WO2003083983A2 - Procede d'humidification ciblee et momentanee d'une pile a combustible a membrane electrolytique polymere a haute temperature (ht-pem) ainsi qu'ensemble pile combustible ht-pem - Google Patents

Procede d'humidification ciblee et momentanee d'une pile a combustible a membrane electrolytique polymere a haute temperature (ht-pem) ainsi qu'ensemble pile combustible ht-pem Download PDF

Info

Publication number
WO2003083983A2
WO2003083983A2 PCT/DE2003/001009 DE0301009W WO03083983A2 WO 2003083983 A2 WO2003083983 A2 WO 2003083983A2 DE 0301009 W DE0301009 W DE 0301009W WO 03083983 A2 WO03083983 A2 WO 03083983A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
fuel cell
cathode
membrane
air
Prior art date
Application number
PCT/DE2003/001009
Other languages
German (de)
English (en)
Other versions
WO2003083983A3 (fr
Inventor
Manfred Baldauf
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2003083983A2 publication Critical patent/WO2003083983A2/fr
Publication of WO2003083983A3 publication Critical patent/WO2003083983A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/0485Humidity; Water content of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04238Depolarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • H01M8/04649Other electric variables, e.g. resistance or impedance of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for the targeted, brief moistening of a HT-PEM fuel cell which contains a membrane electrode unit with a cathode and anode located on both sides of a polymer membrane, each of which is closed off by a cathode space on the one hand and an anode space on the other hand with respect to a bipolar plate , with hydrogen (H 2 ) on the one hand and oxygen (0 2 ) as oxidant from the ambient air on the other hand being used as process gases for the fuel cell.
  • the invention also relates to an associated HT-PEM fuel cell system, comprising at least one fuel cell element with a membrane electrode unit made of cathode and anode applied on both sides to a polymer membrane, and respectively assigned cathode and anode space, both of which are closed at the ends by a bipolar plate.
  • PEM Polymer Electrolyte Membrane or Protone Exchange Membrane
  • ME bran-electrode unit MEA Membrane Electrode Assembly
  • MEA Membrane Electrode Assembly
  • a proton-conductive membrane with electrodes and catalyst on both sides, one electrode being the cathode and the other electrode the anode for the electrochemical process.
  • the respective electrode is followed by a cathode or anode space, which spaces are each closed off from a bipolar plate to the next fuel cell.
  • a recombination process takes place in the proton-conductive membrane with excess water in the proton-conductive membrane as fuel Hydrogen with the oxygen supplied to the cathode as an oxidant.
  • the membrane must be kept moist, for which purpose the process gases, namely the hydrogen on the one hand and ambient air, from which the oxygen is obtained as an oxidant, on the other hand, usually have to be moistened.
  • PEM fuel cells are known to be operated at operating temperatures ⁇ 100 ° C, for example at temperatures of 60 ° C, and normal pressure, since the water for humidifying the process gases evaporates according to its vapor pressure curve, in particular at temperatures above 100 ° C.
  • the electrochemical process also produces process water that can be used for gas humidification.
  • WO 01/03212 A1 also suggests using a humidification-independent PBI membrane provided with an autoprotolytic and / or self-dissociating acid in MEAs of PEM fuel cells, so that advantageously at higher temperatures, in particular also tem - temperatures above 100 ° C, can be worked.
  • PEM fuel cells are referred to as HTM (High Temperature Membrane) fuel cells or HT-PEM fuel cells and have a working range of 80 ° C. to 300 ° C., preferably at normal pressure between 120 ° C. and 200 ° C., depending on the operating pressure.
  • the problem is that the membrane dries out and the associated increase in resistance occurs if a relatively large amount of air is passed through the cathode compartment without switching off the current before the fuel cell is switched off, in order to prevent water vapor from remaining in the cell when cooling the cell condensed and then washed out phosphoric acid from the membrane. After renewed heating, there is usually a drastically increased resistance, in particular a factor 2 to 4 higher than before.
  • a suitable HT-PEM fuel cell system is to be created.
  • the object is achieved according to the invention by the measures of claim 1 and / or the measures of claim 8.
  • An associated HT-PEM fuel cell system is the subject of claim 16. Further developments of the method and the associated fuel cell battery are the subject of the respective subclaims.
  • the invention serves for the targeted, brief moistening and heating of the membrane, specifically when the resistance has risen due to one of the above-mentioned operating states.
  • a limited amount of hydrogen or a hydrogen-containing gas mixture is fed to the cathode instead of air.
  • the cathode compartment is not flushed with inert gas beforehand, so that the air still in the cell reacts with the hydrogen on the surface of the Pt catalyst and thus forms water. Since the hydrogen flow can be kept very small, the water is not discharged. Instead, it can wet the membrane, reducing resistance.
  • Air is then fed back to the cathode. Water can be formed again in an analogous manner. The rest potential of the fuel cell is also restored, which can then be loaded again.
  • a corresponding method can be carried out on the anode in the context of the invention, in which case a limited amount of air or an oxygen-containing gas mixture is fed in instead of hydrogen and the hydrogen located in the anode space reacts with the oxygen on the surface of the catalyst and forms water.
  • the further procedure is carried out in accordance with the measures specified in the first alternative.
  • the advantage of the method according to the invention is that the humidification takes place very quickly.
  • it can take several minutes until the resistance drops to the normal value. Analogously, the cell output then also only increases slowly.
  • the second method b) specified according to the prior art requires an external humidifier and thus additional equipment and energy expenditure, which can be avoided in the method according to the invention.
  • the simple catalytic reaction ie the recombination of H 2 and 0 2 with the formation of H 2 0, is particularly advantageous for the temporary, but rapid moistening and thus an additional component, ie the separate humidifier or a slow humidification high current density - with the consequence of only a slow increase in cell output - avoided.
  • the single figure shows a schematic representation of a PEM fuel cell system, with associated means for reducing the membrane resistance.
  • a known fuel cell system contains electrically connected PEM fuel cells 10, 10. , , 10 which form a so-called fuel cell stack 1 or a so-called "stack * by stacking and have end plates 2, 2 with devices for supplying operating resources, such as process gases on the one hand and coolants on the other hand.
  • Each fuel cell unit 10, 10 ... contains a membrane electrode trode unit (MEA) 11 made of a polymer membrane 12 with cathode 13 and anode 14, both of which contain platinum as catalyst material.
  • the cathode 13 is followed by a cathode space 15 and the anode 14 is an anode space 16.
  • Two adjacent fuel cell units 10 and 10 x are each separated by a common bipolar plate 17, with each fuel cell 10, 10 ... belonging to two bipolar plates 17 and 17.
  • the bipolar plates 17 and ⁇ 17 are made hydrophobic on the surfaces, or are provided at the said cathode compartment 15 or the anode compartment 16 facing sides with hydrophobic carbon papers. The latter is known from the prior art and is therefore not shown in detail in the figure.
  • the fuel cell stack 1 is operated with hydrogen (H 2 ) as the fuel gas and oxygen (0 2 ) as the oxidant, the process gas flow not being discussed in detail.
  • hydrogen H 2
  • oxygen (0 2 )
  • a hydrogen-rich gas is also possible as a fuel gas; in practice, compressed air is used instead of oxygen.
  • a control and regulating device 5 is assigned to the fuel cell stack 1, which controls a mechanical device 7 for reversing the process gases. The possibility of a brief humidification of the fuel cells 10, 10 ... is thus realized, which is described in detail below.
  • the control and regulating device 5 is assigned a measuring device 8 for the ohmic resistance and a signal processing device 6.
  • control and regulating device 5 can control the switching device 7 for the process gases in such a way that, if required, a limited amount of hydrogen or a hydrogen-containing gas mixture is fed to the cathode 13 instead of air, deliberately deviating from the prior art, the cathode chamber 15 is not flushed with inert gas beforehand. This ensures that the air still in the fuel cell with the hydrogen at the Surface of the platinum catalyst reacts and thus forms water. The water is not discharged because the hydrogen flow is kept small. Rather, the water can moisten the membrane 12 and thus lower the ohmic resistance.
  • the method for use in the fuel cell stack 1 of the figure, it is possible to use the method whenever an excessively high resistance has to be pressed to an acceptable level, for example after reheating or before loading a fuel cell system, if there was no current beforehand at operating temperature for extended periods of time was pulled.
  • the ohmic resistance in a fuel cell at the MEA can be measured directly with a sensor and fed to the signal processing device 6 as a measured variable.
  • the control or regulating device 5 with the corresponding switching device 7 for the process gases is then controlled directly via such a device 6, so that the reaction gases are suitably ready for the catalytically controlled recombination of oxygen and hydrogen. be put.
  • different procedures are possible: a) Air, hydrogen and again air are fed alternately to the cathode.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Les piles à combustible à membrane électrolytique polymère (PEM) possèdent en tant qu'unité modulaire essentielle une unité membrane / électrodes (MEA) comportant une cathode et une anode placées de chaque côté d'une membrane polymère, ainsi qu'une chambre cathode et une chambre anode qui sont fermées toutes deux des deux côtés par une plaque bipolaire. Dans la pratique, il peut arriver qu'à l'état de repos de la pile, au cas où aucun courant n'est prélevé, la résistance de l'unité membrane / électrodes (MEA) augmente rapidement. Selon la présente invention, au lieu d'air, une quantité limitée d'hydrogène ou d'un gaz contenant de l'hydrogène est acheminée vers la cathode et la réaction catalytique provoque une recombinaison de l'hydrogène et de l'oxygène, avec formation d'eau et de chaleur. Il est ainsi possible d'humidifier la membrane polymère et de réduire sa résistance de manière ciblée. En vue de la surveillance, un dispositif de mesure (8) de la résistance ohmique peut commander un dispositif de commutation (7) des gaz de processus pour l'humidification de la membrane, via un dispositif de commande et de régulation (5, 6).
PCT/DE2003/001009 2002-03-31 2003-03-26 Procede d'humidification ciblee et momentanee d'une pile a combustible a membrane electrolytique polymere a haute temperature (ht-pem) ainsi qu'ensemble pile combustible ht-pem WO2003083983A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10214564.4 2002-03-31
DE10214564A DE10214564A1 (de) 2002-03-31 2002-03-31 Verfahren zur gezielten, kurzzeitigen Befeuchtung einer HT-PEM-Brennstoffzelle sowie zugehörige HT-PEM-Brennstoffzellenanlage

Publications (2)

Publication Number Publication Date
WO2003083983A2 true WO2003083983A2 (fr) 2003-10-09
WO2003083983A3 WO2003083983A3 (fr) 2004-04-29

Family

ID=28458527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/001009 WO2003083983A2 (fr) 2002-03-31 2003-03-26 Procede d'humidification ciblee et momentanee d'une pile a combustible a membrane electrolytique polymere a haute temperature (ht-pem) ainsi qu'ensemble pile combustible ht-pem

Country Status (2)

Country Link
DE (1) DE10214564A1 (fr)
WO (1) WO2003083983A2 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191423A (ja) * 1997-12-26 1999-07-13 Sanyo Electric Co Ltd 固体高分子型燃料電池の運転方法
DE10007973A1 (de) * 1999-02-23 2000-09-21 Toyota Motor Co Ltd Brennstoffzellensystem
WO2000070693A2 (fr) * 1999-05-19 2000-11-23 Siemens Aktiengesellschaft Pile a combustible a membrane haute temperature pour actionner une batterie de piles a combustible a membrane haute temperature et batterie de piles a combustible a membrane haute temperature correspondante
EP1061600A2 (fr) * 1999-06-14 2000-12-20 Atecs Mannesmann AG Système de cellules à combustible
WO2001097308A2 (fr) * 2000-06-13 2001-12-20 Hydrogenics Corporation Dispositif catalytique d'humidification et de chauffage pour le courant de combustible d'une pile a combustible

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4004896A1 (de) * 1990-02-16 1991-08-22 Varta Batterie Batterie von wasserstoff/sauerstoff-brennzellen
DE4027655C1 (fr) * 1990-08-31 1991-10-31 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V., 8000 Muenchen, De

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191423A (ja) * 1997-12-26 1999-07-13 Sanyo Electric Co Ltd 固体高分子型燃料電池の運転方法
DE10007973A1 (de) * 1999-02-23 2000-09-21 Toyota Motor Co Ltd Brennstoffzellensystem
WO2000070693A2 (fr) * 1999-05-19 2000-11-23 Siemens Aktiengesellschaft Pile a combustible a membrane haute temperature pour actionner une batterie de piles a combustible a membrane haute temperature et batterie de piles a combustible a membrane haute temperature correspondante
EP1061600A2 (fr) * 1999-06-14 2000-12-20 Atecs Mannesmann AG Système de cellules à combustible
WO2001097308A2 (fr) * 2000-06-13 2001-12-20 Hydrogenics Corporation Dispositif catalytique d'humidification et de chauffage pour le courant de combustible d'une pile a combustible

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MOXLEY J F ET AL: "Steady-state multiplicity in the autohumidification polymer electrolyte membrane fuel cell" CHEMICAL ENGINEERING SCIENCE, OXFORD, GB, Bd. 58, Nr. 20, Oktober 2003 (2003-10), Seiten 4705-4708, XP004458692 ISSN: 0009-2509 *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 12, 29. Oktober 1999 (1999-10-29) & JP 11 191423 A (SANYO ELECTRIC CO LTD), 13. Juli 1999 (1999-07-13) *
YANG C ET AL: "Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells" JOURNAL OF POWER SOURCES, ELSEVIER SEQUOIA S.A. LAUSANNE, CH, Bd. 103, Nr. 1, 30. Dezember 2001 (2001-12-30), Seiten 1-9, XP004323990 ISSN: 0378-7753 *

Also Published As

Publication number Publication date
DE10214564A1 (de) 2003-10-23
WO2003083983A3 (fr) 2004-04-29

Similar Documents

Publication Publication Date Title
DE60031982T2 (de) Verfahren und vorrichtung zum betrieb einer elektrochemischen brennstoffzelle mit periodischer reaktantunterbrechung
DE10296380B3 (de) Verfahren zum Betrieb einer Brennstoffzelle und Brennstoffzellen-Stromerzeugungsanlage
DE102009023882B4 (de) Brennstoffzellensystem und Verfahren zum zuverlässigen Starten desselben
WO2003012904A2 (fr) Procede de regulation de la concentration en methanol dans des piles a combustible directes au methanol
DE10057804B4 (de) Verfahren zur Steuerung der Befeuchtung einer Brennstoffzelle sowie Steuerungssystem für eine Brennstoffzelle
DE102014210511A1 (de) Brennstoffzellenverwaltungsverfahren
DE102021129872A1 (de) Verfahren zum steuern eines wasserstoff/sauerstoff-produktionssystems und wasserstoff/sauerstoff-produktionssystem
WO2021129990A1 (fr) Unité de cellule
DE102019133094A1 (de) Verfahren zum Durchführen einer Testmessung an einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Kraftfahrzeug
DE102004024844A1 (de) Elektrodenpaste zur Herstellung einer Katalysatorschicht für eine elektrochemische Zelle sowie Verfahren zur Herstellung einer Katalysatorschicht
EP2618417B1 (fr) Pile à combustible directe à méthanol et procédé de fonctionnement de celle-ci
WO2003083983A2 (fr) Procede d'humidification ciblee et momentanee d'une pile a combustible a membrane electrolytique polymere a haute temperature (ht-pem) ainsi qu'ensemble pile combustible ht-pem
DE102019133095A1 (de) Verfahren zum Durchführen einer Testmessung an einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Kraftfahrzeug
DE102020100599A1 (de) Verfahren für einen Froststart eines Brennstoffzellensystems, Brennstoffzellensystem und Kraftfahrzeug mit einem solchen
DE102020128127A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems und Brennstoffzellensystem
DE102009023880A1 (de) Modifizierte Inbetriebnahmestrategie zur Verbesserung der Inbetriebnahmezuverlässigkeit nach längerer Abschaltzeit
DE102019128422A1 (de) Verfahren zum Neustart einer Brennstoffzellenvorrichtung nach einem vorherigen Abstellen, Brennstoffzellenvorrichtung sowie Kraftfahrzeug
EP4193406B1 (fr) Procédé d'opération d'un dispositif de pile à combustible, dispositif de pile à combustible et véhicule avec dispositif de pile à combustible
DE102008019874B4 (de) Verfahren zur Bestimmung eines Gehalts oder Partialdrucks einer Gaskomponente einer Brennstoffzelle
EP1465276B1 (fr) Pile à combustible basse température et procédé de fonctionnement associé
DE102020123937A1 (de) Verfahren zum Betreiben einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Brennstoffzellen-Fahrzeug mit einer solchen
WO2003083976A2 (fr) Procede pour reduire la degradation de piles a combustible pem a haute temperature et installation de piles a combustible correspondante
DE102020102692A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems sowie Brennstoffzellensystem und Kraftfahrzeug mit einem Brennstoffzellensystem
DE102019132950A1 (de) Verfahren zum Betreiben einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer solchen
DE102020124577A1 (de) Verfahren zum Regeln und Einstellen von Spannungs-Strom-Paaren wenigstens einer Brennstoffzelle, Brennstoffzellensystem und Kraftfahrzeug

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP