimating unit 2 16, that is, the actual body position / posture of the robot 1 is estimated (processing for determining the estimated body position / posture).
  • the processing in SO 16 is performed, for example, on the same day as the present application (PCT application, invention based on Japanese Patent Application No. 2002-127706).
  • the method of any of the embodiments proposed in the title “Leg-type moving port pot self-position estimating device”) can be used, or the self-position (body position / posture) using conventional inertial navigation. ) May be estimated.
  • time t is initialized to 0, then proceed to S 0 2 2, the next time gait support leg coordinate system (specifically, its position and orientation), the next next time gait support leg coordinate system ( Read the gait cycle this time and the next time gait cycle.
  • the next time gait support leg coordinate system and the next time gait support leg coordinate system are The required value of the landing position / posture of the first free leg foot 22 (the free leg foot 22 of the current gait) specified by the operation of the joystick 73 (target landing position / posture) ), According to the required landing position / posture (target landing position / posture) of the free leg foot 22 of the second step (the free leg foot 22 of the next time gait), according to the definition of the support leg coordinate system described above. It is determined.
  • the gait cycle this time and the next time's gait cycle are respectively the required landing time (target landing time) of the first step of the free leg foot 22 and the landing time of the second step of the free leg foot 22. Determined according to the required time value (target landing time).
  • the above-described required values of the landing position / posture of the free leg foot 22 and the required values of the landing time, or the position and orientation of the supporting leg coordinate system and the gait cycle may be stored in advance as a walking schedule. Alternatively, it may be determined based on a command (request) from a control device such as the joystick 73 and the walking history up to that time.
  • the gait parameters of the normal turning gait leading to the gait this time are the next time gait support leg coordinate system, next time gait support leg coordinate system determined in S 0 22, Determined based on the gait cycle and the next gait cycle, etc.
  • foot trajectory parameters that specify the desired foot position / posture trajectory are determined.
  • the arm posture trajectory parameters defining the target arm posture trajectory are determined.
  • the time and value of the break point of the pattern shown in FIG. 9A are determined as the floor reaction force vertical component orbit parameter.
  • the normal turning gait means a periodic gait such that when the gait is repeated, no discontinuity occurs in the motion state of the mouth port 1 at the boundary of the gait (hereinafter, “ “Stable gait” may be abbreviated as "normal gait”)
  • a gait for one cycle of a normal turning gait includes a first turning gait and a second turning gait.
  • the first turning gait corresponds to the gait when the support leg foot 22 corresponding to the support leg coordinate system of the current time gait is moved to the position and orientation corresponding to the next time gait support leg coordinate system.
  • the turning gait corresponds to the gait when the support leg foot 22 corresponding to the next time gait support leg coordinate system is moved to the position and orientation corresponding to the next next time support gait coordinate system.
  • the next / next gait support leg coordinate system corresponds to the target landing position / posture of the free leg foot 22 of the second turning gait.
  • the next-next gait support leg coordinate system is the position and orientation of the next-next gait support leg coordinate system viewed from the next-next gait support leg coordinate system (support leg coordinate system of the second turning gait).
  • Position and orientation is the position and orientation (position and orientation) of the next time's gait support leg coordinate system (landing position and posture of free leg foot 22 of this time's gait) as seen from the current time's gait support leg coordinate system.
  • turn is used for a normal turning gait because when the turning rate is zero, it means straight ahead, and straight turning can be included in turning in a broad sense. .
  • the normal turning gait is a virtual periodic gait tentatively created by the gait generator 200 to determine the divergent component at the end of the current gait and the body vertical position speed.
  • the gait generator 200 does not directly output the gait generator 200 for actually controlling the port 1.
  • divergence means that the position of the upper body is shifted to a position far away from the position of both feet (foot).
  • the value of the divergent component means that the upper body of the two-legged port is located at the position of both feet (foot) (strictly speaking, far away from the origin of the support leg coordinate system set on the support foot contact surface) It is a numerical value indicating the condition, and is expressed as a function of the horizontal position of the upper body and its speed.
  • a normal gait to be connected after the current gait to be generated is requested according to the movement request (required values such as the landing position / posture of the foot 22 of the free leg up to two steps ahead and the landing time).
  • the gait was generated this time such that the terminal divergent component of the gait coincided with the initial divergent component of the normal gait.
  • the process proceeds to S 0 26, and the initial state of the normal turning gait (initial body horizontal position / velocity component, initial body vertical Position velocity, initial divergence component, initial body posture angle and angular velocity).
  • the determined gait parameters of the current time gait are mainly the foot trajectory parameters, the reference body posture trajectory parameters, and the arm posture trajectory parameters, similar to the gait parameters of the normal turning gait.
  • target ZMP trajectory parameters Overnight, target floor reaction force vertical component trajectory parameters. The trajectory specified by each parameter is determined so as to be continuous with the trajectory of the normal turning gait.
  • the target ZMP orbit parameters are provisional. The details of the processing of S028 are described in the above-mentioned PCT published publication WOZ02Z40224, PCT / JP02 / 13596, etc., and further description is omitted here.
  • the process proceeds to S029, and the gait parameters of the current time's gait are corrected so that the terminal divergent component of the current time's gait matches the initial divergent component of the normal gait.
  • the corrected gait parameters are the target ZMP trajectory parameters.
  • a model operation floor reaction camom occurs around the target ZMP for the dynamic model of the mouth port 1.
  • the gait instantaneous value (corrected gait instantaneous value) is determined so that the model vertical external force Fmdlz acts on the overall center of gravity of the mouth port 1 on the dynamic model.
  • the instantaneous gait value is determined according to the flowchart in FIG.
  • the target both foot positions and postures at time t determined based on the gait parameters are calculated based on the current gait support leg coordinate system (the landing position of the support leg foot 22 of the current gait).
  • the supporting leg coordinate system determined as described above according to the posture) Is described.
  • the desired foot position / posture trajectory is generated using the finite-time settling filter proposed by the present applicant in Japanese Patent No. 3233450, as described above. For this reason, at the moment of landing from the mid-air period in the running of the mouth pot 1, the foot 22 viewed from the upper body 3 is pulled up so that the ground speed becomes 0 or almost 0. I do. As a result, the landing impact is reduced, and the landing impact can be prevented from becoming excessive.
  • the above-mentioned finite time settling filter be of the third order or more, that is, three or more stages of the first-order lag filter with variable time constant are connected in series (by doing so, the landing time (target landing time)
  • the landing time target landing time
  • the landing time of G1 deviates from the target landing time, the impact does not increase much.
  • a function such as a polynomial set so that the rate of change at the landing time (arrival time) becomes 0 or substantially 0 (the time differential value becomes 0). May be used to determine the foot position / posture trajectory.
  • the process then proceeds to S906, where the target floor reaction force vertical component and the body vertical position stabilization control calculation unit 218 as described above are determined.
  • the vertical position of the overall center of gravity is calculated so as to dynamically balance the resultant force with the model vertical external force Fmdlz.
  • Equation 2 Vertical center of gravity at time t
  • Equation 3 Next, proceed to S908, and calculate the body vertical position velocity that satisfies the total body weight center vertical position velocity.
  • the obtained target foot position / posture value at time t
  • the desired body posture at time t-At
  • the obtained target arm posture value at time t
  • time t-1
  • Upper body horizontal position and the rate of change (rate of change) of the body and the vertical position of the entire center of gravity determined from the desired body vertical position velocity
  • the body vertical position velocity is determined so that the placement velocity matches the current value (time t value) of the overall center of gravity vertical position velocity obtained above.
  • the value of time (t-At) was used instead.
  • the body posture, the body horizontal position, and the estimated value at the time t may be obtained from the gait state before the time (t-At) by the outside.
  • the gait parameter that defines the allowable range of the floor reaction force horizontal component is determined by S028, which is described in PCT application PCTZ JP02Z13596 proposed earlier by the present applicant. Since it is described, further description is omitted here : Then, proceed to S911, and obtain the instantaneous value of the floor reaction force moment allowable range based on the floor reaction camo allowable range parameter. .
  • the floor reaction force moment allowable range is sent to the compensating total floor reaction force moment distributor 2 14 shown in FIG.
  • the compensating total floor reaction force moment distributor 211 basically has a target floor reaction force for compliance control so that the body posture (estimated body posture) of the mouth port 1 approaches the target body posture.
  • the force moment and the model operation floor reaction force moment input to the dynamic model of the gait generator 200 are determined. The details are described in PCTZJP03Z 00435 previously proposed by the present applicant, so that further description is omitted here.
  • the gait of this time is set such that a model-operated floor reaction force moment (which is determined by the compensating total floor reaction force moment distributor 2 14) is generated around the target ZMP.
  • the body horizontal acceleration and the body posture angular acceleration are determined. However, at this time, the body horizontal acceleration and the body posture angular acceleration are determined so that the floor reaction force horizontal component Fx does not exceed the floor reaction force horizontal component allowable range [Fxmin, Fxmax].
  • this step is performed so that the moment acting around the target ZMP due to the combined force of the inertial force and gravity generated by the target movement of the mouth port 1 becomes the moment inverted from the sign of the model operating floor reaction force moment.
  • a set of the body horizontal acceleration and the body posture angle acceleration is determined. However, the force of which the sign of the inertial force is reversed should not exceed the floor reaction force horizontal component allowable range [Fxmin, Fxmax].
  • the process proceeds to SO34, and an arm for canceling the spin force is performed similarly to the process of S032 in the embodiment of PCT application PCT / JP02 / 13596. Determine the swing motion.
  • the process proceeds to S036, adds the control cycle ⁇ t to the time t, returns to S014 again, and waits for an interrupt in the control cycle.
  • the above is the target gait generation processing in the gait generator 200, and the self-position / posture estimation processing of the self-position / posture estimation unit 216.
  • the desired gait is generated as described above.
  • the desired body position / posture (trajectory) and the desired arm posture trajectory are sent directly to the mouth-pot geometric model (inverse kinematics calculation unit) 202.
  • the desired foot position / posture (trajectory), the desired ZMP trajectory (target total floor reaction force center point trajectory), and the desired total floor reaction force (trajectory) (target floor reaction force horizontal component and target floor reaction force vertical component) Is sent directly to the composite compliance operation determination unit 204 On the other hand, it is also sent to the target floor reaction force distributor 206.
  • the desired total floor reaction force is distributed to the feet 22R and 22L, and the desired foot floor reaction force center point and the desired foot floor reaction force are determined. .
  • the determined desired foot floor reaction force center point and the desired foot floor reaction force are sent to the composite compliance operation determination unit 204.
  • the composite compliance operation determination unit 204 generates a corrected target foot position / posture trajectory with mechanism deformation compensation, and sends it to the robot geometric model 202.
  • the mouth-pot geometric model 202 receives the target body position / posture (trajectory) and the corrected target foot position / posture (trajectory) with mechanism deformation compensation.
  • 12. Calculate joint displacement commands (values) for two joints (10 R (L), etc.) and send them to the displacement controller 208.
  • the displacement controller 208 controls the displacement of the 12 joints of the robot 1 according to the joint displacement command (value) calculated by the robot geometric model 202 as a target value.
  • the floor reaction force generated at robot 1 (specifically, the actual floor reaction force of each foot) is detected by a 6-axis force sensor 50.
  • the detected value is sent to the composite compliance operation determining unit 204.
  • the inclination component of the difference between the estimated body posture obtained in S 0 16 in FIG. 15 and the target body posture generated by the gait generator 200, that is, the actual body posture angle deviation 0 errx and 0 erry are sent to the posture stabilization control calculation unit 2 12.
  • 0 errx is a tilt component in the roll direction (around the X axis)
  • 0 erry is a tilt component in the pitch direction (around the Y axis).
  • this posture stabilization control calculation unit 2 1 around the target total floor reaction force center point (target ZMP) for restoring the inclination of the mouth posture of mouth port 1 to the inclination of the body posture of the target gait.
  • a compensating total floor reaction force moment Mdmd is calculated, and this compensating total floor reaction force moment Mdmd is provided to the compensating total floor reaction force moment distributor 2 14.
  • the compliance vertical floor reaction force Fcmpnz for compliance control determined by the body vertical position stabilization control calculation unit 218 as described above is provided to the composite compliance operation determination unit 204.
  • the composite compliance operation determination unit 204 corrects the desired foot position / posture based on the input values. Specifically, in the composite compliance motion determining unit 204, the actual total floor reaction force (the resultant force of all the actual foot floor reaction forces, including both the translational force and the moment) is calculated as the target foot floor reaction force.
  • the target foot given by the gait generator 200 so that the resultant force of the desired total floor reaction force, which is the resultant force of the gait, and the resultant vertical floor reaction force Fcmpnz for compliance control and the target floor reaction force moment for compliance control match.
  • the corrected target foot position / posture (trajectory) with the mechanism deformation compensation is the foot deformation mechanism (the trajectory necessary to generate the target value of the floor reaction force corrected by the composite compliance operation determination unit 204).
  • the amount of deformation of cylindrical rubber, sole sponge, and bag-shaped air damper for absorbing shock is determined using a mechanical model (such as a spring damper model) of the deformation mechanism, and the amount of deformation is generated.
  • the target foot position / posture (trajectory) corrected as follows.
  • the first embodiment described above is an embodiment of the first invention, the third invention to the seventeenth invention.
  • the model vertical external force Fmdlz corresponds to the virtual external force
  • the compensating vertical floor reaction force Fcmpnz for compliance control corresponds to the target floor reaction force correction amount.
  • the processing of the gait generator 200 is the same as that of FIG. Only the second modified gait instantaneous value determination subroutine is different from the first embodiment. Also, since the gait generator 200 does not use the model vertical external force Fmdlz, the processing of the body vertical position stabilization control calculation unit 218 uses only the compliance vertical floor reaction force Fcmpnz for compliance control as described above. It is determined in the same manner as in the first embodiment, and the model vertical external force Fmdlz is not output. The other processes of the control unit 60 are the same as those of the first embodiment.
  • FIG. 17 is a flowchart showing a subroutine for determining the corrected gait instantaneous value (current gait instantaneous value) in the second embodiment (subroutine of S032 in FIG. 15).
  • the routine proceeds to S 1 08, where it is determined whether or not it is in the mid-air period. This determination is made, for example, based on whether or not the floor reaction force detection value (actual floor reaction force) detected by the six-axis force sensor 50 is equal to or less than a predetermined value (a value near 0). There Indicates whether the current time t is within the range from the time of leaving the target gait (start time of the aerial period) or a predetermined time before or after the time, to the landing time of the target gait or the predetermined time before or after the target gait. It may be determined whether it is mid-air or not.
  • a predetermined value a value near 0
  • the process proceeds to S 110, and the mouth port is determined based on the current estimated body position and the estimated rate of change over time.
  • the estimated center-of-gravity position speed which is the estimated value of the current overall center-of-gravity position speed, is obtained. Find the estimated center-of-gravity position velocity at.
  • the process proceeds to S101, and the entire center-of-gravity trajectory of the original target gait when the correction based on the correction amount curve described below (correction in the aerial period) is not performed (specifically, the global center-of-gravity vertical component trajectory) ),
  • the position velocity of the sum of the predicted trajectory and the correction amount curve after the current time (that is, the vertical component trajectory of the corrected target overall center of gravity position) is the estimated overall center of gravity position velocity at the target landing time.
  • the correction amount curve is determined so as to match the vertical component).
  • the original desired gait is obtained by using the target overall center of gravity vertical position obtained in S106 as it is (the corrected overall center of gravity vertical position of S106, which will be described later, is S1).
  • the expected trajectory of the overall center of gravity trajectory of the original desired gait is obtained by S106 of the control cycle at the current time. This is a parabola that leads to the vertical position of the overall center of gravity and its speed (rate of change over time).
  • the correction amount curve is determined as follows. To explain with reference to FIG. 18, first, when the current time t is the start time of the aerial period (the time when the determination result of S1008 is switched from NO to YES), FIG.
  • the correction amount curve (here called the first correction amount curve) Is determined).
  • the corrected total center-of-gravity position trajectory indicated by a solid line after the current time (here, the first corrected total trajectory) is obtained by adding the first correction amount curve to the overall center-of-gravity position trajectory of the original target gait (the predicted trajectory after the current time).
  • the corrected overall center-of-gravity position trajectory smoothly connects to the overall center-of-gravity position trajectory of the original target gait at the start time of the aerial period (the overall center-of-gravity vertical position and speed match).
  • the first correction amount curve is determined so as to smoothly connect to the estimated center of gravity trajectory at the end time of the aerial period (target landing time) (the vertical position and speed match).
  • the estimated trajectory of the estimated overall center-of-gravity position trajectory after the current time is generally the same as the estimated trajectory of the estimated center-of-gravity position trajectory at the time of the previous control cycle due to an estimation error of the estimated body position and orientation. It does not become. Therefore, in the present embodiment, the correction amount curve is updated every control cycle.
  • the new correction amount curve (second correction amount curve) is smoothly connected to the first correction amount curve (correction amount curve determined in the previous control cycle) at the current time (the value of the second correction amount curve at the current time and The time derivative value coincides with the first correction amount curve), and the corrected total gravity center position trajectory (added by adding the second correction amount curve to the predicted trajectory of the original target gait after the current time after the current time).
  • the second corrected global center of gravity position trajectory is determined so that it is the end time of the aerial period (target landing time) and smoothly leads to the estimated global center of gravity trajectory.
  • the correction amount curve is determined while being updated for each control cycle.
  • the correction amount curve is determined as a smooth curve (S-shaped curve) using trigonometric functions and higher-order functions.
  • S 1 0 1 2 or the judgment result of S 1 0 8 is N ⁇ If there is (If not in the mid-air period), the process proceeds to S104, and the sum of the vertical position of the total body weight center and the current instantaneous value of the current correction amount curve is set as the corrected overall gravity center vertical position. Note that the value of the correction amount curve is set to 0 at times other than the mid-air period.
  • the deviation between the overall center-of-gravity vertical position of the target gait and the estimated overall center-of-gravity vertical position corresponding to the estimated body vertical position is the end time of the future aerial period, that is, the current time's gait.
  • the overall center-of-gravity vertical position trajectory of the desired gait is determined (corrected) so as to approach zero.
  • the desired body vertical position trajectory is also determined so as to approach the trajectory of the estimated body vertical position at the end of the gait this time.
  • the second embodiment described above is an embodiment of the second invention of the present invention.
  • the present embodiment differs from the first embodiment only in the processing of the gait generator 200.
  • FIG. 19 is a flowchart of the target gait generation processing of the gait generator 200 and the self-position / posture estimation processing of the self-position / posture estimation unit 216 in the third embodiment.
  • the process proceeds to S111 through S111, and waits for a timer interrupt in each control cycle.
  • the control cycle is Next, the process proceeds to S1116, and executes the self-position / posture estimation processing of the self-position estimation unit 216 in the same manner as S016 in FIG. 15 of the first embodiment to estimate the body position / posture (estimation Determination of body position / posture).
  • time t is set to 0.
  • the swing leg of the gait this time Estimated landing point of flat 22 (A point on the floor corresponding to the target landing position of swing leg foot 22 of the current time's gait, such as the horizontal position of the target landing position in the current time's gait support leg coordinate system. Find the height (vertical position) of the point on the floor at the same horizontal position, and correct the target landing vertical position in the target gait parameters. Note that the process of obtaining the height of the predicted landing point in S110 corresponds to the floor shape recognition means in the twenty-third invention of the present invention.
  • the value of the height (vertical position) of the predicted landing point obtained based on the video camera image or the value obtained by passing this through the mouth-to-pass pass is used to calculate the target landing vertical position (target position) of the target gait parameters.
  • the gait parameter that defines the foot position and posture trajectory of the swing leg of the gait this time. Since the video camera image and the estimated body position / posture have large noise (detection values vary widely), the height value of the predicted landing point is directly set to the target vertical position without passing through a low-pass filter. If substituted, the foot position / posture trajectory of the swing leg may fluctuate drastically, so it is better to pass through the mouth-to-pass fill. High frequency noise may be reduced by an averaging process based on the video camera images acquired over a plurality of control cycles and the estimated body position / posture instead of the mouth-to-pass fill.
  • the process proceeds to S111, and the gait parameter is corrected this time, as in S029 of Fig. 15 of the first embodiment. Then, the process proceeds to S113, and the S03 of the first embodiment is performed. As with 0, determine the parameters of the floor reaction force moment allowable range. Then, the process proceeds to S1136, and executes the corrected gait instantaneous value determination subroutine as in S0332 of FIG. 15 of the first embodiment. Then, the process proceeds to S111, and the arm swing operation for canceling the spin force is determined as in S0334 of the first embodiment. Then, the process proceeds to S114, the control cycle ⁇ t is added to the time t, and the process returns to S111 again to wait for a timer interrupt for each control cycle.
  • the vertical position of the next time's gait support leg coordinate system and the vertical position of the next time's gait support leg coordinate system are determined by S 1 130 in the previous control cycle. It is set to the vertical position of the calculated expected landing point.
  • the vertical position of the next-time gait support leg coordinate system need not always be set in this way.
  • a sensor that recognizes non-contact distance such as a laser range finder or ultrasonic range finder (scanner 1), or a tactile sensor
  • the vertical position of the predicted landing point may be grasped by using this.
  • the difference between the actual body vertical position trajectory of the mouth port 1 (the trajectory of the estimated body vertical position) and the target body vertical position trajectory is described in the first embodiment.
  • a model vertical external force Fmdlz is added to the dynamics model so that the difference (the body vertical position deviation A h) converges to 0. Cameras, etc.
  • the floor height at the predicted landing point corresponding to the target landing position of the free leg foot 22 is measured by a floor shape recognition sensor (distance sensor) that measures the floor height in a non-contact manner.
  • the foot position trajectory of the swing leg is corrected according to the measured floor height (by the deviation between the target landing vertical position and the floor vertical position). That is, the target landing vertical position (parameter night) of the gait parameter that defines the foot position / posture trajectory is corrected.
  • the subroutine processing shown in FIG. 17 of the second embodiment is executed instead of the subroutine processing shown in FIG. 16 of the first embodiment.
  • the overall center-of-gravity vertical position trajectory or the body vertical position trajectory of the target gait is the actual center-of-gravity position (at the time of landing) of the actual mouth port 1 predicted based on the estimated body position
  • the target overall center-of-gravity vertical position trajectory or the target body vertical position trajectory may be corrected so as to converge to the estimated value of the body position.
  • the method of correcting the foot position / posture trajectory is to calculate the difference between the measured floor height (vertical position of the expected landing point) and the landing height assumed in the target gait (target landing vertical position).
  • the foot position / posture trajectory may be modified by adding the smooth (S-shaped curve) correction trajectory determined according to the target foot position / posture trajectory.
  • the third embodiment described above is an embodiment of the twenty-third invention and the twenty-fourth invention.
  • the gait may be generated by the dynamic calculation in consideration of the inertial force and the change in the position of the center of gravity when the foot 22 is displaced in the vertical direction by the compliance control.
  • the compliance gain (the ratio of the foot perturbation displacement to the vertical component of the floor reaction force) may be variable.
  • the compliance gain is set such that the compliance control becomes softer at landing, and then gradually May be determined so that the compliance control becomes harder.
  • the actual body position speed of the robot 1 at the time of leaving the bed is close to the body position speed of the target gait.
  • vertical compliance control is not used (that is, if the vertical compliance control is very hard)
  • the kicking force at the time of jumping tends to be greatly affected by the hardness of the floor. Controls should not be too hard.
  • the technique for varying the compliance gain as described above is an embodiment of the 26th invention of the present invention.
  • the gait parameters are determined or corrected this time only at the gait changeover. However, the gait parameters are determined or corrected at a predetermined time such as when leaving the bed or at each control cycle. You may do it. However, this time, the correction processing of the gait parameters is not performed at the time of changing the gait, and the processing of S 0 22 in FIG. 15 is not executed, and the processing of SO 30 is executed from SO 24. .
  • the floor reaction force vertical component pattern of this time's gait (specifically, the gait parameters that define this) is also corrected by the processing from S024 to S030 in Fig. 15. At this time, the floor reaction force vertical component pattern of the next normal gait may be corrected.
  • the difference between the estimated body vertical position speed and the target body vertical position speed is calculated based on the estimated body vertical position speed. Based on this, the posture of the mouth port 1 at the time of the next landing is predicted, so that the predicted posture becomes an appropriate posture, that is, the upper body 3 at the time of landing is too high (the knees are extended too much).
  • the landing time parameter target landing time
  • the landing time parameter may be changed so that it is not too low (the knee is bent too much).
  • the posture of robot 1 is tilted, so it is necessary to simultaneously change parameters such as the target ZMP and the target landing position that affect the posture.
  • the model vertical external force Fmdlz may act on the target ZMP instead of acting on the center of gravity of the dynamic model.
  • the floor reaction force added as the target value of the compliance control is the compensation vertical floor reaction force for compliance control.
  • a floor reaction force is applied in the direction of a line connecting the entire center of gravity of the mouth pot 1 to the target ZMP, or in the direction of a line connecting the predetermined point of the upper body 3 to the target ZMP. May be. By doing so, it is possible to prevent the posture of the mouth pot from being deviated due to the compliance operation.
  • the external force virtually applied to the dynamic model is only the vertical component like the model vertical external force Fmdlz.
  • a horizontal component For example, a floor reaction force may be applied in the direction of a line connecting the overall center of gravity of the mouth pot 1 and the target ZMP, or in the direction of a line connecting the predetermined point of the body 3 and the target ZMP. . In this way, deviation of the target ZMP due to application of the model vertical external force Fmdlz is prevented.
  • the body vertical position stabilization control calculation unit 218 calculates the compensation vertical floor reaction force Fcmpnz for compliance control based on the body vertical position deviation (difference between estimated body vertical position and target body vertical position ⁇ ). Instead of determining the vertical external force Fmdlz, the compensation vertical floor reaction force for compliance control Fcmpnz and the model vertical external force Fmdlz are calculated based on the deviation of the vertical position of the total center of gravity (the difference between the vertical position of the estimated overall center of gravity and the vertical position of the target overall center of gravity). It may be determined.
  • the body vertical position stabilization control calculation unit 2 18 calculates the compliance vertical floor reaction force for compliance control Fcmpnz, model vertical external force Fmdlz, or target body based on the difference between the estimated body vertical position and the target body vertical position. Although the correction amount of the vertical position trajectory is determined, it may be determined based on a predetermined part other than the upper body 3 (for example, the head 4).
  • the body vertical position stabilization control calculation unit 218 may determine only the model vertical external force Fmdlz.
  • the body vertical position stabilization control calculation unit 218 determines the model vertical external force Fmdlz and the compensating vertical floor reaction force Fcmpnz for compliance control.
  • the compensation vertical floor reaction force Fcmpnz may be set to 0 again.
  • the body vertical position stabilization control calculation section 218 may determine only the compliance vertical floor reaction force Fcmpnz for compliance control. For example, as described in the first embodiment, the model vertical external force Fmdlz and the compensating vertical floor reaction force Fcmpnz for compliance control are determined in the body vertical position stabilization control calculation unit 218, and then the model vertical external force is determined. Fmdlz may be reset to 0.
  • the positional deviation of a predetermined part such as the upper body 3 of the robot 1 or the deviation of the center of gravity of the mouth port 1 ( The effect of converging the estimated overall gravity center position and the target overall gravity center position) to zero is weakened.
  • the allowable range of Fcmpnz is set as shown in FIGS. 12 (c) and (d), or the gain relating to Fcmpnz is set as shown in FIG. 14 (c).
  • the target vertical floor reaction force Fcmpnz for compliance control can be set to zero by the target wake-up time (scheduled start time of the aerial period). For this reason, the leg 2 to be left does not continue to kick the floor after the target leaving time, and it is possible to prevent the leg 2 from interfering with the floor when swinging out.
  • the technique of determining Fcmpnz as described above and controlling the mouth port 1 is an embodiment of the twenty-seventh invention and the twenty-eighth invention of the present invention.
  • the self-position / posture estimating unit 2 16 uses at least the kinematics calculation based on the joint displacement of the target gait and the amount of compliance compensation (see Japanese Patent Application Laid-Open No. Hei 10-277969 previously proposed by the present applicant).
  • the estimated body position / posture may be determined. As a result, the accuracy of the estimated body position is further increased, and as a result, the actual position / posture trajectory of the foot 22 of the mouth port 1 accurately follows the target foot position / posture trajectory.
  • the estimated body position / posture may be determined by kinematics calculation based on at least the actual joint displacement (detected value of the joint displacement). This further enhances the accuracy of the estimated body position, and consequently the actual The position / posture trajectory of the foot 22 also accurately follows the target foot position / posture trajectory.
  • a model vertical external force Fmdlz may be virtually applied. It becomes even more stable.
  • a floor shape recognition sensor for measuring the height of the floor surface in a non-contact manner is provided, thereby measuring the floor height of the target landing point (landing prediction point).
  • the deviation (deviation) of this height may be regarded as the difference (estimated body vertical position deviation) between the estimated body vertical position and the target body vertical position. Good.
  • the difference between the body vertical position trajectory of the actual mouth port 1 and the target body vertical position trajectory is made to converge to 0 (the above-mentioned height).
  • the model vertical external force Fmdlz may be virtually added to the dynamics model so that the body vertical position deviation including the deviation converges to 0).
  • the target body vertical position trajectory may be corrected in accordance with the above-mentioned height deviation so as to converge to the future body vertical position trajectory of the actual port 1 as in the second embodiment.
  • the technique of operating the model vertical external force Fmdlz or correcting the target body vertical position trajectory according to the deviation of the floor height is an embodiment of the twenty-fifth invention of the present invention. is there.
  • the gait generator 200 generates the corrected target gait and also generates the original gait before the correction, and the corrected vertical gait in the body vertical position stabilization control calculation unit 2 18 (Compliance control Compensation vertical floor reaction force Fcmpnz does not exceed the allowable range defined by the minimum and maximum allowable values)
  • the model vertical external force Fmdlz and the compliance control vertical floor reaction force for compliance control so as to converge to the original gait A pair with Fcmpnz may be determined.
  • the corrected desired gait is the desired gait (the desired gait finally output by the gait generator 200) for which the instantaneous value is determined by S032 in FIG.
  • the original gait before correction is a gait determined by setting the model vertical external force Fmdlz to 0 in SO32.
  • a model restoration request vertical external force Fmdlrecz required for the corrected desired gait to converge to the original gait is obtained by the following Expression 4.
  • Equation 4 based on the difference between the corrected upper body vertical position of the desired gait and the original upper body gait, the vertical external force required for model restoration is obtained by the feedback control law (PD control law in this example). Find Fmdlrecz. It should be noted that the difference between the vertical position of the entire center of gravity of the lopot 1 may be used instead of the difference between the vertical position of the body of the target gait and the original gait.
  • the minimum allowable value and the maximum allowable value for the compensation vertical floor reaction force Fcmpnz for compliance control are set, and as shown in FIG.
  • the sum of the total required vertical restoring force Fdmdz and the model restoring required vertical external force Fmdlrecz is passed through the saturation means (limiter) 250 that limits the minimum allowable value to the lower limit and the maximum allowable value to the upper limit.
  • the compensation vertical floor reaction force Fcmpnz for compliance control is obtained.
  • the total required vertical restoring force Fdmdz is obtained as described in the first embodiment.
  • the model vertical external force Fmdlz is determined by subtracting the total required vertical restoring force Fdmdz from the obtained compensating vertical floor reaction force Fcmpnz for compliance control.
  • the minimum allowable value and the maximum allowable value of the compensating vertical floor reaction force Fcmpnz for compliance control are set in the same manner as in the first embodiment, and in the aerial term, the model vertical external force Fmdlz is While the vertical position deviation ⁇ ⁇ is determined to be close to 0, the upper body vertical position deviation A h and the corrected target gait upper body position and the A set of the model vertical external force Fmdlz and the compensating vertical floor reaction force Fcmpnz for compliance control is determined so that the difference from the body vertical position is close to zero.
  • the sum of the total required vertical restoring force Fdmdz and the model required vertical external force Fmdlrecz is within the allowable range between the minimum allowable value and the maximum allowable value of the compensating vertical floor reaction force Fcmpnz for compliance control.
  • the body vertical position deviation ⁇ 1 ⁇ and the difference between the corrected target gait body vertical position and the original body gait body vertical position are compromised to 0.
  • the model vertical external force Fmdlz is determined so that the difference between the corrected target gait body vertical position and the original body gait body vertical position approaches zero.
  • the fourth embodiment described above is an embodiment of the eighteenth invention and the nineteenth invention of the present invention.
  • a dynamic model While the actual joint displacement of robot 1 is controlled to follow the joint displacement of the desired gait, the difference between the actual body vertical position trajectory of robot 1 and the desired body vertical position trajectory, or Because the vertical position trajectory of the actual overall center of gravity and the vertical position trajectory of the total body weight of the target gait converge to 0 (asymptotically), the actual foot trajectory of mouth port 1 converges to the target foot trajectory in global space. I do. Therefore, when viewed from the global space (coordinate system fixed to the floor), the actual motion of the lopot and the floor reaction force always almost match the motion of the desired gait and the floor reaction force (accuracy). Good follow-up control).
  • the actual wake-up timing substantially coincides with the wake-up timing of the target gait, so that problems such as slip-spin due to deviation from the wake-up timing and the free leg's foot being caught on the floor are eliminated.
  • the actual landing position and speed of the mouth port 1 at the time of landing almost match the target position and speed when viewed from the global space, so the actual landing timing is the landing of the target gait.
  • the timing substantially coincides with the timing, and the ground speed at the time of landing is appropriately controlled (for example, 0), so that landing impact is reduced.
  • the target foot trajectory is set so that the ground speed becomes zero or almost zero at the time of landing, the landing impact is further reduced.
  • the relative position between the body 3 and the foot 22 is corrected by correcting the body vertical position as in the above embodiment. It changes, and as a result, the leg 2 expands and contracts (bending and stretching the knee), but the effect is different from the mere correction of the trajectory of the foot 22.
  • the present invention is useful as a device that allows a smooth motion to be performed when a legged moving lopot such as a bipedal moving locopod is run or jumped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Description

明 細 書 脚式移動ロポッ トの制御装置 技術分野
本発明は、 脚式移動口ポッ トの制御装置に関する。 背景技術
脚式移動口ポッ ト、 例えば 2足移動口ポッ トでは、 従来、 主にロポッ トの歩行動作を行なわせるようにしていた。 しかし、 近年では、 脚式移 動口ポッ トの開発が進むにつれて、 該ロポッ トに歩行だけでなく、 より 高速での走行、 あるいはジャンプを行わせることが望まれている。
口ポッ トの歩行では、 常時、 いずれかの脚体を接地させて自重を支え ることとなるが、 口ポッ トの走行あるいはジャンプでは、 口ポッ トに作 用する床反力が 0もしくはほぼ 0になる時期が存在する。 従って、 ロボ ッ トの走行やジャンプでは、 口ポッ トに作用させる床反力、 特に並進力 鉛直成分の制御も重要となる。
そこで、 本出願人は先に提案した P C T出願 PCTZ JP02/ 13596 号 等にて、 目標 Z M Pパターンと目標床反力鉛直成分 (並進力の鉛直成分, 以下、 同じ) パターンを明示的に設計しつつ、 口ポッ トの動力学モデル を基に、 目標運動パ夕一ンを生成し、 実際のロボッ トを目標運動パター ンに追従させつつ、 コンプライアンス制御によって実際の床反力鉛直成 分が目標床反力鉛直成分パターンに追従するように制御して、 走行等を 実現する制御装置を提案している。
また、 前記 P C T出願 PCTZJP02Z 13596 号では、 床反力鉛直成分 を制御する特願平 11-300661 号において提案した、 実床反力鉛直成分 に応じて脚体の先端 (足平) を口ポッ トの上体に対して鉛直方向に変位 させる (目標歩容の脚先端位置からずらす) コンプライアンス制御が用 いられている。 これを以降、 鉛直方向コンプライアンス制御と呼ぶ。 鉛直方向コンプライアンス制御を用いないと、 ジャンプ時の蹴り力が 床の硬さに大きく影響される傾向があった。 例えば、 硬い床では、 適切 なジャンプ力が得られても、 絨毯の上では、 ジャンプ力が不足する場合 があった。 また、 床のたわみ剛性、 口ポッ トの剛性および口ポッ トの質 量によって発生する固有振動が減衰しにくい場合があった。 特に鉄板な どでできた減衰性の低い床では、 固有振動が長期間減衰せず、 接地性が 損なわれ、 スリップが生じる場合もあった。
しかし、 この不都合を解消するために鉛直方向コンプライアンス制御 を用いると、 口ポッ トの実際の上体鉛直位置 (以降、 実上体鉛直位置と 呼ぶ) が目標上体鉛直位置からずれ易くなり、 ジャンプの離床タイミン グがずれる傾向があった。 例えば、 目標の離床時刻に実上体鉛直位置が 目標上体鉛直位置よりも低い場合には、 目標の離床時刻になっても、 床 反力鉛直成分は 0にならず、 離床のタイミングは遅れる。
逆に、 目標の離床時刻より少し前に、 実上体鉛直位置が目標上体鉛直 位置よりも高い場合には、 目標の離床時刻になる前に、 床反力鉛直成分 は 0になり、 離床のタイミングは早くなる。 補足すると、 鉛直方向コン プライアンス制御を用いないと、 実上体鉛直位置は目標上体鉛直位置に ほぼ一致するので、 離床のタイミングはずれにくい。
上記のように離床タイミングが早くなると、 水平方向の摩擦力が想定 して時刻よりも早めに小さくなるか 0となるので、 スリップゃスピンを 生じ易かった。
逆に、 離床タイミングが遅くなると、 走行のように離床した直後に遊 脚足平を前に移動する時に、 遊脚足平が床に引っ掛かってしまう恐れが あった。
また、 離床時に、 実際の口ポッ トの上体鉛直位置軌道 (重心軌道) が 目標上体鉛直位置軌道からずれると、 着地時の重心軌道もずれ、 着地タ ィミングがずれたりして、 遊脚足平の着地時の対地速度が過大になり、 大きな着地衝撃が発生する恐れもあった。
また、 実際のロポッ 卜の運動と床反力とが目標歩容のそれからずれる ので、 姿勢安定性も低下した。
本発明はかかる背景に鑑みてなされたものであり、 ロポッ トの脚体先 端部 (足平) の床に対する軌道を目標歩容の脚体先端部 (足平) 軌道に 近づけることができ、 ひいては、 口ポッ トが目標歩容通りの離床のタイ ミングで離床するようにして、 口ポッ トのスリップやスピン、 遊脚の床 への引っ掛かかり等が発生するのを防止し、 また、 着地衝撃を低減する ことができる脚式移動ロボッ トの制御装置を提供することを目的とする ( 発明の開示
本発明の脚式移動ロポッ トの第 1発明は、 脚体の運動により移動する 脚式移動ロボッ トの目標歩容を生成し、 その目標歩容に追従させるよう に該ロボッ トの動作を制御する脚式移動ロポッ トの制御装置において、 少なくとも前記ロポッ トの目標運動を含む目標歩容を生成する目標歩容 生成手段と、 前記口ポッ トの所定方向の並進運動に関する前記目標歩容 の状態量と、 該所定方向の並進運動に関する該ロポッ トの実際の状態量 との偏差を状態量偏差として求める状態量偏差算出手段とを備え、 前記 目標歩容生成手段は、 前記状態量偏差に応じて該状態量偏差を 0に近づ けるように前記ロポッ 卜の目標歩容の目標運動を決定することを特徴と する。
かかる第 1発明では、 前記所定方向の並進運動に関する前記状態量偏 差を 0に近づけるようにロポッ 卜の目標歩容の目標蓮動を決定するので. 前記並進運動に関する実際のロボッ トの状態量と目標歩容における状態 量との一致性が高まる。 その結果、 口ポッ トの前記所定方向の並進運動 に関する実際の動作の夕イミングを目標歩容での動作タイミングに合わ せることが可能となり、 口ポッ トの円滑な運動が可能となる。
なお、 前記所定方向は、 例えば鉛直方向、 あるいは、 口ポッ トの重心 と目標歩容の目標 Z M Pとを結ぶ方向等である。 これは、 以下に説明す るいずれの発明においても同様である。
また、 後述の第 2 1発明、 第 2 2発明の如く、 前記状態量は、 例えば 前記ロポッ トの所定の部位の位置又は該ロポッ 卜の重心の位置であるこ とが好ましく、 特に、 前記所定の部位は口ポッ トの上体 (脚体が延設さ れる基体) であることが好ましい。 これは、 以下に説明するいずれの発 明においても同様である。 口ポッ トの上体の位置、 あるいは、 重心の位 置に係わる前記状態量偏差 (すなわち位置偏差) を 0に近づけるように 目標歩容の目標運動を決定することで、 脚体の先端部 (足平) の実際の 軌道も、 目標歩容の軌道に近づけることができ、 該脚体の離床、 着床等 の動作のタイミングを所望のタイミング (目標歩容上のタイミング) に 合わせることができる。 その結果、 スリップやスピン、 脚体先端部の床 への引っ掛かり等を防止し、 また、 着地時に過大な着地衝撃が生じるの を防止することが可能となる。
上記第 1発明では、 前記目標歩容が、 前記口ポッ トの全ての脚体を空 中に浮かせる空中期を有する歩容であるとき、 すなわち、 ロボッ トの走 行やジャンプを行う歩容であるときには、 例えば、 前記口ポッ トの所定 の部位の位置又は該ロポッ トの重心の位置を該ロポッ トの代表自己位置 とし、 その代表自己位置の前記所定方向の成分を前記所定方向の並進運 動に関する該ロボッ トの実際の状態量を表すものとして推定する自己位 置推定手段と、 少なく とも前記空中期の開始時までに前記自己位置推定 手段により推定された前記代表自己位置の所定方向の成分に基づいて少 なくとも該空中期における該代表自己位置の所定方向の成分の予想軌道 を求める予想軌道算出手段とを備え、 前記目標歩容生成手段は、 前記空 中期において前記目標歩容により定まる前記代表自己位置の前記所定方 向の成分の目標軌道が少なく とも該空中期の終了時までに前記予想軌道 に近づくように前記推定された代表自己位置の所定方向の成分と前記目 檩歩容の代表自己位置の所定方向の成分との偏差である前記状態量偏差 に応じて該空中期における前記目標歩容の目標運動を決定することが一 つの形態として好適である (第 2発明)。
かかる第 2発明によれば、 空中期におけるロポッ トの代表自己位置の 所定方向の成分の予想軌道を求め、 この予想軌道に、 少なくとも空中期 の終了時までに目標歩容における代表自己位置の所定方向 (鉛直方向 等) の成分の目標軌道が近づくように目標歩容の目標運動が決定される < その結果、 空中期の終了時、 すなわち、 口ポッ トの着地時における実際 の代表自己位置の所定方向成分と目標歩容における代表自己位置の所定 方向成分との間の偏差 (状態量偏差) を小さくして、 実際の着地夕イミ ングと目標歩容上での着地タイミングとを合わせることが可能となり、 ロポッ 卜の着地時に過大な着地衝撃を生じるのを防止しつつ、 ロポッ ト の着地動作を円滑に行わせることができる。 また、 口ポッ トの着地毎に 前記状態量偏差をほぼ 0にするため、 口ポッ トの離床時 (空中期の開始 時) における実際のロポッ 卜の離床夕イミングと目標歩容における離床 タイミングとの間の誤差も極力小さくできるので、 口ポッ トの離床動作 も円滑に行なうことが可能となる。
また、 前記第 1発明では、 前記目標歩容生成手段が、 前記口ポッ トに 作用する力と該ロボッ トの運動との関係を表す動力学モデルに少なくと も該ロポッ トに作用させるべき床反力の目標値としての基準床反力を入 力しつつ、 該動力学モデルを用いて前記目標運動を決定する手段である ときには、 少なくとも前記状態量偏差に応じて仮想外力を決定し、 該仮 想外力を前記動力学モデルに付加的に入力することにより前記目標運動 を決定することが好ましい (第 3発明)。
これによれば、 前記動力学モデルに前記仮想外力を付加的に入力する ことによって、 前記状態量偏差を 0に近づけるような目標運動が決定さ れる。 なお、 前記仮想外力は、 例えば前記状態量偏差からフィードバッ ク制御則 (P D制御則等) によって決定すればよい。 また、 前記動力学 モデルには、 少なくとも基準床反力と仮想外力とが入力されることとな るため、 該仮想外力が 0でないときには、 該動力学モデルによって決定 される目標運動は、 該動力学モデル上では、 前記基準床反力とは釣り合 わないものとなる。 つまり、 第 3発明では、 前記仮想外力を動力学モデ ルに付加的に入力することで、 意図的に前記基準床反力に動力学モデル 上で釣り合う運動 (これは理想的な環境下でロボッ トの本来あるべき運 動を意味する) からずらした目標運動を決定し、 これにより、 前記状態 量偏差を 0に近づける。
上記第 3発明では、 前記目標歩容生成手段は、 前記状態量偏差を 0に 近づけるために前記動力学モデルに付加的に入力すべき外力操作量を該 状態量偏差からフィードバック制御則により決定する手段を備え、 該外 力操作量の値が 0を含む所定の不感帯域に存在するときには、 前記仮想 外力を 0に決定し、 該外力操作量の値が前記不感帯域から逸脱している ときには、 前記仮想外力を該外力操作量が前記不感帯域から逸脱した分 の値に決定することが好ましい (第 4発明)。
これによれば、 前記状態量偏差が前記不感帯域にあるとき、 すなわち. 該状態量偏差が微小であるときには、 前記仮想外力を 0とするので、 前 記動力学モデルによって決定される目標運動は、 該動力学モデル上で前 記基準床反力に釣り合う運動に前記不感帯域がない場合に較べ近づく こ ととなる。 その結果、 口ポッ トの実際の運動が、 動力学的な安定性の高 い (動力学的平衡条件を満たす) 本来の運動から過剰にずれてしまうの を防止できる。
また、 第 1発明では、 前記目標歩容が、 前記口ポッ トに作用する床反 力が略 0に維持される床反力不作用期間を有する歩容であるときには、 前記目標歩容生成手段は、 前記床反力不作用期間において、 前記状態量 偏差を 0に近づけるように前記目標運動を決定することが好ましい (第 5発明)。
同様に、 前記第 3又は第 4発明では、 前記基準床反力が、 その値が略 0に維持される床反力不作用期間を有するときには、 前記目標歩容生成 手段は、 前記床反力不作用期間以外の期間内で前記仮想外力を略 0に決 定することが好ましい (第 6発明)。
すなわち、 前記床反力不作用期間では、 口ポッ トには実質的に重力の みが作用して、 該ロポッ トの重心の運動が該重力によって支配されるの で、 口ポッ トの各部の相対的な運動だけを考慮すればよいが、 前記床反 力不作用期間以外の期間では、 口ポッ トに床反力が作用するため、 動力 学的平衡条件を満たす必要性が高い。 そして、 第 5発明では、 前記床反 力不作用期間において、 前記状態量偏差を 0に近づけるように前記目標 運動を決定して、 ロボッ 卜の前記所定方向の並進運動に関する実際の挙 動と目標歩容における挙動とを合致させる一方、 該床反力不作用期間以 外の期間では、 ロボッ トの動力学的平衡条件を重視した目標運動を決定 することが可能となる。 また、 前記第 6発明では、 前記床反力不作用期 間以外の期間内で前記仮想外力を略 0に決定することで、 第 5発明と同 様に、 前記床反力不作用期間において、 口ポッ トの前記所定方向の並進 運動に関する実際の挙動と目標歩容における挙動とを合致させる一方、 該床反力不作用期間以外の期間では、 ロポッ トの動力学的平衡条件を重 視した目標運動を決定することが可能となる。
さらに、 前記第 5発明では、 前記目標歩容生成手段は、 少なくとも前 記床反力不作用期間以外の期間内において、 前記目標運動を所定の基準 運動に近づけるように該目標運動を決定することが好ましい (第 7発 明)。
また、 前記第 6発明では、 前記目標歩容生成手段は、 少なく とも前記 仮想外力を略 0に決定する期間内において前記目標運動を前記基準床反 力に前記動力学モデル上で釣り合う基準運動に近づけるように前記目標 運動を決定することが好ましい (第 8発明)。
これらの第 7発明及び第 8発明によれば、 前記床反力不作用期間以外 の期間内 (第 7発明)、 あるいは、 前記仮想外力を略 0に決定する期間 内 (第 8発明) において、 動力学的平衡条件を重視した目標運動を決定 できる。
また、 前記第 1発明では、 前記目標歩容生成手段は、 前記口ポッ トの 目標床反力を決定する手段を含み、 前記目標運動と目標床反力とに該ロ ポッ トの歩容を追従させるように該ロポッ トを操作するコンプライアン ス制御手段を備えることが好適である (第 9発明)。
同様に、 前記第 3発明では、 前記目標歩容生成手段は、 少なくとも前 記基準床反力を基に前記目標運動に前記動力学モデル上で不釣合いとな るロポッ トの目標床反力を決定する手段を含み、 前記目標運動と目標床 反力とに該ロボッ 卜の歩容を追従させるように該ロボッ トを操作するコ ンプライアンス制御手段を備えることが好適である (第 1 0発明)。 これらの第 9発明及び第 1 0発明によれば、 前記コンプライアンス制 御手段を備えることで、 口ポッ トの実際の運動と床反力との両者を概ね 目標運動と目標床反力とに追従させることができる。
特に上記第 9又は第 1 0発明では、 前記目標歩容生成手段は、 少なく とも前記状態量偏差に応じて該状態量偏差を 0に近づけるように前記目 標床反力を決定することが好ましい (第 1 1発明)。
これによれば、 目標運動と目標床反力との両者を操作して、 状態量偏 差を 0に近づけることができるため、 該状態量偏差の 0への収束、 すな わち、 該状態量偏差の解消を迅速に行うことができる。
また、 本発明の第 1 2発明は、 脚体の運動により移動する脚式移動口 ポッ トの目標運動及び目標床反力からなる目標歩容を生成する目標歩容 生成手段と、 その目標歩容の目標運動及び目標床反力に前記口ポッ トの 歩容を追従させるように該ロポットを操作するコンプアライアンス制御 手段とを備えた脚式移動ロボッ 卜の制御装置において、 前記ロポッ トの 所定方向の並進運動に関する前記目標 ·歩容の状態量と、 該所定方向の並 進運動に関する該ロポッ トの実際の状態量との偏差を状態量偏差として 求める状態量偏差算出手段を備え、 前記目標歩容生成手段は、 少なく と も前記状態量偏差に応じて該状態量偏差を 0に近づけるように前記ロボ ッ トの目標運動と目標床反力との組を決定することを特徴とするもので ある。
かかる第 1 2発明では、 前記状態量偏差を 0に近づけるようにロポッ 卜の目標運動と目標床反力との組を決定するので、 換言すれば、 状態量 偏差を 0に近づけるように、 目標運動と目標床反力との組を操作するの で、 前記第 1発明と同様に前記並進運動に関する実際のロポッ 卜の状態 量と目標歩容における状態量との一致性が高まることに加えて、 それら の状態量の偏差 (状態量偏差) を迅速に 0に近づけることができる。 そ の結果、 口ポッ トの前記所定方向の並進運動に関する実際の動作のタイ ミングを目標歩容での動作タイミングに合わせることが可能となり、 口 ポッ 卜の円滑な運動が可能となる。
この第 1 2発明では、 前記目標歩容生成手段は、 前記ロボッ トに作用 する床反力と該ロポッ トの運動との関係を表す動力学モデルに、 少なく とも該ロポッ トに作用させるべき床反力の基準目標値としての基準床反 力を入力しつつ、 該動力学モデルを用いて前記目標運動を決定する手段 と、 少なく とも前記状態量偏差に応じて前記動力学モデルに付加的に入 力すべき仮想外力と前記目標床反力の前記基準床反力からの修正量とし ての目標床反力修正量との組を決定する手段とを備え、 その決定された 仮想外力及び目標床反力修正量のうちの仮想外力を前記動力学モデルに 付加的に入力することにより前記目標運動を決定すると共に、 前記目標 床反力修正量により前記基準床反力を修正することにより前記目標床反 力を決定することが好ましい (第 1 3発明)。
かかる第 1 3発明によれば、 前記仮想外力を前記動力学モデルに付加 的に入力することによつて前記状態量偏差を 0に近づけるように目標運 動が決定されると共に、 前記目標床反力修正量により前記基準床反力を 修正することにより前記状態量偏差を 0に近づけるように目標床反力が 決定される。
より具体的には、 第 1 3発明では、 前記目標床反力修正量と前記仮想 外力との差分が、 ロポッ トの前記所定方向の並進運動を操作するものと なるので、 前記目標歩容生成手段は、 前記状態量偏差を 0に近づけるよ うに前記目標床反力修正量と前記仮想外力との差分の目標値を該状態量 偏差に応じて決定し、 その決定された差分の目標値を満足するように前 記目標床反力修正量と前記仮想外力との組を決定することが好ましい (第 1 4発明)。 これにより、 前記状態量偏差を 0に近づけ得る目標運 動と目標床反力との組を適正に決定できる。
さらに、 第 1 4発明では、 前記目標歩容生成手段は、 前記目標床反力 修正量の許容範囲を決定する手段を備え、 前記差分の目標値と該目標床 反力修正量の許容範囲とを満足するように前記目標床反力修正量と仮想 外力との組を決定することが好ましい (第 1 5発明)。 すなわち、 目標 床反力は、 口ポッ トに実際に作用する床反力の目標値であるが、 ロポッ 卜に作用させ得る床反力には限界がある。 従って、 上記のように目標床 反力の修正量の許容範囲を決定して、 前記差分の目標値と該目標床反力 修正量の許容範囲とを満足するように前記目標床反力修正量と仮想外力 との組を決定することで、 目標運動及び目標床反力へのロボッ トの追従 性を高めることができ、 ひいては、 前記状態量偏差を 0に近づけること を円滑に行うことができる。
上記第 1 5発明では、 より具体的には、 前記目標歩容生成手段は、 前 記差分の目標値に対応する前記仮想外力が 0であると仮定して前記目標 床反力修正量の仮値を決定する手段と、 該目標床反力修正量の仮値と前 記許容範囲とに基づいて該仮値を該許容範囲内の値に制限してなる目標 床反力修正量を決定する手段と、 その決定した目標床反力修正量と前記 決定された差分の目標値とに基づき前記仮想外力を決定する手段とを備 えることが好ましい (第 1 6発明)。
これによれば、 前記仮想外力を 0と仮定して前記差分の目標値に応じ て決定される目標床反力修正量が前記許容範囲内に存在するときには、 前記仮想外力が 0に決定されることとなる。 従って、 前記状態量偏差を 0に近づけるために、 目標運動と目標床反力とのうち、 目標床反力が優 先的に操作されることとなる。 つまり、 状態量偏差の解消を、 床反力の 操作が可能な範囲では、 該床反力の操作により行い、 床反力の操作によ る状態量偏差の解消が不可能となる状態では、 前記仮想外力による目標 運動の操作と床反力との操作を併用する。 この結果、 目標運動が、 前記 動力学モデル上で前記基準床反力に釣り合う運動から過剰にずれるよう な事態を防止することができる。 なお、 第 1 5発明における目標床反力 修正量の許容範囲は、 前記第 4発明における仮想外力の不感帯を規定す るものとなる。
さらに、 第 1 5又は第 1 6発明では、 前記目標歩容が、 前記ロポッ ト の全脚体を空中に浮かせる期間を有する歩容であるときには、 前記目標 床反力修正量の許容範囲は、 少なくとも前記空中期において該許容範囲 の上限値と下限値とが略 0となる範囲に決定されることが好ましい (第 1 7発明)。 これによれば、 口ポッ トに床反力を作用させ得ない前記空 中期では、 主に、 前記仮想外力による目標運動の操作によって前記状態 量偏差を 0に近づけることとなる。 また、 実際の床反力が 0 となる空中 期では、 当然の如く前記基準床反力は 0に設定されると共に、 前記目標 床反力修正量も前記許容範囲によって、 ほぼ 0 となる。 従って、 空中期 における実際の床反力と目標床反力との差もほぼ 0となるので、 前記コ ンプライアンス制御の余計な動作がなくなり、 口ポッ トの目標運動への 追従性が高まる。
前記第 1 4発明〜第 1 7発明では、 前記目標歩容生成手段は、 前記差 分の目標値を満足しつつ、 前記目標運動を前記動力学モデル上で前記基 準床反力に釣り合う基準運動に近づけるように前記目標床反力修正量と 仮想外力との組を決定することが好適である (第 1 8発明)。 これによ れば、 前記状態量偏差を 0に近づけることと、 前記基準床反力に対して 動力学モデル上で釣り合う基準運動に目標運動を近づけることとを妥協 的に両立させることができる。
より具体的には、 前記目標歩容生成手段は、 前記状態量偏差を 0に近 づけるためのフィ一ドバック制御則に基づき第 1床反力操作量を決定す る手段と、 前記目標運動を前記動力学モデル上で前記基準床反力に釣り 合う基準運動に近づけるためのフィ一ドバック制御則に基づき第 2床反 力操作量を決定する手段と、 前記目標床反力修正量の許容範囲を決定す る手段と、 前記第 1床反力操作量と第 2床反力操作量とを合成してなる 床反力操作量を前記目標床反力修正量の仮値とし、 その仮値を前記許容 範囲内に制限することにより目標床反力修正量を決定する手段と、 その 目標床反力操作量と前記仮想外力との差分が前記第 1床反力操作量に合 致するように該仮想外力を決定する手段とを備えることが好ましい (第 1 9発明)。
かかる第 1 9発明では、 前記状態量偏差がほぼ 0になれば、 前記第 1 床反力操作量と第 2床反力操作量とを合成してなる床反力操作量は、 目 標運動を基準運動に近づけるための前記第 2床反力操作量にほぼ等しく なるので、 この第 2床反力操作量に基づいて目標床反力修正量と仮想外 力との組が決定されることとなる。 従って、 これらの目標床反力修正量 と仮想外力とは、 目標運動を前記基準運動に近づけるように決定される こととなる。 また、 目標運動が基準運動にほぼ一致していれば、 前記第 1床反力操作量と第 2床反力操作量とを合成してなる床反力操作量は、 前記状態量偏差を 0に近づけるための前記第 1床反力操作量にほぼ等し くなるので、 この第 1床反力操作量に基づいて目標床反力修正量と仮想 外力との組が決定されることとなる。 従って、 これらの目標床反力修正 量と仮想外力とは、 前記状態量偏差を 0に近づけるように決定されるこ ととなる。 従って、 前記目標運動を前記基準運動に近づけること、 すな わち、 動力学的な安定性の高い口ポッ トの運動を確保することと、 前記 状態量偏差を 0に近づけること、 すなわち、 前記所定方向の並進運動に 関するロポッ トの挙動と目標歩容の挙動とをできるだけ一致させること ととを妥協的に両立させることができる。 なお、 第 1 9発明では、 前記 第 1 6発明と同様に、 前記目標床反力修正量の許容範囲内で、 目標床反 力が優先的に操作される。 以上説明した、 第 1〜第 1 9発明では、 前記目標歩容生成手段は、 所 定期間分の目標歩容づつ、 該所定期間分の目標歩容を仮想的な周期的歩 容に近づけるように生成することが好ましい (第 2 0発明)。 これによ より、 口ポッ トの安定性の高い目標歩容を生成できる。
また、 先に説明した如く、 前記第 1〜第 2 0発明では、 前記状態量は, 前記ロボッ トの所定の部位の位置又は該ロポッ トの重心の位置であるこ とが好ましい (第 2 1発明)。 そして、 前記所定の部位は、 前記ロポッ トの上体であることが好ましい (第 2 2発明)。
また、 本発明の脚式移動口ポッ トの制御装置の第 2 3発明は、 脚体の 運動により移動する脚式移動口ポッ トの目標歩容を生成し、 その目標歩 容に追従させるように該ロポッ トの動作を制御する脚式移動ロボッ トの 制御装置において、 前記目標歩容を生成する目標歩容生成手段と、 前記 ロボッ 卜の所定の部位の位置及び該ロポッ トの重心の位置のうちの少な くともいずれかの位置をロポッ トの代表自己位置とし、 該代表自己位置 を推定する自己位置推定手段と、 その推定された代表自己位置と、 前記 目標歩容における代表自己位置との差のうち、 所定方向の成分を所定方 向位置偏差として求める位置偏差算出手段と、 前記目標歩容における目 標着地点に対応して、 前記ロボッ トの着地動作を行なう脚体の先端部が 実際に着地すると予想される床上の着地予定点の鉛直位置を測定する床 形状認識手段とを備え、 前記目標歩容生成手段は、 少なくとも前記位置 偏差算出手段により求められた前記所定方向位置偏差と前記床形状認識 手段により測定された前記着地予定点の鉛直位置とに基づいて前記目標 歩容を修正することを特徴とするものである。
この第 2 3発明では、 所定方向位置偏差が前記した第 1〜第 2 2発明 の状態量偏差に相当するものである。 そして、 第 2 3発明では、 該所定 方向位置偏差と、 前記床形状認識手段により測定された前記着地予定点 の鉛直位置とに基づいて前記目標歩容が修正される。 これにより、 着地 予定点での床の鉛直位置 (高さ) が当初の目標目標歩容で想定していた 鉛直位置からずれていても、 前記所定方向位置偏差を解消しつつ、 実際 の床の高さに則した目標歩容を生成することができる。 その結果、 ロボ ッ トの実際の離床タイミングや着地夕イミングと目標歩容上のタイミン グを整合させつつ、 ロボッ トの円滑な移動を行うことが可能となる。
なお、 前記所定の部位は、 口ポッ トの上体であることが好ましい。
この第 2 3発明では、 前記目標歩容生成手段は、 少なくとも前記所定 方向位置偏差に基づいて、 該所定方向位置偏差が 0に近づくように前記 目標歩容のうちの前記代表自己位置の軌道を規定する目標運動を修正す る手段と、 少なくとも前記測定された前記着地予定点の鉛直位置に基づ いて、 前記目標歩容のうちの脚体の先端部の軌道を規定する目標運動を 修正する手段とを備えることが好ましい (第 2 4発明)。 これによれば. 前記所定方向位置偏差は、 前記代表自己位置の軌道を規定する目標運 動、 例えば上体の目標運動の修正 (操作) によって 0に近づき、 着地予 定点での床の鉛直位置 (高さ) のずれに対しては、 脚体の先端部の軌道 を規定する目標運動の修正 (操作) によって、 脚体の着地が円滑に行わ れるようにされる。
なお、 第 2 4発明での前記代表自己位置の軌道を規定する目標運動の 修正 (操作) は、 前記所定方向位置偏差を前記状態量偏差とみなして、 前記した第 1発明〜第 1 9発明の如く行うようにすればよい。
第 2 3発明では、 前記目標歩容生成手段は、 少なく とも前記測定され た前記着地予定点の鉛直位置と前記目標歩容における目標着地点の鉛直 位置との偏差と、 前記所定方向位置偏差とに基づいて、 これらの偏差が 0に近づくように前記目標歩容のうちの前記代表自己位置の軌道を規定 する目標運動を修正するようにしてもよい (第 2 5発明)。 これによれ ば、 前記着地予定点の鉛直位置と前記目標歩容における目標着地点の鉛 直位置との偏差と、 前記所定方向位置偏差との両者を 0に近づけるよう に前記代表自己位置の軌道を規定する目標運動 (例えば上体の目標運 動) が修正 (操作) されることとなる。 なお、 この場合には、 前記代表 自己位置の軌道を規定する目標運動の修正 (操作) は、 前記着地予定点 の鉛直位置と前記目標歩容における目標着地点の鉛直位置との偏差と、 前記所定方向位置偏差との和を前記状態量偏差とみなして、 前記した第 1発明〜第 1 9発明の如く行うようにすればよい。
また、 本発明の脚式移動口ポッ トの制御装置の第 2 6発明は、 脚体の 運動により移動する脚式移動ロポッ トの目標運動及び目標床反力からな る目標歩容に追従させるようにロボッ 卜の動作を制御するコンプライア ンス制御手段を備え、 該コンプラインアンス制御手段が、 前記口ポッ ト に実際に作用する床反力を把握しつつ、 その把握した床反力と前記目標 床反力との偏差である床反力偏差に応じて前記ロボッ トの上体に対する 脚体の先端部の相対位置を前記目標運動により規定される相対位置から 修正する脚式移動口ポットの制御装置において、 前記目標歩容は、 前記' ロポッ トの全脚体を空中に浮かせる空中期を有する歩容であり、 前記コ ンプライアンス制御手段は、 前記床反力偏差に対する前記脚体の先端部 の相対位置の修正量のゲインを少なくとも前記空中期の開始直前に減少 させることを特徴とするものである。
かかる第 2 6発明によれば、 前記床反力偏差に対する前記脚体の先端 部の相対位置の修正量のゲイン (コンプライアンス制御手段のゲイン) を少なくとも前記空中期の開始直前に減少させるので、 空中期の開始直 前では、 コンプライアンス制御が硬いものとなる。 その結果、 脚体の先 端部の、 目標歩容の目標運動に対する追従性が高まり、 脚体の離床を、 つまづきを生じたりすることなく円滑に行うことができる。 また、 本発明の脚式移動口ポッ トの制御装置の第 2 7発明は、 脚体の 運動により移動する脚式移動ロポッ トの目標運動を少なくとも含む目標 歩容を生成し、 その目標歩容に追従させるように該ロポッ トの動作を制 御する脚式移動ロポッ トの制御装置において、 少なく とも前記口ポッ ト の全脚体を空中に浮かせる空中期を含む前記目標歩容を生成する目標歩 容生成手段と、 前記ロボッ 卜の所定の部位の位置及び該ロボッ トの重心 の位置のうちの少なくともいずれかの位置をロポッ トの代表自己位置と し、 該代表自己位置を推定する自己位置推定手段と、 その推定された代 表自己位置と、 前記目標歩容における代表自己位置との差のうち、 所定 方向の成分を所定方向位置偏差として求める位置偏差算出手段と、 少な くとも前記所定方向位置偏差に応じて、 該所定方向位置偏差が 0に近づ くように前記ロボッ トの脚体の先端部の位置を前記目標歩容により規定 される位置から修正する脚先端部位置修正手段とを備え、 該脚先端部位 置修正手段は、 少なくとも前記目標歩容の空中期の開始時までに前記脚 体の先端部の位置の修正量を前記所定方向位置偏差によらずに強制的に 略 0にすることを特徴とするものである。 なお、 前記所定の部位は、 例 えばロボッ トの上体であることが好ましい。
かかる第 2 7発明では、 空中期の開始前、 すなわち、 いずれかの脚体 を接地させている支持脚期では、 基本的には、 前記所定方向位置偏差が 0に近づくように脚体先端部の位置が修正 (操作) されるが、 空中期の 開始時までには、 その修正量が、 強制的に 0にされる。 このため、 空中 期の開始時には、 脚体先端部の軌道が、 本来の目標歩容により定まる脚 体先端部の位置姿勢、 すなわち、 離床動作を行なうのに適した位置姿勢 に制御されることとなる。 その結果、 脚体の離床を、 つまづきを生じた りすることなく円滑に行うことができる。
また、 本発明の脚式移動口ポッ トの制御装置の第 2 8発明は、 脚体の 運動により移動する脚式移動ロボッ 卜の目標運動及び目標床反力からな る目標歩容を生成し、 その目標歩容に追従させるように該ロボッ トの動 作を制御する脚式移動ロポッ 卜の制御装置において、 少なくとも前記口 ポッ トの全脚体を空中に浮かせる空中期を含む前記目標歩容を生成する 目標歩容生成手段と、 前記口ポッ トの所定の部位の位置及び該ロポッ ト の重心の位置のうちの少なく ともいずれかの位置をロボッ トの代表自己 位置とし、 該代表自己位置を推定する自己位置推定手段と、 その推定さ れた代表自己位置と、 前記目標歩容における代表自己位置との差のうち- 所定方向の成分を所定方向位置偏差として求める位置偏差算出手段と、 少なく とも前記所定方向位置偏差に応じて、 該所定方向位置偏差が 0に 近づくように前記目標歩容うちの目標床反力を修正する床反力修正手段 とを備え、 該床反力修正手段は、 少なくとも前記目標歩容の空中期の開 始時までに前記目標床反力の修正量を前記所定方向位置偏差によらずに 強制的に略 0にすることを特徴とするものである。
かかる第 2 8発明では、 空中期の開始前、 すなわち、 いずれかの脚体 を接地させている支持脚期では、 基本的には、 前記所定方向位置偏差が 0に近づくように目標歩容の目標床反力が修正 (操作) されるが、 空中 期の開始時までには、 その修正量が、 強制的に 0にされる。 このため、 空中期の開始時には、 目標床反力が本来の目標床反力、 すなわち、 ロボ ッ トの離床動作を行なうのに適した目標床反力に決定され、 その目標床 反力に実際の床反力を追従させるように脚体の運動等が制御されること となる。 その結果、 脚体の離床を、 つまづきを生じたりすることなく円 滑に行うことができる。 図面の簡単な説明
図 1は、 本発明の実施形態における脚式移動ロポッ 卜としての 2足移 動ロポッ 卜の全体的構成の概略を示す概略図、 図 2は図 1の各脚体の足 平部分の構成を概略的に示す概略図、 図 3及び図 4はそれぞれ各脚体の 足平部分の詳細構成を示す側面視の断面図及び底面図、 図 5は図 1の口 ポッ トに備えた制御ュニッ 卜の構成を示すブロック図、 図 6及び図 7は 口ポッ トの頭部の内部構造をそれぞれ正面視、 側面視で見た図、 図 8は 図 5の制御ユニッ トの機能的構成を示すブロック図、 図 9 ( a)、 (b) はそれぞれ目標歩容の床反力鉛直成分、 目標 Z MPの設定例を示すダラ フである。 図 1 0は第 1実施形態における上体鉛直位置安定化制御部の 処理を示すフロ一チヤ一ト、 図 1 1は図 1 0の処理の詳細を示すブロッ ク図である。 図 1 2 ( a) 〜 (d) はそれぞれ、 目標歩容の床反力鉛直 成分、 目標 ZMP、 コンプライアンス制御用補償鉛直床反ガの最大許容 値、 補償鉛直床反力の最小許容値の設定例を示すグラフである。 図 1 3 は第 1実施形態における上体鉛直位置安定化制御部の処理の他の例を示 すブロック図である。 図 1 4 ( a) 〜 (d) はそれぞれ、 目標歩容の床 反力鉛直成分、 目標 ZMP、 上体鉛直位置安定化制御部の処理における ゲイン (図 1 4 ( c ), (d)) の設定例を示すグラフである。 図 1 5は 第 1実施形態の歩容生成処理及び自己位置姿勢推定処理を示すフローチ ャ一ト、 図 1 6は図 1 5の要部のサブル一チン処理を示すフローチャー 卜である。 図 1 7は第 2実施形態における要部の処理を示すフローチヤ —ト、 図 1 8 ( a ), (b) は図 1 7の処理を説明するためののグラフで ある。 図 1 9は第 3実施形態における歩容生成処理及び自己位置姿勢推 定処理を示すフローチヤ一トである。 図 2 0は第 4実施形態における要 部の処理を示すブロック図である。、 発明を実施するための最良の形態
以下、 添付図面を参照してこの発明の実施形態に係る脚式移動ロポッ 卜の制御装置を説明する。 尚、 脚式移動ロボッ トとしては 2足移動ロボ ッ トを例にとる。
図 1は、 この実施形態に係る脚式移動ロポッ 卜としての 2足移動ロボ ッ トを全体的に示す概略図である。
図示の如く、 2足移動口ポッ ト (以下、 口ポッ トという) 1は上体 (口ポッ ト 1の基体) 3から下方に延設された左右一対の脚体 (脚部リ ンク) 2, 2を備える。 両脚体 2 , 2は同一構造であり、 それぞれ 6個 の関節を備える。 その 6個の関節は上体 3側から順に、 股 (腰部) の回 旋 (回転) 用 (上体 3に対するョー方向の回転用) の関節 1 0 R, 1 0 L (符号 R, Lはそれぞれ右側脚体、 左側脚体に対応するものであるこ とを意味する符号である。 以下同じ) と、 股 (腰部) のロール方向 (X 軸まわり) の回転用の関節 1 2 R, 1 2 Lと、 股 (腰部) のピッチ方向 (Y軸まわり) の回転用の関節 1 4 R, 1 4 L、 膝部のピッチ方向の回 転用の関節 1 6 R, 1 6 Lと、 足首のピッチ方向の回転用の関節 1 8 R: 1 8 Lと、 足首のロール方向の回転用の関節 2 0 R, 2 0 Lとから構成 される。
各脚体 2の足首の 2つの関節 1 8 R (L ), 2 O R ( L ) の下部には. 各脚体 2の先端部を構成する足平 (足部) 2 2 R (L) が取着されると 共に、 両脚体 2, 2の最上位には、 各脚体 2の股の 3つの関節 1 0 R (L), 1 2 R (L), 1 4 R (L) を介して前記上体 3が取り付けられ ている。 上体 3の内部には、 詳細を後述する制御ユニッ ト 6 0などが格 納される。 なお、 図 1では図示の便宜上、 制御ユニッ ト 6 0を上体 3の 外部に記載している。
上記構成の各脚体 2においては、 股関節 (あるいは腰関節) は関節 1 O R (L), 1 2 R (L), 1 4 R (L) から構成され、 膝関節は関節 1 6 R (L) から構成され、 足首関節は関節 1 8 R (L), 2 0 R (L) から構成される。 また股関節と膝関節とは大腿リンク 2 4 R (L) で連 結され、 膝関節と足首関節とは下腿リンク 2 6 R (L) で連結される。 尚、 上体 3の上部の両側部には左右一対の腕体 5 , 5が取り付けられ ると共に、 上体 3の上端部には頭部 4が配置される。 これらの腕体 5, 5及び頭部 4のうち、 腕体 5は、 本発明の要旨と直接的な関連を有しな いため詳細な説明を省略する。 また、 頭部 4については後述する。
上記の構成により、 各脚体 2の足平 2 2 R (L) は、 上体 3に対して 6つの自由度を与えられている。 そして、 ロボッ ト 1の歩行等の移動中 に、 両脚体 2, 2を合わせて 6 * 2 = 1 2個 (この明細書で 「*」 はス カラに対する演算としては乗算を、 ベク トルに対する演算としては外積 を示す) の関節を適宜な角度で駆動することで、 両足平 2 2 R, 2 2 L の所望の運動を行うことができる。 これにより、 口ポッ ト 1は任意に 3 次元空間を移動することができる。
図 1に示す如く、 各脚体 2の足首関節 1 8 R (L), 2 0 R (L) の 下方には足平 2 2 R (L) との間に公知の 6軸力センサ 5 0が介装され ている。 該 6軸力センサ 5 0は、 各脚体 2の足平 2 2 R (L) の着地の 有無、 および各脚体 2に作用する床反力 (接地荷重) 等を検出するため のものであり、 該床反力の並進力の 3方向成分 F X, F y , F z並びに モーメントの 3方向成分 M X, My, M zの検出信号を制御ユニッ ト 6 0に出力する。 また、 上体 3には、 Z軸 (鉛直方向 (重力方向)) に対 する上体 3の傾き (姿勢角) およびその角速度等を検出するための傾斜 センサ 5 4が備えられ、 その検出信号が該傾斜センサ 5 4から制御ュニ ット 6 0に出力される。 この傾斜センサ 5 4は、 図示を省略する 3軸方 向の加速度センサおよび 3軸方向のジャィ口センサを備え、 これらのセ ンサの検出信号が上体 3の傾きおよびその角速度を検出するために用い られると共に、 口ポッ ト 1の自己位置姿勢を推定するために用いられる, また、 詳細構造の図示は省略するが、 口ポッ ト 1 の各関節には、 それを 駆動するための電動モー夕 6 4 (図 5参照) と、 その電動モー夕 6 4の 回転量 (各関節の回転角) を検出するためのエンコーダ (ロー夕リエン コーダ) 6 5 (図 5参照) とが設けられ、 該エンコーダ 6 5の検出信号 が該エンコーダ 6 5から制御ュニッ ト 6 0に出力される。
さらに、 図 1では図示を省略するが、 口ポッ ト 1の適宜な位置にはジ ョィスティック (操作器) 7 3 (図 5参照) が設けられ、 そのジョイス ティ ック 7 3を操作することで、 直進移動しているロポッ ト 1を旋回さ せるなど、 口ポッ ト 1の歩容に対する要求を必要に応じて制御ュニッ ト 6 0に入力できるように構成されている。
図 2は本実施形態における各脚体 2の先端部分 (各足平 2 2 R ( L ) を含む) の基本構成を概略的に示す図である。 同図に示すように、 各足 平 2 2 R ( L ) の上方には、 前記 6軸力センサ 5 0 との間にばね機構 7 0が装備されると共に、 足底 (各足平 2 2 R , Lの底面) にはゴムなど からなる足底弾性体 7 1が貼られている。 これらのばね機構 7 0及び足 底弾性体 7 1によりコンプライアンス機構 7 2が構成されている。 ばね 機構 7 0は詳細は後述するが、 足平 2 2 R ( L ) の上面部に取り付けら れた方形状のガイ ド部材 (図 2では図示省略) と、 足首関節 1 8 R ( L ) (図 2では足首関節 2 0 R ( L ) を省略している) および 6軸力 センサ 5 0側に取り付けられ、 前記ガイ ド部材に弹性材 (ゴムやばね) を介して微動自在に収納されるピストン状部材 (図 2では図示省略) と から構成されている。
図 2に実線で表示された足平 2 2 R ( L ) は、 床反力を受けていない ときの状態を示している。 各脚体 2が床反力を受けると、 コンプライア ンス機構 7 2のばね機構 1 0と足底弾性体 7 1とがたわみ、 足平 2 2 R ( L ) は図中に点線で例示したような位置姿勢に移る。 このコンプライ ンァス機構 Ί 2の構造は、 例えば本出願人が先に提案した特開平 5 — 3 0 5 5 8 4号公報に詳細に説明されている如く、 着地衝撃を緩和するた めだけでなく、 制御性を高めるためにも重要なものである。
上記コンプライアンス機構 7 2を含めた足平 2 2 R (L) (以下、 足 平機構 2 2 R (L ) と称することがある。) のより詳細な構成を図 3及 び図 4を参照してさらに説明する。 図 3は足平機構 2 2 R (L) の側面 示の断面図、 図 4は該足平機構 2 2 R (L) の底面側から見た平面図で ある。
足平機構 2 2 R (L) は、 大略平板状の足平プレ一卜部材 1 0 2を骨 格部材として備えている。 この足平プレート部材 1 0 2は、 その前端部 (つま先部) と後端部 (踵部) とが若干上方に湾曲されているが、 他の 部分は平坦な平板状になっている。 また、 足平プレート部材 1 0 2の上 面部には、 横断面方形状のガイ ド部材 1 0 3がその軸心を上下方向に向 けて固設されている。 このガイ ド部材 1 0 3の内部には、 該ガイ ド部材 1 0 3の内周面に沿うようにして略上下方向に移動可能に設けられた可 動板 (ピストン状部材) 1 0 4が設けられ、 該可動板 1 0 4が足首関節 1 8 R ( L ), 2 0 R ( L ) に 6軸力センサ 5 0を介して連結されてい る。
また、 可動板 1 0 4は、 その下面の周縁部がばね、 ゴム等の弹性材か らなる複数の弹性部材 1 0 6 (図ではばねとして記載している) を介し て足平プレート部材 1 0 2の上面部に連結されている。 従って、 足平プ レ一ト部材 1 0 2は、 弹性部材 1 0 6、 可動板 1 0 4及び 6軸力センサ 5 0を介して足首関節 1 8 R (L) に連結されている。 尚、 ガイ ド部材 1 0 3の内部 (可動板 1 0 4の下側の空間) は、 図示を省略する穴や隙 間を介して大気側に開放されており、 大気中の空気がガイ ド部材 1 0 3 の内部に入出自在となっている。 また、 上記ガイ ド部材 1 0 3、 可動板 1 0 4、 及び弾性部材 1 0 6は前記図 2に示したばね機構 7 0を構成す るものである。
足平プレート部材 1 0 2の底面 (下面) には、 前記図 2に示した足底 弾性体 7 1 としての接地部材 7 1が取着されている。 該接地部材 7 1は. 足平機構 2 2 R ( L ) の接地状態で、 該足平プレ一ト部材 1 0 2と床面 との間に介在させる弾性部材 (床面に直接的に接触する弾性部材) であ り、 本実施形態では、 足平プレート部材 1 0 2の接地面の四隅 (足平プ レート部材 1 0 2のつま先部の両側部並びに踵部の両側部) に固着され ている。
また、 接地部材 7 1は、 本実施形態では、 比較的軟質のゴム材から成 る軟質層 1 0 7 aと、 比較的硬質のゴム材から成る硬質層 1 0 7 bとを 上下に重合してなる 2層構造に形成され、 硬質層 1 0 7 bが、 脚体 2の 着床時に直接的に床面に接触する接地面部として最下面側に設けられて いる。
足平機構 2 2 R ( L ) には、 上記の構成の他、 着地衝撃緩衝装置 1 0 8が備えられている。 この着地衝撃緩衝装置 1 0 8は、 足平プレート部 材 1 0 2の底面に取着された袋状部材 1 0 9と、 該袋状部材 1 0 9の内 部に対して圧縮性流体としての空気 (大気中の空気) を入出させるため の流通路 1 1 0とを備えている。
袋状部材 1 0 9は、 その周囲に前記接地部材 7 1が存するようにして 足平プレート部材 1 0 2の底面の大略中央部に設けられている。 この袋 状部材 1 0 9は、 ゴム等の弹性材により変形自在に構成されており、 外 力による弹性変形が生じていない自然状態では、 図 3に実線で示すよう に、 上方に開口した円筒容器形状を呈する。 そして、 該袋状部材 1 0 9 は、 その開口端部が全周にわたって足平プレー卜部材 1 0 2の底面に固 着され、 該足平プレート部材 1 0 2により閉蓋されている。 また、 袋状 部材 1 0 9は、 円筒容器形状を呈する自然状態では、 該袋状部材 1 0 9 の底部が前記接地部材 7 1よりも下方に突出するように設けられている, つまり、 該袋状部材 1 0 9の高さ (足平プレ一卜部材 1 0 2の下面から 袋状部材 1 0 9の底部までの距離) は、 接地部材 7 1の厚さよりも大き いものとされている。 従って、 足平プレート部材 1 0 2が接地部材 7 1 を介して接地した状態 (脚部 2の着床状態) では、 袋状部材 1 0 9は、 図 3に仮想線で示すように、 床反力により袋状部材 1 0 9の高さ方向に 圧縮される。
尚、 本実施形態では、 袋状部材 1 0 9が円筒容器形状を呈する自然状 態は該袋状部材 1 0 9の膨張状態である。 そして、 袋状部材 1 0 9は、 弹性材により構成されているため、 圧縮されたとき、 自然状態の形状 (円筒容器形状) への形状復元力を有する。
前記流通路 1 1 0は、 袋状部材 1 0 9に対する空気の流入 · 流出を行 う流入 · 流出手段を構成するものであり、 本実施形態では、 袋状部材 1 0 9の内部と前記ガイ ド部材 1 0 3の内部とを連通させるように足平プ レー卜部材 1 0 2に穿設された流通孔である。 この場合、 前述のように. ガイ ド部材 1 0 3の内部は大気側に開放されているので、 該流通路 1 1 0は、 袋状部材 1 0 9の内部を大気側に連通させていることとなる。 従 つて、 袋状部材 1 0 9の内部には、 大気中の空気が流通路 1 1 0を介し て入出自在となっており、 該袋状部材 1 0 9の膨張状態 (自然状態) で は、 該袋状部材 1 0 9内には空気が充填され、 その内部の圧力は大気圧 と同等になる。 また、 流通路 1 1 0は絞り通路となっており、 袋状部材 1 0 9の内部に空気が入出する際には流体抵抗を生じるようになつてい る。
図 5は制御ユニッ ト 6 0の構成を示すブロック図である。 該制御ュニ ッ ト 6 0はマイクロコンピュータにより構成されており、 C P Uからな る第 1の演算装置 9 0及び第 2の演算装置 9 2、 AZD変換器 8 0、 力 ゥン夕 8 6、 DZA変換器 9 6、 RAM 8 4、 R OM 9 4、 並びにこれ らの間のデータ授受を行うパスライン 8 2を備えている。 この制御ュニ ッ ト 6 0では、 各脚体 2の 6軸力センサ 5 0、 傾斜センサ 54 (加速度 センサおよびレートジャイロセンサ)、 ジョイスティ ック 7 3等の出力 信号は AZD変換器 8 0でデジタル値に変換された後、 バスライン 8 2 を介して RAM 8 4に送られる。 またロボッ ト 1の各関節のエンコーダ 6 5 (口一夕リーエンコーダ) の出力は、 カウンタ 8 6を介して RAM 84に入力される。
前記第 1の演算装置 9 0は後述の如く 目標歩容を生成すると共に、 関 節角変位指令 (各関節の変位角もしくは各電動モータ 64の回転角の指 令値) を算出し、 RAM 84に送出する。 また第 2の演算装置 9 2は R AM 8 4から関節角変位指令と、 前記エンコーダ 6 5の出力信号とに基 づいて検出された関節角の実測値とを読み出し、 各関節の駆動に必要な 操作量を算出して DZ A変換器 9 6とサーポアンプ 6 4 aとを介して各 関節を駆動する電動モータ 6 4に出力する。
図 6および図 7は、 前記ロボッ ト 1の頭部 4の内部構造を表す図面で ある。 図 6は正面視、 図 7は側面視の図である。 頭部 4は、 パン ' チル ト方向に回転する首関節 1 2 0を介して、 前記上体 3の上部に連接され ている。
首関節 1 2 0にも、 他の関節と同じく、 エンコーダ (関節変位検出 器) 付きのモータ 1 2 1, 1 2 2と減速機 1 2 3, 1 24とを備え、 図 示を省略するモータ制御装置を介して前記制御ュニッ ト 6 0からの関節 変位指令に追従するように制御される。
頭部 4には、 環境認識手段として、 左右 2台のビデオカメラ 1 2 5 , 1 2 5が備えられ、 対象物を立体視することができるようになつている, 前記図 3では図示を省略しているが、 ビデオカメラ 1 2 5, 1 2 5の出 力 (撮像情報) は、 制御ユニッ ト 6 0に入力され、 該制御ユニッ ト 6 0 で撮像情報内の対象物までの距離等が認識される。
なお、 左右 2台のビデオカメラ 1 2 5 , 1 2 5の代わりに、 以下のよ うな環境認識手段を備えても良い。
a) 3台以上のカメラによる立体視
b) 1台力メラで対象物の多点を認識し、 三角測量の原理で距離を推定す る手段
c)レンジフアインダ、 スキャン式レーザー距離計等の非接触多点距離計 図 8は、 この実施形態に係る脚式移動ロポッ トの制御装置の機能的構 成を全体的に示すブロック図である。 この図 8中の 「実口ポッ ト」 の部 分以外の部分が制御ュニッ ト 6 0が実行する処理機能 (主として第 1の 演算装置 9 0及び第 2の演算装置 9 2の機能) によって構成されるもの である。 なお、 以下の説明では、 脚体 2の左右を特に区別する必要がな いときは、 前記符号 R, Lを省略する。
以下説明すると、 制御ュニッ ト 6 0は、 ロボッ ト 1の目標歩容を自在 かつリアルタイムに生成して出力する歩容生成装置 2 0 0を備えている, この歩容生成装置 2 0 0が出力する目標歩容は、 目標上体位置姿勢軌道 (上体 3の目標位置及び目標姿勢の軌道)、 目標足平位置姿勢軌道 (各 足平 2 2の目標位置及び目標姿勢の軌道)、 目標腕姿勢軌道 (各腕体 5 の目標姿勢の軌道)、 目標全床反力中心点 (目標 Z M P ) 軌道、 目標全 床反力軌道から構成される。 なお、 前記頭部 4等、 脚体 2や腕体 5以外 に上体 3に対して可動な部位の目標位置姿勢軌道を必要に応じて上記目 標歩容に加えてもよい。
ここで、 本発明の実施形態での用語の意味あるいは定義について補足 しておく。 上記歩容における 「軌道」 は時間的変化のパターン (時系列 パターン) を意味し、 以下の説明では、 「軌道」 の代わりに 「パター ン」 と称することもある。 また、 各部位の 「姿勢」 は空間的な向きを意 味する。 例えば上体姿勢は、 軸 (鉛直軸) に対するロール方向 (X軸 回り) の上体 3の傾斜角 (姿勢角) と、 Z軸に対するピッチ方向 (Y軸 回り) の上体 3の傾斜角 (姿勢角) と、 ョー方向 (Z軸回り) の上体 3 の回転角とで表され、 足平姿勢は各足平 2 2に固定的に設定された 2軸 の空間的な方位角で表される。 また、 目標腕姿勢は、 腕体 5 , 5の全て の部位に関する上体 3に対する相対的な姿勢で表わされる。
上体位置は、 上体 3の所定位置、 具体的には上体 3のあらかじめ定め た代表点の位置を意味する。 同様に、 足平位置は、 各足平 2 2 R, 2 2 Lのあらかじめ定めた代表点の位置を意味する。 なお、 上体速度は、 上 体 3の上記代表点の移動速度を意味し、 足平速度は、 各足平 2 2 R , 2 2 Lの上記代表点の移動速度を意味する。
目標上体位置姿勢等の目標歩容に関し、 以下の説明では、 誤解を生じ るおそれがない場合には、 しばしば 「目標」 を省略する。 また、 歩容の うちの、 床反力に係わる構成要素以外の構成要素、 すなわち足平位置姿 勢、 上体位置姿勢等、 口ポッ ト 1 の運動に係わる歩容を総称的に 「運 動」 という。
各足平 2 2 R, Lの床反力 (並進力及びモーメントからなる床反力) を 「各足平床反力」 と呼び、 口ポッ ト 1の全ての ( 2本の) 足平 2 2 R , 2 2 Lの床反力の合力を 「全床反力」 と呼ぶ。 ただし、 以下の説明にお いては、 各足平床反力に関してはほとんど言及しないので、 断らない限 り、 「床反力」 は 「全床反力」 と同義として扱う。
目標床反力は、 一般的には、 作用点とその点に作用する力 (並進力) と力のモーメン卜によって表現される。 作用点はどこにとっても良いの で、 同一の目標床反力でも無数の表現が考えられるが、 特に前述の目標 床反力中心点を作用点にして目標床反力を表現すると、 力のモーメント は、 鉛直軸成分を除けば、 0になる。
尚、 動力学的平衡条件を満足する歩容では、 目標運動軌道から算出さ れる Z M P (目標運動軌道から算出される口ポッ ト 1の慣性力と重力と の合力がその点まわりに作用するモーメン卜が、 鉛直軸成分を除いて 0 になる点) と目標全床反力中心点は一致することから、 目標全床反力中 心点軌道の代わりに目標 Z M P軌道を与えると言っても同じことである (詳細は、 例えば本出願人による P C T公開公報 WO/ 02/ 40224を参 照)。
このような背景から、 P C T公開公報 WO/ 02Z40224の明細書では 目標歩容を次のように定義していた。
a ) 広義の目標歩容とは、 1歩ないしは複数歩の期間の目標運動軌道と その目標床反力軌道との組である。
b ) 狭義の目標歩容とは、 1歩の期間の目標運動軌道とその Z M P軌道 との組である。
c )一連の歩容は、 いくつかの歩容がつながったものとする。
口ポッ ト 1の歩行を行う場合においては、 本出願人が先に特開平 10- 86080号公報で提案した上体高さ決定手法によって上体鉛直位置 (上体 高さ) が決定されると、 床反力の並進力成分は従属的に決定されるので 目標歩容の床反力に関して明示的に設定すべき物理量としては、 Z M P だけで十分であった。 したがって、 P C T公開公報 WOZ 02Z 40224の 明細書では、 狭義の目標歩容としては、 上記の b ) で十分であった。 そ れに対し、 口ポッ ト 1の走行を行う場合には、 床反力鉛直成分も制御上 重要であるので、 該床反力鉛直成分を明示的に設定することが好ましい そこで、 本願出願人が先に提案した P C T出願 ( PCT / JP02 / 13596) 等では、 狭義の目標歩容として、 次の b ' ) を採用した。
b ' ) 狭義の目標歩容とは、 1歩の期間の目標運動軌道とその Z M P軌 道と床反力鉛直成分軌道の組である。
この明細書では以降、 特にことわらない限り、 目標歩容は狭義の目標 歩容の意味で使用する。 また、 目標歩容の 「 1歩」 は、 口ポッ ト 1の片 方の脚体 2が着地してからもう一方の脚体 2が着地するまでの意味で使 用する。
歩容における両脚支持期とは言うまでもなく、 ロボッ ト 1がその自重 を両脚体 2, 2で支持する期間、 片脚支持期とはいずれか一方のみの脚 体 2で口ポッ ト 1の自重を支持する期間、 空中期とは両脚体 2, 2が床 から離れている (空中に浮いている) 期間を言う。
片脚支持期においてロポッ ト 1の自重を支持しない側の脚体 2を 「遊 脚」 と呼び、 自重を支持する側の脚体 2を 「支持脚」 と呼ぶ。 口ポッ ト 1の歩行では、 両脚支持期と片脚支持期とが交互に繰り返され、 ロポッ ト 1の走行では片脚支持期と空中期とが交互に繰り返される。 この場合. 走行の空中期では、 両脚体 2, 2とも、 口ポッ ト 1の自重を支持しない こととなるが、 該空中期の直前の片脚支持期において遊脚であった脚体 2、 支持脚であった脚体 2をそれぞれ該空中期においても遊脚、 支持脚 と呼ぶ。
また、 目標上体姿勢、 目標上体位置、 目標足平位置姿勢、 目標腕姿勢 等、 目標歩容におけるロポッ ト 1の各部の位置姿勢は支持脚座標系で記 述される。 支持脚座標系とは、 支持脚足平 2 2の接地面辺りに原点を持 つ床面に固定された座標系である。 より詳細には、 支持脚座標系は、 本 出願人の特許 3273443 号に記載されているように、 支持脚の足平 2 2 を接地面との間で滑らさないで、 水平姿勢になるまで回転させた時の、 該支持脚の足首関節の中心から接地面への垂直投影点を原点とし、 該支 持脚足平 2 2のつま先に向かう水平軸 (足平 2 2の前後方向の軸) を X 軸として、 鉛直軸を Z軸、 これらの X軸、 Z軸に直交する座標軸 (足平 2 2の左右方向の軸) を Y軸とする座標系である。
本発明の実施形態に係る歩容生成装置 2 0 0は、 2歩先までの遊脚の 足平 2 2の着地位置姿勢、 着地時刻の要求値 (目標値) を入力として、 目標上体位置姿勢軌道、 目標足平位置姿勢軌道、 目標 Z M P軌道、 目標 床反力鉛直成分軌道、 及び目標腕姿勢軌道から構成される目標歩容を生 成する。 このとき、 これらの軌道を規定するパラメ一夕 (これを歩容パ ラメ一夕と呼ぶ) の一部は、 歩容の継続性を満足するように修正される ( また、 歩容生成装置 2 0 0は、 口ポッ ト 1の片方の脚体 2が着地して から他方の脚体 2が着地するまでの 1歩分の目標歩容 (前記狭義の意味 での目標歩容) を単位として、 その 1歩分の目標歩容を順番に生成する, ここで、 現在あるいはこれから生成しょうとしている歩容を 「今回歩 容」、 その次の歩容を 「次回歩容」、 さらにその次の歩容を 「次次回歩 容」 と呼ぶ。 また、 「今回歩容」 の 1つ前に生成した目標歩容を 「前回 歩容」 と呼ぶ。
歩容生成装置 2 0 0が生成する目標歩容の一部を例示的に概説すると. 例えば目標足平位置姿勢軌道は、 本出願人による特許 3233450 号に開 示した有限時間整定フィルタを用いて生成される。 この有限時間整定フ ィル夕による足平位置姿勢軌道の生成処理では、 例えば足平位置軌道は. 目標着地位置 (着地位置の要求値) に向かって足平 2 2を徐々に加速し ながら移動を開始し、 目標着地時刻 (着地時刻の要求値) までに徐々に 速度を 0またはほぼ 0にまで減速し、 該目標着地時刻に目標着地位置に 到達して停止するように生成される。 足平姿勢軌道についても同様であ る。 これにより生成される目標足平位置姿勢軌道は、 着地瞬間における 対地速度が 0またはほぼ 0になるため、 特に口ポッ ト 1 の走行を行う場 合に、 前記空中期からの着地時における着地衝撃を小さくできる。
また、 例えば人間が走行を行う場合と同様の 態でロポッ ト 1の走行 を行う楊合には、 例えば目標床反力鉛直成分軌道および目標 Z M P軌道 (詳しくは支持脚座標系の X軸方向 (支持脚足平 2 2の前後方向) での 目標 Z M P軌道) は、 それぞれ図 9 ( a )、 図 9 ( b ) に実線で示すよ うなパターンで設定される。
口ポッ ト 1の走行を行う場合には、 目標床反力鉛直成分軌道は、 基本 的には、 図 9 ( a ) の実線で示す如く、 片脚支持期では上に凸のパ夕一 ンとなり、 空中期では 0に維持される。 なお、 口ポッ ト 1の歩行を行う 場合には、 目標床反力鉛直成分軌道は、 例えば図 9 ( a ) に二点鎖線で 示すように設定される。 この場合、 二点鎖線のうちの上に凸の部分が両 脚支持期に対応し、 下に凸の部分が片脚支持期に対応する。 また、 目標 Z M Pは走行、 歩行のいずれであっても、 基本的には、 口ポッ ト 1の脚 体 2の接地面内 (より詳しくは所謂、 支持多角形内) の中央付近に設定 される。 以降の説明では、 主に口ポッ ト 1の走行を行う場合を例に採つ て説明する。
図 8に示す制御ュニッ ト 6 0の機能的構成は、 本出願人が先に提案し た P C T出願 PCTZJP03Z 00435 の第 1実施形態と一部が相違するも のである。 その相違点は、 上体鉛直位置安定化制御演算部 2 1 8と自己 位置姿勢推定部 2 1 6とが新たに追加されていること、 歩容生成装置 2 0 0に上体鉛直位置安定化制御演算部 2 1 8から後述するモデル鉛直外 力 Fmdlz が入力され、 歩容生成装置 2 0 0の歩容の生成において、 モ デル鉛直外力 Fmdlz が考慮されること、 および複合コンプライアンス 動作決定部 2 0 4に上体鉛直位置安定化制御演算部 2 1 8からコンブラ ィアンス制御用補償鉛直床反力 Fcnipnz が入力され、 複合コンプライ アンス動作決定部 2 0 4においてコンプライアンス制御用補償鉛直床反 力 Fcmpnz が考慮されてコンプライアンス動作が決定されることが異 なる。 残余の形態については、 上記 P C T出願 PCT/ JP03/ 00435 の 第 1実施形態と異ならない。
以下、 主に P C T出願 PCTZJP03Z 00435 の第 1実施形態と異なる 点について詳細に説明すると、 自己位置姿勢推定部 2 1 6において、 口 ポッ ト 1の上体 3の実際の鉛直位置の推定値である推定上体鉛直位置を 決定し、 その推定上体鉛直位置と目標上体鉛直位置との差である上体鉛 直位置偏差を求める。 なお、 自己位置姿勢推定部 2 1 6における推定上 体鉛直位置の決定には、 例えば本願と同日の出願 (特願 2 0 0 2 - 1 2 7 0 6 6号を優先権の主張の基礎とする P C T出願、 発明の名称 「脚式 移動ロポッ 卜の自己位置推定装置」) にて提案しているいずれかの実施 形態の手法を用いれば良い。 あるいは、 公知の慣性航法の手法によって. 推定上体鉛直位置を決定するようにしてもよい。 基本的には、 推定上体 鉛直位置をできるだけ精度よく決定することができる手法であればどの ような手法を用いてもよい。 また、 前記上体鉛直位置偏差の算出に用い る目標上体鉛直位置は、 歩容生成装置 2 0 0によって、 前回制御周期に 決定された目標歩容の上体鉛直位置である。 また、 本実施形態の自己位 置姿勢推定部 2 1 6では、 上体 3の実際の姿勢の推定値としての推定上 体姿勢も決定され、 その推定上体姿勢と目標上体姿勢との偏差うちの傾 き成分 (鉛直軸に対する傾き成分) である実上体姿勢角偏差も求められ る。 そして、 自己位置姿勢推定部 2 1 6には、 推定上体位置姿勢の決定 や、 上体鉛直位置偏差、 実上体姿勢角偏差の算出を行うために、 前記傾 斜センサ 5 4に備えた加速度センサの加速度検出値とジャィ口センサの 角速度検出値とが与えられると共に、 歩容生成装置 2 0 0から目標上体 位置姿勢等の目標歩容が与えられる。
上体鉛直位置安定化制御演算部 2 1 8では、 前記上体鉛直位置偏差を 46
3 4 基に、 コンプライアンス制御用補償鉛直床反力 Fcmpnz とモデル鉛直 外力 Fmdlzとを決定する。
なお、 一般的には、 力は、 並進力と力のモーメントの組で表されるが、 以降、 断りがない限り、 力は、 並進力成分のみを表すものとする。
コンプライアンス制御用補償鉛直床反力 Fcmpnz は、 全床反力鉛直 方向成分に対するコンプライアンス制御を含む複合コンプライアンス動 作決定部 2 0 4に入力される。 複合コンプライアンス動作決定部 2 0 4 では、 実全床反力 (すべての足平床反力の合力) が、 目標各足平床反力 の合力である全床反力とコンプライアンス制御用補償鉛直床反力 Fcmpnz との和 (合力) に一致するように、 機構変形補償付き修正目標 足平位置姿勢 (軌道) を決定する。 すなわち、 コンプライアンス制御用 補償鉛直床反力 Fcmpnzが実床反力として付加的に発生させられる。
モデル鉛直外力 Fmdlz は、 歩容生成装置 2 0 0に送られる。 歩容生 成装置 2 0 0では、 モデル鉛直外力 Fmdlz がロボッ トに作用すると想 定して、 動力学的平衡条件 (ニュートン方程式とオイラー方程式) を満 足する目標歩容の運動を動力学モデルを用いて生成する。 すなわち、 動 力学モデルの重心に、 重力とモデル鉛直外力 Fmdlz とが作用するもの として、 動力学的平衡条件を満足する運動を生成する。
なお、 上記動力学モデルとしては、 例えば、 前記 P C T公開公報 WO / 02/ 40224 号に記載の単純化モデルあるいは、 本出願人が提案した 特開 2002- 326173 号公報に記載の多質点モデル (フルモデル) などを 用いれば良い。
動力学モデルを用いて動力学的平衡条件を満足するように生成された. 目標運動と目標床反力とから成る目標歩容に実ロポッ トを追従させる追 従制御系においては、 動力学モデルと実口ポッ トとに同一の床反力を作 用させる限り、 いかなる床反力を作用させても、 目標運動と実ロボッ ト の運動との差は、 ほとんど該床反力の影響を受けない。
このことは、 言い換えると、 実口ポッ トにある床反力 Fを作用させる ことと、 動力学モデルに前記床反力 Fの符号を反転した床反力 (一 F) を作用させることとは、 目標運動と実ロポッ トの運動との差に対する影 響としては等価である、 と言える。
なお、 動力学モデルに作用させる床反力は、 必ずしも、 接触している 床から作用する力とは、 限らない。 例えば、 口ポッ トと床が接触してい なくて現実には発生できない床反力を動力学モデルに作用させる場合も ある。 したがって、 目標床反力と呼ぶよりは、 目標外力と呼ぶ方がより 自然と言えるが、 いずれにしても架空の力であるから、 どちらでも構わ ないことである。
上体鉛直位置安定化制御演算部 2 1 8の処理を、 そのフローチヤ一ト である図 1 0とその制御ブロック図である図 1 1 とを用いて詳説すると、 まず、 図 1 0の S 4 0 0 0において、 推定上体鉛直位置と目標上体鉛直 位置の差 (上体鉛直位置偏差) Δ ΐι およびその変化率 (時間微分値) d △ h/dtを求める。
次いで S 4 0 0 2に進み、 図示する式によって、 総合要求鉛直復元力 Fdmdz を決定する。 すなわち、 上体鉛直位置偏差からフィードパック 制御則 (本実施形態では P D制御則) により、 Fdmdzを決定する。
次いで S 4 0 0 4に進み、 総合要求鉛直復元力 Fdmdz を基にコンプ ライアンス制御用補償鉛直床反力 Fcmpnz とモデル鉛直外力 Fmdlz と を決定する。 具体的には、 まず、 コンプライアンス制御用補償鉛直床反 力 Fcmpnz の最小許容値および最大許容値を図 1 2 ( c ) , ( d ) に例 示する如く設定し、 その最小許容値を下限値、 最大許容値を上限値とし た制限をかける飽和手段 (リ ミ ッタ) 2 5 0 に総合要求鉛直復元力 Fdmdz を通することにより、 コンプライアンス制御用補償鉛直床反力 Fcmpnz を決定する。 従って、 Fcmpnz は、 最小許容値≤Fdmdz≤最大 許容値であれば、 Fdmdz に等しくなり、 Fdmdzく最小許容値、 又は Fdmdz>最大許容値であれば、 それぞれ Fcmpnz は最小許容値、 最大 許容値に制限される。 そして、 このように決定されたコンプライアンス 制御用補償鉛直床反力 Fcmpnzから総合要求鉛直復元力 Fdmdz を減じ ることにより、 モデル鉛直外力 Fmdlzが決定される。 つまり、 Fcmpnz と Fmdlz との差が Fdmdz となるように Fcmpnz と Fmdlz とが決定さ れる。
補足すると、 S 4 0 0 2におけるゲイン Kh およびゲイン Kdh は、 負の値であり、 推定上体鉛直位置と目標上体鉛直位置との差 Δ ΐι が 0に 近づく (収束する) ように設定される。 片脚支持期や空中期などの時期 に応じてゲインの値を変更しても良い。
コンプライアンス制御用補償鉛直床反力 Fcmpnz の許容範囲を規定 する前記最小許容値は非正の値、 最大許容値は非負の値である。 図 1 2 ( c )、 (d ) に例示した最大許容値および最小許容値は、 ロボッ ト 1の 走行を行う場合の例であり、 この例では、 上記最小許容値と最大許容値 との間の許容範囲は、 空中期の直前から片脚支持期の開始直後までの期 間では 0に設定されている。 なお、 図 1 2には、 Fcmpnz の最小許容値 および最大許容値と、 目標床反力鉛直成分および目標 Z M Pとの時期的 な関係を示すために、 前記図 9 ( a ) , ( b ) に示した目標床反力鉛直成 分および目標 Z M Pを図 1 2 ( a )、 ( b ) として併記した。
空中期においては、 コンプライアンス制御によって、 コンプライアン ス制御用補償鉛直床反力 Fcmpnz を発生させることができないので、 言い換えると、 空中期においては、 コンプライアンス制御によって足平 2 2を摂動させても床反力は 0のままであるので、 Fcmpnz の最小許容 値および最大許容値は 0または概ね 0に設定する.ことが望ましい。 また、 離床直前 (空中期の開始直前) の床反力が小さい状態またはつ ま先しか接地していない状態でも、 コンプライアンス制御によって足平 を摂動させて、 床反力を変化させることは困難であることから、 離床直 前でも最小許容値および最大許容値は 0または概ね 0に設定するのが良 い。 また、 離床直前にコンプライアンス制御用補償鉛直床反力 Fcmpiiz が 0以外の値であると、 床反力が 0 になる離床時刻 (空中期の開始時 刻) が目標離床時刻からずれる恐れがあることからも、 離床直前では最 小許容値および最大許容値は概ね 0に設定するのが良い。
ロボッ ト 1の実際の離床時刻が目標離床時刻よりも早くなると、 水平 方向の摩擦力が想定した時刻よりも早めに小さくなるか 0となるので、 スリップやスピンを生じ易い。 逆に、 離床時刻が遅くなると、 走行のよ うに離床した直後に遊脚.足平 2 2を前に移動する時に、 遊脚足平 2 2が 床に引っ掛かってしまう恐れがあった。
上記の構成により、 推定上体鉛直位置と目標上体鉛直位置との差 (上 体鉛直位置偏差) Δ ΐι を 0に漸近させるために、 空中期においては、 モ デル鉛直外力 Fmdlz が作用し、 支持脚期においては、 主にコンプライ アンス制御用補償鉛直床反力 Fcmpnzが作用する。
なお、 支持脚期においては、 ゲイン Kh およびゲイン Kdh を 0また はほぼ 0にしても良い。 コンプライアンス制御自身、 上体鉛直位置偏差 推定上体鉛直位置と目標上体鉛直位置との差 A h およびその微分値に応 じて、 床反力が変化し、 推定上体鉛直位置と目標上体鉛直位置との差 Δ hを 0に収束させる作用を持っているからである。
S 4 0 0 2および S 4 0 0 4の代わりに、 図 1 3に示すごとく、 推定 上体鉛直位置と目標上体鉛直位置との差 (上体鉛直位置偏差) Δ ΐι を基 に、 図示する式を用いて、 モデル鉛直外力 Fmdlz とコンプライアンス 制御用補償鉛直床反力 Fcmpnz とを決定しても良い。 すなわち、 前記 上体鉛直位置偏差 Δ hから、 モデル鉛直外力 Fmdlz とコンプライアン ス制御用補償鉛直床反力 Fcmpnz とを各別にフィー ドバック制御則 (図 1 3の例では P D制御則) により決定しても良い。 ただし、 コンプ ライアンス制御用補償鉛直床反力 Fcmpnz に係わるゲイン Khc (比例 ゲイン) とモデル鉛直外力 Fmdlz に係わるゲイン Khm (比例ゲイン) とは、 それぞれ図 1 4 ( c ) , ( d ) に示すように、 片脚支持期や空中期 などの時期等に応じて値を変更するのが良い。 すなわち、 ゲイン Khc は、 空中期や、 その開始直前 (離床直前)、 片脚支持期の開始直後 (着 地直後) のように、 床反力が 0もしくはほぼ 0になる時期では、 Khc 0に設定することが好ましい。 逆に、 ゲイン Khm は、 支持脚期におい て Khm 0に設定することが好ましい。 なお、 図 1 4 ( a ) , ( b ) は、 前記図 9に示した目標床反力鉛直成分、 目標 Z M P ( X軸成分) である また、 安定性を考慮すると、 Kdhc は Khc と同様の傾向を持たせ、 Kdhmは Khmと同様の傾向を持たせるのが良い。
また、 上体鉛直位置安定化制御演算部 2 1 8は、 前記飽和手段 2 5 0 のようなリミッタと可変ゲインとを組み合わせても良い。 あるいは、 上 体鉛直位置安定化制御演算部 2 1 8には、 ローパスフィル夕一などのフ ィルタ一を挿入しても良い。 また、 ニューロ制御やファジー制御等でモ デル鉛直外力 Fmdlz とコ ンプライアンス制御用補償鉛直床反力 Fcmpnzを決定させても良い。
いずれにせよ、 推定上体鉛直位置と目標上体鉛直位置の差 Δ ΐι を 0に 近づけるように、 空中期においては、 主にモデル鉛直外力 Fmdlz が作 用し、 支持脚期においては、 主にコンプライアンス制御用補償鉛直床反 力 Fcmpnzが作用するように構成すれば良い。
歩容生成装置 2 0 0における目標歩容生成処理ならびに自己位置姿勢 推定部 2 1 6の自己位置姿勢推定処理のフローチャートを図 1 5示す。 この図を用いて以下に歩容生成装置 2 0 0ならびに自己位置姿勢推定 部' 2 1 6の処理について詳説する。
まず S 0 1 0において時刻 t を 0に初期化するなど種々の初期化作業 を行う。
次いで S 0 1 2を経て S 0 1 4に進み、 制御周期毎のタイマ割り込み を待つ。 制御周期は Δ tである。
次いで S 0 1 6に進み、 自己位置姿勢推定部 2 1 6の処理、 すなわち、 ロボッ ト 1の実際の上体位置姿勢を推定する (推定上体位置姿勢を決定 する処理) を行う。 S O 1 6における処理は、 先にも述べたように、 例 えば本願と同日の出願 (特願 2 0 0 2— 1 2 7 0 6 6号を優先権の主張 の基礎とする P C T出願、 発明の名称 「脚式移動口ポッ トの自己位置推 定装置」) にて提案しているいずれかの実施形態の手法を用いれば良い または、 従来方式である慣性航法によって自己位置 (上体位置姿勢) を 推定しても良い。
次いで S 0 1 8に進み、 歩容切り替わり目 (前回歩容の生成が終了し、 新たな今回歩容の生成を開始すべき時刻) であるか否かを判断し、 その 判断結果が YE Sである場合には、 S O 2 0に進む。 また、 判断結果が NOである場合には、 S O 3 2に進む。 なお、 以下に説明する S 0 2 0 から S 0 3 0までの処理は、 本願出願人が先に提案した P C T公開公報 WO/02/40224 あるいは前記 P C T出願 PCTZ JP03Z00435 に詳細 に説明されているので、 本明細書では簡略的な説明に留める。
S 0 2 0に進むときは時刻 tを 0に初期化し、 次いで S 0 2 2に進み, 次回歩容支持脚座標系 (詳しくはその位置および向き)、 次次回歩容支 持脚座標系 (詳しくはその位置および向き)、 今回歩容周期および次回 歩容周期を読み込む。
上記次回歩容支持脚座標系および次次回歩容支持脚座標系は、 それぞ れ、 前記ジョイスティ ック 7 3の操作等によって指定される 1歩目の遊 脚足平 2 2 (今回歩容の遊脚足平 2 2 ) の着地位置姿勢の要求値 (目標 着地位置姿勢)、 2歩目の遊脚足平 2 2 (次回歩容の遊脚足平 2 2 ) の 着地位置姿勢の要求値 (目標着地位置姿勢) に応じて、 前記した支持脚 座標系の定義に従って決定される。
また、 今回歩容周期、 次回歩容周期は、 それぞれ、 1歩目の遊脚足平 2 2の着地時刻の要求値 (目標着地時刻)、 2歩目の遊脚足平 2 2の着 地時刻の要求値 (目標着地時刻) に応じて決定される。
上記した遊脚足平 2 2の着地位置姿勢の要求値並びに着地時刻の要求 値、 あるいは支持脚座標系の位置および向き並びに歩容周期は、 あらか じめ歩行スケジュールとして記憶しておいても良く、 あるいはジョイス ティ ック 7 3などの操縦装置からの指令 (要求) とそのときまでの歩行 履歴を基に決定しても良い。
次いで S O 2 4に進み、 今回歩容につながる定常旋回歩容の歩容パラ メータが、 S 0 2 2で決定された次回歩容支持脚座標系、 次次回歩容支 持脚座標系、 今回歩容周期および次回歩容周期等に基づいて決定される < 主に、 目標足平位置姿勢軌道を規定する足平軌道パラメータ、 目標上体 姿勢の基準軌道を規定する基準上体姿勢軌道パラメ一夕、 目標腕姿勢軌 道を規定する腕姿勢軌道パラメータ、 目標 Z M P軌道を規定する Z M P 軌道パラメ一夕、 目標床反力鉛直成分軌道を規定する床反力鉛直成分軌 道パラメ一夕が決定される。 例えば床反力鉛直成分軌道パラメ一夕に関 して例示すると、 前記図 9 ( a ) に示したパターンの折れ点の時刻や値 が床反力鉛直成分軌道パラメ一夕として決定される。
ここで、 前記定常旋回歩容は、 その歩容を繰り返したときに歩容の境 界において口ポッ ト 1の運動状態に不連続が生じないような周期的歩容 を意味する (以降、 「定常旋回歩容」 を 「定常歩容」 と略す場合もある), 定常旋回歩容の 1周期分の歩容は、 第 1旋回歩容と第 2旋回歩容とか らなる。 第 1旋回歩容は、 今回歩容の支持脚座標系に対応する支持脚足 平 2 2を次次回歩容支持脚座標系に対応する位置姿勢まで動かすときの 歩容に相当し、 第 2旋回歩容は、 次回歩容支持脚座標系に対応する支持 脚足平 2 2を次次次回支持脚座標系に対応する位置姿勢まで動かすとき の歩容に相当する。 この場合、 次次次回歩容支持脚座標系は、 第 2旋回 歩容の遊脚足平 2 2の目標着地位置姿勢に対応するものである。 そして. 該次次次回歩容支持脚座標系は、 次次回歩容支持脚座標系 (第 2旋回歩 容の支持脚座標系) から見た該次次次回歩容支持脚座標系の位置姿勢 (位置及び向き) が、 今回歩容支持脚座標系から見た次回歩容支持脚座 標系 (今回歩容の遊脚足平 2 2の着地位置姿勢) の位置姿勢 (位置及び 向き) に一致するように設定される。 尚、 定常旋回歩容に関して 「旋 回」 なる用語を用いたのは、 旋回率を零とするときは直進を意味するの で、 直進も広義の意味で旋回に含ませることができるからである。
定常旋回歩容は、 歩容生成装置 2 0 0で今回歩容の終端における発散 成分や上体鉛直位置速度を決定するために暫定的に作成される仮想的な 周期的歩容であり、 口ポッ ト 1を実際に制御するために歩容生成装置 2 0 0からそのまま出力されるものではない。
尚、 「発散」 とは、 上体の位置が両足部 (足平) の位置からかけ離れ た位置にずれてしまうことを意味する。 発散成分の値とは、 2足移動口 ポッ トの上体の位置が両足部 (足平) の位置 (厳密には、 支持脚接地面 に設定された支持脚座標系の原点からかけ離れていく具合を表す数値で あり、 上体の水平方向の位置及びその速度の関数で表される。
本実施形態では、 これから生成する今回歩容の後につながる定常歩容 を移動要求 (前記 2歩先までの遊脚の足平 2 2の着地位置姿勢、 着地時 刻などの要求値) に応じて設定し、 定常歩容の初期発散成分を求めてか ら、 今回歩容の終端発散成分を定常歩容の初期発散成分に一致するよう に、 今回歩容を生成するようにした。 S O 2 4の詳細は、 本出願人が提 案した前記 P C T公開公報 WO/02/40224、 あるいは PCT/JP03Z 00435に説明されているので、 これ以上の説明を省略する。
S 0 2 4の処理を行って定常歩容の歩容パラメ一夕を決定した後、 S 0 2 6に進み、 定常旋回歩容の初期状態 (初期上体水平位置速度成分、 初期上体鉛直位置速度、 初期発散成分、 初期上体姿勢角および角速度) を決定する。
S 0 2 6の詳細は、 P C T公開公報 WOZ02Z40224、 あるいは PCT /JP03/00435 に説明しているので、 ここでは、 これ以上の説明を省 略する。
次いで、 S 0 2 8に進み、 今回歩容の歩容パラメ一夕を決定 (一部仮 決定) する。 この場合、 決定される今回歩容の歩容パラメ一夕は、 定常 旋回歩容の歩容パラメータと同様、 主に、 足平軌道パラメータ、 基準上 体姿勢軌道パラメ一夕、 腕姿勢軌道パラメ一夕、 目標 ZMP軌道パラメ 一夕、 目標床反力鉛直成分軌道パラメータであり、 それぞれのパラメ一 タにより規定される軌道が、 定常旋回歩容の軌道に連続するように決定 される。 ただし、 これらのパラメ一夕のうち、 目標 Z MP軌道パラメ一 夕は暫定的なものである。 この S 0 2 8の処理の詳細は、 前記 P C T公 開公報 WOZ02Z40224、 あるいは PCT/JP02/ 13596 号等に説明さ れているので、 ここではこれ以上の説明を省略する。
次いで S 0 2 9に進み、 今回歩容の終端発散成分が定常歩容の初期発 散成分に一致するように、 今回歩容の歩容パラメ一夕を修正する。 ここ で修正される歩容パラメ一夕は、 目標 ZMP軌道パラメータである。
S O 2 9の詳細は、 P C T公開公報 WO/02Z40224、 あるいは PCT ZJP02Z13596 号等に説明しているので、 ここでは、 これ以上の説明 を省略する。
次いで S O 3 0に進み、 床反カモ一メント許容範囲のパラメ一夕を決 定する。
S O 3 0の詳細は、 PCT/JP02Z13596 号に説明しているので、 こ こでは、 これ以上の説明を省略する。
S 0 3 0の処理を行った後、 あるいは S 0 1 8の判断結果が NOであ る場合には、 S O 3 2に進み、 今回歩容瞬時値を決定する。
S O 3 2では、 口ポッ ト 1の動力学モデルに対して、 目標床反力 (目 標歩容の床反力) に加えて、 目標 ZMPまわりにモデル操作床反カモ一 メントが発生し、 かつモデル鉛直外力 Fmdlz が口ポッ ト 1の動力学モ デル上での全体重心に作用するように、 歩容瞬時値 (修正歩容瞬時値) が決定される。
具体的には、 図 1 6のフローチヤ一トにしたがって歩容瞬時値が決定 される。
以下にこれを説明する。
S 9 0 0から S 9 0 4までは、 前記 S 0 2 9の処理で最終的に決定さ れた今回歩容パラメ一夕に基づいて、 現在時刻 t における目標床反力鉛 直成分、 目標 ZMP、 目標両足平位置姿勢、 基準上体姿勢、 および目標 腕姿勢の瞬時値が求められる。 これらの S 9 0 0〜S 9 0 4までの処理 は、 例えば本出願人が先に提案した P C T出願 PCTZJP02Z13596 号 で詳細に説明した同出願の実施形態のフローチヤ一トの S 9 0 0から S 9 0 4と同一の処理である。 したがって、 ここでは詳細な説明を省略す る。
なお、 S 9 0 4において、 歩容パラメ一夕を基に決定される時刻 tの 目標両足平位置姿勢は、 今回歩容支持脚座標系 (今回歩容の支持脚足平 2 2の着地位置姿勢に対応して前述した如く定まる支持脚座標系) で記 述される。
補足すると、 目標足平位置姿勢軌道は、 前述の如く、 本出願人が特許 第 3233450 号で提案した有限時間整定フィル夕を用いて生成される。 このため、 口ポッ ト 1の走行での空中期からの着地瞬間において、 対地 速度が 0またはほぼ 0になるように、 上体 3から見て足平 2 2を引き上 げるようにして着地する。 これによつて、 着地衝撃は小さくなり、 着地 衝撃が過大になるのを防止することができる。
さらに、 上記有限時間整定フィルタを 3次以上の次数にする、 すなわ ち、 可変時定数の 1次遅れフィルタを 3段以上直列にするのが望ましい ( こうすることにより、 着地時刻 (目標着地時刻) までに速度のみならず 加速度も 0またはほぼ 0になって停止する。 つまり、 着地瞬間における 対地加速度も 0またはほぼ 0になる。 したがって、 着地衝撃がより一層 小さくなる。 特に、 実際の口ポッ ト 1の着地時刻が目標の着地時刻から ずれても、 衝撃があまり増大しなくなる。
なお、 有限時間整定フィルタを用いる代わりに、 着地時刻 (到達時 刻) での変化速度が 0または実質的に 0 になる (時間微分値が 0にな る) ように設定された多項式などの関数を用いて、 足平位置姿勢軌道を 決定するようにしてもよい。
S 9 0 0から S 9 0 4の処理を行った後、 次いで S 9 0 6に進み、 目 標床反力鉛直成分と、 前述の如く上体鉛直位置安定化制御演算部 2 1 8 で決定されたモデル鉛直外力 Fmdlz との合力に動力学的に釣り合うよ うに全体重心鉛直位置を算出する。
すなわち、 ロボッ ト 1の動力学モデルに目標床反力鉛直成分とモデル 鉛直外力 Fmdlz との合力が作用した場合に、 動力学 (ニュートン力 学) 的に釣り合う全体重心鉛直加速度を以下の式 1によって求める。 さ らに、 その求めた全体重心鉛直加速度を以下の式 2を用いて積分して時 刻 tにおける全体重心鉛直速度を求め、 さらに求めた全体重心鉛直速度 を式 3を用いて積分して時刻 tにおける全体重心鉛直位置を算出する。 ただし、 ここで重力加速度は負の値とする。 なお、 式 2、 式 3の代わり に台形近似によって全体重心鉛直位置 ·速度を求めても良い。 時刻 tにおける全体重心鉛直加速度
=重力加速度 + (目標床反力鉛直成分 +モデル鉛直外力 Fmdlz) 全体 式 時刻 tにおける全体重心鉛直速度
=時刻(t一 Δ ΐ)における全体重心鉛直速度
+時刻 tにおける全体重心鉛直加速度 * Δ ΐ
(ただし、 重力加速度は負の値とする。)
式 2 時刻 tにおける全体重心鉛直位置
= 時刻(t一 X t)における全体重心鉛直位置
+ 時刻 tにおける全体重心鉛直速度 * Δ t
式 3 次いで S 9 0 8に進み、 全体重心鉛直位置速度を満足する上体鉛直位 置速度を算出する。 具体的には、 前記求めた目標両足平位置姿勢 (時刻 t の値)、 時刻(t一 A t)の目標上体姿勢、 前記求めた目標腕姿勢 (時刻 tの値)、 時刻(t一 A t)の上体水平位置およびそれらの変化率 (変化速 度) と求めたい上体鉛直位置速度から決定される姿勢の全体重心鉛直位 置速度が、 上記求めた全体重心鉛直位置速度の今回値 (時刻 t の値) に 一致するように上体鉛直位置速度を求める。
なお、 時刻 tの上体姿勢と上体水平位置とは、 未だ決定されていない ので、 代わりに時刻(t一 A t)の値を用いた。 より精度を高めるために、 時刻 t での上体姿勢と上体水平位置と推定値を、 時刻(t一 A t)以前の歩 容状態から外揷によって求めても良い。
次いで S 9 1 0に進み、 歩容パラメ一夕を基に時刻 tの床反力水平成 分許容範囲 [Fxmin, Fxmax]を求める。 なお、 床反力水平成分許容範囲 を規定する歩容パラメータは、 前記 S 0 2 8で決定されるものであるが, これについては、 本出願人が先に提案した P C T出願 PCTZ JP02Z 13596号に記載されているので、 ここでは、 これ以上の説明を省略する : 次いで、 S 9 1 1に進み、 床反カモ一メン卜許容範囲パラメータを基 に、 床反力モーメント許容範囲の瞬時値を求める。 また、 床反力モ一メ ント許容範囲は、 前記図 8に示した補償全床反力モーメント分配器 2 1 4に送られる。 該補償全床反力モーメント分配器 2 1 4は、 基本的には, 口ポッ ト 1の上体姿勢 (推定上体姿勢) を目標上体姿勢に近づけるよう に、 コンプライアンス制御用の目標床反力モーメントと、 歩容生成装置 2 0 0の動力学モデルに入力するモデル操作床反力モーメントとを決定 するものである。 その詳細は、 本出願人が先に提案した PCTZJP03Z 00435に記載されているので、 ここでは、 これ以上の説明を省略する。
次いで、 S 9 1 2に進み、 目標 Z M Pまわりにモデル操作床反力モー メント (これは補償全床反力モーメント分配器 2 1 4で決定される) が 発生するように、 今回歩容の上体水平加速度と上体姿勢角加速度とが決 定される。 ただし、 このとき、 上体水平加速度および上体姿勢角加速度 は、 床反力水平成分 Fx が床反力水平成分許容範囲 [Fxmin, Fxmax]を 越えないように決定される。 言い換えると、 口ポッ ト 1の目標運動によって発生する慣性力と重力 との合力によって目標 Z M Pまわりに作用するモーメントが、 モデル操 作床反力モーメントの符号を反転したモーメントになるように、 今回歩 容の上体水平加速度と上体姿勢角加速との組が決定される。 ただし、 慣 性力の符号を反転した力が床反力水平成分許容範囲 [Fxmin, Fxmax]を 越えないように決定する。
これについても、 本出願人が先に提案した P C T出願 PCTZ JP02Z 13596号に記載されているので、 ここでは、 これ以上の説明を省略する c 次いで S 9 1 4に進み、 上体水平加速度と上体姿勢角加速度とをそれ ぞれ積分して、 上体水平速度と上体姿勢角速度とを算出し、 これらをさ らに積分して、 上体水平位置と上体姿勢角とが決定される。
以上のごとく S 0 3 2の処理を行った後、 S O 3 4に進み、 P C T出 願 PCT/JP02/ 13596 号の実施形態の S 0 3 2の処理と同様、 スピン 力をキャンセルするための腕振り動作を決定する。 次いで S 0 3 6に進 み、 時刻 tに制御周期 Δ tを加え、 再び、 S 0 1 4に戻り、 制御周期毎 の夕イマ一割り込みを待つ。
以上が、 歩容生成装置 2 0 0における目標歩容生成処理、 ならびに、 自己位置姿勢推定部 2 1 6の自己位置姿勢推定処理である。
図 8を参照してこの実施形態に係る制御ュニッ ト 6 0の制御処理をさ らに説明すると、 歩容生成装置 2 0 0において、 上記したように目標歩 容が生成される。 生成された目標歩容のうち、 目標上体位置姿勢 (軌 道) および目標腕姿勢軌道は、 口ポッ ト幾何学モデル (逆キネマテイク ス演算部) 2 0 2に直接送られる。
また、 目標足平位置姿勢 (軌道)、 目標 Z M P軌道 (目標全床反力中 心点軌道)、 および目標全床反力 (軌道) (目標床反力水平成分と目標床 反力鉛直成分) は、 複合コンプライアンス動作決定部 2 0 4に直接送ら れる一方、 目標床反力分配器 2 0 6にも送られる。 目標床反力分配器 2 0 6では、 目標全床反力は各足平 2 2 R , 2 2 Lに分配され、 目標各足 平床反力中心点および目標各足平床反力が決定される。 その決定された 目標各足平床反力中心点および目標各足平床反力が複合コンプライアン ス動作決定部 2 0 4に送られる。
複合コンプライアンス動作決定部 2 0 4では、 機構変形補償付き修正 目標足平位置姿勢軌道が生成され、 それがロボッ ト幾何学モデル 2 0 2 に送られる。 口ポッ ト幾何学モデル 2 0 2は、 目標上体位置姿勢 (軌 道) と機構変形補償付き修正目標足平位置姿勢 (軌道) が入力されると. それらを満足する脚体 2, 2の 1 2個の関節 ( 1 0 R ( L ) など) の関 節変位指令 (値) を算出して変位コントローラ 2 0 8に送る。 変位コン トローラ 2 0 8は、 ロボッ ト幾何学モデル 2 0 2で算出された関節変位 指令 (値) を目標値としてロボッ ト 1の 1 2個の関節の変位を追従制御 する。
ロボッ ト 1 に生じた床反力 (詳しくは実各足平床反力) は 6軸力セン サ 5 0によって検出される。 その検出値は前記複合コンプライアンス動 作決定部 2 0 4に送られる。 また、 前記図 1 5の S 0 1 6で求められた 推定上体姿勢と歩容生成装置 2 0 0が生成した目標上体姿勢との差のう ちの傾き成分、 すなわち実上体姿勢角偏差 0 errx, 0 erry が姿勢安定 化制御演算部 2 1 2に送られる。 なお、 0 errx はロール方向 (X軸回 り) の傾き成分であり、 0 erry はピッチ方向 (Y軸回り) の傾き成分 である。 この姿勢安定化制御演算部 2 1 2で、 口ポッ ト 1の上体姿勢の 傾きを目標歩容の上体姿勢の傾きに復元するための目標全床反力中心点 (目標 Z M P ) まわりの補償全床反力モーメント Mdmd が算出され、 この補償全床反力モーメント Mdmd が補償全床反力モーメント分配器 2 1 4に与えられる。 そして、 該分配器 2 1 4では、 補償全床反カモ一 メント Mdmd をコンプライアンス制御用目標床反力モーメントと、 モ デル操作床反カモ一メントとに分配し、 それぞれを複合コンプライアン ス動作決定部 2 0 4と、 歩容生成装置 2 0 0とに与える。 また、 前記上 体鉛直位置安定化制御演算部 2 1 8で前述の如く決定されたコンプライ アンス制御用補償鉛直床反力 Fcmpnz が複合コンプライアンス動作決 定部 2 0 4に与えられる。 複合コンプライアンス動作決定部 2 0 4は、 入力値に基づいて目標足平位置姿勢を修正する。 具体的には、 複合コン プライアンス動作決定部 2 0 4では、 実全床反力 (すべての実足平床反 力の合力で、 並進力およびモーメントの両者を含む) が、 目標各足平床 反力の合力である目標全床反力とコンプライアンス制御用補償鉛直床反 力 Fcmpnz とコンプライアンス制御用目標床反力モーメントとの合力 に一致するように、 歩容生成装置 2 0 0から与えられた目標足平位置姿 勢を修正して、 機構変形補償付き修正目標足平位置姿勢 (軌道) を決定 する。 すなわち、 コンプライアンス制御用補償鉛直.床反力 Fcmpnz が 付加的に発生させられると共に、 コンプライアンス制御用床反力モーメ ントが目標 Z M P回りに付加的に発生させられる。 ただしすベての状態 を目標に一致させることは事実上不可能であるので、 これらの間にトレ ードオフ関係を与えて妥協的になるベく一致させる。 すなわち、 各目標 (足平位置姿勢および床反力の目標) に対する制御偏差に重みを与えて. 制御偏差 (あるいは制御偏差の 2乗) の重み付き平均が最小になるよう に制御する。
補足すると、 機構変形補償付き修正目標足平位置姿勢 (軌道) は、 複 合コンプライアンス動作決定部 2 0 4によって修正された床反力の目標 値を発生させるために必要な足平の変形機構 (円柱状ゴム、 足底スポン ジおよび衝撃吸収用の袋状のエアダンパー) の変形量を変形機構の力学 モデル (ばねダンパーモデル等) を用いて求めて、 その変形量が発生す るように修正した、 目標足平位置姿勢 (軌道) である。
なお、 以上説明した第 1実施形態は、 前記第 1発明、 第 3発明〜第 1 7発明の一実施形態である。 補足すると、 前記モデル鉛直外力 Fmdlz が仮想外力に相当し、 コンプライアンス制御用補償鉛直床反力 Fcmpnz が目標床反力修正量に相当する。
次に本発明の第 2実施形態を図 1 7および図 1 8を参照して説明する なお、 第 2実施形態においては、 歩容生成装置 2 0 0の処理は、 図 1 5 の S 0 3 2の修正歩容瞬時値決定サブルーチンだけが第 1実施形態と異 なる。 また、 歩容生成装置 2 0 0ではモデル鉛直外力 Fmdlz を用いな いので、 上体鉛直位置安定化制御演算部 2 1 8の処理では、 コンプライ アンス制御用補償鉛直床反力 Fcmpnz のみを前記第 1実施形態のもの と同様に決定し、 モデル鉛直外力 Fmdlz は出力しない。 これ以外の制 御ュニッ ト 6 0の処理は、 前記第 1実施形態と同一である。
図 1 7は第 2実施例における修正歩容瞬時値 (今回歩容瞬時値) 決定 サブルーチン (図 1 5の S 0 3 2のサブルーチン) を示すフローチヤ一 トである。
以下、 第 2実施例における修正歩容瞬時値決定サブルーチンについて 詳説すると、 まず S 1 0 0 0から S 1 0 0 4まで、 前記第 1実施形態の 図 1 6の S 9 0 0から S 9 0 4と同じ処理が実行される。
次いで S 1 0 0 6に進み、 目標床反力鉛直成分 (時刻 tの今回値) に 動力学的に釣り合うように全体重心鉛直位置を算出する。 この処理は、 前記第 1実施形態の図 1 6の S 9 0 6で、 Fmdl= 0 とした場合の処理 と同じである。
次いで S 1 0 0 8に進み、 空中期であるか否かを判断する。 この判断 は、 例えば前記 6軸力センサ 5 0による床反力検出値 (実床反力) があ る所定の値 ( 0近傍の値) 以下であるか否かによって行われる。 あるい は、 現在時刻 tが、 目標歩容の離床時刻 (空中期の開始時刻) もしくは その前後の所定の時刻から、 目標歩容の着地時刻もしくはその前後の所 定の時刻までの範囲にあるか否かによって空中期であるか否かの判断を してもよい。
S 1 0 0 8の判断結果が Y E Sである場合には、 S 1 0 1 0に進み、 現在の推定上体位置とその時間的変化率である推定上体速度とを基に、 口ポッ ト 1の現在の全体重心位置速度の推定値である推定重心位置速度 を求め、 その現在の推定重心位置速度を基に、 口ポッ ト 1の全体重心が 重力による放物線運動を行うとして、 目標着地時刻における推定重心位 置速度を求める。
次いで、 S 1 0 1 2に進み、 以下に説明する補正量曲線による修正 (空中期での修正) をしなかったとした場合の元の目標歩容の全体重心 軌道 (詳しくは全体重心鉛直成分軌道) の現在時刻以後の予想軌道と補 正量曲線の和の曲線 (すなわち修正後の目標全体重心位置の鉛直成分軌 道) の位置速度が目標着地時刻において前記推定全体重心位置速度 (詳 しくはその鉛直成分) に一致するように、 補正量曲線を決定する。 なお. 上記元の目標歩容は、 より詳しくは、 S 1 0 0 6で求められた目標全体 重心鉛直位置をそのまま用いて (後述する S 1 0 1 6の修正全体重心鉛 直位置を S 1 0 0 6の全体重心鉛直位置と同一として) 決定される歩容 であり、 この元の目標歩容の全体重心軌道の予想軌道は、 現在時刻の制 御周期の S 1 0 0 6で求められた全体重心鉛直位置およびその速度 (時 間的変化率) につながる放物線である。
上記補正量曲線はより具体的には次のように決定される。 図 1 8を参 照して説明すると、 まず、 現在時刻 tが空中期の開始時刻 (S 1 0 0 8 の判断結果が N Oから Y E Sに切り替わった時刻) であるときに、 図 1
8 ( a ) の下側に示すように補正量曲線 (ここでは第 1補正量曲線と称 する) が決定される。 該第 1補正量曲線を元の目標歩容の全体重心位置 軌道 (現在時刻以後の予想軌道) に加えたものが、 現在時刻以後の実線 で示す修正全体重心位置軌道 (ここでは第 1修正全体重心位置軌道と称 する) であり、 該修正全体重心位置軌道が、 空中期の開始時刻で元の目 標歩容の全体重心位置軌道に滑らかにつながり (全体重心鉛直位置およ び速度が一致する)、 且つ、 空中期の終了時刻 (目標着地時刻) で推定 全体重心軌道に滑らかにつながる (鉛直位置および速度が一致する) よ うに第 1補正量曲線が決定される。
次に、 現在時刻が制御周期△ tだけ進むと、 図 1 8 ( b ) に示すよう に新たな補正量曲線としての第 2補正量曲線が決定される。 なお、 図中 の制御周期 A tは、 説明の便宜上、 実際よりも長い時間間隔として記載 している。
ここで、 現在時刻以後の推定全体重心位置軌道の予想軌道は、 推定上 体位置姿勢の推定誤差等に起因して、 一般には、 前回の制御周期の時刻 で予想された推定重心位置軌道と同一にはならない。 そこで、 本実施形 態では、 補正量曲線を制御周期毎に更新するようにした。 新たな補正量 曲線 (第 2補正量曲線) は、 現在時刻で第 1補正量曲線 (前回制御周期 に決定した補正量曲線) に滑らかにつながり (現在時刻での第 2補正量 曲線の値および時間微分値が第 1補正量曲線と一致する)、 且つ、 該第 2補正量曲線を元の目標歩容の全体重心位置軌道の現在時刻以後の予想 軌道に加えてなる修正全体重心位置軌道 (図では第 2修正全体重心位置 軌道と称する) が空中期の終了時刻 (目標着地時刻) で、 推定全体重心 軌道に滑らかにつながるように、 決定される。 以降、 同様にして、 補正 量曲線は、 制御周期毎に更新されつつ決定される。 なお、 補正量曲線は. 三角関数や高次関数を用いて滑らかな曲線 (S字カーブ) に決定される, S 1 0 1 2 の後、 あるいは S 1 0 0 8の判断結果が N〇である場合 (空中期でない場合) には、 S 1 0 1 4に進み、 全体重心鉛直位置と、 現在の補正量曲線の現在瞬時値の和を修正全体重心鉛直位置とする。 な お、 空中期でない時刻では、 補正量曲線の値は、 0 とする。
次いで S 1 0 1 6に進み、 修正全体重心鉛直位置を満足する上体鉛直 位置を、 現在の目標足平位値や口ポッ ト 1の幾何学モデルを用いて算出 する。 次いで S 1 0 1 8から S 1 0 2 4まで、 前記第 1実施形態の図 1 6の S 9 1 0から S 9 1 4と同様の処理を行う。
以上が、 第 2実施形態における修正歩容瞬時値決定サブルーチンの処 理である。 第 2実施形態では、 空中期において、 目標歩容の全体重心鉛 直位置と推定上体鉛直位置に対応する推定全体重心鉛直位置との偏差が 将来の空中期の終了時刻、 すなわち、 今回歩容の終端において 0に近づ くように目標歩容の全体重心鉛直位置軌道が決定 (修正) される。 その 結果、 目標上体鉛直位置軌道も、 今回歩容の終端において推定上体鉛直 位置の軌道に近づくように決定されることとなる。
なお、 以上説明した第 2実施形態は、 本発明の第 2発明の一実施形態 である。
次に本発明の第 3実施形態を図 1 9を参照して説明する。 なお、 本実 施形態は、 歩容生成装置 2 0 0の処理のみが、 前記第 1実施形態と相違 するものである。
図 1 9は第 3実施形態における歩容生成装置 2 0 0の目標歩容生成処 理ならびに自己位置姿勢推定部 2 1 6の自己位置姿勢推定処理のフロー チヤ一卜である。
まず S 1 1 1 0において時刻 tを 0に初期化するなど種々の初期化作 業を行う。
次いで S 1 1 1 2を経て S 1 1 1 4に進み、 制御周期毎の夕イマ割り 込みを待つ。 制御周期は である。 次いで S 1 1 1 6に進み、 第 1実施形態の図 1 5の S 0 1 6と同様、 自己位置推定部 2 1 6の自己位置姿勢推定処理を実行し、 上体位置姿勢 の推定 (推定上体位置姿勢の決定) を行う。
次いで S 1 1 1 8に進み、 歩容切り替わり目であるか否かを判断し、 その判断結果が Y E Sである場合には、 S 1 1 2 0に進む。
S 1 1 2 0に進むときは時刻 tを 0にする。
S 1 1 1 8の判断結果が N〇である場合、 および S 1 1 2 0を実行し た場合には、 S 1 1 2 2に進む。 S 1 1 2 2から S 1 1 2 8までは、 第 1実施例における図 1 5の S 0 2 2から S 0 2 8までと同様の処理を行 Ό。
次いで S 1 1 3 0に進み、 頭部 4に搭載された 2個のビデオカメラ 1 2 5, 1 2 5の画像と現在の推定上体位置姿勢とを基に、 今回歩容の遊 脚足平 2 2の着地予想点 (今回歩容の遊脚足平 2 2の目標着地位置に対 応する床面上の点で、 例えば今回歩容支持脚座標系での目標着地位置の 水平位置とほぼ同じ水平位置となる床面上の点) の高さ (鉛直位置) を 求め、 目標歩容パラメータのうちの目標着地鉛直位置を修正する。 なお. この S 1 1 3 0で上記着地予想点の高さを求める処理は、 本発明の第 2 3発明における床形状認識手段に相当するものである。
すなわち、 ビデオカメラ画像を基に求めた着地予想点の高さ (鉛直位 置) の値あるいはこれを口一パスフィル夕に通した値を、 目標歩容パラ メータのうちの目標着地鉛直位置 (これは今回歩容の遊脚の足平位置姿 勢軌道を規定する歩容パラメ一夕である) に代入する。 ビデオカメラ画 像と推定上体位置姿勢とは、 ノイズが大きい (検出値が大きくばらつ く) ので、 ローパスフィルタを通さないで、 直接、 着地予想点の高さの 値を目標着地鉛直位置に代入すると、 遊脚の足平位置姿勢軌道が激しく 変動する恐れがあるので、 口一パスフィル夕に通した方が良い。 口一パスフィル夕の代わりに、 複数の制御周期に渡って取り込んだビ デォカメラ画像と推定上体位置姿勢とを基に平均化処理によって、 高周 波数ノイズを低減しても良い。
次いで S 1 1 3 2に進み、 第 1実施形態の図 1 5の S 0 2 9同様、 今 回歩容パラメータを修正し、 次いで S 1 1 3 4に進み、 第 1実施形態の S 0 3 0同様、 床反力モーメント許容範囲のパラメ一夕を決定する。 次 いで S 1 1 3 6に進み、 第 1実施形態の図 1 5の S 0 3 2同様、 修正歩 容瞬時値決定サブルーチンを実行する。 次いで S 1 1 3 8に進み、 第 1 実施形態の S 0 3 4同様、 スピン力をキヤンセルするための腕振り動作 を決定する。 次いで S 1 1 4 0に進み、 時刻 t に制御周期△ tを加え、 再び、 S 1 1 1 4に戻り、 制御周期毎のタイマ一割り込みを待つ。
以上が、 第 3実施形態における歩容生成装置 2 0 0ならびに自己位置 姿勢推定部 2 1 6の処理である。 なお、 本実施形態では、 S 1 1 2 2で は、 次回歩容支持脚座標系の鉛直位置および次次回歩容支持脚座標系の 鉛直位置は、 前回の制御周期の S 1 1 3 0で求められた着地予想点の鉛 直位置に設定される。 但し、 次次回歩容支持脚座標系の鉛直位置は必ず しもこのようにする必要はない。
ビデオカメラ 1 2 5, 1 2 5でなくとも、 レーザ一レンジファインダ や超音波距離計 (スキャナ一) などの非接触の距離 (あるいは距離分布. あるいは形状) を認識するセンサや、 あるいは触覚センサを用いて着地 予想点の鉛直位置を把握するようにしても良い。
以上のごとく、 第 3実施形態においては、 口ポッ ト 1の実際の上体鉛 直位置軌道 (推定上体鉛直位置の軌道) と目標上体鉛直位置軌道の差に 対しては、 上記第 1実施例のごとく、 前記差 (上体鉛直位置偏差 A h ) を 0に収束させるようにモデル鉛直外力 Fmdlz を動力学モデルに加え ると共に、 想定していなかった床の凹凸に対しては、 ビデオカメラ等、 床面の高さを非接触で測定する床面形状認識センサ (距離センサ) によ り、 遊脚足平 2 2の目標着地位置に対応する着地予想点での床面高さを 測定する。 そして、 その測定した床面高さに応じて (目標着地鉛直位置 と床面の鉛直位置との偏差分だけ) 遊脚の足平位置軌道を修正する。 す なわち足平位置姿勢軌道を規定する歩容パラメ一夕のうちの目標着地鉛 直位置 (パラメ一夕) を修正する。
なお、 第 3実施形態の S 1 1 3 6では、 前記第 1実施形態の図 1 6に 示したサブルーチン処理に代えて、 前記第 2実施形態の図 1 7に示した サブルーチン処理を実行するようにして、 空中期に、 目標歩容の全体重 心鉛直位置軌道あるいは上体鉛直位置軌道が、 推定上体位置を基に予想 される実際の口ポッ ト 1の将来 (着地時) の重心位置あるいは上体位置 の推定値に収束するように、 目標全体重心鉛直位置軌道あるいは目標上 体鉛直位置軌道を修正するようにしてもよい。
また、 足平位置姿勢軌道の修正方法としては、 前記測定した床面高さ (着地予想点の鉛直位置) と目標歩容で想定していた着地高さ (目標着 地鉛直位置) との差に応じて決定した滑らかな (S字曲線状の) 補正軌 道を、 目標足平位置姿勢軌道に加えることで、 足平位置姿勢軌道を修正 するようにしても良い。
なお、 以上説明した第 3実施形態は、 第 2 3発明及び第 2 4発明の一 実施形態である。
以上説明した各実施形態では、 コンプライアンス制御によって足平 2 2を鉛直方向に変位させた時の慣性力や重心位置変化なども考慮して動 力学演算による歩容生成を行っても良い。
コンプライアンスゲイン (床反力鉛直成分に対する足平摂動変位量の 比) を可変にしても良い。 例えば、 コンプライアンスゲインを、 着地時 はコンプライアンス制御が柔らかくなり、 その後離床時刻にかけて徐々 にコンプライアンス制御が硬くなるように決定しても良い。 これにより, 床が硬い場合には、 離床時のロポッ 卜 1の実際の上体位置速度が目標歩 容の上体位置速度に近くなる。 ただし、 鉛直方向のコンプライアンス制 御を用いないと (すなわち鉛直方向のコンプライアンス制御が非常に硬 いと)、 ジャンプ時の蹴り力が床の硬さに大きく影響される傾向がある ので、 鉛直方向のコンプライアンス制御はあまり硬くし過ぎないように すべきである。
また、 足平 2 2の位置誤差が大きい時に急激にコンプライアンスゲイ ンを変えると誤差が急激に 0に戻るため急激な加減速が発生し、 脚体 2 の膝の位置制御偏差が過大になって口ポッ ト 1が姿勢を崩したり、 膝ト ルクが過大になって場合によっては損傷する恐れがある。 従って、 コン プライアンスゲインは徐々に変えるべきである。
なお、 上記のようにコンプライアンスゲインを可変化する技術は、 本 発明の第 2 6発明の実施形態である。
前記第 1および第 2実施形態においては、 歩容の切り替わり目におい てのみ、 今回歩容パラメ一夕を決定あるいは修正していたが、 離床時な どの所定の時刻あるいは、 制御周期毎に修正するようにしても良い。 た だし、 今回歩容パラメ一夕の修正処理は、 歩容の切り替わり目でない時 には、 図 1 5の S 0 2 2の処理を実行せず、 S O 2 4から S O 3 0を実 行する。
なお、 図 1 5の S 0 2 4から S 0 3 0の処理によって今回歩容の床反 力鉛直成分パターン (詳しくは、 これを規定する歩容パラメ一夕) も修 正される。 この時、 次に続く定常歩容の床反力鉛直成分パターンも修正 しても良い。
制御周期毎あるいは歩容の切り替わり目で、 推定上体鉛直位置速度を 基に、 あるいは推定上体鉛直位置速度と目標上体鉛直位置速度との差を 基に、 次の着地時の口ポッ ト 1の姿勢を予測して、 その予測した姿勢が 適切な姿勢になるように、 すなわち着地時の上体 3が高過ぎたり (膝が 伸び過ぎたり)、 低過ぎたり (膝が曲がり過ぎたり) しないように、 着 地時刻パラメータ (目標着地時刻) を変更しても良い。 ただしその結果, ロボッ ト 1の姿勢が傾くので、 目標 Z M Pや目標着地位置など、 姿勢に 影響するパラメ一夕なども同時に変更する必要がある。
前記第 1実施形態あるいは第 3実施形態においては、 モデル鉛直外力 Fmdlz を動力学モデルの重心に作用させる代わりに目標 Z M Pに作用 させても良い。
また、 前記各実施形態においては、 コンプライアンス制御の目標値と して付加される床反力は、 コンプライアンス制御用補償鉛直床反力
Fcmpnz のように鉛直成分だけとしたが、 水平成分があっても良い。 例 えば、 口ポッ ト 1の全体重心と目標 Z M Pとを結ぶ線分の方向に、 ある いは上体 3のある所定の点と目標 Z M Pとを結ぶ線分の方向に床反力を 付加しても良い。 こうすることによって、 コンプライアンス動作によつ て口ポッ トの姿勢がずれる悪影響を防止することができる。
また、 前記第 1、 第 3実施例においては、 動力学的モデルに仮想的に 加える外力も、 モデル鉛直外力 Fmdlz のように鉛直成分だけとしたが. 水平成分があっても良い。 例えば、 口ポッ ト 1の全体重心と目標 Z M P とを結ぶ線分の方向に、 あるいは上体 3のある所定の点と目標 Z M Pと を結ぶ線分の方向に床反力を付加しても良い。 こうすることによって、 モデル鉛直外力 Fmdlz を加えることによる目標 Z M Pのずれが防止さ れる。
なお、 全体重心まわりに作用する力のモーメントが 0 となるように仮 想外力をモデルに与えること、 すなわち動力学モデルの全体重心に並進 力であるモデル外力を仮想的に加えることは、 動力学モデルに作用する 重力の大きさおよび/または向きを変動させることと等価である。
上体鉛直位置安定化制御演算部 2 1 8では、 上体鉛直位置偏差 (推定 上体鉛直位置と目標上体鉛直位置の差 Δ ΐι) を基にコンプライアンス制 御用補償鉛直床反力 Fcmpnz とモデル鉛直外力 Fmdlz とを決定する代 わりに、 全体重心鉛直位置偏差 (推定全体重心鉛直位置と目標全体重心 鉛直位置との差) を基にコンプライアンス制御用補償鉛直床反力 Fcmpnzとモデル鉛直外力 Fmdlzとを決定するようにしても良い。
上体鉛直位置安定化制御演算部 2 1 8では、 推定上体鉛直位置と目標 上体鉛直位置との差を基にコンプライアンス制御用補償鉛直床反力 Fcmpnz, モデル鉛直外力 Fmdlzあるいは、 目標上体鉛直位置軌道の修 正量を決定するようにしたが、 上体 3以外の所定の部位 (例えば頭部 4 など) に基づいて決定しても構わない。
また、 前記各実施形態では、 鉛直成分 (Z成分) に関する制御のみを 説明したが、 水平成分 (X成分、 Y成分) に対しても、 同様の制御を行 なっても良い。 例えば、 離床時の実際の重心水平位置速度と目標重心水 平位置速度との差に応じて、 動力学モデルの重心に仮想的な水平並進外 力を加えても良い。
上体鉛直位置安定化制御演算部 2 1 8では、 モデル鉛直外力 Fmdlz のみを決定するようにしても良い。
例えば、 上体鉛直位置安定化制御演算部 2 1 8において、 前記第 1実 施形態で説明した如く、 モデル鉛直外力 Fmdlz とコンプライアンス制 御用補償鉛直床反力 Fcmpnz とを決定した後、 コンプライアンス制御 用補償鉛直床反力 Fcmpnzを 0に決定し直しても良い。
また、 上記と逆に上体鉛直位置安定化制御演算部 2 1 8では、 コンプ ライアンス制御用補償鉛直床反力 Fcmpnz のみを決定するようにして も良い。 例えば、 上体鉛直位置安定化制御演算部 2 1 8において、 前記第 1実 施形態で説明した如く、 モデル鉛直外力 Fmdlz とコンプライアンス制 御用補償鉛直床反力 Fcmpnz とを決定した後、 モデル鉛直外力 Fmdlz を 0に決定し直しても良い。
この方式では、 前述の実施形態に較べて、 ロボッ ト 1の上体 3等、 所 定の部位の位置偏差 (推定位置と目標位置との差)、 あるいは口ポッ ト 1の全体重心位置偏差 (推定全体重心位置と目標全体重心位置との差) を 0に収束させる作用は弱くなる。 しかし、 前述した如く、 Fcmpnz の 許容範囲を前記図 1 2 ( c )、 ( d ) のように設定したり、 あるいは Fcmpnz に係わるゲインを図 1 4 ( c ) のように設定したりすることで、 少なく とも、 目標離床時刻 (空中期の開始予定時刻) までには、 コンプ ライアンス制御用補償鉛直床反力 Fcmpnz を 0にすることができる。 このため、 目標離床時刻以降に、 離床すべき脚体 2がさらに床を蹴り続 けることがなくなり、 該脚体 2を振り出す時に床に干渉することを防止 することができる。
なお、 上記のように Fcmpnz を決定して、 口ポッ ト 1を制御する技 術は、 本発明の第 2 7発明、 第 2 8発明の一実施形態である。
自己位置姿勢推定部 2 1 6においては、 少なく とも目標歩容の関節変 位とコンプライアンス補償量 (本出願人が先に提案した特開平 10- 277969 号を参照) を基に、 キネマテイクス演算によって推定上体位置 姿勢を決定しても良い。 これにより、 一層、 推定上体位置の精度が高ま り、 結果的に口ポッ ト 1の実際の足平 2 2の位置姿勢軌道も、 精度良く, 目標足平位置姿勢軌道に追従する。
あるいは、 少なくとも実関節変位 (関節変位の検出値) を基に、 キネ マテイクス演算によって推定上体位置姿勢を決定しても良い。 これによ り、 一層、 推定上体位置の精度が高まり、 結果的に口ポッ ト 1の実際の 足平 2 2の位置姿勢軌道も、 精度良く、 目標足平位置姿勢軌道に追従す る。
前記第 2実施形態においてモデル鉛直外力 Fmdlz を仮想的に加える ようにしても良い。 より一層安定になる。
前記第 3実施形態のごとく床面の高さを非接触で測定する床面形状認 識センサ (距離センサ) を備え、 これにより目標着地点 (着地予想点) の床面高さを測定して、 測定した高さが想定していた高さとずれていた ら、 この高さのずれ (偏差) を推定上体鉛直位置と目標上体鉛直位置の 差 (上体鉛直位置偏差) とみなしてもよい。 そして、 この高さのずれに 応じて、 上記第 1実施形態のごとく、 実口ポッ ト 1の上体鉛直位置軌道 と目標上体鉛直位置軌道との差を 0に収束させるように (上記高さのず れを含む上体鉛直位置偏差を 0 に収束させるように) モデル鉛直外力 Fmdlz を動力学モデルに仮想的に加えるようにしても良い。 あるいは 上記高さのずれに応じて、 前記第 2実施形態のごとく、 実口ポッ ト 1の 将来の上体鉛直位置軌道に収束するように目標上体鉛直位置軌道を修正 しても良い。 なお、 上記のように床面高さのずれに応じて、 モデル鉛直 外力 Fmdlz を操作したり、 前記目標上体鉛直位置軌道を修正する技術 は、 本発明の第 2 5発明の一実施形態である。
ただし、 この制御方式を用いると、 着地予想点が想定していた高さよ りもかなり低い場合には、 この制御によって、 いずれの足平 2 2も上体 3からの相対距離が増える。 すなわち全ての脚体 2が伸びるので、 目標 着地点に着地する足平 2 2 R又は 2 2 Lと異なる足平 2 2 L又は 2 2 R が、 床に引っ掛かる恐れが生じる。
歩容生成装置 2 0 0において、 修正された目標歩容を生成すると共に 修正する前の元の歩容も生成し、 上体鉛直位置安定化制御演算部 2 1 8 において、 修正された目標歩容が可能な範囲で (コンプライアンス制御 用補償鉛直床反力 Fcmpnz が最小許容値と最大許容値で規定される許 容範囲を越えないで) 元の歩容に収束するように、 モデル鉛直外力 Fmdlz とコンプライアンス制御用補償鉛直床反力 Fcmpnz との組を決 定するようにしても良い。 なお、 修正された目標歩容とは、 図 1 5の S 0 3 2で瞬時値が決定される目標歩容 (歩容生成装置 2 0 0が最終的に 出力する目標歩容) であり、 修正する前の元の歩容とは、 S O 3 2でモ デル鉛直外力 Fmdlzを 0として決定される歩容である。
以下に第 4実施形態として説明すると、 例えば、 修正された目標歩容 が元の歩容に収束するために必要なモデル復元要求鉛直外力 Fmdlrecz を次の式 4によって求める。
Fmdlrecz
=Kr * (修正された目標歩容の上体鉛直位置一元の歩容の上体鉛直位
+Kdr * (修正された目標歩容の上体鉛直速度一元の歩容の上体鉛直速 度)
…式 4 つまり、 修正された目標歩容の上体鉛直位置と元の歩容の上体鉛直位 置との差から、 フィードバック制御則 (本例では P D制御則) によりモ デル復元要求鉛直外力 Fmdlrecz を求める。 なお、 目標歩容と元の歩容 との上体鉛直位置の差の代わりに、 ロポッ ト 1の全体重心鉛直位置の差 を用いてもよい。
次いで、 図 2 0のブロック図に従って、 モデル鉛直外力 Fmdlz とコ ンプライアンス制御用補償鉛直床反力 Fcmpnzとの組を決定する。
すなわち、 前述のごとく コンプライアンス制御用補償鉛直床反力 Fcmpnz に対する最小許容値と最大許容値を設定し、 図 2 0に示すごと く、 その最小許容値を下限、 最大許容値を上限とした制限をかける飽和 手段 (リミッタ) 2 5 0に総合要求鉛直復元力 Fdmdz とモデル復元要 求鉛直外力 Fmdlrecz との和を通す。 これにより、 コンプライアンス制 御用補償鉛直床反力 Fcmpnz を求める。 なお、 総合要求鉛直復元力 Fdmdz は前記第 1実施形態で説明した如く求められる。 そして、 この 求めたコンプライアンス制御用補償鉛直床反力 Fcmpnz から総合要求 鉛直復元力 Fdmdzを減じることにより、 モデル鉛直外力 Fmdlzを決定 する。
この第 4実施形態では、 コンプライアンス制御用補償鉛直床反力 Fcmpnz の最小許容値および最大許容値を前記第 1実施形態と同様に設 定することで、 空中期では、 モデル鉛直外力 Fmdlz が上体鉛直位置偏 差 Δ ίιを 0に近づけるように決定される一方、 支持脚期では、 上体鉛直 位置偏差 A h、 並びに、 修正された目標歩容の上体鉛直位置と元の歩容 の上体鉛直位置との差を共に、 0 に近づけるようにモデル鉛直外力 Fmdlz とコンプライアンス制御用補償鉛直床反力 Fcmpnz との組が決 定される。 より詳しくは、 支持脚期では、 総合要求鉛直復元力 Fdmdz とモデル復元要求鉛直外力 Fmdlrecz との和が、 コンプライアンス制御 用補償鉛直床反力 Fcmpnz の最小許容値および最大許容値の間の許容 範囲内の値である限り、 Fcmpnz は、 上体鉛直位置偏差 Δ 1ΐ、 並びに、 修正された目標歩容の上体鉛直位置と元の歩容の上体鉛直位置との差の 両者を妥協的に 0 に近づけるように決定される一方、 モデル鉛直外力 Fmdlz は、 修正された目標歩容の上体鉛直位置と元の歩容の上体鉛直 位置との差を 0に近づけるように決定される。
なお、 以上説明した第 4実施形態は、 本発明の第 1 8発明及び第 1 9 発明の一実施形態である。
以上説明した本発明の実施形態によれば、 動力学モデルによって生成 される目標歩容の関節変位に追従するようにロボッ ト 1の実際の関節変 位が制御されつつ、 ロボッ ト 1の実際の上体鉛直位置軌道と目標上体鉛 直位置軌道の差、 あるいは実際の全体重心の鉛直位置軌道と目標歩容の 全体重心の鉛直位置軌道が 0に収束 (漸近) するので、 グローバル空間 において、 口ポッ ト 1の実際の足平軌道が目標足平軌道に収束する。 し たがって、 グローバル空間 (床に固定された座標系) から見て、 実際の ロポッ トの運動と床反力とが目標歩容の運動と床反力とに、 常にほぼ一 致する (精度良く追従制御される) ようになる。
したがって、 口ポッ ト 1の姿勢安定性が向上すると共に、 過大な床反 力や衝撃が発生することを防止する。
また、 その結果、 実際の離床タイミングが目標歩容の離床タイミング にほぼ一致するので、 離床タイミングずれによるスリップゃスピンおよ び遊脚足平が床に引っ掛かってしまうなどの問題が解消される。
また、 着地に関しては、 グロ一バル空間から見て、 着地時の実際の口 ポッ ト 1の足平位置と速度が目標の位置速度にほぼ一致するので、 実際 の着地タイミングが目標歩容の着地タイミングにほぼ一致し、 かつ着地 時の対地速度が適切 (例えば 0 ) に制御されるので、 着地衝撃が低減さ れる。 特に、 目標足平軌道が、 着地時に対地速度が 0またはほぼ 0にな るように設定されているので、 一層、 着地衝撃が低減される。
補足すると、 足平軌道はグロ一バル座標系 (空間) で記述されている ので、 上記実施例のごとく上体鉛直位置を修正することにより、 上体 3 と足平 2 2 との相対位置が変り、 結果的に脚体 2の伸縮 (膝曲げ伸ば し) が発生するが、 単なる足平 2 2の軌道修正とは作用が異なる。 例え ば、 空中期において実際のロボッ ト 1の上体鉛直位置軌道が目標歩容の 上体鉛直位置軌道からずれた時に、 着地時の対地速度が 0になるように 単に足平軌道だけを修正すると、 着地衝撃は低減されるが、 実際のロボ ッ 卜 1の上体鉛直位置軌道が目標歩容生成用動力学モデルの上体鉛直位 置軌道からずれたままであるので、 実際の口ポッ ト 1の状態と目標歩容 生成用動力学モデルの状態とがー致せず、 着地後に姿勢安定性を損なう 恐れがある。 特に、 状態量の中でも、 重心鉛直速度などのような速度に 関する状態量に不一致が生じると、 着地後に姿勢安定性を大きく損なう 場合がある。 産業上の利用可能性
以上の如く、 本発明は 2足移動ロポッ ト等の脚式移動ロポッ トを走行 させたり、 ジャンプさせる場合に円滑な運動を該ロポッ トに行わせるこ とができるものとして有用である。

Claims

請 求 の 範 囲
1 . 脚体の運動により移動する脚式移動ロポッ トの目標歩容を生成し、 その目標歩容に追従させるように該ロポッ トの動作を制御する脚式移動 ロボッ トの制御装置において、
少なくとも前記ロポッ トの目標運動を含む目標歩容を生成する目標歩 容生成手段と、
前記ロポッ トの所定方向の並進運動に関する前記目標歩容の状態量と, 該所定方向の並進運動に関する該ロボッ トの実際の状態量との偏差を状 態量偏差として求める状態量偏差算出手段とを備え、
前記目標歩容生成手段は、 前記状態量偏差に応じて該状態量偏差を 0 に近づけるように前記ロポッ トの目標歩容の目標運動を決定することを 特徴とする脚式移動ロボットの制御装置。
2 . 前記目標歩容は、 前記口ポッ トの全ての脚体を空中に浮かせる空中 期を有する歩容であり、
前記ロポッ トの所定の部位の位置又は該ロポッ トの重心の位置を該ロ ボッ トの代表自己位置とし、 その代表自己位置の前記所定方向の成分を 前記所定方向の並進運動に関する該ロポッ トの実際の状態量を表すもの として推定する自己位置推定手段と、
少なくとも前記空中期の開始時までに前記自己位置推定手段により推 定された前記代表自己位置の所定方向の成分に基づいて少なくとも該空 中期における該代表自己位置の所定方向の成分の予想軌道を求める予想 軌道算出手段とを備え、
前記目標歩容生成手段は、 前記空中期において前記目標歩容により定 まる前記代表自己位置の前記所定方向の成分の目標軌道が少なく とも該 空中期の終了時までに前記予想軌道に近づくように前記推定された代表 自己位置の所定方向の成分と前記目標歩容の代表自己位置の所定方向の 成分との偏差である前記状態量偏差に応じて該空中期における前記目標 歩容の目標運動を決定することを特徴とすることを特徴とする請求の範 囲第 1項に記載の脚式移動ロポッ 卜の制御装置。
3 . 前記目標歩容生成手段は、 前記口ポッ トに作用する力と該ロポッ ト の運動との関係を表す動力学モデルに少なくとも該ロポッ トに作用させ るべき床反力の目標値としての基準床反力を入力しつつ、 該動力学モデ ルを用いて前記目標運動を決定する手段であり、 少なくとも前記状態量 偏差に応じて仮想外力を決定し、 該仮想外力を前記動力学モデルに付加 的に入力することにより前記目標運動を決定することを特徴とする請求 の範囲第 1項に記載の脚式移動ロポッ トの制御装置。
4 . 前記目標歩容生成手段は、 前記状態量偏差を 0に近づけるために前 記動力学モデルに付加的に入力すべき外力操作量を該状態量偏差からフ ィ一ドバック制御則により決定する手段を備え、 該外力操作量の値が 0 を含む所定の不感帯域に存在するときには、 前記仮想外力を 0に決定し. 該外力操作量の値が前記不感帯域から逸脱しているときには、 前記仮想 外力を該外力操作量が前記不感帯域から逸脱した分の値に決定すること を特徴とする請求の範囲第 3項に記載の脚式移動ロボッ トの制御装置。
5 . 前記目標歩容は、 前記口ポッ トに作用する床反力が略 0に維持され る床反力不作用期間を有する歩容であり、
前記目標歩容生成手段は、 前記床反力不作用期間において、 前記状態 量偏差を 0に近づけるように前記目標運動を決定することを特徵とする 請求の範囲第 1項に記載の脚式移動ロポッ 卜の制御装置。
6 . 前記基準床反力は、 その値が略 0に維持される床反力不作用期間を 有し、
前記目標歩容生成手段は、 前記床反力不作用期間以外の期間内で前記 仮想外力を略 0に決定することを特徴とする請求の範囲第 3項に記載の 脚式移動ロボッ トの制御装置。
7 . 前記目標歩容生成手段は、 少なくとも前記床反力不作用期間以外の 期間内において、 前記目標運動を所定の基準運動に近づけるように該目 標運動を決定することを特徴とする請求の範囲第 5項に記載の脚式移動 口ポッ トの制御装置。
8 . 前記目標歩容生成手段は、 少なくとも前記仮想外力を略 0に決定す る期間内において前記目標運動を前記基準床反力に前記動力学モデル上 で釣り合う基準運動に近づけるように前記目標運動を決定することを特 徴とする請求の範囲第 6項に記載の脚式移動ロポッ トの制御装置。
9 . 前記目標歩容生成手段は、 前記ロボッ トの目標床反力を決定する手 段を含み、 前記目標運動と目標床反力とに該ロポッ トの歩容を追従させ るように該ロボッ トを操作するコンプライアンス制御手段を備えたこと を特徴とする請求の範囲第 1項に記載の脚式移動ロポッ 卜の制御装置。
1 0 . 前記目標歩容生成手段は、 少なくとも前記基準床反力を基に前記 目標運動に前記動力学モデル上で不釣合いとなるロポッ トの目標床反力 を決定する手段を含み、 前記目標運動と目標床反力とに該ロボッ トの歩 容を追従させるように該ロポッ トを操作するコンプライアンス制御手段 を備えたことを特徴とする請求の範囲第 3項に記載の脚式移動ロポッ ト の制御装置。
1 1 . 前記目標歩容生成手段は、 少なく とも前記状態量偏差に応じて該 状態量偏差を 0に近づけるように前記目標床反力を決定することを特徴 とする請求の範囲第 9項又は第 1 0項に記載の脚式移動ロポッ小の制御
1 2 . 脚体の運動により移動する脚式移動ロポッ トの目標運動及び目標 床反力からなる目標歩容を生成する目標歩容生成手段と、 その目標歩容 の目標運動及び目標床反力に前記ロポッ 卜の歩容を追従させるように該 口ポッ トを操作するコンプアライアンス制御手段とを備えた脚式移動口 ポッ トの制御装置において、
前記ロポッ 卜の所定方向の並進運動に関する前記目標歩容の状態量と, 該所定方向の並進運動に関する該ロポッ 卜の実際の状態量との偏差を状 態量偏差として求める状態量偏差算出手段を備え、
前記目標歩容生成手段は、 少なくとも前記状態量偏差に応じて該状態 量偏差を 0に近づけるように前記ロポッ トの目標運動と目標床反力との 組を決定することを特徴とする脚式移動ロポッ トの制御装置。
1 3 . 前記目標歩容生成手段は、 前記ロボッ トに作用する床反力と該ロ ポッ トの運動との関係を表す動力学モデルに、 少なく とも該ロボッ トに 作用させるべき床反力の基準目標値としての基準床反力を入力しつつ、 該動力学モデルを用いて前記目標運動を決定する手段と、 少なくとも前 記状態量偏差に応じて前記動力学モデルに付加的に入力すべき仮想外力 と前記目標床反力の前記基準床反力からの修正量としての目標床反カ修 正量との組を決定する手段とを備え、 その決定された仮想外力及び目標 床反力修正量のうちの仮想外力を前記動力学モデルに付加的に入力する ことにより前記目標運動を決定すると共に、 前記目標床反力修正量によ り前記基準床反力を修正することにより前記目標床反力を決定すること を特徴とする請求の範囲第 1 2項に記載の脚式移動ロポッ トの制御装置,
1 4 . 前記目標歩容生成手段は、 前記状態量偏差を 0に近づけるように 前記目標床反力修正量と前記仮想外力との差分の目標値を該状態量偏差 に応じて決定し、 その決定された差分の目標値を満足するように前記目 標床反力修正量と前記仮想外力との組を決定することを特徴とする請求 の範囲第 1 3項に記載の脚式移動ロボッ 卜の制御装置。
1 5 . 前記目標歩容生成手段は、 前記目標床反力修正量の許容範囲を決 定する手段を備え、 前記差分の目標値と該目標床反力修正量の許容範囲 とを満足するように前記目標床反力修正量と仮想外力との組を決定する ことを特徴とする請求の範囲第 1 4項に記載の脚式移動ロボッ トの制御
1 6 . 前記目標歩容生成手段は、 前記差分の目標値に対応する前記仮想 外力が 0であると仮定して前記目標床反力修正量の仮値を決定する手段 と、 該目標床反力修正量の仮値と前記許容範囲とに基づいて該仮値を該 許容範囲内の値に制限してなる目標床反力修正量を決定する手段と、 そ の決定した目標床反力修正量と前記決定された差分の目標値とに基づき 前記仮想外力を決定する手段とを備えることを特徴とする請求の範囲第 1 5項に記載の脚式移動ロポッ トの制御装置。
1 7 . 前記目標歩容は、 前記口ポッ トの全脚体を空中に浮かせる期間を 有する歩容であり、 前記目標床反力修正量の許容範囲は、 少なくとも前 記空中期において該許容範囲の上限値と下限値とが略 0となる範囲に決 定されることを特徴とする請求の範囲第 1 5項に記載の脚式移動ロポッ トの制御装置。
1 8 . 前記目標歩容生成手段は、 前記差分の目標値を満足しつつ、 前記 目標運動を前記動力学モデル上で前記基準床反力に釣り合う基準運動に 近づけるように前記目標床反力修正量と仮想外力との組を決定すること を特徴とする請求の範囲第 1 4項に記載の脚式移動ロポッ トの制御装置 < 1 9 . 前記目標歩容生成手段は、 前記状態量偏差を 0に近づけるための フィードバック制御則に基づき第 1床反力操作量を決定する手段と、 前 記目標運動を前記動力学モデル上で前記基準床反力に釣り合う基準運動 に近づけるためのフィードバック制御則に基づき第 2床反力操作量を決 定する手段と、 前記目標床反力修正量の許容範囲を決定する手段と、 前 記第 1床反力操作量と第 2床反力操作量とを合成してなる床反力操作量 を前記目標床反力修正量の仮値とし、 その仮値を前記許容範囲内に制限 することにより目標床反力修正量を決定する手段と、 その目標床反力操 作量と前記仮想外力との差分が前記第 1床反力操作量に合致するように 該仮想外力を決定する手段とを備えることを特徴とする請求の範囲第 1 3項に記載の脚式移動ロボッ トの制御装置。
2 0 . 前記目標歩容生成手段は、 所定期間分の目標歩容づつ、 該所定期 間分の目標歩容を仮想的な周期的歩容に近づけるように生成することを 特徴とする請求の範囲第 1項又は第 1 2項に記載の脚式移動ロボッ 卜の 制御装置。
2 1 . 前記状態量は、 前記口ポッ トの所定の部位の位置又は該ロポッ ト の重心の位置であることを特徴とする請求の範囲第 1項又は第 1 2項に 記載の脚式移動ロポッ トの制御装置。
2 2 . 前記所定の部位は、 前記口ポッ トの上体であることを特徴とする 請求の範囲第 2 1項に記載の脚式移動ロポッ トの制御装置。
2 3 . 脚体の運動により移動する脚式移動ロポッ トの目標歩容を生成し、 その目標歩容に追従させるように該ロポッ トの動作を制御する脚式移動 ロポッ 卜の制御装置において、
前記目標歩容を生成する目標歩容生成手段と、
前記ロボッ トの所定の部位の位置及び該ロポッ トの重心の位置のうち の少なく ともいずれかの位置をロポッ 卜の代表自己位置とし、 該代表自 己位置を推定する自己位置推定手段と、
その推定された代表自己位置と、 前記目標歩容における代表自己位置 との差のうち、 所定方向の成分を所定方向位置偏差として求める位置偏 差算出手段と、
前記目標歩容における目標着地点に対応して、 前記ロボッ トの着地動 作を行なう脚体め先端部が実際に着地すると予想される床上の着地予定 点の鉛直位置を測定する床形状認識手段とを備え、 前記目標歩容生成手段は、 少なくとも前記位置偏差算出手段により求 められた前記所定方向位置偏差と前記床形状認識手段により測定された 前記着地予定点の鉛直位置とに基づいて前記目標歩容を修正することを 特徴とする脚式移動ロポッ トの制御装置。
2 4 . 前記目標歩容生成手段は、 少なくとも前記所定方向位置偏差に基 づいて、 該所定方向位置偏差が 0に近づくように前記目標歩容のうちの 前記代表自己位置の軌道を規定する目標運動を修正する手段と、 少なく とも前記測定された前記着地予定点の鉛直位置に基づいて、 前記目標歩 容のうちの脚体の先端部の軌道を規定する目標運動を修正する手段とを 備えることを特徴とする請求の範囲第 2 3項に記載の脚式移動ロポッ ト の制御装置。
2 5 . 前記目標歩容生成手段は、 少なくとも前記測定された前記着地予 定点の鉛直位置と前記目標歩容における目標着地点の鉛直位置との偏差 と、 前記所定方向位置偏差とに基づいて、 これらの偏差が 0に近づくよ うに前記目標歩容のうちの前記代表自己位置の軌道を規定する目標運動 を修正することを特徴とする請求の範囲第 1 1項に記載の脚式移動ロボ ッ 卜の制御装置。
2 6 . 脚体の運動により移動する脚式移動ロポッ トの目標運動及び目標 床反力からなる目標歩容に追従させるようにロボッ トの動作を制御する コンプライアンス制御手段を備え、 該コンプラインアンス制御手段が、 前記ロポッ トに実際に作用する床反力を把握しつつ、 その把握した床反 力と前記目標床反力との偏差である床反力偏差に応じて前記ロボッ トの 上体に対する脚体の先端部の相対位置を前記目標運動により規定される 相対位置から修正する脚式移動ロボッ トの制御装置において、
前記目標歩容は、 前記口ポッ トの全脚体を空中に浮かせる空中期を有 する歩容であり、 前記コンプライアンス制御手段は、 前記床反力偏差に 対する前記脚体の先端部の相対位置の修正量のゲインを少なく とも前記 空中期の開始直前に減少させることを特徴とする脚式移動ロボッ 卜の制 御装置。 '
2 7 . 脚体の運動により移動する脚式移動ロポッ トの目標運動を少なく とも含む目標歩容を生成し、 その目標歩容に追従させるように該ロポッ 卜の動作を制御する脚式移動ロポッ トの制御装置において、
少なくとも前記ロポッ トの全脚体を空中に浮かせる空中期を含む前記 目標歩容を生成する目標歩容生成手段と、
前記ロボットの所定の部位の位置及び該ロポッ 卜の重心の位置のうち の少なくともいずれかの位置を口ポッ トの代表自己位置とし、 該代表自 己位置を推定する自己位置推定手段と、
その推定された代表自己位置と、 前記目標歩容における代表自己位置 との差のうち、 所定方向の成分を所定方向位置偏差として求める位置偏 差算出手段と、
少なくとも前記所定方向位置偏差に応じて、 該所定方向位置偏差が 0 に近づくように前記ロボッ トの脚体の先端部の位置を前記目標歩容によ り規定される位置から修正する脚先端部位置修正手段とを備え、
該脚先端部位置修正手段は、 少なくとも前記目標歩容の空中期の開始 時までに前記脚体の先端部の位置の修正量を前記所定方向位置偏差によ らずに強制的に略 0にすることを特徴とする脚式移動ロボッ 卜の制御装 置。
2 8 . 脚体の運動により移動する脚式移動ロポッ トの目標運動及び目標 床反力からなる目標歩容を生成し、 その目標歩容に追従させるように該 ロボッ 卜の動作を制御する脚式移動ロポッ卜の制御装置において、 少なく とも前記ロポッ トの全脚体を空中に浮かせる空中期を含む前記 目標歩容を生成する目標歩容生成手段と、 前記ロボッ トの所定の部位の位置及び該ロポッ トの重心の位置のうち の少なくともいずれかの位置をロポッ トの代表自己位置とし、 該代表自 己位置を推定する自己位置推定手段と、
その推定された代表自己位置と、 前記目標歩容における代表自己位置 との差のうち、 所定方向の成分を所定方向位置偏差として求める位置偏 差算出手段と、
少なくとも前記所定方向位置偏差に応じて、 該所定方向位置偏差が 0 に近づくように前記目標歩容うちの目標床反力を修正する床反力修正手 段とを備え、
該床反力修正手段は、 少なく とも前記目標歩容の空中期の開始時まで に前記目標床反力の修正量を前記所定方向位置偏差によらずに強制的に 略 0にすることを特徴とする脚式移動ロポッ トの制御装置。
PCT/JP2003/005446 2002-04-26 2003-04-28 Dispositif de commande d'un robot mobile dote de jambes WO2003090978A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004501987A JP4225968B2 (ja) 2002-04-26 2003-04-28 脚式移動ロボットの制御装置
KR1020047017292A KR100956521B1 (ko) 2002-04-26 2003-04-28 다리식 이동 로봇의 제어장치
EP03725697A EP1502711B1 (en) 2002-04-26 2003-04-28 Control device of legged mobile robot
DE60336127T DE60336127D1 (de) 2002-04-26 2003-04-28 Steuervorrichtung für mobilen roboter mit beinen
US10/512,231 US7664572B2 (en) 2002-04-26 2003-04-28 Control device of legged mobile robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002127684 2002-04-26
JP2002-127684 2002-04-26

Publications (1)

Publication Number Publication Date
WO2003090978A1 true WO2003090978A1 (fr) 2003-11-06

Family

ID=29267661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005446 WO2003090978A1 (fr) 2002-04-26 2003-04-28 Dispositif de commande d'un robot mobile dote de jambes

Country Status (6)

Country Link
US (1) US7664572B2 (ja)
EP (2) EP1502711B1 (ja)
JP (1) JP4225968B2 (ja)
KR (1) KR100956521B1 (ja)
DE (1) DE60336127D1 (ja)
WO (1) WO2003090978A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005051612A1 (ja) 2003-11-27 2005-06-09 Honda Motor Co., Ltd. 移動ロボットの制御装置
JP2006247769A (ja) * 2005-03-09 2006-09-21 Toyota Motor Corp 脚式ロボットとその動作制御方法
JP2008062330A (ja) * 2006-09-06 2008-03-21 Toyota Motor Corp 脚式ロボット
US7529622B2 (en) 2006-12-20 2009-05-05 Honda Motor Co., Ltd. Mobile apparatus, and control method thereof, control program and supervisory system therefor
WO2009075051A1 (ja) 2007-12-10 2009-06-18 Honda Motor Co., Ltd. 目標経路設定支援システム
US7571026B2 (en) 2006-12-20 2009-08-04 Honda Motor Co., Ltd. Mobile apparatus, and control method thereof, control program and supervisory system therefor
JP2009279668A (ja) * 2008-05-20 2009-12-03 Yaskawa Electric Corp 脚式歩行ロボットの安定化制御装置
JP2011093027A (ja) * 2009-10-28 2011-05-12 Honda Motor Co Ltd 脚式移動ロボットの制御装置
JP2011093025A (ja) * 2009-10-28 2011-05-12 Honda Motor Co Ltd 脚式移動ロボットの制御装置
JP2011093024A (ja) * 2009-10-28 2011-05-12 Honda Motor Co Ltd 脚式移動ロボットの制御装置
CN111645110A (zh) * 2020-07-01 2020-09-11 无锡盈连科技有限公司 一种径向浮动装置
JP2020163566A (ja) * 2014-07-23 2020-10-08 ボストン ダイナミクス,インコーポレイテッド 予測調節可能な油圧レール

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4246535B2 (ja) * 2003-04-17 2009-04-02 本田技研工業株式会社 二足歩行移動体の床反力作用点推定方法及び二足歩行移動体の関節モーメント推定方法
WO2005077611A1 (ja) * 2004-02-16 2005-08-25 Honda Motor Co., Ltd. 移動ロボットの歩容生成装置
JP2006068872A (ja) * 2004-09-03 2006-03-16 Honda Motor Co Ltd 脚式移動ロボット
CN101685308A (zh) * 2008-09-22 2010-03-31 鸿富锦精密工业(深圳)有限公司 机器人状态感知系统
CN102573746B (zh) * 2009-07-01 2015-01-07 瑞克仿生学有限公司 助动器的控制系统
JP5219956B2 (ja) * 2009-07-23 2013-06-26 本田技研工業株式会社 移動体の制御装置
JP5506618B2 (ja) * 2009-12-28 2014-05-28 本田技研工業株式会社 ロボットの制御装置
KR101200191B1 (ko) * 2010-07-14 2012-11-13 서울대학교산학협력단 데이터 기반 바이페드 제어 장치 및 방법
US8504208B2 (en) * 2011-05-25 2013-08-06 Honda Motor Co., Ltd. Mobile object controller and floor surface estimator
US8907726B2 (en) * 2011-11-04 2014-12-09 Rf Micro Devices, Inc. Voltage, current, and saturation prevention
KR101305617B1 (ko) * 2012-01-02 2013-09-09 현대자동차주식회사 착용식 로봇의 양중제어방법 및 양중제어시스템
US9499219B1 (en) 2014-08-25 2016-11-22 Google Inc. Touch-down sensing for robotic devices
US9517561B2 (en) * 2014-08-25 2016-12-13 Google Inc. Natural pitch and roll
WO2016061471A1 (en) * 2014-10-17 2016-04-21 Hitachi High Technologies America, Inc. Interactive laboratory robotic system
US10286556B2 (en) * 2016-10-16 2019-05-14 The Boeing Company Method and apparatus for compliant robotic end-effector
CN108068908B (zh) * 2017-12-29 2023-10-10 深圳市优必选科技有限公司 机器人脚板结构和人形机器人
CN108785877A (zh) * 2018-06-12 2018-11-13 沈阳东软医疗系统有限公司 一种运动控制方法和设备
US10946518B2 (en) * 2018-07-24 2021-03-16 Invia Robotics, Inc. Spatiotemporal controller for controlling robot operation
US20200039064A1 (en) * 2018-08-06 2020-02-06 The Regents Of The University Of California Low-Cost Compliant Robot Arm and System for Manipulation
CN110187637B (zh) * 2019-06-03 2021-12-10 重庆大学 在控制方向和期望轨迹不确定下的机器人系统控制方法
JP7322276B2 (ja) * 2019-08-06 2023-08-07 ボストン ダイナミクス,インコーポレイテッド 脚の揺動軌道
CN113031579B (zh) * 2019-12-25 2023-10-10 深圳市优必选科技股份有限公司 双足机器人的行走控制方法、装置及双足机器人
CN111208783B (zh) * 2019-12-30 2021-09-17 深圳市优必选科技股份有限公司 一种动作模仿方法、装置、终端及计算机存储介质
CN111452879B (zh) * 2020-04-09 2021-05-28 北京交通大学 机器人仿生足及具有其的机器人
CN111924020B (zh) * 2020-08-11 2022-07-12 腾讯科技(深圳)有限公司 用于机器人的腿部组件及设备
US20230182901A1 (en) * 2020-10-16 2023-06-15 Sintokogio, Ltd. Pickup system and pickup method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233450A (ja) 1990-02-09 1991-10-17 Fuji Photo Film Co Ltd カラー画像形成方法
JPH03273443A (ja) 1990-03-23 1991-12-04 Fuji Xerox Co Ltd 複数ワークステーションでの共同作業システム
JPH0631658A (ja) * 1992-07-20 1994-02-08 Honda Motor Co Ltd 脚式移動ロボットの歩行制御装置
US5459659A (en) * 1992-05-29 1995-10-17 Honda Giken Kogyo Kabushiki Kaisha Attitude stabilization control system for a legged mobile robot
JPH1086080A (ja) 1996-07-25 1998-04-07 Honda Motor Co Ltd 脚式移動ロボットの歩容生成装置
JPH10277969A (ja) 1997-01-31 1998-10-20 Honda Motor Co Ltd 脚式移動ロボットの制御装置
US5974366A (en) * 1996-12-18 1999-10-26 Honda Giken Kogyo Kabushiki Kaisha Apparatus for detecting the landing position of foot sole of legged moving robot
JPH11300661A (ja) 1998-04-20 1999-11-02 Honda Motor Co Ltd 脚式移動ロボットの制御装置
JP2002086373A (ja) * 2000-09-11 2002-03-26 National Institute Of Advanced Industrial & Technology 脚式ロボットのリアルタイム最適制御方法
JP2002127066A (ja) 2000-10-20 2002-05-08 Shin Etsu Chem Co Ltd 物体把持方法
WO2002040224A1 (fr) 2000-11-17 2002-05-23 Honda Giken Kogyo Kabushiki Kaisha Dispositif generateur d'un modele de demarche pour robot mobile pourvu de jambes
JP2002326173A (ja) 2001-04-27 2002-11-12 Honda Motor Co Ltd 脚式移動ロボットの動作生成装置
WO2003057425A1 (fr) 2001-12-28 2003-07-17 Honda Giken Kogyo Kabushiki Kaisha Dispositif de production de demarche pour robot se deplaçant sur des jambes, et dispositif de commande
WO2003061917A1 (fr) 2002-01-18 2003-07-31 Honda Giken Kogyo Kabushiki Kaisha Dispositif de commande pour robot bipede

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233450B2 (ja) 1992-05-22 2001-11-26 本田技研工業株式会社 指定時刻到達関数発生器
JP3273443B2 (ja) 1992-05-22 2002-04-08 本田技研工業株式会社 ロボットのリンクなどの軌道生成方法及び装置
DE69725764T2 (de) * 1996-07-25 2004-08-05 Honda Giken Kogyo K.K. Vorrichtung zur nachbildung des ganges für einen zweibeinigen robotor
JP3672426B2 (ja) 1996-12-19 2005-07-20 本田技研工業株式会社 脚式移動ロボットの姿勢制御装置
JP2000153476A (ja) * 1998-09-14 2000-06-06 Honda Motor Co Ltd 脚式移動ロボット
JP3634238B2 (ja) * 2000-05-19 2005-03-30 本田技研工業株式会社 脚式移動ロボットの床形状推定装置
US7295892B2 (en) * 2002-12-31 2007-11-13 Massachusetts Institute Of Technology Speed-adaptive control scheme for legged running robots

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233450A (ja) 1990-02-09 1991-10-17 Fuji Photo Film Co Ltd カラー画像形成方法
JPH03273443A (ja) 1990-03-23 1991-12-04 Fuji Xerox Co Ltd 複数ワークステーションでの共同作業システム
US5459659A (en) * 1992-05-29 1995-10-17 Honda Giken Kogyo Kabushiki Kaisha Attitude stabilization control system for a legged mobile robot
JPH0631658A (ja) * 1992-07-20 1994-02-08 Honda Motor Co Ltd 脚式移動ロボットの歩行制御装置
JPH1086080A (ja) 1996-07-25 1998-04-07 Honda Motor Co Ltd 脚式移動ロボットの歩容生成装置
US5974366A (en) * 1996-12-18 1999-10-26 Honda Giken Kogyo Kabushiki Kaisha Apparatus for detecting the landing position of foot sole of legged moving robot
JPH10277969A (ja) 1997-01-31 1998-10-20 Honda Motor Co Ltd 脚式移動ロボットの制御装置
JPH11300661A (ja) 1998-04-20 1999-11-02 Honda Motor Co Ltd 脚式移動ロボットの制御装置
JP2002086373A (ja) * 2000-09-11 2002-03-26 National Institute Of Advanced Industrial & Technology 脚式ロボットのリアルタイム最適制御方法
JP2002127066A (ja) 2000-10-20 2002-05-08 Shin Etsu Chem Co Ltd 物体把持方法
WO2002040224A1 (fr) 2000-11-17 2002-05-23 Honda Giken Kogyo Kabushiki Kaisha Dispositif generateur d'un modele de demarche pour robot mobile pourvu de jambes
JP2002326173A (ja) 2001-04-27 2002-11-12 Honda Motor Co Ltd 脚式移動ロボットの動作生成装置
WO2003057425A1 (fr) 2001-12-28 2003-07-17 Honda Giken Kogyo Kabushiki Kaisha Dispositif de production de demarche pour robot se deplaçant sur des jambes, et dispositif de commande
WO2003061917A1 (fr) 2002-01-18 2003-07-31 Honda Giken Kogyo Kabushiki Kaisha Dispositif de commande pour robot bipede

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HYON S.H.: "Development of a biologically inspired hopping robot-kenken", PROC. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, May 2002 (2002-05-01), pages 3984 - 3991, XP002971322 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695799A1 (en) * 2003-11-27 2006-08-30 HONDA MOTOR CO., Ltd. Control device for mobile body
EP1695799A4 (en) * 2003-11-27 2009-11-11 Honda Motor Co Ltd DEVICE FOR CONTROLLING MOBILE BODY
WO2005051612A1 (ja) 2003-11-27 2005-06-09 Honda Motor Co., Ltd. 移動ロボットの制御装置
JP2006247769A (ja) * 2005-03-09 2006-09-21 Toyota Motor Corp 脚式ロボットとその動作制御方法
JP4492395B2 (ja) * 2005-03-09 2010-06-30 トヨタ自動車株式会社 脚式ロボットとその動作制御方法
JP4692443B2 (ja) * 2006-09-06 2011-06-01 トヨタ自動車株式会社 脚式ロボット
JP2008062330A (ja) * 2006-09-06 2008-03-21 Toyota Motor Corp 脚式ロボット
US8150550B2 (en) 2006-09-06 2012-04-03 Toyota Jidosha Kabushiki Kaisha Legged robot
US7529622B2 (en) 2006-12-20 2009-05-05 Honda Motor Co., Ltd. Mobile apparatus, and control method thereof, control program and supervisory system therefor
US7571026B2 (en) 2006-12-20 2009-08-04 Honda Motor Co., Ltd. Mobile apparatus, and control method thereof, control program and supervisory system therefor
WO2009075051A1 (ja) 2007-12-10 2009-06-18 Honda Motor Co., Ltd. 目標経路設定支援システム
JP2009279668A (ja) * 2008-05-20 2009-12-03 Yaskawa Electric Corp 脚式歩行ロボットの安定化制御装置
JP2011093024A (ja) * 2009-10-28 2011-05-12 Honda Motor Co Ltd 脚式移動ロボットの制御装置
JP2011093025A (ja) * 2009-10-28 2011-05-12 Honda Motor Co Ltd 脚式移動ロボットの制御装置
JP2011093027A (ja) * 2009-10-28 2011-05-12 Honda Motor Co Ltd 脚式移動ロボットの制御装置
JP2020163566A (ja) * 2014-07-23 2020-10-08 ボストン ダイナミクス,インコーポレイテッド 予測調節可能な油圧レール
JP7013525B2 (ja) 2014-07-23 2022-01-31 ボストン ダイナミクス,インコーポレイテッド 予測調節可能な油圧レール
CN111645110A (zh) * 2020-07-01 2020-09-11 无锡盈连科技有限公司 一种径向浮动装置
CN111645110B (zh) * 2020-07-01 2024-05-03 无锡盈连科技有限公司 一种径向浮动装置

Also Published As

Publication number Publication date
JP4225968B2 (ja) 2009-02-18
EP1502711A1 (en) 2005-02-02
US7664572B2 (en) 2010-02-16
KR100956521B1 (ko) 2010-05-06
EP1502711B1 (en) 2011-02-23
EP2208581A1 (en) 2010-07-21
DE60336127D1 (de) 2011-04-07
US20060106495A1 (en) 2006-05-18
EP2208581B1 (en) 2011-09-07
EP1502711A4 (en) 2008-10-22
JPWO2003090978A1 (ja) 2005-08-25
KR20050000411A (ko) 2005-01-03

Similar Documents

Publication Publication Date Title
WO2003090978A1 (fr) Dispositif de commande d&#39;un robot mobile dote de jambes
US7860611B2 (en) Control device for legged mobile robot
US6243623B1 (en) Leg type mobile robot control apparatus
US8306657B2 (en) Control device for legged mobile robot
JP5483997B2 (ja) 脚式移動ロボットの制御装置
JP4641252B2 (ja) 脚式移動ロボットの歩容生成装置
US7848849B2 (en) Controller of leg type moving robot
JP4912891B2 (ja) 脚式移動ロボットおよびその制御プログラム
US9120512B2 (en) Control device and gait generating device for bipedal mobile robot
WO2003090979A1 (fr) Systeme permettant d&#39;estimer l&#39;attitude d&#39;un robot mobile monte sur des jambes
WO2005000533A1 (ja) 脚式移動ロボットの歩容生成装置
WO2003061917A1 (fr) Dispositif de commande pour robot bipede
WO2003090982A1 (fr) Dispositif de commande et dispositif de determination de pas pour robot mobile sur jambes
WO2006064597A1 (ja) 脚式移動ロボットおよびその制御プログラム
WO2005082582A1 (ja) 移動ロボットの歩容生成装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004501987

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006106495

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10512231

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047017292

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003725697

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047017292

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003725697

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10512231

Country of ref document: US