Vakuumpumpe
Die Erfindung bezieht sich auf eine Vakuumpumpe mit mindestens einer Rotorwelle, die einen Rotorabschnitt mit einem Rotor, einen Lagerabschnitt mit einem Lager und axial zwischen dem Rotorabschnitt und dem Lagerabschnitt eine Wellendichtungsanordnung aufweist .
Derartige Vakuumpumpen können u.a. als Schraubenpumpen, Seiten- kanalverdichter, und Rootspumpen ausgebildet sein. Den genannten Vakuumpumpen ist gemeinsam, dass sie trockenverdichtende Vakuumpumpen mit öl- oder fettgeschmierten Lagern und/oder Getrieben sind. Diese Pumpen werden in der Regel zur Erzeugung von Vorvakuum eingesetzt. Die Aufgabe der Dichtungsanordnung zwischen dem eigentlichen Rotor und dem Lager bzw. Getriebe liegt zum einen in der Vermeidung von Gasdurchtritt von dem Rotorabschnitt zu dem Lagerabschnitt und andererseits in der Vermeidung von Flüssigkeitsdurchtritt von dem Lagerabschnitt in den Rotorabschnitt . Bei niedrigen Rotordrehzahlen
und geringen Rotorwellendurchmessern können relativ gut dichtende berührende Dichtungen eingesetzt werden, beispielsweise in Form von Radialwellendichtringen, Gleitringen etc. Bei höheren Drehzahlen und größeren Rotorwellendurchmessern können nur berührungsfreie Wellendichtungen eingesetzt werden, die jedoch konstruktionsbedingt Leckagen nicht völlig ausschließen können .
Eine bekannte berührungslose Wellendichtungsanordnung besteht aus einem oder mehreren Kolbendichtringen als Gasdichtung und einem Ölspritzring als Öldichtung. Hiermit lässt sich jedoch keine zuverlässige und hohe Dichtungswirkung erzielen. Das in dem Rotorabschnitt verdichtete Gas soll jedoch nicht mit dem Öl aus dem Lagerabschnitt in Verbindung kommen, da das Öl hierdurch ggf. zersetzt werden und seine Schmierfähigkeit hierdurch verlieren kann. Das austretende Öl, Gas oder Gasgemisch kann auch toxisch oder explosiv und daher gefährlich sein.
Aufgabe der Erfindung ist es daher, bei einer Vakuumpumpe die eine Gasdichtung und einer Öldichtung aufweisende Wellendichtung zu verbessern.
Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Anspruchs 1 gelöst .
Bei der erfindungsgemäßen Vakuumpumpe ist die Wellendichtungsanordnung derart ausgebildet, dass zwischen der rotorseitigen Gasdichtung und der lagerseitigen Öldichtung eine die Rotorwelle umgebende Trennkammer vorgesehen ist, die durch mindestens einen Trennkammer-Lüftungskanal belüftet wird. Durch den Lüftungskanal wird die Trennkammer auf einen gewünschten Gasdruck eingestellt. Hierdurch wird erreicht, dass die über der Gasdichtung abfallende Druckdifferenz und die über der Öl-
dichtung abfallende Druckdifferenz eingestellt werden können. So kann die Trennkammer durch den Lüftungskanal beispielsweise mit atmosphärischem Gasdruck oder mit dem lagerseitigen Gasdruck beaufschlagt werden, so dass der Gasdruck in der Trennkammer nicht unter dem lagerseitigen Gasdruck liegt. Hierdurch kann vermieden werden, dass das Öl von der Lagerseite durch die Öldichtung Richtung Trennkammer wandert . Gegenüber dem Gasdruck auf der Rotorseite der Gasdichtung kann der Trennkammer-Gasdruck höher eingestellt sein, so dass explosive und/oder toxische Gase aus dem Rotorabschnitt nicht durch die Gasdichtung entweichen können. Auf diese Weise wird eine Wellendichtungsanordnung realisiert, die auch bei konstruktionsbedingt nicht vollständig dichtenden Gas- und Öldichtungen einen Übertritt von Gas aus dem Rotorabschnitt in den Lagerabschnitt und von Öl aus dem Lagerabschnitt in den Rotorabschnitt auf einfache Weise und zuverlässig verhindert. Für die Trennkammer ist nur ein geringer Herstellungsaufwand und Raumbedarf erforderlich, so dass mit geringen Mitteln eine kompakte und wirkungsvolle Wellendichtungsanordnung realisiert wird.
Gemäß einer bevorzugten Ausgestaltung mündet der Trennkammer- Lüf ungskanal außerhalb der Pumpe in die umgebende Atmosphäre. Auf diese Weise herrscht in der Trennkammer stets Atmosphärendruck und der gleiche Gasdruck wie in dem Lagergehäuse, wenn dieses ebenfalls zur Umgebung entlüftet wird. Das Druckgefälle über der Öldichtung ist dann praktisch gleich Null, so dass wegen fehlender Druckdifferenz auch kein Öl von dem Lagerabschnitt in Richtung Trennkammer bzw. Rotorabschnitt gepresst wird.
Gemäß einer bevorzugten Ausgestaltung sind die Gasdichtung und die Öldichtung jeweils als berührungsfreie Dichtungen ausgebildet. Hierdurch kann die Wellendichtungsanordnung auch in Va-
kuumpumpen mit hohen Drehzahlen und hohen Rotorwellendurchmessern eingesetzt werden.
Vorzugsweise ist die Gasdichtung als Spaltdichtung oder als Labyrinthdichtung, mit Kolbenringen oder mit schwimmenden Dichtringen ausgebildet. Die Gasdichtung ist in jedem Fall eine berührungsfreie Drosseldichtung, durch die der Gasdurchtritt auf ein unvermeidbares Minimum reduziert wird.
Vorzugsweise weist die Labyrinthdichtung der Gasdichtung mindestens einen Kolbenring auf, der in eine Ringnut der Rotorwelle hineinragt. Der Kolbenring ist nach außen vorgespannt und daher gehäuseseitig fixiert und feststehend. Der Kolbenring ragt in die Rotorwellen-Ringnut hinein, wodurch zwischen dem Kolbenring und der Ringnut ein labyrinthartig verlaufender Spalt gebildet wird, der als Drosseldichtung wirkt. Die Gasdichtung kann mehrere axial hintereinander angeordnete derartige Labyrinthdichtungen aufweisen.
Vorzugsweise weist die Öldichtung auf der Rotorwelle einen umlaufenden Ölschleuderring auf, der in eine gehäuseseitige ringförmige Schleuderkammer hineinragt, die an einen Ölrücklauf- kanal zu dem Lagergehäuse angeschlossen ist. Auf diese Weise wird eine effektive berührungsfreie Öldichtung geschaffen.
Gemäß einer bevorzugten Ausgestaltung sind zwischen dem Ölschleuderring und den gehäuseseitigen Schleuderkammerwänden radiale und/oder axiale nicht -konische oder konische Spalte gebildet. Der Ölschleuderring und die gegenüberliegenden feststehenden Wände sind so ausgebildet, dass das eintretende Öl bei rotierender Rotorwelle nach außen abgeschleudert wird und das nicht abgeschleuderte Öl nach unten in den Rücklaufkanal abläuft .
Vorzugsweise weist die Öldichtung axialrotorseitig des Öl- schleuderrings mindestens eine ringförmige Fangkammer mit einem Ölablaufkanal auf, der in das Lagergehäuse mündet. Die Öldichtung besteht also aus zwei oder mehr axial hintereinander- liegenden Schleuder- bzw. Fangkammern mit einem Ölablaufkanal. Die Ölablaufkanäle können in einem einzigen Kanal zusammenge- fasst sein, es kann jedoch auch jeder Schleuder- bzw. Fangkammer ein eigener getrennter Ölablaufkanal zugeordnet sein. Hierdurch werden gegenseitige Störungen beim Ölablauf ausgeschlossen, so dass die Öldichtung auch bei Störungen in einem Ölablaufkanal in ihrer Dichtungswirkung nur geringfügig beeinflusst wird.
Vorzugsweise ist jeder Schleuder- bzw. Fangkammer der Öldichtung mindestens ein Lüftungskanal zugeordnet . Der Lüftungskanal kann zwar nach außen zur Atmosphäre sollte aber vorzugsweise zum Lagergehäuse zurück geführt sein. Die Schleuderkammern können über einen einzigen gemeinsamen Lüftungskanal, oder aber über jeweils mindestens einen eigenen Lüftungskanal belüftet werden. Durch die Belüftung durch die Belüftungskanäle wird sichergestellt, dass sich auch innerhalb der Öldichtung, also zwischen den einzelnen Schleuderkammern keine Druckdifferenz bildet. Eine Gasströmung und damit eine Mitnahme von Öl in Richtung Trennkammer bzw. Rotorabschnitt ist damit praktisch ausgeschlossen. Auch der Übertritt von Gasen aus der Trennkammer in Richtung Lagergehäuse wird daher weitgehend unterbunden.
Gemäß einer bevorzugten Ausgestaltung mündet der Trennkammer- Lüftungskanal in der Nähe vom tiefsten Punkt der Trennkammer und weist ein Gefälle auf, so dass eine eventuell austretende Flüssigkeit aus der Trennkammer ablaufen kann. Selbst wenn Öl oder andere Flüssigkeiten aus dem Lagerabschnitt oder aus dem
Rotorabschnitt bis zur Trennkammer gelangen sollten, könnte diese nach außen ablaufen. Hierdurch wird sichergestellt, dass sich keine Flüssigkeit in der Trennkammer ansammeln kann.
Vorzugsweise ist das Lager axial rotorseitig gedeckelt ausgebildet. Hierdurch wird bereits zwischen dem Lager und der Wellendichtungsanordnung eine erste Barriere für Öl bzw. andere Flüssigkeiten aus dem Lager realisiert.
Gemäß einer bevorzugten Ausgestaltung ist an den Trennkammer- Lüftungskanal eine Sperrgasquelle angeschlossen, durch die unter Überdruck ein Sperrgas in die Trennkammer eingeleitet wird. Dies ist dann erforderlich und sinnvoll wenn in dem Rotorabschnitt giftige und/oder explosive Gase gefördert werden. Durch die Einspeisung des Trenngases wird ein kleiner Trenngasstrom von der Trennkammer in Richtung Rotorabschnitt erzeugt. Auf diese Weise kann der Austritt von Gas aus dem Rotorabschnitt verhindert werden. Als Sperrgas können beispielsweise Luft oder Stickstoff verwendet werden. Durch die Einspeisung von Sperrgas in die Trennkammer wird der Trennkammerdruck gegenüber dem Druck in dem Lagerabschnitt bzw. Lagergehäuse erhöht.
Zur Vermeidung jeder Druckdifferenz zwischen dem Lagerabschnitt und der Trennkammer kann zusätzlich eine Sperrgasleitung von der Sperrgasquelle zu dem Lagergehäuse bzw. dem Lagerabschnitt vorgesehen sein. Auf diese Weise wird sichergestellt, dass über der Öldichtung kein nennenswertes Druckgefälle entsteht. Das Sperrgas hat einen Druck von beispielsweise 1,3 bar.
Gemäß einer bevorzugten Ausgestaltung ist die Rotorwelle als fliegende Rotorwelle ausgebildet, die nur an der Druckseite des Rotorabschnittes gelagert ist, an der Saugseite des Rotorab-
Schnittes der Rotorwelle jedoch lagerfrei ausgebildet ist. Auf diese Weise wird ein Lager im Bereich größerer Unterdrücke vermieden, so dass auch die bei großen Druckunterschieden problematische Wellendichtungsanordnung auf der Saugseite der Rotorwelle vermieden wird. Fliegende Rotorwellen weisen aus Stabilitätsgründen einen relativ großen Wellendurchmesser auf. Erst durch die vorliegende Wellendichtungsanordnung und das Vorsehen einer Trennkammer zwischen der Gasdichtung und der Öldichtung können die mit großen Rotorwellendurchmessern verbundenen hohen Umfangsgeschwindigkeiten abgedichtet werden, ohne eine unzumutbar große Leckage in Kauf nehmen müssen.
Im folgenden wird unter Bezugnahme auf die Zeichnungen ein Aus- führungsbeispiel der Erfindung näher erläutert .
Es zeigen:
Fig. 1 eine Vakuum-Schraubenpumpe im Längsschnitt,
Fig. 2 das Gehäuse der Schraubenvakuumpumpe der Fig. 1 im Querschnitt ,
Fig. 3 ein Ausschnitt eines Längsschnittes entlang der Schnittlinie X-III des Pumpengehäuses der Fig. 2, und
Fig. 4 einen Längsschnitt des Pumpengehäuses der Fig. 2 entlang der Schnittlinie X-IV.
Die in den Fign. 1 bis 4 dargestellte Vakuumpumpe 10 ist eine Schraubenvakuumpumpe zur Erzeugung eines Vorvakuums. Die Vakuumpumpe 10 wird im Wesentlichen von einem Gehäuse gebildet, in dem zwei Rotorwellen drehbar gelagert sind, von denen in den Figuren 1-4 nur die Hauptrotorwelle 12 dargestellt ist. Die
Rotorwelle 12 weist einen Rotorabschnitt 14 mit einem schraubenförmigen Rotor 16, einen Lagerabschnitt 18 mit zwei Wälzlagern 20 und axial zwischen dem Rotorabschnitt 14 und dem Lagerabschnitt 18 einen Abschnitt mit einer Wellendichtungsanordnung 22 auf. An dem rotorseitigen Ende 24 der Rotorwelle 12 ist kein Wälzlager vorgesehen.
Durch die Drehung der schraubenförmigen Rotoren wird an deren fliegenden Enden der Rotorabschnitte 14 ein Gas durch eine nichtdargestellte Ansaugleitung angesaugt, um auf diese Weise in einem an die Ansaugleitung angeschlossenen Rezipienten einen Unterdruck zu erzeugen. Das angesaugte Gas wird durch Zusammenwirken des dargestellten Rotors 16 mit einem zweiten Rotor einer zweiten nicht dargestellten Rotorwelle zur Druckseite des Rotorabschnittes 14 hin verdichtet und dort mit ungefähr atmosphärischem Druck über einen nicht dargestellten Gasauslass abgeführt .
In dem Lagerabschnitt 18 der Rotorwelle 12 sind zur drehbaren Lagerung zwei Wälzlager vorgesehen, von denen nur das rotor- seitige Wälzlager 20 dargestellt ist. Ferner weist die Rotorwelle 12 in dem Lagerabschnitt 18 ein Zahnrad 26 auf, über das die Rotorwelle 12 angetrieben wird. Zur Schmierung und zur Kühlung der Wälzlager 20 und des bzw. der Zahnräder 26 enthält der von dem Lagergehäuse 28 gebildete Lagergehäuseinnenraum 30 einen Ölvorrat .
Die Wellendichtungsanordnung weist im Wesentlichen drei axiale Abschnitte auf, nämlich rotorseitig eine Gasdichtung 32, lager- seitig eine Öldichtung 34 und dazwischen eine Trennkammer 36. Die Wellendichtungsanordnung 22 wird von einem Dichtungsgehäuse 66 umgeben.
Die Gasdichtung 32 wird von drei Kolbenringen 38 gebildet, die axial hintereinanderliegend angeordnet sind. Die Kolbenringe 38 sind nach außen vorgespannt und daher kraftschlüssig mit dem feststehenden Gehäuse verbunden. Die Kolbenringe 38 greifen jeweils in eine Ringnut 40 der Rotorwelle 12 ein, so dass sich durch die drei Kolbenringe 38 in den Ringnuten 40 ein im Längsschnitt mäanderartig verlaufender Spalt ergibt. Auf diese Weise ist eine berührungsfreie Labyrinthdichtung gebildet, die bei Druckdifferenzen von weniger als 0,5 bar eine zufriedenstellende Gasabdichtung gewährleistet.
Die Öldichtung 34 besteht aus mehreren Teilen. Der lagerseitige Abschnitt der Öldichtung 34 weist rotorwellenseitig einen Ölschleuderring 42 auf, der im Längsschnitt ein wellenartiges Profil aufweist. Hierdurch und durch entsprechend komplementäre Ausformung des den Ölschleuderring 42 umgebenden Gehäuses 44 wird sichergestellt, dass das Öl aus dem Lagerabschnitt 18 kommend bei rotierender Rotorwelle 12 durch den rotierenden Ölschleuderring 42 nach außen abgeschleudert wird, und durch eine entsprechende feststehende Rinne nach unten abgeleitet wird, von wo aus es durch einen Ölrücklaufkanal 46 zurück in das Lagergehäuse ablaufen muss. Der Ölschleuderring 42 ist gehäuse- seitig von einer ringförmigen Schleuderkammer 48 umgeben, die der Aufnahme und Ableitung des von dem Ölschleuderring 42 nach außen geschleuderten Öles durch den Ölrücklaufkanal 46 dient. Die Öldichtung 34 weist an den Ölschleuderring 42 axial rotor- seitig anschließend zwei ringförmige Öl -Fangkammern 50,52 auf, denen rotorwellenseitig jeweils eine umlaufende Ringnut 58 zugeordnet ist. Die Olschleuderkammer 48 hat ein größeres Volumen als die beiden sich axial anschließenden Öl -Fangkammern 50,52.
Sowohl die ringförmig umlaufende Schleuderkammer 48 als auch die ebenfalls ringförmig ausgebildeten Öl -Fangkammern 50,52 weisen in der Nähe ihres höchsten Punkts jeweils einen eigenen Lüf ungskanal 59 auf, der in axialer Richtung jeweils in das Lagergehäuse 28 führt. Die drei Lüftungskanäle 59 sind in Um- fangsrichtung versetzt zueinander angeordnet. Die beiden Öl- Fangkammern 50,52 weisen in der Nähe ihres tiefsten Punkts jeweils einen Öl-Rücklaufkanal 54,56 auf, durch den bis hierhin gelangtes Öl ggf. in das Lagergehäuse 28 zurückfließen kann. Alternativ können unter Verzicht auf eine oder auch beide Öl- fangkammern 50,52 in die ringförmigen Nuten 58 der Rotorwelle 12 auch Kolbenringe eingesetzt sein, um ein Weiterkriechen von Öl axial in Richtung Rotor zu verhindern.
Die ringförmige und relativ großvolumige Trennkammer 36 zwischen der Gasdichtung 32 und der Öldichtung 34 weist in der Nähe ihres höchsten Punktes einen Trennkammer-Lüftungskanal 60 auf, durch den die Trennkammer zur Umgebung belüftet wird oder durch den sie mit einer Sperrgasquelle verbunden ist. Der Trennkammer-Lüftungskanal 60 weist trennkammerseitig einen axialen Abschnitt und rechtwinklig davon anschließend einen radialen Abschnitt auf, der zur Außenseite führt. Es herrscht keine Druckdifferenz und kein Öl wird durch eine Druckdifferenz in Richtung Rotor durch die Öldichtung gepresst, da auch das Lagergehäuse zur Umgebung belüftet ist bzw. da es ebenfalls mit dem gleichen Sperrgasdruck wie die Trennkammer beaufschlagt wird.
In der Nähe des tiefsten Punkt der Trennkammer 36 ist ein weiterer Trennkammer-Lüftungskanal 62 vorgesehen, der ein Gefälle nach unten aufweist und in einem vertikalen Ablauf 64 mündet. Der Trennkammer-Lüftungskanal 62 dient auch als Ablauf für ge-
gebenenfalls bis hierher gelangtes 01, bzw. für Flüssigkeiten aus dem Rotorabschnitt .
Durch das Vorsehen der Trennkammer 36 wird auf einfache und kompakte Weise sichergestellt, dass Fluide weder vom dem Rotorabschnitt 14 zu dem Lagerabschnitt 18 noch von dem Lagerabschnitt 18 zu dem Rotorabschnitt 14 gelangen können.