WO2003079564A1 - Procede et systeme de communications radio - Google Patents

Procede et systeme de communications radio Download PDF

Info

Publication number
WO2003079564A1
WO2003079564A1 PCT/JP2003/000115 JP0300115W WO03079564A1 WO 2003079564 A1 WO2003079564 A1 WO 2003079564A1 JP 0300115 W JP0300115 W JP 0300115W WO 03079564 A1 WO03079564 A1 WO 03079564A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
band
modulation
transmitter
wireless communication
Prior art date
Application number
PCT/JP2003/000115
Other languages
English (en)
French (fr)
Inventor
Yozo Shoji
Kiyoshi Hamaguchi
Hiroyo Ogawa
Original Assignee
Communications Research Laboratory, Independent Administrative Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communications Research Laboratory, Independent Administrative Institution filed Critical Communications Research Laboratory, Independent Administrative Institution
Publication of WO2003079564A1 publication Critical patent/WO2003079564A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers

Definitions

  • the present invention relates to a wireless communication method and system for transmitting data modulated using a multi-level digital modulation method from a transmitter and receiving the data at a receiver to perform data transmission.
  • a multi-level digital modulation scheme such as a multi-level quadrature modulation scheme or a multi-level phase modulation scheme has been used.
  • a common practice is to increase the number of values. However, if the number of levels is increased too much, the distance between signal points becomes extremely short. Even if the signal can be received and demodulated with a sufficient signal-to-noise ratio, the phase fluctuation (phase noise) and frequency offset of the wireless carrier itself This makes it difficult to perform normal demodulation with errors. Therefore, a very stable oscillator is required to prevent this, but there is a problem that this becomes very difficult or expensive as the frequency increases.
  • the wireless modulation is performed by multiplying the intermediate frequency band modulation signal (IF) and the local oscillation signal (L0) and up-converting the product.
  • IF intermediate frequency band modulation signal
  • L0 local oscillation signal
  • It can be configured to consist of a transmitter that has a function of generating and transmitting a signal (RF) and a receiver that has a function of generating an IF by receiving RF, multiplying L0, and downconverting.
  • RF signal
  • the IF input to the transmitter and the IF generated at the receiver have a relationship of a known constant frequency difference, and the time of the phase difference Small fluctuations are required.
  • a local oscillator that has excellent frequency stability and low phase noise is required as a local oscillator that generates L0 in the transceiver.
  • the dielectric resonator or the PLL (Phase Lock Loop) circuit More stable and lower noise.
  • a dielectric resonator has problems such as a low Q factor (Quality Factor), which makes it impossible to exhibit performance, and a PLL circuit, in particular, makes it difficult to configure a frequency divider.
  • Q Factor Quality Factor
  • the intermediate frequency band modulation signal IF obtained by modulating the input signal is multiplied by the local oscillation signal L0 from the local oscillator 85 by the mixer 83 to generate the radio modulation signal RF.
  • the RF removes unnecessary components through a filter 86, a part of L0 is added by a power combiner 87, the signal level is increased by an amplifier 88, and then transmitted from the antenna as a radio signal.
  • the radio signal received by the antenna is increased in signal level by an amplifier 91, then filtered by a filter 92 in the receiver, and demodulated to an IF by a squarer 93.
  • the same L0 used to generate the RF signal is transmitted as a radio signal. Therefore, there is an advantage that the influence of the phase noise of the local oscillator 85 serving as the L0 source is canceled at the time of demodulation, and the demodulated IF is demodulated to the original IF frequency input to the transmitter.
  • the above-mentioned proposed method has a problem.
  • a frequency for transmitting the unmodulated carrier is required in a frequency band different from that of the wireless modulation signal.
  • the frequency band used became large.
  • An object of the present invention is to solve the problem of stability required for a wireless carrier and enable normal demodulation in a multilevel digital modulation scheme such as a multilevel quadrature modulation scheme or a multilevel phase modulation scheme.
  • the present invention can be applied to a radio transmission system using a multilevel quadrature modulation scheme or a multilevel phase modulation scheme using a very high frequency such as a millimeter wave band without reducing the frequency use efficiency.
  • a radio transmission system using a multilevel quadrature modulation scheme or a multilevel phase modulation scheme using a very high frequency such as a millimeter wave band without reducing the frequency use efficiency.
  • a wireless communication method and system performs data transmission using a multi-level digital modulation scheme such as a multi-level quadrature modulation scheme or a multi-level phase modulation scheme, and transmits a modulated signal to a wireless modulation signal to be transmitted.
  • a transmitter that transmits an unmodulated carrier equivalent to the signal in the case where the signal is not superimposed, and that transmits the radio modulated signal in a polarization orthogonal to the transmitted radio modulated signal, together with the radio modulated signal.
  • a receiver that extracts and reproduces only the unmodulated carrier component from one polarization component and uses this signal to synchronously detect the wireless modulation signal extracted from the other polarization component.
  • 1 (A), 1 (B) and 1 (C) are views for explaining a first embodiment.
  • FIGS. 2 (A), (B) and (C) are views for explaining a second embodiment.
  • FIGS. 3 (A) and 3 (B) are diagrams illustrating a wireless communication device of the related art.
  • FIG. 1A and 1B show an example of a wireless communication system configuration according to a first embodiment of the present invention.
  • FIG. 1A shows a transmitter configuration
  • FIG. 1B shows a receiver configuration
  • FIG. (C) illustrates a transmission signal spectrum.
  • the oscillation signal from the RF band oscillator 2 is branched into two and one is input to the RF band quadrature modulation circuit 3.
  • a multi-level digital modulation scheme such as a multi-level quadrature modulation scheme or a multi-level phase modulation scheme
  • a radio modulation signal modulated by the modulation data is obtained, and is increased by the amplifier 4.
  • the signal is then polarized by a polarization converter 5 (eg, V-polarized as shown in FIG.
  • the other split RF band oscillation signal is amplified by an amplifier 7 and polarized by a polarization converter 8 in a direction orthogonal to the above-mentioned radio modulation signal (for example, as shown in FIG. 1 (C)).
  • the signal is transmitted through the antenna 9.
  • Fig. 1 shows the case where the antennas for transmitting the radio modulation signal and the non-modulation carrier are different from each other.
  • One antenna can be used as a common transmitting antenna.
  • the receiver 10 receives the respective polarization components with the antenna 11 and the antenna 12 that receive the respective polarization directions, and then uses the polarization converters 13 and 14 to easily perform the subsequent processing. Is converted to a signal. That is, the receiver 10 receives only the non-modulated carrier component by a combination of the receiving antenna 11 and the polarization converter 13, amplifies this by the amplifier 14 1, and the unnecessary wave component by the bandpass filter 15. Oscillation signal of sufficient signal level is regenerated by injection locked oscillator 16 and 90 ° phase is input to 90 ° hybrid 17 and 90 ° mutually input to quadrature synchronous detection circuit 18 Get two signals that are shifted.
  • the radio modulation signal is received by a combination of the antenna 12 and the polarization converter 14 and then amplified by the amplifier 19 and input to the quadrature synchronous detection circuit 18.
  • the output signal of the 90 ° hybrid 17 reproduced earlier is input to the quadrature synchronous detection circuit 18, and the modulated signal is subjected to quadrature synchronous detection to obtain demodulated data.
  • FIG. 2 shows an example of a configuration of a wireless communication system according to a second embodiment of the present invention.
  • FIG. 2 (A) shows a transmitter configuration
  • FIG. 2 (B) shows a receiver configuration
  • FIG. (C) illustrates a transmission signal spectrum.
  • the oscillation signal from the frequency band lower than RF that is, the oscillation signal from the IF band oscillator 21 is split into two and one is input to the IF band quadrature modulation circuit 22.
  • a multi-level digital modulation system is used to obtain an IF band modulation signal modulated by modulation data.
  • the mixer 24 After being input to the mixer 24 where the signal is input, it passes through the bandpass filter 25 and is converted to a wireless modulation signal, amplified by the amplifier 26 and further polarized. The signal is polarized in a certain direction by the converter 27 and transmitted from the antenna 28.
  • the other branched IF-band oscillation signal is also input to the mixer 29 to which the local oscillation signal from the RF-band local oscillator 23 is input, and then passes through the band-pass filter 30. After being converted into an RF band non-modulation carrier by the amplifier 31 and amplified by the amplifier 31, it is polarized by the polarization converter 32 in a direction orthogonal to the radio modulation signal and transmitted from the antenna 33.
  • each of the polarization components is received by the antenna 35 and the antenna 36 which receive only the respective polarization directions. That is, the receiving antenna 35 receives only the unmodulated carrier component, converts it into a polarization that is more convenient by the polarization converter 37, amplifies it with the amplifier 38, and then converts the RF band to the local oscillator 39 Is converted into an IF band non-modulation carrier by passing through the mixer 40 and the bandpass filter 41 to which the signal from the input is input. Further, the same signal is input to the IF band injection locked oscillator 42 to reproduce a sufficient signal level of the IF band oscillation signal, and then input to the 90 ° hybrid 43 for IF band quadrature synchronous detection.
  • the receiving antenna 36 receives the radio modulation signal, converts it into a convenient polarized wave by the polarization converter 45, amplifies it by the amplifier 46, and inputs the signal from the RF band local oscillator 39.
  • the signal is converted into an IF band modulated signal by passing through a mixer 47 and a bandpass filter 48. This is input to the quadrature synchronous detection circuit 44.
  • the output signal of the 90 ° hybrid 43 reproduced earlier is input to the quadrature synchronous detection circuit 44, and the modulated signal is subjected to quadrature synchronous detection to obtain demodulated data.
  • Fig. 2 shows the case where the antennas for transmitting and receiving the radio modulated signal and the unmodulated carrier are different from each other.These two signals are combined or split by the power puller while maintaining their respective polarizations. One antenna can be shared for transmission or reception.
  • the first embodiment there is a portion that cannot be directly realized in the RF band (for example, an RF band quadrature modulation circuit in a transmitter or an RF band injection circuit in a receiver).
  • a synchronous oscillator, an RF band quadrature synchronous detection circuit, etc.) can be processed in a lower frequency IF band, so that there is an advantage that the device can be easily realized, and the obtained effect is the same as that of the first embodiment.
  • the spectrum is spread by using an RF band oscillator or an IF band oscillator having a large phase noise, or by performing phase modulation on these output signals. An oscillation signal can be obtained. This makes it possible to spread the spectrum freely beyond the modulation signal band, so that the suppression effect of interference signals, the suppression effect of multipath signals, the improvement of confidentiality of communication, etc. can be expected. .
  • Industrial applicability for example, an RF band quadrature modulation circuit in a transmitter or an RF band injection circuit in a receiver.
  • data transmission can be performed using a multi-level digital modulation scheme such as a multi-level quadrature modulation scheme or a multi-level phase modulation scheme by using a limited frequency as effectively as possible.
  • a multi-level digital modulation scheme such as a multi-level quadrature modulation scheme or a multi-level phase modulation scheme
  • the unmodulated carrier is transmitted together with the radio modulation signal, and the receiving side uses this unmodulated carrier to perform synchronous detection (homodyne detection) of the received radio modulation signal. The effect is canceled.
  • high-quality signal transmission is possible using a low-cost millimeter-wave oscillator, and an unmodulated carrier is transmitted using the same center frequency as that of a radio-modulated signal using polarization orthogonal to the radio-modulated signal. Therefore, no extra frequency is required beyond the originally occupied radio modulation band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

明細書 無線通信方法及ぴシステム 技術分野
本発明は、 多値デジタル変調方式を用いて変調されたデータを送信機から送信 し、 これを受信機で受信することによりデータ伝送を行う無線通信方法及びシス テムに関する。 背景技術
従来、 少ない周波数帯域で出来るだけ多くの情報を送る (高い周波数利用効率 を実現する) 方法としては、 多値直交変調方式もしくは多値位相変調方式などの 多値デジタル変調方式を用い、 さらにその多値数を増やすのが一般的な方法であ る。 しかしながら、 多値数を増やしすぎると、 信号点間距離が極端に短くなり、 たとえ十分な信号対雑音比で受信■復調できたとしても、 無線キャリアそのもの が持つ位相揺らぎ (位相雑音) や周波数オフセットによって誤りが発生してしま い正常な復調が困難となる。 そこで、 これを防ぐために非常に安定な発振器が求 められるが、 これは周波数が高くなるにつれて、 非常に実現が難しく、 または高 価になってしまうという問題がある。
通常、 高速なデジタル信号あるいは広帯域なアナログ信号等を伝送する無線装 置においては、 中間周波数帯変調信号(IF)と、 局部発振信号(L0)を乗積し、 アツ プコンバートすることにより無線変調信号 (RF)を生成■送信する機能を有する送 信機と、 RFを受信し、 L0を乗積し、 ダウンコンバートすることにより IFを生成す る機能を有する受信機からなる構成をとることが一般的である。 この場合伝送さ れた信号の品質を保持するためには、 送信機に入力される IFと、 受信機で生成さ れる IFとが、 既知の一定の周波数差の関係であり、 位相差の時間変動が小さいこ とが要求される。 このため、 送受信機内で L0を発生させる局部発振器として、 周 波数安定性に優れ、 位相雑音が低いものが必要とされる。 特に周波数が高いマイ クロ波 · ミリ波の領域では、 誘電体共振器または PLL (Phase Lock Loop)回路によ り安定化、 低雑音化される。
しかしながら使用周波数が高くなるにつれて(例えば 30GHz以上のミリ波帯)、 安 定度の高い低雑音の発振器の実現が困難になるとともに製造コストが上昇する。 例えば、 誘電体共振器においては Q値(Quality Factor)が低くなり性能が発揮でき ない、 PLL回路では特に分周器の構成が困難になる、 などの問題が生じる。 低い周 波数の発振器からの信号を周波数遁倍して L0を得る方法もあるが、 一般に信号強 度を上げるための増幅器が必要となり、 高価になること、 サイズが大きくなるこ と、 消費電力が大きくなることなどの問題が生じる。
これらの問題を解決するために、 第 3図 (A) ( B ) に示した特開 2001- 53640 号公報記載の無線通信装置および無線通信方法が提案されている。 この例によれ ば、 送信機においては、 入力された信号を変調した中間周波数帯変調信号 IFが、 ミキサ 83で局部発振器 8 5からの局部発振信号 L0と乗積され、 無線変調信号 RFが 生成される。 この RFは、 フィルタ 8 6を通して不要成分を除去され、 L0の一部が 電力合成器 87で加算されて、 増幅器 88で信号レベルを大きく した後、 無線信号と してアンテナより送信される。 一方受信機では、 アンテナで受信された無線信号 は、 増幅器 9 1で信号レベルを大きくした後、 受信機内のフィルタ 9 2で濾波され 、 二乗器 93で IFへと復調される。 この方法では、 RF信号の生成に用いたと同じ L0 を、 無線信号として伝送している。 したがって、 L0源となる局部発振器 85の位相 雑音の影響が復調時にはキャンセルされる、 復調された IFは送信機に入力された 元の IFの周波数へ復調されるという利点がある。
上記した手法は一方向の無線通信装置およぴ無線通信方法にすぎないが、 実際 に通信では双方向通信の必要性が生じる。 このような場合の構成としては、 特開 2002- 9655号公報記載の双方向無線通信システムおよぴ双方向無線通信方法で本 出願者により既に提案されている。 発明の開示
しかしながら、 限られた周波数を可能な限り有効利用して無線通信を行う必要 がある場合、 上記した既提案の方式には問題がある。 すなわち無線変調信号と異 なる周波数帯に無変調キヤリァを伝送するための周波数が必要となるため、 全体 として使用周波数帯域が大きくなるといつた課題があった。
本発明は、 無線キャリアに求められる安定性の問題を解決して、 多値直交変調 方式もしくは多値位相変調方式などの多値デジタル変調方式における正常な復調 を可能にすることを目的としている。
本発明は、 ミリ波帯など、 非常に高い周波数を用いて、 多値直交変調方式もし くは多値位相変調方式などによる無線伝送システムを構成する場合に、 周波数利 用効率を低下させることなく、 ミリ波帯発振器によって生じる位相雑音や周波数 オフセットによる信号品質劣化の問題を解決することができる。
本発明の無線通信方法及びシステムは、 多値直交変調方式もしくは多値位相変 調方式などの多値デジタル変調方式を用いてデータ伝送を行うものであって、 伝 送する無線変調信号に変調信号が重畳されなかった場合の信号と同等の無変調キ ャリアを、 伝送する無線変調信号とは直交する偏波で、 無線変調信号と併せて送 信する送信機と、 この信号を受信して、 一方の偏波成分から無変調キャリア成分 のみを取り出して再生し、 この信号を用いて、 他方の偏波成分から抽出した無線 変調信号を同期検波する受信機と、 から構成されることを特徴とする。 図面の簡単な説明
第 1図 (A) ( B ) ( C ) は、 第 1の実施の形態を説明する図である。
第 2図 (A) ( B ) ( C ) は、 第 2の実施の形態を説明する図である。
第 3図 (A) ( B ) は、 従来技術の無線通信装置を例示する図である。 発明を実施するための最良の形態
(第 1の実施の形態)
第 1·図は、 本発明における第 1の実施の形態を表した無線通信システム構成の 一例を示したものであり、 (A) に送信機構成を、 (B ) に受信機構成を、 そし て (C ) に送信信号スペク トルを例示している。 送信機 1においては、 RF帯発振 器 2からの発振信号が二分岐されて一方が R F帯直交変調回路 3に入力される。 ここで、 多値直交変調方式もしくは多値位相変調方式などの多値デジタル変調方 式を用いて、 変調データにより変調された無線変調信号が得られ、 アンプ 4で増 幅され、 偏波変換器 5によってある方向に偏波 (例えば、 第 1図 (C ) に示すよ うに V偏波) されて、 アンテナ 6より送信される。 一方、 分岐されたもう一方の RF帯発振信号はアンプ 7で増幅され、 偏波変換器 8によつて上記の無線変調信号 とは直交する方向に偏波 (例えば、 第 1図 (C ) に示すように H偏波) されて、 アンテナ 9より送信される。 第 1図では無線変調信号と無変調キヤリアを送信す るアンテナをそれぞれ別のものにした場合を示したが、 予めこれら二信号を力ッ ブラによって各々の偏波を維持したまま合成した後アンテナに入力することで 1 つのアンテナを共通送信アンテナとすることも出来る。
一方受信機 1 0ではそれぞれの偏波方向を受信するアンテナ 1 1およびアンテ ナ 1 2で各偏波成分を受信した後、 偏波変換器 1 3および 1 4によって後の処理 を行いやすい偏波の信号に変換する。 すなわち、 受信機 1 0は受信アンテナ 1 1 と偏波変換器 1 3の組み合わせで無変調キャリア成分のみを受信し、 これをアン プ 1 4 1で増幅し、 帯域濾波器 1 5で不要波成分を除去し、 注入同期発振器 1 6 によつて十分な信号レベルの発振信号が再生されて 9 0 ° ハイブリッド 1 7に入 力されて直交同期検波回路 1 8に入力するための互いに 9 0 ° 位相がずれた二信 号を得る。 無線変調信号はアンテナ 1 2と偏波変換器 1 4の組み合わせで受信さ れたのちアンプ 1 9で増幅され、 直交同期検波回路 1 8に入力される。 直交同期 検波回路 1 8にはさらに先の再生された 9 0 ° ハイプリッド 1 7の出力信号が入 力されて変調信号が直交同期検波されて復調データが得られる。
(第 2の実施の形態)
第 2図は、 本発明における第 2の実施の形態を表した無線通信システム構成の —例を示したものであり、 (A) に送信機構成を、 (B ) に受信機構成を、 そし て (C ) に送信信号スペク トルを例示している。
送信機 2 0においては、 RFより低い周波数帯すなわち IF帯発振器 2 1からの発 振信号が二分岐されて一方が IF帯直交変調回路 2 2に入力される。 ここで、 多値 直交変調方式もしくは多値位相変調方式などの多値デジタル変調方式を用いて、 変調データにより変調された IF帯変調信号が得られ、 これが RF帯局部発振器 2 3 からの局部発振信号が入力されるミキサ 2 4に入力されたのち、 帯域濾波器 2 5 を通過することで無線変調信号に変換され、 アンプ 2 6で増幅され、 さらに偏波 変換器 2 7によってある方向に偏波されてアンテナ 2 8より送信される。 一方、 分岐されたもう一方の IF帯発振信号についても、 同じく RF帯局部発振器 2 3から の局部発振信号が入力されるミキサ 2 9に入力されたのち、 帯域濾波器 3 0を通 過することで RF帯無変調キヤリァに変換され、 アンプ 3 1によって増幅された後 、 偏波変換器 3 2によって無線変調信号とは直交する方向に偏波されてアンテナ 3 3より送信される。
一方受信機 3 4ではそれぞれの偏波方向のみを受信するアンテナ 3 5およぴァ ンテナ 3 6で各偏波成分を受信する。 すなわち、 受信アンテナ 3 5は無変調キヤ リア成分のみを受信し偏波変換器 3 7で以降都合のよい偏波に変換した後、 これ をアンプ 3 8で増幅したのち、 RF帯局部発振器 3 9からの信号が入力されるミキ サ 4 0と帯域濾波器 4 1を通過させることで IF帯無変調キヤリァに変換される。 さらに同信号は IF帯注入同期発振器 4 2に入力されることによつて十分な信号レ ベルの IF帯発振信号が再生された後、 9 0 ° ハイプリッド 4 3に入力されて IF帯 直交同期検波回路 4 4に入力するための互いに 9 0 ° 位相がずれた二信号を得る 。 他方受信アンテナ 3 6は無線変調信号を受信し偏波変換器 4 5で都合のよい偏 波に変換した後、 アンプ 4 6で増幅された後、 RF帯局部発振器 3 9からの信号が 入力されるミキサ 4 7と帯域濾波器 4 8を通過させることで IF帯変調信号に変換 される。 これが、 直交同期検波回路 4 4に入力される。 直交同期検波回路 4 4に はさらに先の再生された 9 0 ° ハイブリッド 4 3の出力信号が入力されて変調信 号が直交同期検波されており復調データが得られる。
第 2図では無線変調信号と無変調キヤリァを送受信するアンテナをそれぞれ別 のものにした場合を示しているが、 これら二信号を力ップラによって各々の偏波 を維持したまま合成または分岐することで 1つのァンテナを送信用または受信用 として共通にすることも出来る。
なお、 第 2の実施の形態によると、 第 1の実施の形態において RF帯で直接実現 することが困難な部分がある場合 (例えば送信機における RF帯直交変調回路や、 受信機における RF帯注入同期発振器、 RF帯直交同期検波回路など) 、 これをより 低い周波数の IF帯で処理できるため、 装置の実現が楽になるという利点があり、 得られる効果も第 1の実施の形態と変わらない。 また、 第 1及び第 2の実施の形態における送信機において、 位相雑音の大きな RF帯発振器もしくは、 IF帯発振器を使用し、 もしくはこれら出力信号に位相変調 を施すことでスぺク トルの広がった発振信号を得ることができる。 これによつて 、 変調信号帯域以上に自由にスぺク トルを拡散することも可能となるため、 干渉 信号の抑圧効果、 マルチパス信号の抑圧効果、 通信の秘匿性の改善などが期待で きる。 産業上の利用可能性
本発明によれば、 限られた周波数を可能な限り有効利用して、 多値直交変調方 式もしくは多値位相変調方式などの多値デジタル変調方式 用いてデータ伝送を 行うことができる。
無線変調信号を生成する上で使用するミリ波帯発振信号に位相雑音や周波数ォ フセットが生じていた結果これが伝送する無線変調信号に劣化を与えた場合でも 、 これと同特性の劣化が生じている無変調キヤリァを無線変調信号と併せて送信 し、 受信側ではこの無変調キャリアを使用して受信無線変調信号を同期検波 (ホ モダイン検波) するため、 復調と同時に位相雑音および周波数オフセッ トの影響 がキャンセルされる。 すなわち低コストなミリ波帯発振器を使用して高品質な信 号伝送が可能となり、 また無変調キヤリァは無線変調信号と直交する偏波を用い て、 これと同じ中心周波数を使用して送信されるため、 本来占有される無線変調 帯域以上に周波数を余分に必要としない。

Claims

請求の範囲
1 . 多値デジタル変調方式を用いて変調されたデータを送信機から送信し、 これを受信機で受信することによりデータ伝送を行う無線通信方法において、 前記送信機は、 伝送する無線変調信号に変調信号が重畳されなかった場合の信 号と同等の RF帯無変調キヤリァを別途生成し、 無線変調信号とは直交する偏波で 、 無線変調信号と併せて送信し、
前記受信機は、 送信機から送信された信号を受信して、 一方の偏波成分から無 変調キャリア成分のみを取り出して再生し、 この信号を用いて、 他方の偏波成分 から抽出した無線変調信号を同期検波する、
ことを特徴とする無線通信方法。
2 . 前記送信機においては、 位相雑音の大きな RF帯発振器もしくは IF帯発 振器を使用し、 もしくはこれら出力信号に位相変調を施すことで、 スぺク トルの 広がった発振信号を得ることを特徴とする請求の範囲第 1項に記載の無線通信方 法。
3 . 多値デジタル変調方式を用いて変調されたデータを送信機から送信し、 これを受信機で受信することによりデータ伝送を行う無線通信方法において、 前記送信機は、 RF帯より低い周波数の IF帯において伝送すべき IF帯変調信号と 、 これに変調信号が重畳されなかった場合の信号と同等の IF帯無変調キヤリァを それぞれ生成し、 これらを共通の RF帯局部発振器の信号を用いてそれぞれ RF帯へ 周波数変換し、 無線変調信号と RF帯無変調キヤリァは互いに直交する偏波で送信 し、
前記受信機は前記送信機から受信された信号を受信して、 一方の偏波成分から 無変調キヤリァ成分のみを受信し、 他方の偏波成分からは無線変調信号のみを受 信して、 これらを 1つの共通な RF帯局部発振信号でそれぞれ IF帯に周波数変換し た後、 得られた IF帯無変調キャリアを使用して、 得られた IF帯変調信号を同期検 波する、
ことを特徴とする無線通信方法。
4 . 前記送信機においては、 位相雑音の大きな RF帯発振器もしくは IF帯発 振器を使用し、 もしくはこれら出力信号に位相変調を施すことで、 スペク トルの 広がった発振信号を得ることを特徴とする請求の範囲第 3項に記載の無線通信方 法。
5 . 多値デジタル変調方式を用いてデータ伝送を行う無線通信システムにお いて、
伝送する無線変調信号に変調信号が重畳されなかった場合の信号と同等の RF帯 無変調キャリアを別途生成し、 無線変調信号とは直交する偏波で、 無線変調信号 と併せて送信する送信機と、
送信機から送信された信号を受信して、 一方の偏波成分から無変調キヤリァ成 分のみを取り出して再生し、 この信号を用いて、 他方の偏波成分から抽出した無 線変調信号を同期検波する受信機と、
から構成されることを特徴とする無線通信システム。
6 . 前記送信機においては、 位相雑音の大きな RF帯発振器もしくは IF帯発 振器を使用し、 もしくはこれら出力信号に位相変調を施すことで、 スペク トルの 広がった発振信号を得ることを特徴とする請求の範囲第 5項に記載の無線通信シ ステム。
7 . 多値デジタル変調方式を用レ、てデータ伝送を行う無線通信システムにお いて、
RF帯より低い周波数の IF帯において伝送すべき IF帯変調信号と、 これに変調信 号が重畳されなかった場合の信号と同等の IF帯無変調キヤリァをそれぞれ生成し 、 これらを共通の RF帯局部発振器の信号を用いてそれぞれ RF帯へ周波数変換し、 無線変調信号と RF帯無変調キヤリァは互いに直交する偏波で送信する送信機と、 送信機から受信された信号を受信して、 一方の偏波成分から無変調キヤリァ成 分のみを受信し、 他方の偏波成分からは無線変調信号のみを受信して、 これらを 1つの共通な RF帯局部発振信号でそれぞれ IF帯に周波数変換した後、 得られた IF 帯無変調キヤリァを使用して、 得られた IF帯変調信号を同期検波する受信機と、 から構成されることを特徴とする無線通信システム。
8 . 前記送信機においては、 位相雑音の大きな RF帯発振器もしくは IF帯発 振器を使用し、 もしくはこれら出力信号に位相変調を施すことで、 スペク トルの 広がった発振信号を得ることを特徴とする請求の範囲第 7項に記載の無線通信シ ステム。
PCT/JP2003/000115 2002-03-15 2003-01-09 Procede et systeme de communications radio WO2003079564A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002071616A JP3598378B2 (ja) 2002-03-15 2002-03-15 無線通信方法及びシステム
JP2002-71616 2002-03-15

Publications (1)

Publication Number Publication Date
WO2003079564A1 true WO2003079564A1 (fr) 2003-09-25

Family

ID=28035122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000115 WO2003079564A1 (fr) 2002-03-15 2003-01-09 Procede et systeme de communications radio

Country Status (2)

Country Link
JP (1) JP3598378B2 (ja)
WO (1) WO2003079564A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263009A (ja) * 2005-03-22 2006-10-05 Fujinon Corp 電子内視鏡装置
JP5028002B2 (ja) * 2005-09-29 2012-09-19 富士フイルム株式会社 電子内視鏡システム
JP2010109536A (ja) * 2008-10-29 2010-05-13 Yamaha Corp 変調装置、復調装置、および変復調システム
FR2976429A1 (fr) 2011-06-08 2012-12-14 St Microelectronics Sa Systeme de transmission sans fil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129854A (ja) * 1982-01-28 1983-08-03 Fujitsu Ltd 空間多値変調方式
JPH0548491A (ja) * 1991-08-09 1993-02-26 Matsushita Electric Works Ltd ワイヤレス伝送方式
JP2001053640A (ja) * 1999-08-11 2001-02-23 Communication Research Laboratory Mpt 無線通信装置および無線通信方法
JP2002009655A (ja) * 2000-06-23 2002-01-11 Communication Research Laboratory 双方向無線通信システム及び双方向無線通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129854A (ja) * 1982-01-28 1983-08-03 Fujitsu Ltd 空間多値変調方式
JPH0548491A (ja) * 1991-08-09 1993-02-26 Matsushita Electric Works Ltd ワイヤレス伝送方式
JP2001053640A (ja) * 1999-08-11 2001-02-23 Communication Research Laboratory Mpt 無線通信装置および無線通信方法
JP2002009655A (ja) * 2000-06-23 2002-01-11 Communication Research Laboratory 双方向無線通信システム及び双方向無線通信方法

Also Published As

Publication number Publication date
JP2003273763A (ja) 2003-09-26
JP3598378B2 (ja) 2004-12-08

Similar Documents

Publication Publication Date Title
CA2315489C (en) Radio communication apparatus and radio communication method
US7995685B2 (en) Backscatter interrogator reception method and interrogator for a modulated backscatter system
JP3564480B2 (ja) 複数の無線通信端末間で通信を行う無線通信方法及びシステム
US7567786B2 (en) High-dynamic-range ultra wide band transceiver
US20090215423A1 (en) Multi-port correlator and receiver having the same
US9762276B2 (en) Wireless transmission system
US20050221772A1 (en) Harmonic mixer and radio communication device having the same
US7702047B2 (en) RF receiving apparatus and method for removing leakage component of received signal
US7804883B2 (en) Method and system for frequency hopping radio communication
KR20050009477A (ko) 초고주파 송수신 장치
JP3598378B2 (ja) 無線通信方法及びシステム
US5590413A (en) Radio transceiver having shared modulation and demodulation mixer circuits
JP4062035B2 (ja) 通信システムの質問器
JP4630990B2 (ja) 双方向無線通信装置
JP3784900B2 (ja) ミリ波fsk送受信システム
KR0140678B1 (ko) 위성방송용 중계기의 국부발진회로
KR100700311B1 (ko) 무선 통신 방법 및 시스템
US20030012304A1 (en) Method and circuit for transmitting a data-modulated high-frequency data signal from a transmitter to a receiver having a simplified receiver architecture
KR20090089099A (ko) 신호 복조 방법 및 그 장치
JP2006180004A (ja) 無線通信装置
JPS61131636A (ja) 偏波多重無線通信方式
JPH01125154A (ja) 送受信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase