WO2003076332A1 - Dispositif et procede pour la realisation d'un nanofil conducteur - Google Patents

Dispositif et procede pour la realisation d'un nanofil conducteur Download PDF

Info

Publication number
WO2003076332A1
WO2003076332A1 PCT/JP2003/002713 JP0302713W WO03076332A1 WO 2003076332 A1 WO2003076332 A1 WO 2003076332A1 JP 0302713 W JP0302713 W JP 0302713W WO 03076332 A1 WO03076332 A1 WO 03076332A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
substrate
molecular assembly
electrode
voltage
Prior art date
Application number
PCT/JP2003/002713
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Hasegawa
Tohru Kubota
Shinro Mashiko
Original Assignee
Communications Research Laboratory, Independent Administrative Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communications Research Laboratory, Independent Administrative Institution filed Critical Communications Research Laboratory, Independent Administrative Institution
Priority to EP03744015A priority Critical patent/EP1496012A4/en
Priority to US10/506,668 priority patent/US7351313B2/en
Priority to JP2003574562A priority patent/JP4691648B2/ja
Publication of WO2003076332A1 publication Critical patent/WO2003076332A1/ja
Priority to US11/961,445 priority patent/US7918982B2/en
Priority to US13/034,122 priority patent/US20110162968A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/72On an electrically conducting, semi-conducting, or semi-insulating substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking
    • Y10S977/899Electrolytic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49156Manufacturing circuit on or in base with selective destruction of conductive paths

Definitions

  • the present invention relates to a method and an apparatus for producing molecular aggregates such as nanowires and needle-like crystals. More specifically, an electrolytic device for manufacturing nano-level minute molecular assemblies, such as a method for manufacturing conductive nanowires and nano-level needle-like crystals, which applies electrolytic crystal growth to the production of molecular assemblies. And a method for manufacturing an electrolytic device.
  • an electrolytic device for manufacturing nano-level minute molecular assemblies such as a method for manufacturing conductive nanowires and nano-level needle-like crystals, which applies electrolytic crystal growth to the production of molecular assemblies.
  • Methods for growing molecular aggregates include liquid phase epitaxy (LPE), molecular beam epitaxy (MBE), chemical transport (CyT), and chemical vapor.
  • LPE liquid phase epitaxy
  • MBE molecular beam epitaxy
  • CyT chemical transport
  • CVD growth
  • a relatively large monomolecular assembly or a monomolecular assembly film can be obtained.
  • a method of growing crystals by electrolysis which is a method of growing crystals using an electrolysis reaction (for example, Experimental Chemistry Course 12 Functionality of Substances, 4th edition, pages 40 to 45) Published by Maruzen Bookstore).
  • Japanese Patent Publication No. 6-321686 discloses that, in an organic solvent in which a metal organic acid salt and a carbon cluster are dissolved, the compound is formed on the cathode side by the electrolytic molecular assembly growth method.
  • molecular nanowires are produced using a molecular vapor deposition method or a molecular beam method in an ultra-high vacuum. Also known are methods for producing molecular nanowires in parallel with dendrimer-closed-shell molecules and methods for producing carbon nanotubes.
  • conventional electrolysis aims at obtaining as large a crystal as possible, and does not attempt to obtain a molecular assembly on a nanoscale.
  • conventional electrolysis methods require obtaining crystals of high purity in order to obtain crystals on the millimeter scale or higher. Had the problem of being difficult.
  • the carbon cluster produced by the method for producing a carbon cluster described in Japanese Patent Application Laid-Open No. 6-321686 also has a size on the order of millimeters and is not controlled on a molecular level.
  • the invention described in the same publication aims at obtaining a larger single-molecule aggregate, and does not aim at obtaining a nanoscale molecular aggregate as in the present invention.
  • the invention described in the same publication uses an electrolytic crystal growth method to obtain a molecular assembly, but does not use a narrow electrode between electrodes as in the present invention, and has a millimeter-level or a sub-millimeter level. Only molecular assemblies of the size are obtained.
  • molecular aggregates are molecular aggregates that have a closed shell structure (a structure in which two electrons are contained in the H OMO (highest occupied orbital)) and have a half-occupied molecular orbital (SOMO).
  • H OMO highest occupied orbital
  • SOMO half-occupied molecular orbital
  • At least one of the above-mentioned objects is determined by the following invention.
  • Two electrodes an electrolytic cell holding an electrolyte and the two electrodes, wherein the distance between the two electrodes is lnm to 100 ⁇ m, and the molecular assembly is formed in the electrolytic cell.
  • An electrolytic apparatus for producing a molecular assembly by holding an electrolytic solution containing molecules constituting the above, and applying a voltage to the two electrodes in a state where the electrolytic solution is in contact with the two electrodes. This By minimizing the distance between the electrodes as described above, for example, a minute molecular aggregate such as a conductive nanowire can be manufactured.
  • a voltage controller for controlling a voltage applied to the two electrodes or a current controller for controlling a current supplied to the two electrodes, or both of them.
  • the above two electrodes are formed on a substrate,
  • An electrolytic device for producing the molecular assembly according to (1) An electrolytic device for producing the molecular assembly according to (1).
  • a voltage controller for producing a molecular assembly comprising: an electrolytic cell comprising: an electrolytic solution holding section for holding an electrolytic solution; and a substrate inserting section for inserting the substrate.
  • the two electrodes are present in the middle of each electrode and are protrusions which are convex portions directed toward the other electrode, or at the tip of each electrode and are in the other electrode direction.
  • the electrode has a projection formed by bending the electrode, and the distance between the closest parts of the two electrodes provided on the substrate is lnm to 100 (m).
  • the electrolyte containing the constituent molecules is held, and the electrolyte and the two Electrolytic apparatus for producing a molecular assembly by in a state where the electrodes are in contact electric current to the two electrodes.
  • the respective tips of the projections of the two opposed electrodes are tapered as they face each other in parallel or approach the other projection.
  • the electrode has an insulating portion covered with an insulator, and a portion of the substrate insertion portion, which is in contact with the substrate when the substrate is inserted into the substrate insertion portion, is covered with an insulator.
  • An electrolyzer for producing the molecular assembly according to item 1).
  • An electrolytic cell wherein the electrolytic cell includes: an electrolytic solution holding unit that holds an electrolytic solution; and a substrate inserting unit into which the substrate is inserted. In the substrate inserting unit, the substrate is inserted into the substrate inserting unit. Sometimes contact with substrate The touching portion is covered with an insulator, and the two electrodes are present in the middle of each electrode, and are protrusions that are convex portions toward the other electrode, or each of the two electrodes.
  • a protruding portion at the tip of the electrode which is formed by bending the electrode in the direction of the other electrode, and each of the protruding portions of the two opposing electrodes faces in parallel with each other.
  • the two electrodes are tapered as they approach the other protrusion, and the two electrodes have an insulating portion covered with an insulator, and are provided on the substrate.
  • a voltage control device for controlling a voltage to be applied, and a method for manufacturing an electrolytic device for manufacturing a molecular assembly comprising: a metal film forming step of forming a metal film on the substrate; and the metal film.
  • Forming an electrode on a substrate comprising: holding an electrolytic solution containing molecules constituting a molecular assembly in the electrolytic cell; and contacting the two electrodes with the electrolytic solution in contact with the two electrodes.
  • a voltage control device for controlling a voltage to be applied comprising: a metal film forming step of forming a metal film on the substrate; A resist layer forming step of forming a resist layer on the metal film deposited in the forming step, and a resist layer formed by the resist layer forming step are desired.
  • the interval including Inn! Forming an electrode having a thickness of ⁇ on a substrate, and holding an electrolytic solution containing molecules constituting a molecular assembly in the electrolytic cell, wherein the electrolytic solution and the two electrodes are in contact with each other.
  • a voltage control device for controlling a voltage to be applied comprising: a metal film forming step for forming a metal film on the substrate; and A photoresist layer forming step of forming a photoresist layer on the metal film deposited in the forming step; a photosensitive step of exposing the photoresist layer formed in the photoresist layer forming step to a desired pattern; A first development step of developing the photoresist layer exposed by the exposure step; and a first etching step of etching the metal film using the photoresist layer remaining after the first imaging step as a mask.
  • an electrode having an interval of 1 ⁇ to 100 ⁇ on the substrate by the step wherein the electrolytic cell holds an electrolytic solution containing molecules constituting a molecular assembly, and the electrolytic solution and the two Contacts Method of manufacturing an electrolytic apparatus for producing a molecular assembly by applying a voltage to the two electrodes while.
  • a method for producing a molecular assembly by the method comprising: an electrode adjusting step of setting an interval between the two electrodes to be 1 ⁇ to 100 ⁇ ; and attaching the two electrodes to an electrolytic cell.
  • a voltage of 1 nA to 1 mA is applied to the two electrodes, and an electrolysis step is performed in which the potential difference between the two electrodes is 1 OmV to 20 V. Method.
  • a molecular assembly containing, as a constituent molecule, an organic conductor composed of an organic compound having a ⁇ -electron system and having a width of 1 ⁇ m to 1 ⁇ and a length of 1 nm to 500 m.
  • the constituent molecule means, for example, a phthalocyanine molecule.
  • a voltage control device for controlling the electroconductive device using the electrolysis device comprising: A method for manufacturing a wire, wherein the electrolytic cell includes: an electrolytic solution holding unit that holds an electrolytic solution; and a substrate inserting unit into which the substrate is inserted. Of the substrate inserting units, the substrate is inserted into the substrate inserting unit.
  • the part that comes into contact with the substrate is covered with an insulator, and the two electrodes are present in the middle of each electrode and are protrusions that are convex parts toward the other electrode, or At the tip of each of the electrodes, a projection is formed by bending the electrode in the direction of the other electrode, and the tips of the projections of the two opposing electrodes face each other in parallel.
  • the two electrodes have an insulating portion covered with an insulator, and are provided on the substrate.
  • the interval is Inn! A step of connecting the interval of the electronic circuit having a portion of ⁇ with an electrolytic solution containing an organic conductor containing ⁇ electrons; and applying a voltage to the electronic circuit to generate conductive molecules in the interval. Connecting the gaps using an assembly.
  • a method for producing an electronic circuit having a connecting portion by a conductive molecular assembly comprising: a step of contacting with an electrolytic solution containing an organic conductor containing: and a step of connecting the intervals by using conductive molecular aggregates generated in the intervals.
  • a method for manufacturing an electronic circuit comprising: BRIEF DESCRIPTION OF THE FIGURES
  • Figure 1 is a schematic diagram of an electrolysis cell.
  • Figures 2 (a) and 2 (b) are schematic diagrams (top views) of the electrolytic cell.
  • FIGS. 3 (a), 3 (b) and 3 (c) are schematic diagrams of the electrodes.
  • FIGS. 4 (a), 4 (b), and 4 (c) are schematic diagrams of the protrusions (A in FIG. 3, for example).
  • FIG. 5 is a diagram illustrating an example of an electrode on a substrate.
  • FIG. 5A is a plan view
  • FIG. 5B is a cross-sectional view.
  • FIG. 6 is a diagram illustrating an example of an electrode on a substrate.
  • FIG. 6A is a plan view
  • FIG. 6B is a cross-sectional view.
  • FIG. 7 is a diagram illustrating an example of an electrode on a substrate.
  • FIG. 7A is a plan view
  • FIG. 7B is a cross-sectional view.
  • FIGS. 8 (a), 8 (b) and 8 (c) are views showing an example of the electronic circuit of the present invention.
  • FIG. 9 is a SEM photograph of a molecular assembly in place of the drawing obtained in Example 1-1.
  • FIG. 10 is a SEM photograph of a molecular assembly instead of the drawing obtained in Example 1-2.
  • FIG. 11 is a SEM photograph of a molecular assembly instead of the drawing obtained in Example 1-3.
  • FIG. 12 is a SEM photograph of a molecular assembly replacing the drawing obtained in Example 1-4.
  • FIG. 13 is a SEM photograph of a molecular assembly in place of the drawing obtained in Example 15;
  • FIG. 14 is a SEM photograph of a molecular assembly instead of the drawing obtained in Examples 1 to 6.
  • FIG. 15 is a SEM photograph of a molecular assembly instead of the drawing obtained in Example 17;
  • FIG. 16 is an SEM photograph of a molecular assembly in place of the drawing obtained in Example 18-18.
  • Figure 16 (a) shows a 80,000-fold SEM photograph and
  • Figure 16 (b) shows a 1,100-fold SEM photograph.
  • FIG. 17 is a SEM photograph of a molecular assembly instead of the drawing obtained in Example 19-19.
  • FIG. 18 is a SEM photograph of a molecular assembly replacing the drawing obtained in Example 2-1.
  • FIG. 19 is a SEM photograph of a molecular assembly in place of the drawing obtained in Example 3-1.
  • FIG. 20 is a SEM photograph of a molecular assembly instead of the drawing obtained in Example 3-2.
  • FIG. 21 is an SEM photograph of a molecular assembly replacing the drawing obtained in Examples 3 to 3.
  • FIG. 22 is an SEM photograph of a molecular assembly replacing the drawing obtained in Example 3-4.
  • FIG. 23 is a SEM photograph of a molecular assembly replacing the drawing obtained in Example 3-5.
  • FIG. 24 is a SEM photograph of a molecular assembly in place of the drawing obtained in Example 4_1.
  • BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 is a schematic diagram of an electrolytic apparatus according to the present invention.
  • 1 represents an electrolytic cell
  • 2 represents a copper wire
  • 3 represents a substrate insertion portion
  • 4 represents an electrode
  • 5 represents a substrate.
  • the electrolysis apparatus of the present invention has two electrodes (4) and an electrolysis cell (1).
  • a voltage controller (not shown) for controlling the voltage applied to the two electrodes
  • a current controller (not shown) for controlling the current supplied to Z or the two electrodes are provided. It is also desirable.
  • the electrolytic cell holds an electrolytic solution containing molecules constituting a molecular assembly, and applies a voltage to the two electrodes while the electrolytic solution is in contact with the two electrodes. (Or supply current To produce a molecular assembly.
  • the electrolytic cell includes an electrolytic solution holding section for holding an electrolytic solution (solution), and a substrate insertion section for inserting a substrate.
  • an electrolytic solution holding section for holding an electrolytic solution (solution)
  • a substrate insertion section for inserting a substrate.
  • FIG. 2 (a) it is preferable that, for example, a clay-like insulator is piled up on the substrate insertion portion. This serves to protect the electrodes while holding the substrate. As such an insulator, putty is preferable.
  • 2 indicates a copper wire
  • 3 indicates a board insertion portion
  • 6 indicates an insulator.
  • the substrate of the present invention is preferably one on which at least two electrodes can be mounted.
  • the material of the substrate include a glass substrate, a silicon substrate, and a plastic substrate. However, the material is not particularly limited as long as it is suitable as a substrate for photolithography and electron beam lithography.
  • the shape of the substrate is preferably a rectangular parallelepiped.
  • the length of the substrate is preferably from 0.1 mm to 10 cm, more preferably from 1 mm to 5 cm, even more preferably from 1 cm to 4 cm, and particularly preferably from 2 cm to 3 cm.
  • the substrate is preferably used after being cleaned so as not to contain impurities.
  • the electrode in the present invention is preferably provided on a substrate and includes two electrodes facing each other. As shown in FIGS.
  • a part of the two opposing electrodes has an insulating portion covered with an insulator.
  • the insulating portion there can be mentioned an insulating portion on the surface of the electrode other than the surface closest to each other as shown in FIGS.5a and 5b. If the electrode has a protruding portion, As shown in FIG. 7 (a) and FIG. 7 (b), a portion other than the projection portion is used as an insulating portion.
  • 4 represents an electrode
  • 5 represents a substrate
  • 15 represents an insulating layer.
  • reference numeral 4 denotes an electrode
  • 5 denotes a substrate
  • 15 denotes an insulating layer
  • 16 denotes a gate electrode.
  • the gate electrode (16) provided on the substrate (5) is opposed to the gate electrode (16) provided on the insulating layer (15) covering the gate electrode.
  • the one including the two electrodes (4) is preferable because it can function as an FET field-effect transistor.
  • reference numeral 4 denotes an electrode
  • 5 denotes a substrate
  • 15 denotes an insulating layer
  • 16 denotes a gate electrode.
  • Examples of the material of the electrode provided on the substrate include conductive materials such as gold, platinum, copper, and graphite. Of these, gold or platinum is more preferable. There is no particular limitation as long as it is suitable for. It is preferable that at least two electrodes are formed on the substrate.
  • the electrolytic cell may be an electrode that plays one of the electrodes. Further, a gate electrode or a reference electrode may be further provided, or an electrode for measuring physical properties of the electrolyte or the like may be further provided.
  • the shape of the electrode it is preferable that two electrodes face each other as shown in Fig. 3 (b), and it is located in the middle of each electrode as shown in Fig. 3 (c) and the other electrode There is a protrusion that is a convex part facing the other direction, or a protrusion formed by bending the electrode toward the other electrode at the tip of each of the electrodes as shown in Fig. 3 (a) A.
  • An electrode having a portion is preferred. With such a shape, a molecular aggregate such as a conductive nanowire can be effectively generated.
  • 4 indicates an electrode
  • 11 indicates an interval
  • 12 indicates a protrusion.
  • the tip of each of the gaps of the two opposing electrodes preferably faces in parallel with each other, as shown in FIG. 4 (a).
  • the taper shape becomes closer to the other gap part, and among them, it becomes step-like as shown in Fig. 4 (c).
  • the electrode spacing (1 1) is preferably 1 ⁇ to 100 ⁇ , more preferably lnm to l / zm, and lmi! It is more preferable that the length is in the range of 200 nm, but it is not particularly limited as long as it is suitable for the desired length of the nanowire.
  • the width of the electrode is preferably 0.5 nm to 1 cm, more preferably 0.5 nm to 200 nm, or 1 to 3 nm.
  • the length of the electrode is Inn! ⁇ 25 corrupt is preferred.
  • the electrode is immersed in the electrolyte. Is preferred, more preferably 50% or more is soaked, and particularly preferably 80% or more is soaked.
  • the voltage applied to the electrodes is controlled by a voltage controller connected to the electrodes. It is more preferable that a reference electrode is provided in the electrolysis cell, the potential difference between the electrodes can be measured, and the voltage applied to the electrode can be controlled according to the measurement result.
  • a current control device that controls a current supplied to the electrode together with or instead of the voltage control device may be used.
  • the electrodes are preferably formed on a substrate.
  • a method of forming an electrode on a substrate include, but are not limited to, a mask evaporation method, a photolithography method, an electron beam lithography method, and a method combining these methods.
  • a mask having a shape to be an electrode is cut out over a substrate, and a metal film is deposited thereon. Thereafter, the mask is removed from the substrate. In this way, a metal film is deposited only on the electrode portion, and a microelectrode can be formed.
  • a metal film forming step of forming a metal film on a substrate a resist layer forming step of forming a resist layer on the metal film deposited in the metal film forming step, a resist layer forming A photosensitive step of exposing the resist layer formed in the process to a desired pattern, a developing step of developing the exposed resist layer, and an etching step of etching the metal film using the resist layer remaining after the development as a mask.
  • the resist for forming the resist layer is not particularly limited as long as it is a so-called photoresist.
  • a metal film forming step of forming a metal film on a substrate In making an electrode by one of the electron beam lithography methods, a metal film forming step of forming a metal film on a substrate, a resist layer forming step of forming a resist layer on the metal film deposited in the metal film forming step, a resist layer
  • Etching step for etching The resist for forming the resist layer is not particularly limited as long as it is a so-called electron beam resist.
  • the production is preferably performed using the above-described electrolytic device.
  • a solution electrolytic solution
  • a substance to be the molecular assembly molecules constituting the molecular assembly
  • an electrolysis method in which a voltage is applied to the electrolytic solution in which a substance to be a molecular assembly is dissolved using the above-mentioned electrode.
  • a fine molecular aggregate needlele-shaped crystal or nanowire
  • the obtained molecular assembly is also an aggregate of molecules having a closed shell structure. Since the H OMO is packed with two electrons, it is difficult for charge transfer to occur. Conductive and non-conductive molecular aggregates (insulators) I could't help.
  • electrolytic crystal growth method electrolytic method of the present invention, electrons are extracted from a part or all of the H OMO of the closed shell molecule, and a part or all of the molecular assembly is SOMQ.
  • Examples of the substance that becomes a molecular assembly include an organic conductor, and a compound that forms a conductor by an electrolytic method is more preferable.
  • organic conductor examples include organic compounds having ⁇ electrons.
  • TTF derivatives including BEDT-TTF derivatives, dmit complexes, porphyrin complexes, and phthalocyanines are preferable.
  • TTF derivatives including BEDT-TTF derivatives , Dmit complexes, vorphyrin complexes, and phthalocyanines are preferred, and phthalocyanines and porphyrins are preferred.
  • TPP represented by the formula 1 [Co (Pc) (CN) 2 ] is more preferable, and TPP represented by the formula 1 is more preferable.
  • [Co (Pc) (CN) 2 ] Tetrafu nylphosphonium disianocobalt (III) phthalocyanine) is preferred.
  • phthalocyanines of the formula I compounds having a basic skeleton of a compound represented by the following general formula 2 are preferable.
  • porphyrin a compound having a basic skeleton of a compound represented by the following general formula 3 is preferable.
  • Solvents for dissolving the substance that forms the formula III molecular assembly include organic solvents, among which acetonitrile, acetone, alcohols, benzene, benzene halide, 1-chloronaphthalene, dimethylsulfoxide, and ⁇ , ⁇ -dimethylformamide, tetrahydrofuran, nitrobenzene, pyridine and the like are preferable, aceto nitrile, acetone, ethanol and methanol are more preferable, and acetone and acetonitrile are further preferable.
  • Examples of the ratio of the organic solvent include, but are not particularly limited to, those in which a substance serving as a molecular assembly is saturated.
  • the current flowing through the electrode may be a direct current or an alternating current.
  • the current applied to the electrode is preferably lnA to lmA, more preferably 100 ⁇ to 10 °.
  • the potential difference between the electrodes is preferably 10 mV to 20 V, more preferably 1 V to 5 V, and particularly preferably 2 V to 3 V.
  • the frequency is preferably from lmHz to lkHz, and more preferably from 500 mHz to 10 Hz.
  • the waveform may be a sine wave, a square wave, a sawtooth wave, or the like, but a sine wave or a square wave is preferable, and a square wave is particularly preferable.
  • the amplitude of the alternating current is preferably 10 mV to 20 V, more preferably 1 V to 5 V, and particularly preferably 2.5 V to 5 V.
  • the voltage application time is, for example, 10 days or less, preferably from 0.01 second to 10 days, more preferably from 1 second to 2 days. An appropriate time may be set according to the size, type, applied voltage, applied voltage, and the like.
  • the temperature of the electrolyte is preferably from -30 ° C to 200 ° C, more preferably from -30 ° C to 120 ° C, and particularly preferably from 15 ° (: to 30 ° C. Those that are not boiling or solidified are preferred. (Molecular assembly)
  • Examples of the molecular assembly obtained by the method for producing a molecular assembly according to the present invention include needle-like crystals and conductive nanowires.
  • a nanowire refers to a linear substance in which molecules are regularly arranged and have a width of 1 to 1 ⁇ and a length of 2 or more molecules.
  • the diameter of the needle-shaped crystal nanowire is from lnm to ⁇ , and more preferably from lnm to 200nm.
  • the length of the acicular crystal is, for example, 10 nm to 100 / zm.
  • the molecular assembly of the present invention is preferably a ratio (1 / s) of major axis 1 to minor axis s (1 / s) of 1 or more, more preferably 2 or more.
  • the obtained molecular assemblies have a diameter of lnm to 100 nm and a length of 10 nm to: % Or more, more preferably 90% or more, even more preferably 95 or more, and particularly preferably 99% or more.
  • the molecules constituting the molecular assembly form a molecular assembly in which units arranged regularly in the 1st to 100th rows are repeated, and it is more preferable that the molecule is in the 1st to 50th rows. More preferably, the molecules are in rows 1 to 20, more preferably in the 1, 2, 3, 4, or 5 rows.
  • the needle-shaped crystal may be a wire having a certain degree of curvature. Since the oxidation-reduction reaction by electrolysis is used, it is possible to impart conductivity to the small molecule assembly itself. In other words, since it does not have a closed shell structure unlike the conventional micromolecular aggregate, electrons can easily move between the molecules constituting the molecular aggregate, so that it is possible to have high conductivity.
  • the conductivity of the molecular assembly is preferably controlled in accordance with the required conductive nanowires, etc., but generally 1 S ⁇ cm ” 1 or more and superconductor or less is preferable. , 1 0 S ⁇ cm- more preferably if one or more superconductor less, 1 0 0 more preferably, if S ⁇ cm- 1 than on superconductors less, superconducting 5 0 0 S ⁇ cm- 1 or more
  • the conductivity is preferably 1 X 1 O 100 S ⁇ cm ” 1 or less, or 1 X 10 10 S ⁇ cnf 1 or less. Is selected.
  • the shape of the molecular assembly is preferably linear, columnar, cylindrical, or block-shaped, but is not particularly limited as long as the molecules are regularly arranged.
  • the molecular aggregate is preferably grown on the substrate, more preferably on the electrode and around the electrode, and particularly preferably between the electrodes, particularly between the gaps.
  • the electrolytic cell is preferably left stationary during the growth period.
  • the molecular assembly may be used as it is as a conductive nanowire.
  • the molecular aggregates may be further bundled to form conductive nanowires, or the molecular aggregates may be subjected to a coupling process, for example, processed for a conductive filler to form conductive nanowires.
  • the interval is further increased by Inn! Connecting the gap with an electrolyte containing an organic conductor containing ⁇ electrons; and applying a voltage to the electronic circuit to form a conductive layer generated in the gap.
  • a method for manufacturing a functional electronic circuit including the step of connecting the interval using a molecular assembly.
  • a method for manufacturing an electronic circuit having a connection portion by a conductive molecular assembly comprising: an electronic circuit having an interval of lnm to: ⁇ and having a portion connected by the conductive molecular assembly,
  • a method for producing an electronic circuit comprising: a step of contacting with an electrolytic solution containing an organic conductor containing ⁇ electrons; and a step of connecting the intervals by using a conductive molecular assembly generated in the intervals.
  • an electronic circuit having a space as shown in Fig. 8 (a) is manufactured in advance, the circuit is masked, then immersed in an electrolyte (Fig. 8 (b)), and the voltage is applied to the electronic circuit. Apply.
  • FIG. 8 (c) conductive molecular aggregates are generated in the space, and the space is connected.
  • Fig. 8 (c) By controlling the molecular assembly generated at this time, various characteristics can be imparted to the electronic circuit.
  • the electrolytic solution and the electronic circuit are brought into contact with each other, it is preferable to mask portions other than the gaps (particularly, circuit portions of the electronic circuit) so as not to come into direct contact with the electrolytic solution.
  • 21 is an electronic circuit
  • 22 is an interval
  • 23 is a DC / AC power supply
  • 25 is an electroconductive solution
  • 27 represents a molecular assembly.
  • Conductive molecular aggregates that link the gaps in electronic circuits exhibit different physical properties, such as different conductivity, from ordinary electronic circuits.
  • a functional electronic circuit is obtained.
  • the electronic circuit manufactured by the above manufacturing method can be used as it is as a chip such as an IC.
  • Conductive molecular aggregates function as elements such as transistors and tunnel elements Will be done.
  • the circuit portion and the conductive molecular assembly have different resistivity. Therefore, by controlling the conductive molecular assembly, an electronic circuit with an appropriate resistance can be obtained.
  • the present invention can also be suitably used when the spacing of the electronic circuit is about 1 to 10 molecules.
  • the spacing of the electronic circuit is about 1 to 10 molecules.
  • only one or two molecules can be used to connect circuits, making a connection device.
  • a functional element at a molecular level such as a single electron tunnel element or a single electron transistor, can be manufactured.
  • the electrolytic cell shown in FIG. 1 was manufactured using a commercially available reagent bottle. As shown in Fig. 2 (b), the copper wire was connected to the upper part of the electrode with a gold wire. In FIG. 2 (b), 2 represents a copper wire, 7 represents gold, and 8 represents silver paste.
  • the conductor part of the reagent bottle was used, and for the substrate insertion part, the cap part of the reagent bottle was modified and used. Putty was put on the board insertion part.
  • the diameter of the reagent bottle was 23 mm.
  • Electrodes used for the electrolytic molecular assembly growth method were manufactured on a glass plate.
  • Electrodes used for the electrolytic molecular assembly growth method were manufactured on a glass plate.
  • a 25 x 10 mm glass was prepared and platinum was deposited on a glass substrate.
  • a rough mask of the electrode was printed on a 0HP sheet.
  • a photoresist agent was spin-coated on a glass substrate on which platinum was deposited.
  • the spin coater was rotated at 3000 rpm and spin-coated for 60 seconds.
  • the coating was dried at 110 ° C. for 1 minute to form a coating film.
  • Photoresist Exposure was performed using a mask aligner of a mercury lamp light source through a glass substrate coated with the agent. Development was performed for 60 seconds using Microposit Developer MF319 (manufactured by Shipley Far East Co., Ltd.). At this time, the unexposed portions were completely dissolved. Then, cleaning was performed using pure water. Thus, an outline of the electrode was created.
  • ZEP7000 is used as an electron beam resist on the substrate on which the electrode outline has been created.
  • Electron beam drawing was performed on the substrate coated with the electron beam resist. That is, using a Gaussian circular electron beam with an accelerating voltage of 30 kV and an electron beam intensity of 4 ⁇ C ⁇ cm ” 2 and a diameter of 20 nm, the substrate is scanned on the substrate in accordance with the figure data consisting of many dense fine lines, After the exposure, an electron beam resist was developed with ZED500 (manufactured by Zeon Corporation), and an electrode was formed in this manner.
  • ZED500 manufactured by Zeon Corporation
  • a molecular assembly was obtained in the same manner as in Example 1-1, except that the electrolysis period was set to 100 minutes.
  • the molecular assembly thus obtained was in the shape of a plate having a length of 10 ⁇ 111 to 20111 and a length of about 1 ⁇ m to 5 m.
  • FIG. 10 shows a SEM photograph of the molecular assembly obtained at this time.
  • the molecular assembly obtained in this manner was a block having a length of 6 / ⁇ ⁇ to 10 ⁇ and a width of 2 / zm to 5 / im.
  • Figure 11 shows an SEM photograph of the molecular assembly obtained at this time.
  • a molecular assembly was obtained in the same manner as in Example 1-1 except that the electrolysis period was set to 193 minutes.
  • the molecular assembly thus obtained has a length ⁇ ! It had a columnar shape of ⁇ 50 ⁇ and a width of 500 ⁇ ⁇ 8 ⁇ .
  • Figure 12 shows an SEM photograph of the molecular assembly obtained at this time. (Example 11-5)
  • a molecular assembly was obtained in the same manner as in Example 1-1, except that the applied voltage was 2.5 V and the electrolysis period was 193 minutes.
  • the molecular assembly obtained in this way has a length of 10 ⁇ ! ⁇ 50; um, width 500 ⁇ ⁇ 8 ⁇ .
  • Figure 13 shows an SEM photograph of the molecular assembly obtained at this time.
  • a molecular assembly was obtained in the same manner as in Example 1-1 except that the applied voltage was 2.5 V and the electrolysis period was 33 minutes.
  • the molecular assembly thus obtained was needle-like with a length of 10 ⁇ to 50 ⁇ and a width of 100 nm to 200 nm.
  • Figure 14 shows an SEM photograph of the molecular assembly obtained at this time. (Example 11-7)
  • a molecular assembly was obtained in the same manner as in Example 1-1, except that the applied voltage was 2.5 V and the electrolysis period was 26 minutes.
  • the molecular assembly obtained in this way has a length of 2 ⁇ ! It was a curved wire with a width of ⁇ 10 / m and a width of 200nm ⁇ 300nm.
  • Figure 15 shows an SEM photograph of the molecular assembly obtained at this time.
  • a molecular assembly was obtained in the same manner as in Example 11 except that the applied voltage was 2.5 V and the electrolysis period was 26 minutes.
  • the molecular assembly thus obtained has a length ⁇ ! ⁇ 30 ⁇ , width ⁇ ! Needle shape of ⁇ 300 nm.
  • FIG. 16 shows a SEM photograph of the molecular assembly obtained at this time.
  • Example 1-9 A molecular assembly was obtained in the same manner as in Example 1-1, except that the applied voltage was 2.5 V and the electrolysis period was 4 minutes.
  • the molecular assembly obtained in this way has a length of 5 ⁇ ! Needles were ⁇ 30 / 30 ⁇ , 300 nm ⁇ 3 ⁇ m wide.
  • Figure 17 shows an SEM photograph of the molecular assembly obtained at this time.
  • nano-spaced electrodes prepared by electron beam lithography were used (Fig. 3a, Fig. 4c), and the procedure was the same as in Example 11 except that the applied voltage was 2.5V and the electrolysis period was 339 minutes. Thus, a molecular assembly was obtained.
  • the molecular assembly obtained in this way has a length of 1 ⁇ ⁇ ⁇ 10 ⁇ and a width of 500 ⁇ ! It was a block of ⁇ 3 m.
  • Figure 18 shows an SEM photograph of the molecular assembly obtained at this time.
  • a molecular assembly was obtained in the same manner as in Example 1-1 except that the alternating current (amplitude: 3.0 V, frequency: 2.0 Hz, square wave) and the electrolysis period were set to 10 seconds.
  • the molecular assembly obtained in this way has a length of 30 ⁇ ⁇ 50 ⁇ and a width of 500 ⁇ ! ⁇ ⁇ .
  • Fig. 19 shows the S-picture of the molecular assembly obtained at this time.
  • Example 3 -A molecular assembly was obtained in the same manner as in 1.
  • the molecular assembly thus obtained has a length of 1 II! It was a block with a size of ⁇ 3 ⁇ m and a width of 200-800 nm.
  • Fig. 20 shows an SEM photograph of the molecular assembly obtained at this time.
  • the molecular assembly obtained in this way has a length 111, width 50 ⁇ ! It was a needle bundle of ⁇ 1 m.
  • Figure 21 shows an SEM photograph of the molecular assembly obtained at this time.
  • a molecular assembly was obtained in the same manner as in Example 3-1 except that the alternating current (amplitude: 5.0 V, frequency: 0.2 Hz, sine wave) and the electrolysis period were set to 23 minutes.
  • the molecular assembly obtained in this way was a needle bundle with a length of l ⁇ m to 3 m and a width of 100 nm to 500 nm.
  • Figure 22 shows an SEM photograph of the molecular assembly obtained at this time.
  • a molecular assembly was obtained in the same manner as in Example 3-1 except that the alternating current (amplitude: 5.0 V, frequency: 0.1 Hz, square wave) and the electrolysis period were 5 minutes.
  • the molecular assembly thus obtained has a length of 10 ⁇ m ⁇ 20 / zm, ⁇ ⁇ 1 ⁇ ! It was needle-shaped of ⁇ 2 m.
  • Figure 23 shows an SEM photograph of the molecular assembly obtained at this time.
  • the electrode substrate was inserted into the substrate insertion portion, and the electrode substrate was fixed in place using putty.
  • a gold wire was passed between the upper part of the electrode and the copper wire of the electrolytic cell, and fixed with silver paste (Fig. 2 (b)).
  • a Pasteur pipette a drop of a saturated solution of TPP ⁇ [Co (Pc) (CN) 2 ] in acetonitrile was placed on the substrate so as to cover both electrodes.
  • a digital multimeter was connected to the copper wire.
  • the molecular assembly thus obtained was needle-like with a length of 10 ⁇ to 50 ⁇ and a width of 200nm to lm.
  • Figure 24 shows an SEM photograph of the molecular assembly obtained at this time.
  • the molecular assembly of a fine conductive compound can be controlled and manufactured at a molecular level (nano level).
  • the electrolytic device and the method for producing a molecular assembly of the present invention it is possible to obtain fine needle-like crystals and nanowires controlled on the order of nanometers.
  • the electrolyzer can be manufactured without using a vacuum, the cost can be significantly reduced.
  • molecules are self-organized by charge transfer interaction, a molecular assembly / nanowire can be produced without introducing an interactive functional group into the molecule.
  • the molecular assembly is grown in a system other than a vacuum such as in a solution, it is possible to avoid a change in physical properties of the molecular assembly when the vacuum is broken.
  • the structure of the molecular assembly of the present invention is controlled at the molecular level, and is expected to be applied to various devices.
  • the molecular aggregate of the present invention is a molecular aggregate of an organic conductor, it can be applied to a charge control agent, an electron gun, a circuit element, and the like.
  • the molecular assembly of the present invention is in a partially oxidized state, for example, when a molecule having SOMO is present, and has high conductivity unlike conventional micromolecular assemblies (such as nanowires). Therefore, it can be used for molecular wiring such as LSI.
  • LSI molecular wiring
  • a functional element at a molecular level such as a single-electron tunnel element or a single-electron transistor.
  • an electronic circuit having a desired function can be easily and simply manufactured at a molecular level, and the function can also be easily controlled.

Description

導電性ナノヮィヤーの製造装置およぴ製造方法 技術分野
本発明は、 ナノワイヤーや針状結晶などの分子集合体の製造方法および装置な どに関する。 より詳しくは、 電解結晶成長法を分子集合体の製造に応用した、 導 電性ナノワイヤーやナノレベルの針状結晶の製造方法などナノレベルの微小な分 子集合体を製造するための電解装置および電解装置の製造方法に関する。 背景技術
分子集合体成長方法、 特に単分子集合体を成長させる方法としては、 液相ェピ タキシャル (L P E ) 法、 分子線ェピタキシャル (MB E ) 法、 化学輸送 (C y T) 法、 化学気相成長 (C V D) 法など数多くの方法が提案されている。 これら の方法を用いることにより比較的大きな単分子集合体又は単分子集合体膜を得る ことができる。 また、 電気分解反応を利用した結晶育成法である電解法によって 結晶を育成する方法が知られている (例えば、 実験化学講座 1 2物質の機能性第 4版第 4 0ページから第 4 5ページ丸善書店発行) 。
また、 日本国特許公開平 6— 3 2 1 6 8 6号公報には、 金属有機酸塩と炭素ク ラスターを溶解した有機溶媒中で、 電解分子集合体成長法によりカソード側で当 該化合物の単分子集合体を成長させることを特徴とする、 金属原子をドープした 炭素クラスター化合物の製造方法が記載されている。
分子ナノワイヤーを製造する場合には、 超高真空中での分子蒸着法や分子ビー ム法を用いて製造することが知られていた。 また、 デンドリマーゃ閉殻分子を並 ベて分子ナノワイヤーを製造する方法やカーボンナノチューブを製造する方法が 知られていた。 しかしながら、 従来の電解法はできるだけ大きな結晶を得ることを目的とする もので、 ナノスケールでの分子集合体を得ようとするものではない。 また、 従来 の電解法では、 'ミリスケール以上の結晶を得るために純度がよい結晶を得ること は難しいという問題があった。
また、 特開平 6— 3 2 1 6 8 6号公報に記載の炭素クラスターの製造方法で製 造される炭素クラスターも、 ミリメートル単位の大きさをもち、 分子レベルで制 御したものではない。 また、 同公報に記載の発明は、 より大きな単分子集合体を 得ることを目的としたものであり、 本発明のようなナノスケールの分子集合体を 得ることを目的とするものではない。 その結果、 同公報に記載の発明は、 分子集 合体を得るために電解結晶成長法を用いているが、 本発明のように電極間の狭い 電極を用いたものではなく、 ミリレベル又はサプミリレベルの大きさの分子集合 体のみが得られる。
また、 超高真空中での分子蒸着法や分子ビーム法を用いてナノワイヤーを製造 した場合、 真空装置は高価かつ複雑であり、 大掛かりな装置を必要とする。 また 真空を得るためにすら労力を必要とするといつた問題があった。 超高真空中での 分子蒸着法や分子ビーム法では、 分子同士、 あるいは分子と基板を固定するため に分子間、 あるいは分子と基板間に例えば水素結合などの相互作用を起こす官能 基などを導入しなければならないという問題があった。 また、 真空中でナノワイ ヤーを形成した場合、 真空を破るとそのナノワイヤーが酸化するなどして物性が 大きく変わるという問題があった。 従来のナノワイヤー (分子集合体) では、 閉 殻構造 (H OMO (最高被占軌道) に 2電子が入った構造) を持つ分子の集合体 であり、 半占有分子軌道 ( S OMO) をもつ分子が存在しない結果、 電子の移動 が起こりにくく導電性に乏しいものしか得られないという問題があった。
さらには、 ナノスケールまたはサブマイクロスケールの機能部位を有する電子 回路およびそのような電子回路を用いた電子デバイスの提供が求められていた。 発明の開示
上記課題の少なくともひとつは、 以下の発明により角军決される。
( 1 ) 2本の電極と、 電解液と前記 2本の電極とを保持する電解セルとを含み、 前記 2本の電極の間隔が lnm〜100 μ mであり、 前記電解セルに分子集合体を構成 する分子を含む電解液を保持させ、 電解液と前記 2本の電極とが接触した状態で 前記 2本の電極に電圧を印加することにより分子集合体を製造する電解装置。 こ のように、 電極の間隔を微少とすることにより、 例えば、 導電性ナノワイヤーな どの微少な分子集合体を製造することができる。
( 2 ) 前記 2本の電極に印加する電圧を制御するための電圧制御装置、 または前 記 2本の電極に供給する電流を制御するための電流制御装置のいずれかまたは両 方をさらに備え、 前記 2本の電極が基板上に形成されることを特徴とする上記
( 1 ) に記載の分子集合体を製造する電解装置。
( 3 ) 基板上に設けられ、 対向する 2本の電極と、 電解液と前記基板とを保持 する電解セルと、 前記 2本の電極と連結され、 前記 2本の電極に印加する電圧を 制御するための電圧制御装置と、 を具備する分子集合体を製造するため電解装置 であって、 前記電解セルは、 電解液を保持する電解液保持部と、 前記基板を差し 込む基板差し込み部とを含み、 前記 2本の電極は、 それぞれの電極の途中に存在 し、 もう一方の電極方向へ向けた凸部である突起部か、 又は前記それぞれの電極 の先端にあって、 もう一方の電極方向へ電極が曲げられてなる突起部を有し、 前 記基板上に設けられた 2本の電極の最も近接した部位の間隔は、 lnm〜100 ( mで あり、 前記電解セルに分子集合体を構成する分子を含む電解液を保持させ、 電解 液と前記 2本の電極とが接触した状態で前記 2本の電極に電流を流すことにより 分子集合体を製造する電解装置。
( 4 ) 前記 2本の対向する電極の突起部のうちそれぞれの先端部は、 互いに平 行に対向するか、 またはもう一方の突起部に近接するに従って先細状となってお り、 前記 2本の電極は、 絶縁物に覆われた絶縁部分を有し、 前記基板差し込み部 のうち、 基板差し込み部に基板を差し込んだときに基板と接触する部位は、 絶縁 物により被覆されている上記 ( 3 ) に記載の分子集合体を製造する電解装置。
( 5 ) 基板と、 基板上に設けられたゲート電極と、 前記ゲート電極を被覆する 絶縁層と、 前記絶縁層上に設けられた対向する 2本の電極と、 電解液と前記基板 とを保持する電解セルと、 前記ゲート電極おょぴ 2本の電極とにより連結され、 前記ゲート電極および 2本の電極に印加する電圧を制御するための電圧制御装置 と、 を具備する分子集合体を製造するため電解装置であって、 前記電解セルは、 電解液を保持する電解液保持部と、 前記基板を差し込む基板差し込み部とを含み、 前記基板差し込み部のうち、 基板差し込み部に基板を差し込んだときに基板と接 触する部位は、 絶縁物により被覆されており、 前記 2本の電極は、 それぞれの電 極の途中に存在し、 もう一方の電極方向へ向けた凸部である突起部か、 又は前記 それぞれの電極の先端にあって、 もう一方の電極方向へ電極が曲げられてなる突 起部を有し、 前記 2本の対向する電極の突起部のうちそれぞれの先端部は、 互い に平行に対向するか、 またはもう一方の突起部に近接するに従って先細状となつ ており、 前記 2本の電極は、 絶縁物に覆われた絶縁部分を有し、 前記基板上に設 けられた 2本の電極の最も近接した部位の間隔は、 Inn!〜 100 であり、 前記電 解セルに分子集合体を構成する分子を含む電解液を保持させ、 電解液と前記 2本 の電極とが接触した状態で前記 2本の電極に電圧を印加することにより分子集合 体を製造する電解装置。
( 6 ) 基板上に設けられ、 対向する 2本の電極と、 電解液と前記基板とを保持す る電解セルと、 前記 2本の電極と電極線により連結され、 前記 2本の電極に印加 する電圧を制御するための電圧制御装置と、 を具備する分子集合体を製造するた め電解装置の製造方法であって、 前記基板上に金属膜を形成する金属膜形成工程 と、 前記金属膜形成工程で蒸着された金属膜の上にレジスト層を形成するレジス ト層形成工程と、 前記レジスト層形成工程により形成されたレジスト層を所望の パターンに感光させる感光工程と、 前記感光工程において感光されたレジスト層 を現像する現像工程と、 前記現像工程後に残ったレジスト層をマスクとして、 金 属膜をエッチングするエッチング工程とを含む工程により、 間隔が lnm〜: ΙΟΟ μ ιη である電極を基板上に形成する工程とを含む、 前記電解セルに分子集合体を構成 する分子を含む電解液を保持させ、 電解液と前記 2本の電極とが接触した状態で 前記 2本の電極に電圧を印加することにより分子集合体を製造する電解装置の製 造方法。
( 7 ) 基板上に設けられ、 対向する 2本の電極と、 電解液と前記基板とを保持 する電解セルと、 前記 2本の電極と電極線により連結され、 前記 2本の電極に印 加する電圧を制御するための電圧制御装置と、 を具備する分子集合体を製造する ため電解装置の製造方法であって、 前記基板上に金属膜を形成する金属膜形成ェ 程と、 前記金属 Β莫形成工程で蒸着された金属膜の上にレジスト層を形成するレジ スト層形成工程と、 前記レジスト層形成工程により形成されたレジスト層を所望 のパターンに電子線を照射する電子線照射工程と、 前記電子線照射工程により電 子線を照射されたレジスト層を現像する現像工程と、 前記現像工程後に残ったレ ジスト層をマスクとして、 前記金属膜をエッチングするエッチング工程とを含む 工程により、 間隔が Inn!〜 ΙΟΟ μ πιである電極を基板上に形成する工程とを含む、 前記電解セルに分子集合体を構成する分子を含む電解液を保持させ、 電解液と 前記 2本の電極とが接触した状態で前記 2本の電極に電圧を印加することにより 分子集合体を製造する電解装置の製造方法。
( 8 ) 基板上に設けられ、 対向する 2本の電極と、 電解液と前記基板とを保持 する電解セルと、 前記 2本の電極と電極線により連結され、 前記 2本の電極に印 加する電圧を制御するための電圧制御装置と、 を具備する分子集合体を製造する ため電解装置の製造方法であって、 前記基板上に金属膜を形成する金属膜形成ェ 程と、 前記金属膜形成工程で蒸着された金属膜の上にフォトレジスト層を形成す るフォトレジスト層形成工程と、 前記フォトレジスト層形成工程により形成され たフォトレジスト層を所望のパターンに感光させる感光工程と、 前記感光工程に よって感光されたフォトレジスト層を現像する第 1の現像工程と、 前記第 1の現 像工程後に残ったフォトレジスト層をマスクとして、 金属膜をエッチングする第 1のエッチング工程とを含む工程により、 基板上に電極の概形を形成する電極概 形形成工程と、 前記電極概形形成工程により形成された電極の概形の上に電子線 レジスト層を形成する電子線レジスト層形成工程と、 前記電子線レジスト層形成 工程により形成された電子線レジスト層を所望のパターンに電子線を照射する電 子線照射工程と、 前記電子線照射工程によつて電子線を照射された電子線レジス ト層を現像する第 2の現像工程と、 前記第 2の現像工程後に残った電子線レジス ト層をマスクとして、 前記金属膜をエッチングする第 2のエッチング工程とを含 む工程により、 間隔が 1ηπι〜100 μ ιηである電極を基板上に形成する工程とを含む、 前記電解セルに分子集合体を構成する分子を含む電解液を保持させ、 電解液と前 記 2本の電極とが接触した状態で前記 2本の電極に電圧を印加することにより分 子集合体を製造する電解装置の製造方法。
( 9 ) 電解セルに分子集合体を構成する分子を含む電解液を保持させ、 前記電 解液と前記 2本の電極とが接触した状態で前記 2本の電極に電圧を印加すること により分子集合体を製造する分子集合体の製造方法であって、 前記 2本の電極の 間隔を、 1ηηι〜100 ιη となるようにする電極調整工程と、 前記 2本の電極を電解 セルに装着する電極装着工程と、 前記分子集合体を有機溶剤に溶解させる電解液 調整工程と、 前記電解セルに電解液を注入する電解液注入工程と、
10日以下の間、 前記 2本の電極に、 1 nA〜 1mAの電圧を印加し、 前記 2 本の電極の電位差を 1 OmV〜20 Vとする電解工程と、 を含む分子集合体の製 造方法。
(10) 印加される電圧が、 直流電圧、 または交流電圧である (9) に記載の分 子集合体の製造方法。 この場合、 (9) に記載の電位差は、 最大電圧を意味する こととなる。
(1 1) 幅が構成分子 1個分〜 1 μπιであり、 長さが 1 nm〜500 mであり、 π 電子系を持つ有機化合物から成る有機伝導体を構成分子として含む分子集合 体。 ここで構成分子とは、 たとえばフタロシアニン分子などを意味する。
(1 2) 分子集合体の伝導度が 1S · cm—1以上である上記 (1 1) に記載の分子 集合体。 導電性のある分子集合体は、 本発明の好ましい分子集合体である。
(1 3) π 電子を含む有機伝導体を含む電解液を用い、 最も近接した部位の間 隔が、 lnm〜100 mである 2本の電極から 1秒〜 10日間、 前記 2本の電極の最 大電位差を 1 0mV〜20Vとする直流電圧または交流電圧のいずれかまたは両 方を前記 2本の電極に印加することにより分子集合体を製造する工程を含む、 直 径が 1 nm〜l μιηであり、 長さが 1 n m〜 500 μ mである分子集合体を含む 導電性ナノワイヤーの製造方法。
(14) 前記 π 電子を含む有機伝導体が、 フタロシアニンのシァノコバルト錯 体である上記 (1 3) に記載の導電性ナノワイヤーの製造方法。
(15) 前記 π 電子を含む有機伝導体が、 テトラフェニルホスホニゥム 'ジシ ァノコパルト(III)フタロシアニンであり、 分子集合体の伝導度が 1 S · cm—1以上 である上記 (13) に記載の導電性ナノワイヤーの製造方法。
(16) 基板上に設けられた対向する 2本の電極と、 電解液と前記基板とを保持 する電解セルと、 前記 2本の電極とにより連結され、 前記 2本の電極に印加する 電圧を制御するための電圧制御装置と、 を具備する電解装置を用いた導電性ナノ ワイヤーの製造方法であって、 前記電解セルは、 電解液を保持する電解液保持部 と、 前記基板を差し込む基板差し込み部とを含み、 前記基板差し込み部のうち、 基板差し込み部に基板を差し込んだときに基板と接触する部位は、 絶縁物により 被覆されており、 前記 2本の電極は、 それぞれの電極の途中に存在し、 もう一方 の電極方向へ向けた凸部である突起部か、 又は前記それぞれの電極の先端にあつ て、 もう一方の電極方向へ電極が曲げられてなる突起部を有し、 前記 2本の対向 する電極の突起部のうちそれぞれの先端部は、 互いに平行に対向するか、 または もう一方の突起部に近接するに従って先細状となっており、 前記 2本の電極は、 絶縁物に覆われた絶縁部分を有し、 前記基板上に設けられた 2本の電極の最も近 接した部位の間隔は、 1ηιη〜100 μ ιηであり、 前記電解セルに分子集合体を構成す る分子であるテトラフェニルホスホニゥム ·ジシァノコパルト (III)フタロシア ニンと、 ァセトニトリルを含む電解液を保持させ、 電解液と前記 2本の電極とが 接触した状態で、 0 . 0 1秒〜 1 0日間、 前記 2本の電極の最大電位差を 1 0 m V〜 2 0 Vとする直流電圧または交流電圧のいずれかまたは両方を前記 2本の電 極に印加することにより直径が 1 n m〜l i mであり、 長さが 1 η ιη〜5 0 0 μ mである分子集合体を製造する工程を含む、 導電性ナノワイヤーの製造方法。
( 1 7 ) 間隔が Inn!〜 ΙΟΟ μ πιである部分を有する電子回路の、 当該間隔を、 π 電子を含む有機伝導体を含む電解液でつなぐ工程と、 前記電子回路に電圧を印加 し、 前記間隔に発生する導電性分子集合体を用いて、 前記間隔を連結する工程と、 を含む電子回路の製造方法。
( 1 8 ) 導電性分子集合体による連結部分を有する電子回路の製造方法であって、 間隔が lnm〜; であり、 導電性分子集合体により連結される部分を有する電 子回路を、 π 電子を含む有機伝導体を含む電解液と接触させる工程と、 前記間 隔に発生する導電性分子集合体を用いて、 前記間隔を連結する工程と、 を含む電 子回路の製造方法。
( 1 9 ) 導電性分子集合体による連結部分を有する電子回路の製造方法であって、 間隔が分子 1個〜 1 0個分の距離であり、 導電性分子集合体により連結される部 分を有する電子回路を、 π 電子を含む有機伝導体を含む電解液と接触させるェ 程と、 前記間隔に発生する導電性分子集合体を用いて、 前記間隔を連結する工程 と、 を含む電子回路の製造方法。 図面の簡単な説明
図 1は、 電解セルの概図である。
図 2 (a) 及ぴ図 2 (b) は、 電解セルの概図 (上面図) である。
図 3 (a) 、 図 3 (b) 、 図 3 (c) は、 それぞれ電極の概図である。
図 4 (a) 、 図 4 (b) 、 図 4 (c) は、 それぞれ突起部の概図 (図 3の Aな ど) である。
図 5は、 基板上の電極の一例をあらわす図である。 図 5 (a)は平面図、 図 5 (b) は断面図である。
図 6は、 基板上の電極の一例をあらわす図である。 図 6 (a)は平面図、 図 6 (b) は断面図である。
図 7は、 基板上の電極の一例をあらわす図である。 図 7 (a)は平面図、 図 7 (b) は断面図である。
図 8 (a) 、 図 8 (b) 、 図 8 (c) は、 本発明の電子回路の一例を表す図で ある。
図 9は、 実施例 1—1で得られた図面に代わる分子集合体の S EM写真である。 図 10は、 実施例 1一 2で得られた図面に代わる分子集合体の S EM写真であ る。
図 1 1は、 実施例 1 _ 3で得られた図面に代わる分子集合体の S EM写真であ る。
図 12は、 実施例 1—4で得られた図面に代わる分子集合体の S EM写真であ る。
図 1 3は、 実施例 1一 5で得られた図面に代わる分子集合体の S EM写真であ る。
図 14は、 実施例 1 _ 6で得られた図面に代わる分子集合体の S EM写真であ る。
図 15は、 実施例 1一 7で得られた図面に代わる分子集合体の S EM写真であ る。 図 1 6は、 実施例 1一 8で得られた図面に代わる分子集合体の S EM写真であ る。 図 1 6 (a)は 80, 000倍、 図 1 6 (b)は 1, 100倍の S EM写真を表す。
図 1 7は、 実施例 1一 9で得られた図面に代わる分子集合体の S EM写真であ る。
図 1 8は、 実施例 2— 1で得られた図面に代わる分子集合体の S EM写真であ る。
図 1 9は、 実施例 3 - 1で得られた図面に代わる分子集合体の S EM写真であ る。
図 2 0は、 実施例 3— 2で得られた図面に代わる分子集合体の S EM写真であ る。
図 2 1は、 実施例 3 _ 3で得られた図面に代わる分子集合体の S EM写真であ る。
図 2 2は、 実施例 3 - 4で得られた図面に代わる分子集合体の S EM写真であ る。
図 2 3は、 実施例 3— 5で得られた図面に代わる分子集合体の S EM写真であ る。
図 2 4は、 実施例 4 _ 1で得られた図面に代わる分子集合体の S EM写真であ る。 発明を実施するための最良の形態 図 1は、 本発明の電解装置の概図である。
図 1中、 1は電解セルを、 2は銅線を、 3は基板差し込み部を、 4は電極を、 5は基板を表す。 本発明の電解装置は、 2本の電極 (4 ) と、 電解セル (1 ) と を有する。 また、 前記 2本の電極に印加する電圧を制御するための図示しない電 圧制御装置、 及び Zまたは前記 2本の電極に供給する電流を制御するための図示 しない電流制御装置を有していることも望ましい。 本発明の電解装置は、 電解セ ルに分子集合体を構成する分子を含む電解液を保持させ、 電解液と前記 2本の電 極とが接触した状態で前記 2本の電極に電圧を印加する (または、 電流を供給す る) ことにより分子集合体を製造する。
なお、 電極の電位を測定するための参照電極や電位測定装置、 ゲート電極、 制 御用コンピュータが更に含まれていてもよい。 電解セルは、 電解液 (溶液) を保 持する電解液保持部と、 基板を差し込む基板差し込み部とを含む。 基板差し込み 部には、 図 2 (a) に表されるように、 例えば粘土状の絶縁物を盛っておくこと が好ましい。 これは基板を保持するのと同時に電極を保護する役割を持つ。 この ような絶縁物としては、 パテが好ましい。 図 2 (a) 中、 2は銅線を、 3は基板 差し込み部を、 6は絶縁物を表す。
〔基板〕
本発明の基板は、 少なくとも 2本の電極をその上に搭載できるものであること が好ましい。 基板の材質としては、 ガラス基板や、 シリコン基板、 プラスチック 基板などがあげられるが、 フォトリソグラフィーゃ電子線リソグラフィ一の基板 として適するものであれば特に限定されるものではない。 基板の形状としては、 直方体が好ましい。 基板の長さとしては、 0. 1mmから 10 cmが好ましく、 lmmから 5 cmであればより好ましく、 1 cmから 4 cmであればさらに好ま しく、 2 cmから 3 cmであれば特に好ましい。 基板は、 不純物を含まないよう に洗浄された後用いられることが好ましい。 本発明における電極としては、 基板上に設けられ、 対向する 2本の電極を含む ものが好ましい。 図 6 (a) 、 図 6 (b) に示すように、 対向する 2本の電極の 一部は絶縁物に覆われた絶縁部分を有するものが好ましい。 絶縁部分としては、 図 5 a、 図 5 bのように電極の面のうち、 互いの電極にもっとも近い面以外の面 を絶縁部分とするものがあげられ、 電極に突起部分を有する場合は、 図 7 (a) 、 図 7 (b) のように突起部分以外の部分を絶縁部分とするものが挙げられる。 図 5 (a) 、 図 5 (b) 中、 4は電極を、 5は基板を、 15は絶縁層を表す。 図 7 (a) 、 図 7 (b) 中、 4は電極を、 5は基板を、 15は絶縁層を、 16はゲー ト電極を表す。
また、 図 6 (a) 、 図 6 (b) に示すように基板上 (5) に設けられたゲート 電極 (16) と、 ゲート電極を被覆する絶縁層 (15) 上に設けられた対向する .2本の電極 (4) とを含むものは、 FET電界効果トランジスタとして機能し得 るため好ましい。 図 6 (a) 、 図 6 (b) 中、 4は電極を、 5は基板を、 1 5は 絶縁層を、 16はゲート電極を表す。
基板上に設けられる電極の材質としては、 金、 白金、 銅、 グラフアイトなど導 電性の材質のものがあげられ、 これらのうちでは、 金、 または白金がより好まし いが、 上記リソグラフィ一に適したものであれば特に限定されるものではない。 電極は、 基板上に少なくとも 2本以上形成されることが好ましい。 なお、 電解 セルが、 電極のうち 1本の役割を果たす電極であってもよい。 また、 ゲート電極 や、 参照電極がさらに設けられていてもよいし、 電解液等の物性を測定するため の電極がさらに設けられてもよい。
電極の形状としては、 図 3 (b) のように 2つの電極が対向しているものが好 ましく、 図 3 (c) のようにそれぞれの電極の途中に存在し、 もう一方の電極方 向へ向けた凸部である突起部があるものか、 又は図 3 (a) Aのように前記それ ぞれの電極の先端にあって、 もう一方の電極方向へ電極が曲げられてなる突起部 を有する電極が好ましい。 このような形状であれば、 効果的に導電性ナノワイヤ 一などの分子集合体を生成できるからである。 図 3 (a) 、 図 3 (b) 、 図 3 (c) 中、 4は電極を、 11は間隔を、 12は突起部を表す。
突起部の形状としては、 図 4 (a) に例示されるように、 前記 2本の対向する 電極のギヤップ部のうちそれぞれの先端部は、 互いに平行に対向するものが好ま しく、 または図 4 (b) や図 4 (c) に例示されるようにもう一方のギャップ部 に近接するに従って先細状となっているものはより好ましく、 その中でも図 4 (c) のように階段状となっているものが好ましい。
電極の間隔 (1 1) としては、 1ηηι〜100μιηが好ましく、 lnm〜l/zmであれば より好ましく、 lmi!〜 200nmであればさらに好ましいが、 希望するナノワイヤー の長さに適するものであれば特に限定されるものではない。
電極の幅としては、 0.5nm〜lcmが好ましく、 0.5nm〜200nmあるいは 1 〜3賺 であればより好ましい。
電極の長さとしては、 Inn!〜 25墮が好ましい。
電極は電解液に浸つていることが好ましく、 電極の体積の 20%以上が浸つて いる場合が好ましく、 50%以上が浸っている場合は更に好ましく、 80%以上が浸 つている場合は特に好ましい。
また、 電極間に電解液を滴下して基板上で電気分解を行うことも好ましい。 〔電圧制御装置〕
電極に印加される電圧は、 電極と連結した電圧制御装置により制御されること が好ましい。 なお、 電解セル中に参照電極があり、 電極間の電位差を測定するこ とができ、 その測定結果に応じて電極に電極に印加する電圧を制御することがで きることはより好ましい。 電圧制御装置とともに、 または電圧制御装置に変えて 電極に供給する電流を制御する電流制御装置であってもよい。
〔電極の製造方法〕
本発明においては、 電極が基板上に形成されることが好ましい。 電極を基板上 に形成する方法としては、 マスク蒸着法、 フォトリソグラフィ一法、 および電子 線リソグラフィ一法およびこれらの方法を組合せた方法が挙げられるが、 これら に限定されるものではない。
マスク蒸着法では、 電極となるべき形状をくりぬいたマスクを基板にかぶせ、 その上から金属膜を蒸着する。 その後にマスクを基板から除去する。 このように して電極部分だけに金属膜が蒸着され、 微小電極を作成することができる。 フォトリソグラフィ一法による電極作成では、 基板上に金属膜を形成する金属 膜形成工程と、 金属膜形成工程で蒸着された金属膜の上にレジスト層を形成する レジスト層形成工程と、 レジスト層形成工程により形成されたレジスト層を所望 のパターンに感光させる感光工程と、 感光させたレジスト層を現像する現像工程 と、 現像により残ったレジスト層をマスクとして、 金属膜をエッチングするエツ チング工程とを含む。 レジスト層を形成するレジストとしては、 いわゆるフォト レジストであれば特に限定されるものではない。
電子線リソグラフィ一法による電極作成では、 基板上に金属膜を形成する金属 膜形成工程と、 金属膜形成工程で蒸着された金属膜の上にレジスト層を形成する レジスト層形成工程と、 レジスト層形成工程により形成されたレジスト層を所望 のパターンに電子線を照射する電子線照射工程と、 電子線を照射したレジスト層 を現像する現像工程と、 現像により残ったレジスト層をマスクとして、 金属膜を エッチングするエッチング工程とを含む。 レジスト層を形成するレジストとして は、 いわゆる電子線レジストであれば特に限定されるものではない。
〔分子集合体の製造方法〕
本発明の分子集合体の製造方法においては、 上記電解装置を用いて行うことが 好ましい。 分子集合体を製造する際には、 分子集合体となる物質 (分子集合体を 構成する分子) を溶解させた溶液 (電解液) を用いることが好ましい。 分子集合 体となる物質を溶解させた電解液に上記電極を用いて電圧を印加する電解法によ り分子集合体を製造することが好ましい。 本発明においては、 電極間が微小であ り微小な分子集合体 (針状結晶やナノワイヤー) を製造することができる。 従来 の超高真空中での分子蒸着法や分子ビーム法などでは、 ナノワイヤーなどの分子 集合体を製造する際に分子間に例えば水素結合などの相互作用を起こす官能基な どを導入しなければならなかった。 また、 得られた分子集合体も閉殻構造をもつ 分子の集合体であり、 H OMOに 2電子が詰まっている結果電荷移動が起こりに くく伝導性 ·導電性のない分子集合体 (絶縁体) し力 られなかった。 し力 しな がら、 本発明の電解結晶成長法 (電解法) では、 閉殻分子の H OMOの一部、 あ るいは全部から電子が抜き取られ、 分子集合体の一部、 あるいは全部が S OMQ となった状態を作り出すことができる。 本発明では、 電界中で針状結晶 ·ナノヮ ィヤーを成長させることにより、 電荷移動相互作用を利用して針状結晶 ·ナノヮ ィヤーを成長させることができるのである。 その結果、 本発明では、 導電性'伝 導性のある針状結晶 ·ナノワイヤーを得ることができるのである。
分子集合体となる物質としては、 有機伝導体などがあげられるが、 電解法によ つて導電体を形成する化合物がより好ましい。
有機伝導体としては、 π 電子を持つ有機化合物があげられ、 これらの中でも、 BEDT-TTF誘導体を含む TTF誘導体、 dmit錯体類、 ポルフィリン錯体類、 フタ口 シァニン類が好ましい。
電解法によって導電体を形成する化合物としては、 縮合多環炭化水素誘導体、 複素環化合物誘導体、 複素多環化合物誘導体及びこれらを含む錯体があげられ、 これらの中でも、 BEDT- TTF誘導体を含む TTF誘導体、 dmit錯体類、 ボルフイリ ン錯体類、 フタロシアニン類が好ましく、 フタロシアニン類およびポルフィリン 類が、 さらに好ましく特に化学式 1で表される TPP . [Co (Pc) (CN) 2]が好ましい が、 さらに好ましく特に化学式 1で表される TPP · [Co (Pc) (CN) 2] (テトラフ. ニルホスホニゥム ·ジシァノコバルト(III)フタロシアニン) が好ましい。
Figure imgf000016_0001
式 I フタロシアニン類としては、 下記一般式 2で表される化合物を基本骨格とする 化合物が好ましい。
Figure imgf000016_0002
式 I I
ポルフィリン類としては、 下記一般式 3で表される化合物を基本骨格とする化 合物が好ましい。
差替え用紙(規則 26)
Figure imgf000017_0001
式 III 分子集合体となる物質を溶解する溶媒としては、 有機溶斉 ϋがあげられ、 これら の中でも、 ァセトニトリル、 アセトン、 アルコール類、 ベンゼン、 ハロゲン化べ ンゼン、 1 -クロロナフタレン、 ジメチルスルホキシド、 Ν, Ν-ジメチルホルムァ ミド、 テトラヒドロフラン、 ニトロベンゼン、 ピリジンなどが好ましく、 ァセト 二トリル、 ァセトン、 エタノール、 メタノールがより好ましく、 アセトン、 ァセ トニトリルが更に好ましい。 有機溶剤の割合としては、 例えば、 分子集合体とな る物質を飽和させたものが挙げられるが、 特に限定されるものではない。
電極に流される電流としては、 直流電流でも交流電流でもよい。 電極に流され る電流としては、 lnA〜lmAが好ましく、 100ηΑ〜10 Α であればより好ましい。 電極間の電位差としては、 10mV〜20Vが好ましく、 1V〜5Vであればより好ましく、 2V〜3Vであれば特に好ましい。 交流電流の場合には、 周波数 lmHz〜lkHzが好ま しく、 500mHz〜: 10Hz がより好ましい。 また、 交流電流の場合には、 波形は正弦 波、 方形波、 ノコギリ波などがあげられるが、 正弦波、 方形波が好ましく、 方形 波が特に好ましい。 交流電流の場合の振幅には、 10mV〜20Vが好ましく、 1V〜5V であればより好ましく、 2. 5V〜5V が特に好ましい。 電圧を印加する時間として は、 例えば 1 0日以下が挙げられ、 0 . 0 0 1秒から 1 0日が好ましく、 1秒か ら 2日であればより好ましいが、 得ようとする分子集合体の大きさ、 種類、 印加 する電圧、 印加される電圧などにより適当な時間とすればよい。
電解液の温度としては、 -30° C〜200° C が好ましく、 -30° C〜120° Cであれ ばより好ましく、 15° (:〜 30° C であれば特に好ましいが、 電解液が沸騰あるい は凝固していないものが好ましい。 〔分子集合体〕
本発明の分子集合体の製造方法によって得られる分子集合体としては、 針状結 晶ゃ導電性ナノワイヤーが挙げられる。 本明細書においてナノワイヤーとは、 分 子が規則的に整列した、 幅分子 1個分〜 1 μ ηι、 長さ分子 2個分以上の線状物質の ことを指す。
針状結晶おょぴナノワイヤーの直径としては、 lnmから Ι μ πιが挙げられ、 lnm 〜200nmであればより好ましい。 針状結晶の長さとしては、 10nm〜100 /z mがあげ られる。 本発明の分子集合体としては、 長軸 1と短軸 sの比 (1 / s ) 1以 上であれば好ましく、 2以上であればより好ましい。
本発明の分子集合体の製造方法としては、 得られた分子集合体のうち、 直径が lnm〜100nm、 長さが 10nm〜: LOO z mのものが 6 0 %以上であることが好ましく、 8 0 %以上であれば更に好ましく、 9 0 %以上であればより好ましく、 9 5以上 であれば更に好ましく、 9 9 %以上であれば特に好ましい。
特に、 分子集合体を構成する分子が 1列〜 1 0 0列規則正しく並んだ単位が繰 り返され分子集合体を構成しているものが好ましく、 分子が 1列〜 5 0列であれ ばより好ましく、 分子が 1列〜 2 0列であれば更に好ましく、 分子が 1、 2、 3、 4、 または 5列であれば特に好ましい。 針状結晶は、 ある程度湾曲したワイヤー 状のものでもよい。 電気分解による酸化還元反応を利用するため、 微小分子集合 体自体に導電性を付与することが可能となる。 すなわち、 従来の微小分子集合体 のような閉殻構造を持たないために、 分子集合体を構成する分子間で電子の移動 が起こりやすくなるため高い導電性を有することが可能となるのである。
分子集合体の伝導度としては、 要求される導電性ナノワイヤーなどに応じて制 御することが好ましいが、 一般的には、 1 S · cm"1以上超伝導体以下のものが好 ましく、 1 0 S · cm— 1以上超伝導体以下であればより好ましく、 1 0 0 S · cm— 1以 上超伝導体以下であればより好ましく、 5 0 0 S · cm— 1以上超伝導体以下であれ ば特に好ましいが、 伝導度は、 1 X 1 O 100S · cm"1以下であっても、 1 X 1 0 10S · cnf1以下でもよく、 その用途に応じて好ましい伝導度が選択される。
分子集合体の形状としては、 線状、 柱状、 円柱状、 ブロック状が好ましいが、 分子が規則的に整列したものであれば特に限定されるものではない。 分子集合体は基板上に成長することが好ましく、 電極上、 電極周囲に成長する ことがより好ましく、 電極間、 とくにギャップ部間に成長することが特に好まし い。 電解セルは成長期間中、 静置されていることが好ましい。
分子集合体は、 そのまま導電性ナノワイヤーとしても良い。 分子集合体をさら に束ねて導電性ナノワイヤーとしても良いし、 分子集合体をカップリング処理し、 例えば導電性フイラ一用に処理して導電性ナノワイヤーとしてもよい。
〔電子回路の製造方法〕
本発明は、 更に間隔が Inn!〜 ΙΟΟ μ ηιである部分を有する電子回路の、 当該間隔 を、 π 電子を含む有機伝導体を含む電解液でつなぐ工程と、 前記電子回路に電 圧を印加し、 前記間隔に発生する導電性分子集合体を用いて、 前記間隔を連結ェ 程とを含む機能性電子回路の製造方法を提供する。 また、 導電性分子集合体によ る連結部分を有する電子回路の製造方法であって、 間隔が lnm〜: ΙΟΟ μ ηιであり、 導電性分子集合体により連結される部分を有する電子回路を、 π 電子を含む有 機伝導体を含む電解液と接触させる工程と、 前記間隔に発生する導電性分子集合 体を用いて、 前記間隔を連結する工程と、 を含む電子回路の製造方法を提供する。 例えば、 図 8 ( a ) にあるような間隔部を有する電子回路をあらかじめ製造して おき、 回路部分をマスクした後、 電解液に浸漬し (図 8 ( b ) ) 、 電子回路に電 圧を印加する。 すると、 間隔部に導電性分子集合体が発生し、 間隔をつなぐ (図 8 ( c ) ) 。 この際発生する分子集合体を制御することで、 電子回路に様々な特 性を付与することができる。 なお、 電解液と電子回路とを接触させる際は、 前記 間隔部以外の部分 (特に電子回路の回路部分) は、 電解液と直接接触しないよう にマスクしておくことが好ましい。 図 8 ( a ) 、 図 8 ( b ) 、 図 8 ( c ) 中、 2 1は電子回路を、 2 2は間隔を、 2 3は直流 ·交流電源を、 2 5は電角军液を、 2 7は分子集合体を表す。
電子回路の間隔部を連結する導電性分子集合体 (導電性ナノワイヤー) は、 例 えば、 伝導度が異なるなど通常の電子回路と異なった物性を示す。 この導電性分 子集合体部分の特性を生かし、 機能性電子回路とする。 上記製造方法により製造 された電子回路はそのまま I Cなどのチップとして用いることができる。
導電性分子集合体部分が、 トランジスタやトンネル素子などの素子として機能 することとなる。 また、 回路部分と、 導電性分子集合体とは、 抵抗率が異なる。 したがって、 導電性分子集合体を制御すれば、 適切な抵抗を持った電子回路が得 られる。
なお、 電子回路の間隔部としては、 分子 1個から 1 0個程度の間隔の場合も本 発明は好適に用いることができる。 たとえば、 1または 2分子のみを回路の接続 に用い、 連結デバイスとすることができる。 このようにすることで、 例えば単電 子トンネル素子や単電子トランジスタのような分子レベルでの機能性素子を製造 することができる。 実施例
〔製造例 1 :電解セルの製造〕
市販されている試薬瓶を用いて図 1で表される電解セルを製造した。 図 2 ( b ) に表されるように、 銅線と電極の上部とを金線で結んだ。 図 2 ( b ) 中、 2は銅線を、 7は金を、 8は銀ペーストを表す。
電解液保持部は、 試薬瓶の導体部分を用い、 基板差し込み部は試薬瓶のキヤッ プ部分を改造して用いた。 基板差し込み部にはパテを盛った。
試薬瓶の直径は、 23mmであった。
〔製造例 2 : 20 m間隔の電極の製造〕
電解分子集合体成長法に用いる電極をガラス板上に製造した。
25 X 10mm のガラスを用意し、 マスクをガラスに付着させた。 その後、 マスキン グをしたガラス基板に金を蒸着させた。 その後、 マスクをガラス基板から除去し た。 このようにして、 ガラス基板上に金電極を形成した。 それぞれの電極の幅は、 2〜5墮、 それぞれの電極の長さは、 2. Ocn!〜 2. 3cm、 電極の間隔は 20 μ mであった。 〔製造例 3 :ナノ間隔電極の製造〕
電解分子集合体成長法に用いる電極をガラス板上に製造した。
25 X 10mm のガラスを用意し、 ガラス基板上に白金を蒸着した。 電極の概形の マスクを 0HPシートに印刷した。 フォトレジスト剤を白金を蒸着したガラス基板 上にスピンコート塗布した。 スピンコーターの回転数は、 3000 r p mで、 60秒 間回転塗布を行った。 110°Cで 1分間乾燥して塗膜を形成した。 フォトレジスト 剤を塗布したガラス基板にマスク通して、 水銀灯光源のマスクァライナーを用い て露光した。 Microposit Developer MF319 (シプレイ ·ファーイースト (株) 製) を用いて 6 0秒間現像を行った。 この際、 非露光部分は完全に溶解した。 つ いで純水を用いて洗浄を行った。 このようにして、 電極の概形を作成した。
さらに、 電極の概形を作成した基板に対して電子線レジストとして ZEP7000
(日本ゼオン (株) 製) を、 スピンコーターを用いて 3 5 0 n mの厚さに塗布し た。 その後大気中で 1 8 0 °Cで 1 8 0秒間べ一キングを行った。 基板はこの電子 線レジストに対して良好な濡れ性と展開性を示した。 この電子線レジストを塗布 した基板に対して電子線描画を行った。 すなわち、 加速電圧 3 0 k V、 電子線強 度 4 μ C · cm"2の直径 20nmのガウス型円形電子線を用いて、 多数の密集した細線 からなる図形データに従って基板上を走査し、 電子線露光を行った。 露光後、 ZED500 (日本ゼオン (株) 製) で電子線レジストの現像処理を行った。 このよう にして電極を作成した。
〔実施例 1 _ 1〕
電解液保持部に TPP · [Co (Pc) (CN) 2] 5m g、 ァセトニトリル 14m 1を加え溶解 させたところ、 溶け残りのある飽和電解液となった。 基板差し込み部に電極基板 を挿入しパテを用いて電極基板を定位置に固定した。 電極の上部と電解セルの銅 線の間に金線を渡し、 銀ペーストで固定した。 基板保持部を電解液保持部と結合 させた後、 銅線にデジタルマルチメータを接続した。 電極に、 2. 0V の電圧を掛 け、 1日間静置した。 この際の溶解液の温度は、 23°Cであった。
このようにして得られた分子集合体は、 長さ !〜 300 μ πι、 幅は 5 μ η!〜 30 μ ηι の柱状であった。 この際得られた、 分子集合体の S ΕΜ写真を図 9に示す。 〔実施例 1一 2〕
電解期間を 100分をとした以外は、 実施例 1— 1と同様にして分子集合体を得 た。
このようにして得られた分子集合体は、 長さ 10 ^ 111〜20 111、 ΨΙ 1 μ m~5 m © 板状であった。 .この際得られた、 分子集合体の S EM写真を図 1 0に示す。
〔実施例 1一 3〕
電圧を 1. 0Vとして 1日間電圧を印加した後、 さらに 1. 5Vの電圧を 1日間印加 した以外は、 実施例 1一 1と同様にして分子集合体を得た。
このようにして得られた分子集合体は、 長さ 6/·ίΐη〜10μηι、 幅 2/zm〜5/im の ブロック状であった。 この際得られた、 分子集合体の SEM写真を図 1 1に示す。 〔実施例 1— 4〕
電解期間を 193分とした以外は、 実施例 1 _ 1と同様にして分子集合体を得た。 このようにして得られた分子集合体は、 長さ ΙΟμη!〜 50μηι、 幅 500ηπι〜8μπι の柱状であった。 この際得られた、 分子集合体の SEM写真を図 12に示す。 〔実施例 1一 5〕
印加電圧を 2.5V、 電解期間を 193分とした以外は、 実施例 1—1と同様にし て分子集合体を得た。
このようにして得られた分子集合体は、 長さ 10 ζπ!〜 50;um、 幅 500ηηι〜8μηι の柱状であった。 この際得られた、 分子集合体の SEM写真を図 13に示す。 〔実施例 1 _ 6〕
印加電圧を 2.5V、 電解期間を 33分とした以外は、 実施例 1 _ 1と同様にして 分子集合体を得た。
このようにして得られた分子集合体は、 長さ 10μηι〜50μιη、 幅 100nm〜200nm の針状であった。 この際得られた、 分子集合体の SEM写真を図 14に示す。 〔実施例 1一 7〕
印加電圧を 2.5V、 電解期間を 26分とした以外は、 実施例 1— 1と同様にして 分子集合体を得た。
このようにして得られた分子集合体は、 長さ 2μπ!〜 10/ m、 幅 200nm〜300nm の湾曲したワイヤー状であった。 この際得られた、 分子集合体の SEM写真を図 15に示す。
〔実施例 1一 8〕
印加電圧を 2.5V、 電解期間を 26分とした以外は、 実施例 1一 1と同様にして 分子集合体を得た。
このようにして得られた分子集合体は、 長さ ΙΟμη!〜 30μπι、 幅 ΙΟΟηπ!〜 300nm の針状であった。 この際得られた、 分子集合体の S EM写真を図 16に示す。 〔実施例 1— 9〕 印加電圧を 2.5V、 電解期間を 4分とした以外は、 実施例 1— 1と同様にして 分子集合体を得た。
このようにして得られた分子集合体は、 長さ 5μπ!〜 30/ζπι、 幅 300nm〜3 μ mの針 状であった。 この際得られた、 分子集合体の SEM写真を図 1 7に示す。
〔実施例 2— 1〕
基板として、 電子線リソグラフィ一によつて作製したナノ間隔電極を用い (図 3 a、 図 4 c) 、 印加電圧を 2.5V、 電解期間を 339分とした以外は実施例 1一 1と同様にして分子集合体を得た。
このようにして得られた分子集合体は、 長さ 1 ·ίΐη〜10μηι、 幅 500ηπ!〜 3 mの ブロック状であった。 この際得られた、 分子集合体の SEM写真を図 18に示す。 〔実施例 3— 1〕
交流電流 (振幅 3.0V、 周波数 2.0Hz、 方形波) 、 電解期間を 10秒とした以外 は、 実施例 1 _ 1と同様にして分子集合体を得た。
このようにして得られた分子集合体は、 長さ 30 ηι〜50 ιιι、 幅 500ηπ!〜 Ιμΐη の針状であった。 この際得られた、 分子集合体の S ΕΜ写真を図 19に示す。 〔実施例 3— 2〕
交流電流 (振幅 2.5V、 周波数 0.1Ηζ、 正弦波) 、 電解期間 4分の後、 交流電流 (振幅 5.0V、 周波数 0.1HZ、 正弦波) 、 電解期間 18分とした以外は、 実施例 3 ― 1と同様にして分子集合体を得た。
このようにして得られた分子集合体は、 長さ 1 II!〜 3 μ m、 幅 200nm〜800nmの プロック状であった。 この際得られた、 分子集合体の SEM写真を図 20に示す。 〔実施例 3 - 3〕
交流電流 (振幅 5.0V、 周波数 0.5HZ、 正弦波) 、 電解期間 20分とした以外は、 実施例 3— 1と同様にして分子集合体を得た。
このようにして得られた分子集合体は、 長さ
Figure imgf000023_0001
111、 幅 50ηπ!〜 1 mの 針状束であった。 この際得られた、 分子集合体の SEM写真を図 21に示す。 〔実施例 3— 4〕
交流電流 (振幅 5.0V、 周波数 0,2Hz、 正弦波) 、 電解期間 23分とした以外は、 実施例 3— 1と同様にして分子集合体を得た。 このようにして得られた分子集合体は、 長さ l^m〜3 m、 幅 100nm〜500nmの 針状束であった。 この際得られた、 分子集合体の SEM写真を図 22に示す。 〔実施例 3— 5〕
交流電流 (振幅 5.0V、 周波数 0.1Hz、 方形波) 、 電解期間 5分とした以外は、 実施例 3— 1と同様にして分子集合体を得た。
このようにして得られた分子集合体は、 長さ 10^m〜20/zm、 φ畐 1 π!〜 2 mの 針状であった。 この際得られた、 分子集合体の SEM写真を図 23に示す。
〔実施例 4一 1〕
基板差し込み部に電極基板を揷入しパテを用いて電極基板を定位置に固定した。 電極の上部と電解セルの銅線の間に金線を渡し、 銀ペーストで固定した (図 2 (b) ) 。 パスツールピペットを用いて基板上に TPP · [Co(Pc) (CN)2]のァセト 二トリル飽和溶液を 1滴、 両電極を覆うように載せた。 基板保持部を電解液保持 部と結合させた後、 銅線にデジタルマルチメータを接続した。 電極に交流電流
(振幅 3.0V、 周波数 2.0HZ、 方形波) を流し、 10秒間静置した。 この際の溶解 液の温度は、 23°Cであった。
このようにして得られた分子集合体は、 長さ 10 πι〜50μπι、 幅は 200nm〜l m の針状であった。 この際得られた、 分子集合体の SEM写真を図 24に示す。 産業上の利用可能性
本発明によれば、 微細な導電性化合物の分子集合体を分子レベル (ナノレべ ル) で制御し、 製造することができることとなる。
本発明の電解装置、 分子集合体の製造方法によれば、 ナノレベルのオーダーで 制御された微小な針状結晶 ·ナノワイヤーを得ることができる。 また、 真空を用 いることなく電解装置を製造することができるため、 費用を大幅に削減すること ができる。 本発明によれば、 分子は電荷移動相互作用によって自己組織的に凝集 するため、 分子に相互作用性の官能基を導入することなく分子集合体 ·ナノワイ ヤーを製造することができる。
また、 本発明によれば分子集合体を溶液内などの真空以外の系で成長させるた め、 真空を破った際に分子集合体の物性が変わるという自体を回避できる。 本発明の分子集合体は、 その構造が分子レベルで制御されており、 様々なデパ イスへの応用が期待される。
本発明の分子集合体が、 有機伝導体の分子集合体であれば、 帯電制御剤や電子 銃、 回路素子などへ応用することができる。
本発明の分子集合体は、 例えば S OMOをもつ分子が存在する場合に、 部分酸 化状態となり、 従来の微小分子集合体 (ナノワイヤーなど) と異なり高い導電性 をもつ。 したがって、 LSI などの分子配線に利用可能である。 また、 本発明の微 小分子集合体自体で FET素子を製造することが可能である。 本発明の微小分子集 合体の構成成分の一部を他の機能性分子と置きかえる事で、 伝導度を制御するこ とや、 磁気機能をもたせること、 光導電性をもたせること、 メモリー機能をもた せることが可能である。
また、 1または 2分子のみを電子回路の接続に用い、 連結デバイスとすること で、 例えば単電子トンネル素子や単電子トランジスタのような分子レベルでの機 能性素子を製造することが可能である。
また、 本発明によれば、 所望の機能を持った電子回路を分子レベルで容易かつ 簡便に製造することができ、 当該機能をも容易に制御することができる。

Claims

請求の範囲
1 . 2本の電極と、
電解液と前記 2本の電極とを保持する電解セルとを含み、
前記 2本の電極の間隔が Inn!〜 100 mであり、
前記電解セルに分子集合体を構成する分子を含む電解液を保持させ、 電解液と 前記 2本の電極とが接触した状態で前記 2本の電極に電圧を印加することにより 分子集合体を製造する電解装置。
2 . 前記 2本の電極に印加する電圧を制御するための電圧制御装置、 または前記 2本の電極に供給する電流を制御するための電流制御装置のいずれかまたは両方 をさらに備え、
前記 2本の電極が基板上に形成されることを特徴とする、
請求項 1に記載の分子集合体を製造する電解装置。
3 . 基板上に設けられ、 対向する 2本の電極と、
電解液と前記基板とを保持する電解セルと、
前記 2本の電極と連結され、 前記 2本の電極に印加する電圧を制御するための 電圧制御装置と、
を具備する分子集合体を製造するため電解装置であって、
前記電解セルは、
電解液を保持する電解液保持部と、
前記基板を差し込む基板差し込み部とを含み、
前記 2本の電極は、 それぞれの電極の途中に存在し、 もう一方の電極方向へ向 けた凸部である突起部か、 又は前記それぞれの電極の先端にあって、 もう一方の 電極方向へ電極が曲げられてなる突起部を有し、
前記基板上に設けられた 2本の電極の最も近接した部位の間隔は、 lnm〜 100 / mであり、
前記電解セルに分子集合体を構成する分子を含む電解液を保持させ、 電解液と 前記 2本の電極とが接触した状態で前記 2本の電極に電流を流すことにより分子 集合体を製造する電解装置。
4 . 前記 2本の対向する電極の突起部のうちそれぞれの先端部は、 互いに平行に 対向するか、 またはもう一方の突起部に近接するに従って先細状となっており、 前記 2本の電極は、 絶縁物に覆われた絶縁部分を有し、
前記基板差し込み部のうち、 基板差し込み部に基板を差し込んだときに基板と 接触する部位は、 絶縁物により被覆されている請求項 3に記載の分子集合体を製 造する電解装置。
5 . 基板と、 基板上に設けられたゲート電極と、 前記ゲート電極を被覆する絶縁 層と、 前記絶縁層上に設けられた対向する 2本の電極と、
電解液と前記基板とを保持する電解セルと、
前記ゲート電極および 2本の電極とにより連結され、 前記ゲート電極および 2 本の電極に印加する電圧を制御するための電圧制御装置と、
を具備する分子集合体を製造するため電解装置であって、
前記電解セルは、
電解液を保持する電解液保持部と、
前記基板を差し込む基板差し込み部とを含み、
前記基板差し込み部のうち、 基板差し込み部に基板を差し込んだときに基板と 接触する部位は、 絶縁物により被覆されており、
前記 2本の電極は、 それぞれの電極の途中に存在し、 もう一方の電極方向へ向 けた凸部である突起部か、 又は前記それぞれの電極の先端にあって、 もう一方の 電極方向へ電極が曲げられてなる突起部を有し、
前記 2本の対向する電極の突起部のうちそれぞれの先端部は、 互いに平行に対 向する力 \ またはもう一方の突起部に近接するに従って先細状となっており、 前記 2本の電極は、 絶縁物に覆われた絶縁部分を有し、
前記基板上に設けられた 2本の電極の最も近接した部位の間隔は、 Inn!〜 100 /z mであり、
前記電解セルに分子集合体を構成する分子を含む電解液を保持させ、 電解液と 前記 2本の電極とが接触した状態で前記 2本の電極に電圧を印加することにより 分子集合体を製造する電解装置。
6 . 基板上に設けられ、 対向する 2本の電極と、 電解液と前記基板とを保持する電解セルと、
前記 2本の電極と電極線により連結され、 前記 2本の電極に印加する電圧を制 御するための電圧制御装置と、
を具備する分子集合体を製造するため電解装置の製造方法であって、
前記基板上に金属膜を形成する金属膜形成工程と、
前記金属膜形成工程で蒸着された金属膜の上にレジスト層を形成するレジスト 層形成工程と、
前記レジスト層形成工程により形成されたレジスト層を所望のパターンに感光 させる感光工程と、
前記感光工程において感光されたレジスト層を現像する現像工程と、 前記現像工程後に残ったレジスト層をマスクとして、 金属膜をエッチングする エッチング工程とを含む工程により、
間隔が Inn!〜 100 μ πιである電極を基板上に形成する工程とを含む、
前記電解セルに分子集合体を構成する分子を含む電解液を保持させ、 電解液と 前記 2本の電極とが接触した状態で前記 2本の電極に電圧を印加することにより 分子集合体を製造する電解装置の製造方法。
7 . 基板上に設けられ、 対向する 2本の電極と、
電解液と前記基板とを保持する電解セルと、
前記 2本の電極と電極線により連結され、 前記 2本の電極に印加する電圧を制 御するための電圧制御装置と、
を具備する分子集合体を製造するため電解装置の製造方法であって、
前記基板上に金属膜を形成する金属膜形成工程と、
前記金属膜形成工程で蒸着された金属膜の上にレジスト層を形成するレジスト 層形成工程と、
前記レジスト層形成工程により形成されたレジスト層を所望のパターンに電子 線を照射する電子線照射工程と、
前記電子線照射工程により電子線を照射されたレジスト層を現像する現像工程 と、
前記現像工程後に残ったレジスト層をマスクとして、 前記金属膜をエッチング するエッチング工程とを含む工程により、
間隔が 1ηηι〜100 μ ηιである電極を基板上に形成する工程とを含む、
前記電解セルに分子集合体を構成する分子を含む電解液を保持させ、 電解液と 前記 2本の電極とが接触した状態で前記 2本の電極に電圧を印加することにより 分子集合体を製造する電解装置の製造方法。
8 . 基板上に設けられ、 対向する 2本の電極と、
電解液と前記基板とを保持する電解セルと、
前記 2本の電極と電極線により連結され、 前記 2本の電極に印加する電圧を制 御するための電圧制御装置と、
を具備する分子集合体を製造するため電解装置の製造方法であって、 前記基板上に金属膜を形成する金属膜形成工程と、
前記金属膜形成工程で蒸着された金属膜の上にフォトレジスト層を形成するフ オトレジスト層形成工程と、
前記フォトレジスト層形成工程により形成されたフォトレジスト層を所望のパ ターンに感光させる感光工程と、
前記感光工程によって感光されたフォトレジスト層を現像する第 1の現像工程 と、
前記第 1の現像工程後に残ったフォトレジスト層をマスクとして、 金属膜をェ ツチングする第 1のエッチング工程とを含む工程により、 基板上に電極の概形を 形成する電極概形形成工程と、
前記電極概形形成工程により形成された電極の概形の上に電子線レジスト層を 形成する電子線レジスト層形成工程と、
前記電子線レジスト層形成工程により形成された電子線レジスト層を所望のパ ターンに電子線を照射する電子線照射工程と、
前記電子線照射工程によって電子線を照射された電子線レジスト層を現像する 第 2の現像工程と、
前記第 2の現像工程後に残った電子線レジスト層をマスクとして、 前記金属膜 をエッチングする第 2のエツチング工程とを含む工程により、
間隔が lnm〜: 100 μ ιηである電極を基板上に形成する工程とを含む、 前記電解セルに分子集合体を構成する分子を含む電解液を保持させ、 電解液と 前記 2本の電極とが接触した状態で前記 2本の電極に電圧を印加することにより 分子集合体を製造する電解装置の製造方法。
9. 電解セルに分子集合体を構成する分子を含む電解液を保持させ、 前記電解液 と前記 2本の電極とが接触した状態で前記 2本の電極に電圧を印加することによ り分子集合体を製造する分子集合体の製造方法であって、
前記 2本の電極の間隔を、 lnn^lOO mとなるようにする電極調整工程と、 前記 2本の電極を電解セルに装着する電極装着工程と、
前記分子集合体を有機溶剤に溶解させる電解液調整工程と、
前記電解セルに電解液を注入する電解液注入工程と、
10日以下の間、 前記 2本の電極に、 1 n A〜l mAの電圧を印加し、 前記 2 本の電極の電位差を 10mV〜20 Vとする電解工程と、
を含む分子集合体の製造方法。
10. 印加される電圧が、 直流電圧、 または交流電圧である請求項 9に記載の分 子集合体の製造方法。
1 1. 幅が構成分子 1個分〜 1 μ mであり、
長さが 1 nm〜500 mであり、
% 電子系を持つ有機化合物から成る有機伝導体を構成分子として含む分子集 合体。
1 2. 分子集合体の伝導度が 1 S · cm—1以上である請求項 1 1に記載の分子集合 体。
13. π電子を含む有機伝導体を含む電解液を用い、
最も近接した部位の間隔が、 lnm〜: LOO/ mである 2本の電極から 1秒〜 10日 間、 前記 2本の電極の最大電位差を 10 mV〜 20 Vとする直流電圧または交流 電圧のいずれかまたは両方を前記 2本の電極に印加することにより分子集合体を 製造する工程を含む、
直径が 1 nn!〜 1 tmであり、 長さが 1 nm〜500 μιηである分子集合体を 含む導電性ナノワイヤーの製造方法。
14. 前記 π 電子を含む有機伝導体が、 フタロシアニンのシァノコバルト錯体 である請求項 1 3に記載の導電性ナノワイヤーの製造方法。
1 5 . 前記 π 電子を含む有機伝導体が、 テトラフェニルホスホニゥム ·ジシァ ノコノ レト(III)フタ口シァニンであり、 分子集合体の伝導度が 1 S · cm—1以上で ある請求項 1 3に記載の導電性ナノワイヤーの製造方法。
1 6 . 基板上に設けられた対向する 2本の電極と、
電解液と前記基板とを保持する電解セルと、
前記 2本の電極とにより連結され、 前記 2本の電極に印加する電圧を制御する ための電圧制御装置と、
を具備する電解装置を用いた導電性ナノワイヤーの製造方法であって、 前記電解セルは、
電解液を保持する電解液保持部と、
前記基板を差し込む基板差し込み部とを含み、
前記基板差し込み部のうち、 基板差し込み部に基板を差し込んだときに基板と 接触する部位は、 絶縁物により被覆されており、
前記 2本の電極は、 それぞれの電極の途中に存在し、 もう一方の電極方向へ向 けた凸部である突起部か、 又は前記それぞれの電極の先端にあって、 もう一方の 電極方向へ電極が曲げられてなる突起部を有し、
前記 2本の対向する電極の突起部のうちそれぞれの先端部は、 互いに平行に対 向するか、 またはもう一方の突起部に近接するに従って先細状となっており、 前記 2本の電極は、 絶縁物に覆われた絶縁部分を有し、
前記基板上に設けられた 2本の電極の最も近接した部位の間隔は、 lnm〜 100 /i mであり、
前記電解セルに分子集合体を構成する分子であるテトラフヱニルホスホニゥ ム ·ジシァノコバルト(III)フタロシアニンと、 ァセトニトリルを含む電解液を 保持させ、
電解液と前記 2本の電極とが接触した状態で、 0 . 0 0 1秒〜 1 0日間、 前記 2本の電極の最大電位差を 1 0 mV〜2 0 Vとする直流電圧または交流電圧のい ずれかまたは両方を前記 2本の電極に印加することにより直径が 1 n m〜l μ τη であり、 長さが 1 n m〜5 0 0 μ mである分子集合体を製造する工程を含む、 導電性ナノワイヤーの製造方法。
1 7 . 間隔が lnm〜: ΙΟΟ μ πιである部分を有する電子回路の、 当該間隔を、 π 電 子を含む有機伝導体を含む電解液でつなぐ工程と、
前記電子回路に電圧を印加し、 前記間隔に発生する導電性分子集合体を用いて、 前記間隔を連結する工程と、
を含む電子回路の製造方法。
1 8 . 導電性分子集合体による連結部分を有する電子回路の製造方法であって、 間隔が lnm〜: 100 mであり、 導電性分子集合体により連結される部分を有する電 子回路を、 π 電子を含む有機伝導体を含む電解液と接触させる工程と、 前記間 隔に発生する導電性分子集合体を用いて、 前記間隔を連結する工程と、 を含む電 子回路の製造方法。
1 9 . 導電性分子集合体による連結部分を有する電子回路の製造方法であって、 間隔が分子 1個〜 1 0個分の距離であり、 導電性分子集合体により連結される部 分を有する電子回路を、 π 電子を含む有機伝導体を含む電解液と接触させるェ 程と、 前記間隔に発生する導電性分子集合体を用いて、 前記間隔を連結する工程 と、 を含む電子回路の製造方法。
PCT/JP2003/002713 2002-03-08 2003-03-07 Dispositif et procede pour la realisation d'un nanofil conducteur WO2003076332A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP03744015A EP1496012A4 (en) 2002-03-08 2003-03-07 DEVICE AND METHOD FOR PRODUCING A CONDUCTIVE NANOTHANE
US10/506,668 US7351313B2 (en) 2002-03-08 2003-03-07 Production device and production method for conductive nano-wire
JP2003574562A JP4691648B2 (ja) 2002-03-08 2003-03-07 導電性ナノワイヤーの製造装置および製造方法
US11/961,445 US7918982B2 (en) 2002-03-08 2007-12-20 Production device and production method for conductive nano-wire
US13/034,122 US20110162968A1 (en) 2002-03-08 2011-02-24 Production device and production method for conductive nano-wire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002063400 2002-03-08
JP2002-63515 2002-03-08
JP2002063515 2002-03-08
JP2002-63400 2002-03-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10506668 A-371-Of-International 2003-03-07
US11/961,445 Division US7918982B2 (en) 2002-03-08 2007-12-20 Production device and production method for conductive nano-wire

Publications (1)

Publication Number Publication Date
WO2003076332A1 true WO2003076332A1 (fr) 2003-09-18

Family

ID=27806945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002713 WO2003076332A1 (fr) 2002-03-08 2003-03-07 Dispositif et procede pour la realisation d'un nanofil conducteur

Country Status (4)

Country Link
US (3) US7351313B2 (ja)
EP (1) EP1496012A4 (ja)
JP (3) JP4691648B2 (ja)
WO (1) WO2003076332A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104260A1 (ja) * 2004-04-20 2005-11-03 Riken 素子、これを用いた薄膜トランジスタおよびセンサ、ならびに素子の製造方法
JP2007000991A (ja) * 2005-06-27 2007-01-11 National Institute Of Information & Communication Technology 非導電性ナノワイヤー及びその製造方法
JP2007005684A (ja) * 2005-06-27 2007-01-11 National Institute Of Information & Communication Technology 導電性ナノワイヤーを用いたトランジスタ
JP2010045124A (ja) * 2008-08-11 2010-02-25 National Institute Of Information & Communication Technology 導電性ナノワイヤによる磁気スイッチング素子
WO2010122921A1 (ja) * 2009-04-23 2010-10-28 Dic株式会社 フタロシアニンナノワイヤー、それを含有するインキ組成物及び電子素子、並びにフタロシアニンナノワイヤーの製造方法
JP2011056617A (ja) * 2009-09-09 2011-03-24 Japan Science & Technology Agency 極小ワイヤー状分子集合体及びその製造方法
WO2011065133A1 (ja) * 2009-11-26 2011-06-03 Dic株式会社 光電変換素子用材料及び光電変換素子
JP2012069946A (ja) * 2011-09-20 2012-04-05 National Institute Of Information & Communication Technology 非導電性ナノワイヤー及びその製造方法
CN110730760A (zh) * 2017-03-08 2020-01-24 耐诺维尔德有限公司 提供多个纳米线的装置和方法
KR102243520B1 (ko) * 2019-11-20 2021-04-21 포항공과대학교 산학협력단 신규 프탈로시아닌 나노 와이어 및 이의 용도

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076332A1 (fr) * 2002-03-08 2003-09-18 Communications Research Laboratory, Independent Administrative Institution Dispositif et procede pour la realisation d'un nanofil conducteur
JP4133655B2 (ja) * 2003-07-02 2008-08-13 独立行政法人科学技術振興機構 ナノカーボン材料の製造方法、及び配線構造の製造方法
US7181836B2 (en) * 2003-12-19 2007-02-27 General Electric Company Method for making an electrode structure
US7132837B1 (en) * 2004-08-26 2006-11-07 Arizona Board Of Regents System and method for measuring conductivity on molecular level
EP2013611A2 (en) * 2006-03-15 2009-01-14 The President and Fellows of Harvard College Nanobioelectronics
CN100555702C (zh) * 2006-04-29 2009-10-28 中国科学院长春应用化学研究所 有机半导体晶体薄膜及弱取向外延生长制备方法和应用
CA2547183A1 (en) * 2006-05-17 2007-11-17 Ozomax Inc. Portable ozone generator for purifying water and use thereof
WO2008051316A2 (en) * 2006-06-12 2008-05-02 President And Fellows Of Harvard College Nanosensors and related technologies
WO2008147399A1 (en) * 2006-11-20 2008-12-04 The Regents Of The University Of California Gated electrodes for electrolysis and electrosynthesis
US8575663B2 (en) 2006-11-22 2013-11-05 President And Fellows Of Harvard College High-sensitivity nanoscale wire sensors
US7951698B2 (en) * 2006-12-05 2011-05-31 Electronics And Telecommunications Research Institute Method of fabricating electronic device using nanowires
US9297796B2 (en) 2009-09-24 2016-03-29 President And Fellows Of Harvard College Bent nanowires and related probing of species
US9595685B2 (en) 2011-06-10 2017-03-14 President And Fellows Of Harvard College Nanoscale wires, nanoscale wire FET devices, and nanotube-electronic hybrid devices for sensing and other applications
JP5500316B2 (ja) * 2012-01-30 2014-05-21 株式会社村田製作所 電子部品の製造方法
US20220099615A1 (en) * 2019-01-18 2022-03-31 Universal Sequencing Technology Corporation Devices, Methods, and Chemical Reagents for Biopolymer Sequencing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022480A1 (en) * 1992-04-24 1993-11-11 Isis Innovation Limited Electrochemical treatment of surfaces
WO1993025003A1 (en) * 1992-06-01 1993-12-09 Yale University Sub-nanoscale electronic systems, devices and processes
JPH06321686A (ja) 1993-03-15 1994-11-22 Wako Pure Chem Ind Ltd 金属原子をドープした炭素クラスター化合物の新規製造法
JP2001207288A (ja) * 2000-01-27 2001-07-31 Canon Inc 細孔内への電着方法及び構造体
US20010018515A1 (en) * 2000-01-28 2001-08-30 Yoshiaki Kobuke Poly(porphyrin) having imidazolyl porphyrin metal complex as unit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200996A (ja) * 1985-03-04 1986-09-05 Agency Of Ind Science & Technol 有機導電体結晶の製造方法
US4986886A (en) * 1990-05-30 1991-01-22 Drexel University Polymerization of thiophene and its derivatives
JP2002526354A (ja) * 1998-09-28 2002-08-20 ザイデックス コーポレイション Memsデバイスの機能的要素としてのカーボンナノチューブを製造するための方法
JP2000284054A (ja) * 1999-03-31 2000-10-13 Seiko Instruments Inc 超伝導放射線検出器とその製造方法とそれを用いた装置
US6297063B1 (en) * 1999-10-25 2001-10-02 Agere Systems Guardian Corp. In-situ nano-interconnected circuit devices and method for making the same
US6447663B1 (en) * 2000-08-01 2002-09-10 Ut-Battelle, Llc Programmable nanometer-scale electrolytic metal deposition and depletion
US20020061662A1 (en) * 2000-08-25 2002-05-23 Peter Boggild Fabrication and application of nano-manipulators with induced growth
US6755956B2 (en) * 2000-10-24 2004-06-29 Ut-Battelle, Llc Catalyst-induced growth of carbon nanotubes on tips of cantilevers and nanowires
JP3863721B2 (ja) * 2000-12-07 2006-12-27 喜萬 中山 ナノチューブカートリッジの製造方法
US6949762B2 (en) * 2002-01-11 2005-09-27 Xerox Corporation Polythiophenes and devices thereof
WO2003076332A1 (fr) * 2002-03-08 2003-09-18 Communications Research Laboratory, Independent Administrative Institution Dispositif et procede pour la realisation d'un nanofil conducteur
US6879143B2 (en) * 2002-04-16 2005-04-12 Motorola, Inc. Method of selectively aligning and positioning nanometer-scale components using AC fields
WO2004015772A1 (en) * 2002-08-08 2004-02-19 Nanoink, Inc. Protosubstrates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022480A1 (en) * 1992-04-24 1993-11-11 Isis Innovation Limited Electrochemical treatment of surfaces
WO1993025003A1 (en) * 1992-06-01 1993-12-09 Yale University Sub-nanoscale electronic systems, devices and processes
JPH06321686A (ja) 1993-03-15 1994-11-22 Wako Pure Chem Ind Ltd 金属原子をドープした炭素クラスター化合物の新規製造法
JP2001207288A (ja) * 2000-01-27 2001-07-31 Canon Inc 細孔内への電着方法及び構造体
US20010018515A1 (en) * 2000-01-28 2001-08-30 Yoshiaki Kobuke Poly(porphyrin) having imidazolyl porphyrin metal complex as unit

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Lectures on Experimental Chemistry 12, Functionality of Substances", MARUZEN, pages: 40 - 45
HASEGAWA H. ET AL.: "A highly conducting partially oxideized salt of axially substituted phthalocyanine. Structure and physical properties of TPP(Co(Pc)(CN)2)2(TPP=tetraphenylphosphonium, (Co(Pc)(CN)2)2=dicyano(phthalocyaninato)cobalt (III))", JOURNAL OF MATERIALS CHEMISTRY, vol. 8, no. 7, July 1998 (1998-07-01), pages 1567 - 1570, XP002970070 *
RUHLMANN L. ET AL.: "A polycationic zinc-5, 15-dichlorooctaethylporphyrinate-viologen Wire", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 121, no. 28, 21 July 1999 (1999-07-21), pages 6664 - 6667, XP002970071 *
See also references of EP1496012A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878552B2 (ja) * 2004-04-20 2012-02-15 独立行政法人理化学研究所 素子、これを用いた薄膜トランジスタおよびセンサ、ならびに素子の製造方法
WO2005104260A1 (ja) * 2004-04-20 2005-11-03 Riken 素子、これを用いた薄膜トランジスタおよびセンサ、ならびに素子の製造方法
JP2007000991A (ja) * 2005-06-27 2007-01-11 National Institute Of Information & Communication Technology 非導電性ナノワイヤー及びその製造方法
JP2007005684A (ja) * 2005-06-27 2007-01-11 National Institute Of Information & Communication Technology 導電性ナノワイヤーを用いたトランジスタ
JP2010045124A (ja) * 2008-08-11 2010-02-25 National Institute Of Information & Communication Technology 導電性ナノワイヤによる磁気スイッチング素子
WO2010122921A1 (ja) * 2009-04-23 2010-10-28 Dic株式会社 フタロシアニンナノワイヤー、それを含有するインキ組成物及び電子素子、並びにフタロシアニンナノワイヤーの製造方法
US8470204B2 (en) 2009-04-23 2013-06-25 Dic Corporation Phthalocyanine nanowires, ink composition and electronic element each containing same, and method for producing phthalocyanine nanowires
JP2011056617A (ja) * 2009-09-09 2011-03-24 Japan Science & Technology Agency 極小ワイヤー状分子集合体及びその製造方法
WO2011065133A1 (ja) * 2009-11-26 2011-06-03 Dic株式会社 光電変換素子用材料及び光電変換素子
JP4844701B2 (ja) * 2009-11-26 2011-12-28 Dic株式会社 光電変換素子用材料及び光電変換素子
US8629431B2 (en) 2009-11-26 2014-01-14 Dic Corporation Material for photoelectric conversion device and photoelectric conversion device
JP2012069946A (ja) * 2011-09-20 2012-04-05 National Institute Of Information & Communication Technology 非導電性ナノワイヤー及びその製造方法
CN110730760A (zh) * 2017-03-08 2020-01-24 耐诺维尔德有限公司 提供多个纳米线的装置和方法
CN110730760B (zh) * 2017-03-08 2023-11-21 耐诺维尔德有限公司 提供多个纳米线的装置和方法
KR102243520B1 (ko) * 2019-11-20 2021-04-21 포항공과대학교 산학협력단 신규 프탈로시아닌 나노 와이어 및 이의 용도

Also Published As

Publication number Publication date
US20050138804A1 (en) 2005-06-30
EP1496012A1 (en) 2005-01-12
EP1496012A4 (en) 2008-06-18
US20110162968A1 (en) 2011-07-07
JP2009079295A (ja) 2009-04-16
JP5322012B2 (ja) 2013-10-23
JPWO2003076332A1 (ja) 2005-07-07
JP2011115942A (ja) 2011-06-16
US7351313B2 (en) 2008-04-01
JP4691648B2 (ja) 2011-06-01
US7918982B2 (en) 2011-04-05
US20080182388A1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP5322012B2 (ja) 導電性ナノワイヤーの製造方法
JP5153346B2 (ja) カーボン・ナノチューブを酸化物の表面に選択的に配置する方法
Gubin et al. Molecular clusters as building blocks for nanoelectronics: the first demonstration of a cluster single-electron tunnelling transistor at room temperature
Aliofkhazraei et al. Graphene science handbook: Fabrication methods
WO2004106223A1 (ja) カーボンナノチューブデバイスおよびその製造方法、並びに、カーボンナノチューブ転写体
Vázquez Sulleiro et al. Fabrication of devices featuring covalently linked MoS2–graphene heterostructures
JP2006342040A (ja) 筒状分子構造およびその製造方法、並びに前処理基板およびその製造方法
Aswal et al. Hybrid molecule-on-silicon nanoelectronics: Electrochemical processes for grafting and printing of monolayers
US6562633B2 (en) Assembling arrays of small particles using an atomic force microscope to define ferroelectric domains
US7504014B2 (en) High density interconnections with nanowiring
EP3760584A1 (en) Surface-modified carbon material, and method for producing surface-modified carbon material
US10367145B2 (en) Self-assembly of nanostructures
JP5008048B2 (ja) 導電性ナノワイヤーを用いたトランジスタ
KR101358941B1 (ko) 이온성 액체를 이용한 전도성 탄소나노튜브 및 이를 이용한바이오센서
Kelly et al. Scanning tunneling microscopy and spectroscopy of dialkyl disulfide fullerenes inserted into alkanethiolate SAMs
Hunter et al. Nanostructured material sensor processing using microfabrication techniques
JP5453628B2 (ja) 非導電性ナノワイヤー及びその製造方法
JPH09129637A (ja) 微細パターン形成方法
Wang Investigation of electrical properties of monolayer oxo-functionalized graphene-based two-dimensional materials
JP3235120B2 (ja) 分子配列方法及びその装置
Kisner et al. In situ fabrication of ultrathin porous alumina and its application for nanopatterning Au nanocrystals on the surface of ion-sensitive field-effect transistors
CN116193869A (zh) 基于片上纳米颗粒结构的自组装单分子层集成芯片
Aldave et al. All‐Dry Deterministic Transfer of Thin Gold Nanowires for Electrical Connectivity
KR100993913B1 (ko) 원자 힘 현미경 리소그래피를 이용한 금속 나노 패턴의 제조 방법
Li Nanometer-scale electrochemical synthesis of materials using a scanning tunneling microscope

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003574562

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10506668

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2003744015

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003744015

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003744015

Country of ref document: EP