WO2003065859A2 - Distributeur de cafe et de the - Google Patents

Distributeur de cafe et de the Download PDF

Info

Publication number
WO2003065859A2
WO2003065859A2 PCT/US2003/003075 US0303075W WO03065859A2 WO 2003065859 A2 WO2003065859 A2 WO 2003065859A2 US 0303075 W US0303075 W US 0303075W WO 03065859 A2 WO03065859 A2 WO 03065859A2
Authority
WO
WIPO (PCT)
Prior art keywords
beverage
water
injection
seal
container
Prior art date
Application number
PCT/US2003/003075
Other languages
English (en)
Other versions
WO2003065859A3 (fr
Inventor
Charles Bradley Green
Original Assignee
The Coca-Cola Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Coca-Cola Company filed Critical The Coca-Cola Company
Priority to DE60306337T priority Critical patent/DE60306337T2/de
Priority to MXPA04007329A priority patent/MXPA04007329A/es
Priority to CA2474729A priority patent/CA2474729C/fr
Priority to EP03737587A priority patent/EP1474021B1/fr
Priority to JP2003565292A priority patent/JP2005516602A/ja
Priority to AU2003210798A priority patent/AU2003210798B2/en
Publication of WO2003065859A2 publication Critical patent/WO2003065859A2/fr
Publication of WO2003065859A3 publication Critical patent/WO2003065859A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/24Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure
    • A47J31/34Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure
    • A47J31/36Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means
    • A47J31/3604Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means with a mechanism arranged to move the brewing chamber between loading, infusing and ejecting stations
    • A47J31/3623Cartridges being employed
    • A47J31/3642Cartridge magazines therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/24Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure
    • A47J31/34Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure
    • A47J31/36Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means
    • A47J31/3604Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means with a mechanism arranged to move the brewing chamber between loading, infusing and ejecting stations
    • A47J31/3623Cartridges being employed
    • A47J31/3633Means to perform transfer from a loading position to an infusing position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/804Disposable containers or packages with contents which are mixed, infused or dissolved in situ, i.e. without having been previously removed from the package
    • B65D85/8043Packages adapted to allow liquid to pass through the contents

Definitions

  • the present invention relates generally to a beverage dispenser and more particularly relates to a beverage dispenser that provides coffee, espresso, tea, and other brewed beverages in a high speed and a high quality manner.
  • beverage brewing systems are known in the art. For example, percolators and drip-type coffee makers have long been used to make regular or "American"-type coffee. Hot water is generally passed through a container of coffee grinds so as to brew the coffee. The coffee then drips into a pot or a cup. Likewise, pressure-based devices have long been used to make espresso-type beverages. Hot, pressurized water may be forced through the espresso grinds so as to brew the espresso. The espresso may then flow into the cup.
  • One of the drawbacks with these known systems may focus on their use in self-serve or high volume restaurants or other types of retail outlets. For example, a high quality espresso beverage simply may take too long to brew with conventional equipment in a high volume restaurant. Similarly, the amount of time it may take to seep a cup of tea also may be too long. As a result, a customer may choose to go elsewhere for his or her brewed beverage.
  • the device preferably should be easy to use, easy to maintain, and be competitive in terms of cost.
  • the present invention thus provides a beverage system for brewing a beverage from a beverage material and a source of hot, pressurized water.
  • the beverage system may include a cartridge with the beverage material therein.
  • the cartridge may include a seal positioned about the beverage material.
  • the beverage system also may include an injection system for injecting the hot, pressurized water into the cartridge so as to brew the beverage from the beverage material.
  • Specific embodiments of the present invention may include the injection system having an injection nozzle for penetrating the seal surrounding the beverage material.
  • the injection system also may include an injection head positioned about the injection nozzle.
  • the injection head may include a sealing ring positioned about the injection nozzle so as to create a seal between the injection head and the cartridge.
  • the injection system may include a drive system so as to maneuver the injection head about the cartridge.
  • the drive system may include an eccentric cam. The drive system may maneuver the injection head into contact with the cartridge with about 135 to about 160 kilograms (about 300 to about 350 pounds) of force.
  • the cartridge may include a first end and a second end.
  • the first end may include an insert positioned a predetermined distance under the seal such that the injection nozzle may penetrate the seal but not the insert.
  • the second end may include a scored area such that the scored area may release from the seal under the application of pressure.
  • the seal may include a foil.
  • a further embodiment of the present invention may provide a device for holding a beverage brewing material.
  • the device may include a container with the beverage brewing material therein.
  • the container may have a first end and a second end.
  • the first end of the container may include a wall.
  • the wall may include a number of apertures therein.
  • a first seal may be positioned about the wall by a predetermined distance and a second seal may be positioned about the second end.
  • the predetermined distance may be about one (1) to about four (4) centimeters (about 0.4 to about 1.6 inches).
  • the wall may be an insert.
  • the first seal and the second seal each may be a foil such that the device maintains the beverage brewing material in a substantially airtight manner.
  • the second seal may include a scored area such that the scored area may release from the second seal upon the application of pressure.
  • the second end may include a filter layer.
  • the container may be made out of a thermoplastic.
  • a further embodiment of the present invention may provide a beverage system for producing a beverage from a source of hot water and a number of beverage material containers.
  • the beverage system may include a plate with a number of apertures therein. The apertures may be sized to accommodate the beverage material containers.
  • the system also may include an injection station positioned about the plate. The injection station may include means for injecting the beverage material containers with hot water from the hot water source so as to produce the beverage.
  • the beverage system further may include a drive motor so as to drive the plate and a limit switch in communication with the drive motor.
  • the plate may include one or more detents positioned therein such that the detents may align with the limit switch so as to stop the movement of the plate.
  • the injecting means may include an injection nozzle for penetrating the beverage material containers.
  • the injecting means may include an injection head positioned about the injection nozzle.
  • the injecting means also may include a sealing ring positioned about the injection nozzle so as to create a seal between the injection head and the beverage material containers.
  • the injecting means may include an injection drive system so as to maneuver the injection head about the beverage material containers.
  • the injection drive system may include an eccentric cam. The injection drive system may maneuver the injection head into contact with the beverage material containers with about 135 to about 160 kilograms (about 300 to about 350 pounds) of force.
  • the beverage system further may include a loading assembly positioned about the plate.
  • the loading assembly may include a container carousel for storing the beverage material containers.
  • the loading assembly also may include a loading mechanism so as to place the beverage material containers within the apertures of the plate.
  • the loading mechanism may include an escapement ratchet operated by a solenoid.
  • the beverage system further may include an ejector assembly positioned about the plate.
  • the ejector system may include a lift mechanism positioned about the plate so as to remove the beverage material containers from the apertures.
  • the lift mechanism may include a plunger operated by a solenoid.
  • the ejector system may include a sweep mechanism so as to push the beverage material containers off of the plate.
  • the sweep mechanism may include a rotating arm operated by a solenoid.
  • a further embodiment of the present invention may provide a beverage system for producing a beverage from a source of hot water and a number of beverage material containers.
  • the beverage system may include a transport assembly for maneuvering the beverage material containers, a loading assembly positioned adjacent to the transport assembly for loading the beverage material containers onto the transport assembly, an injection station positioned adjacent to the transport assembly for injecting the beverage material containers with hot water from the hot water source, and an ejection station positioned adjacent to the transport assembly for removing the beverage material containers from the transport assembly.
  • a further embodiment of the present invention may provide a beverage system for brewing a beverage from a container of beverage material.
  • the beverage system may include a primary source of hot, pressurized water, an injection system so as to insert the hot, pressurized water into the container of beverage material to produce a primary beverage stream, a secondary source of hot water, and a mixing container for mixing the hot water from the secondary source with the primary beverage stream so as to produce the beverage.
  • the secondary source of hot water may include a hot water reservoir.
  • the primary source of hot, pressurized water may include a heat exchanger in communication with the hot water reservoir.
  • the primary source of hot, pressurized water may include a pump. The pump may be capable of multiple flow rates.
  • the mixing container may include a collection funnel.
  • a method of the present invention may provide for preparing a brewed beverage from a beverage material and a flow of water.
  • the beverage material may be positioned within a container having a first seal and a second seal.
  • the method may include the steps of pressurizing the flow of water, heating the flow of water, injecting the flow of water into the container of beverage material through the first seal, and bursting the second seal such that the beverage may flow out of the container.
  • the flow of water may be pressurized to about 2 to 14 kilograms per square centimeter (about 30 to about 200 pounds per square inch) and heated to about 82 to 93 degrees Celsius (about 180 to 200 degrees Fahrenheit).
  • the method may include the further step of mixing the beverage and a secondary water flow.
  • the second seal of the container may include a scored area and the step of bursting the second seal may include bursting the scored area.
  • the beverage material may include espresso grinds such that the injecting step provides the flow of water through the container at about nine (9) to about fourteen (14) kilograms per square centimeter (about 130 to about 200 pounds per square inch.)
  • the beverage material may include coffee grinds such that the injecting step provides the flow of water through the container at about two (2) to about (14) kilograms per square centimeter (about 30 to about 200 pounds per square inch.)
  • the beverage material may include tealeaves such that the injecting step provides the flow of water through the container at about two (2) to about (4) kilograms per square centimeter (about 30 to about 60 pounds per square inch.)
  • Fig. 1 is a schematic view of a beverage dispenser system of the present invention.
  • Fig. 2 is a perspective view of one embodiment of the beverage dispenser system of the present invention.
  • Fig. 3 is a top plan view of the beverage dispenser system of Fig. 2.
  • Fig. 4 is a perspective view of the turret system of the beverage dispenser system of Fig. 2.
  • Fig. 5 is a perspective view of the injector assembly of the beverage dispenser system of Fig. 2 with the guide wheels and the return spring of the support plate shown in phantom lines.
  • Fig. 6 is a rear perspective view of the injector assembly of the beverage dispenser system of Fig. 2 with the idler wheel and the limit switch shown in a cut away view.
  • Fig. 7 is a perspective view of the ejector system of the beverage dispenser system of Fig. 2.
  • Fig. 8 is a side cross sectional view of the ejector system of Fig. 7 taken along line A- A.
  • Fig. 9 is a perspective view of the loading system of the beverage dispenser system of Fig. 2 with the pod cartridges and the turret assembly shown in a cut away view.
  • Fig. 10 is a cut away view of the loading mechanism of the loading assembly of Fig. 9.
  • Fig. 11 is a cut away view of a beverage pod cartridge for use with the present invention.
  • Fig. 12 is a bottom plan view of the beverage pod of Fig. 11.
  • Fig. 13 is a plan view of the exterior of a vending machine that may be used with the beverage dispenser system of the present invention.
  • Fig. 14 is a side cross-sectional view of the pod cartridge and the injection head with the water flow path therethrough shown.
  • FIG. 1 shows a schematic view of a beverage dispenser system 100 of the present invention.
  • the beverage dispenser system 100 may include a control system 105.
  • the water control system 105 controls the flow of water within the beverage dispenser system 100 so as to produce a beverage.
  • the water control system 105 may include a water source 110.
  • the water source 110 may be a source of tap water or any other type of conventional water supply.
  • the water may be at atmospheric pressure and is preferably chilled to about 15 to about 24 degrees Celsius (about 60 to about 75 degrees Fahrenheit).
  • Water from the water source 110 may be transported throughout the beverage dispenser system 100 via one or more water lines 120.
  • the water lines 120 may be any type of conventional piping.
  • the water lines 120 may be made out of copper, stainless steel, other types of metals, plastics, rubber, and other types of substantially non-corrosive types of materials.
  • copper or a similar material may be used due to the heat and the pressure involved herein.
  • the size or the diameter of the water lines 120 may depend upon on the size and the anticipated volume of the overall beverage dispenser system 100.
  • the water lines 120 may be about 0.95 centimeters (about 3/8ths of an inch) or larger in inside diameter so as to provide the beverage dispenser system 100 with a throughput of about 1000 to 1500 milliliters (about 34 to about 50 ounces) of brewed beverages per minute.
  • the extraction pump 130 may pump and pressurize the water from the water source 110 so as to drive the water through the beverage dispenser system 100.
  • the extraction pump 130 may be a conventional diaphragm pump, a centrifugal pump, a rotary vane pump, or a gear pump. Other types of conventional pumps also may be used.
  • the speed of the pump 130 is preferably proportional to the flow rate therethrough.
  • the pump 130 may have a flow rate of about 180 to 1500 milliliters per minute (about 6 to 50 ounces per minute) depending upon the size and volume of the overall beverage dispenser system 100.
  • the pump 130 may be capable of different flow rates.
  • the pump 130 may increase the pressure of the water from about atmospheric to about fourteen (14) kilograms per square centimeter (about zero (0) to about 200 pounds per square inch).
  • a flow sensor 140 Positioned on or in communication with one of the water lines 120 downstream of the extraction pump 130 may be a flow sensor 140.
  • the flow sensor 140 may measure the amount of water flowing through the water line 120 as pumped by the extraction pump 130.
  • the flow sensor 140 may be of conventional design and may include a turbine or a paddle wheel type sensor.
  • the heat exchanger 150 may be a conventional coil-type or cross flow type heat exchanger and may be made out of copper, stainless steel, or similar types of materials.
  • the heat exchanger 150 may be positioned within a hot water reservoir 160. The water within the heat exchanger 150 is heated as it passes through the hot water reservoir 160.
  • the hot water reservoir 160 may be a conventional hot water container.
  • the reservoir 160 may be made out of copper, stainless steel, brass or similar types of materials. Depending upon the overall size and capacity of the beverage dispenser system 100, the hot water reservoir 160 may hold about seven (7) to about nineteen (19) liters (about two (2) to about five (5) gallons) of water.
  • the water within the hot water reservoir 160 may be heated by a conventional heat source 180.
  • the heat source 180 may include a resistance device, a heat pump, or similar types of heating devices.
  • the heat source 180 may heat the water within the hot water reservoir 160 to approximately 87 to about 96 degrees Celsius (about 180 to about 205 degrees Fahrenheit).
  • the hot water reservoir 160 may be fed from a secondary water source 170.
  • the secondary water source 170 may be identical to the water source 110 described above.
  • the secondary water source 170 may be a source of tap water or a similar type of a conventional water supply.
  • the secondary water source 170 may be connected to the hot water reservoir 160 by one or more water lines 120 as described above.
  • a solenoid valve 190 Positioned on or in communication with one or more of the water lines 120 downstream of the heat exchanger 150 and the hot water reservoir 160 may be a solenoid valve 190.
  • the solenoid valve 190 may open and close the one or more water lines 120 downstream from the heat exchanger 150 and the hot water reservoir 160.
  • the solenoid valve 190 may be of conventional design.
  • an injection nozzle 200 Positioned on or in communication with one or more of the water lines 120 downstream of the solenoid valve 190 may be an injection nozzle 200.
  • the injection nozzle 200 may direct a stream of the hot, high pressure water as the water exits the heat exchanger 150. Possible physical embodiments of the injection nozzle 200 will be described in more detail below.
  • the injection nozzle 200 may act in cooperation with a pod cartridge 210.
  • the pod cartridge 210 may contain coffee, tea, espresso or other types of brewed beverage grinds or leaves within a foil seal.
  • the pod cartridge 210 may be reusable or disposable.
  • the injection nozzle 200 may inject the hot, high pressure water stream into the pod cartridge 210 so as to brew the coffee, tea, espresso or other type of beverage.
  • the injection nozzle 200 may be capable of penetrating the seal before injecting the water flow into the pod cartridge 210. Downstream of the pod cartridge 210 may be a collection funnel 220.
  • the collection funnel 220 may be a conventionally shaped funnel structure.
  • a cup 230, a pot, or other type of drinking vessel may be positioned underneath the collection funnel 220 so as to receive the brewed coffee, tea, espresso, or other type of brewed beverage.
  • a make-up water pump 240 may be in communication with the hot water reservoir 160 via one or more of the water lines 120.
  • the make-up pump 240 may be identical to the extraction pump 130 described above.
  • the make-up pump 240 also may include a peristaltic or a gear type pump.
  • the make-up pump 240 need not pressurize the make-up water flow.
  • the pump 130 may have a flow rate of about 1000 to about 1250 milliliters per minute (about 33 to about 42 ounces per minute) depending upon the size and anticipated volume of the overall beverage dispenser system 100.
  • the make-up pump 240 may be capable of different flow rates.
  • the pump 240 may be capable of pressures of about 0.2 to 0.4 kilograms per square centimeter (about three (3) to about five (5) pounds per square inch).
  • a make-up water flow sensor 250 Positioned on or in communication with one or more of the water lines 120 downstream of the make-up pump 240 may be a make-up water flow sensor 250.
  • the make-up flow sensor 250 may be identical or similar to the flow sensor 140 described above.
  • a make-up water solenoid valve 260 Positioned on or in communication with one of the water lines 120 downstream of the flow indicator 250 may be a make-up water solenoid valve 260.
  • the solenoid valve 260 may be identical or similar to the solenoid valve 190 described above.
  • the flow of water downstream of the hot water reservoir 160 may be controlled by a gravity feed system. In other words, the water from the hot water reservoir 160 may be allowed to flow downstream once the solenoid valve 260 is opened.
  • One or more of the water lines 120 may connect the solenoid valve 260 and the collection funnel 220.
  • Hot water from the hot water reservoir 160 may be mixed with the brewed coffee, tea, espresso, or other beverage from the injection nozzle 200 in the collection funnel 220 before being dispensed into the cup 230 so as to alter the strength or character of the beverage.
  • An electronic control 270 may monitor and control the operation of the beverage dispenser system 100 as a whole and each of the components therein.
  • the electronic control 270 may be a microcontroller such as a PIC16F876 controller sold by Microchip Technology of Chandler, Arizona or a similar type of device.
  • the electronic control 270 may control the operation of the extraction pump 130, the flow sensor 140, the heat source 180, the solenoid valve 190, the make-up water pump 240, the make-up flow sensor 250, the make-up solenoid valve 260, and other elements herein. Specifically, the electronic control 270 may monitor the amount of water dispensed by the extraction pump 130 via the flow sensor 140. When the appropriate amount of water has been dispensed, the solenoid valve 190 may shut one or more of the water lines 120. Likewise when a make-up water flow is required, the electronic control 270 may monitor the water flow as provided by the makeup pump 240 based upon the information provided by the make-up flow sensor 250 so as to turn the make-up solenoid valve 260 on and off. The electronic control 270 also may monitor and vary the speed and flow rate of the pumps 130, 240. The electronic control 270 also may monitor and control the temperature of the water in the heat exchanger 150 and the water reservoir 160 as well as the heat source 180.
  • Figs. 2 and 3 show one application of the beverage dispenser system 100.
  • a pod brewing apparatus 300 is shown.
  • the pod brewing apparatus 300 may include each of the elements as described above for the water control system 105, including the heat exchanger 150 positioned within the hot water reservoir 160 and the injection nozzle 200 as is shown.
  • the elements of the beverage dispenser system 100 as a whole are mounted onto a dispenser frame 305.
  • the dispenser frame 305 may be made out of stainless steel, aluminum, other types of metals, or other types of substantially noncorrosive materials.
  • the injection nozzle 200 may interact with the pod cartridges 210 so as to produce the desired beverage.
  • the pod cartridges 210 may be positioned in the beverage dispenser system 100 within a turret assembly 310.
  • the turret assembly 310 may be fixedly attached to the dispenser frame 305.
  • the turret assembly 310 may include a turret plate 320 positioned within a turret frame 325.
  • the turret frame 325 may be made out of stainless steel, aluminum, other types of conventional metals, or similar types of substantially noncorrosive materials.
  • the turret plate 320 may be substantially circular.
  • the turret plate 320 may include a number of pod apertures 330.
  • the pod apertures 330 may be sized to accommodate the pod cartridges 210.
  • the turret plate 320 may spin about a turret pin 340.
  • a turret motor 350 may drive the turret assembly 310.
  • the turret motor 350 may be a conventional AC motor or a similar type of device.
  • the turret motor 350 may drive the turret assembly 310 at about six (6) to about thirty (30) rpm, with about twenty-five (25) rpm preferred.
  • the turret plate 320 also may have a number of detents 360 positioned about its periphery. The detents 360 may be positioned about each of the turret apertures 330.
  • the detents 360 may cooperate with one or more limit switches 365 so as to control the rotation of the turret plate 320. Once the electronic control 270 activates the operation of the turcet motor 350 so as to spin the turret plate 320, the rotation of the plate 320 may be stopped when the limit switch 360 encounters one of the detents 360.
  • the injector assembly 400 Positioned adjacent to the turret assembly 310 may be an injector assembly 400.
  • the injector assembly 310 may be fixedly attached to the dispenser frame 305.
  • the injector assembly 400 may include the injection nozzle 200 as described above.
  • the injection nozzle 200 may have a diameter of about 0.3 to about 0.65 millimeters (about one-eight to about one-quarter inches).
  • the injection nozzle 200 may be somewhat conical in shape so as to penetrate the pod cartridge 210.
  • the injector assembly 400 also may include an injector frame 410 extending above the turret assembly 310.
  • the injector frame 410 may be made out of stainless steel, other types of metals, or similar types of substantially noncorrosive materials.
  • the injector assembly 400 may include an injector head 420.
  • the injector head 420 may include the injection nozzle 200 as described above.
  • the injector head 420 may be slightly larger in diameter than the pod cartridges 210.
  • the injector head 420 also may be made out of stainless steel, plastics, or similar types of substantially noncorrosive materials.
  • the injector head 420 may include a sealing ring 430 positioned about its lower periphery.
  • the sealing ring 430 may be made out of rubber, silicone, or other types of elastic materials such that a substantially water tight seal may be formed between the injector head 420 and the pod cartridge 210.
  • One or more of the water lines 120 may be connected to the injector nozzle 200 and the injector head 420.
  • the water lines 120 may connect the injection nozzle 200 with the heat exchanger 150 so as to provide hot, pressurized water to the pod cartridges 210.
  • the injector head 420 may be moveable in the substantially vertical plane via a cam system 440. (The terms “vertical” and “horizontal” are used as a frame of reference as opposed to absolute positions. The injector head 420 and the other elements described herein may operate in any orientation.)
  • a cam system drive motor 450 may drive the cam system 440.
  • the drive motor 450 may be a conventional AC motor similar to the turret motor 350 described above.
  • the drive motor 450 also may be a shaded pole or a DC type motor.
  • the drive motor 450 may rotate an eccentric cam 460 via a drive belt system 470.
  • the drive motor 450 and the gear system 470 may rotate the eccentric cam 460 at about six (6) to about thirty (30) rpm, with about twenty-five (25) rpm prefened.
  • the eccentric cam 460 may be shaped such that its lower position may have a radius of about 4.1 to about 4.8 centimeters (about 1.6 to 1.9 inches) while its upper position may have a radius of about 3.5 to 4.1 centimeters (about 1.3 to about 1.7 inches).
  • the eccentric cam 460 may cooperate with an idler wheel 480.
  • the idler wheel 480 may be in communication with and mounted within a support plate 490.
  • the support plate 490 may maneuver about the injector frame 410.
  • the support plate 490 may be made out of stainless steel, other types of steel, plastics, or other materials.
  • the support plate 490 may be fixedly attached to the injector head 420.
  • the support plate 490 may have a number of guide wheels 500 positioned thereon such that the support plate 490 can move in the vertical direction within the injector frame 410.
  • a return spring 520 also may be attached to the support plate and the injector frame 410.
  • a limit switch 530 may be positioned about the cam 460 such that its rotation may not exceed a certain amount.
  • the injector head 420 thus may maneuver up and down in the vertical direction via the cam system 440.
  • the drive motor 450 may rotate the eccentric cam 460 via the gear system 470.
  • the idler wheel 480 pushes the support plate 490 downward such that the injector head 420 comes in contact with a pod cartridge 210.
  • the eccentric cam 460 may lower the injector head 420 by about 6.4 to about 12.7 millimeters (about one- quarter to about one-half inches).
  • the eccentric cam 460 may continue to rotate and increases the pressure on the pod cartridge 210 until the cam 460 reaches the limit switch 530.
  • the electronic control 270 then directs the drive motor 450 to hold the cam 460 in place for a predetermined amount of time.
  • the electronic control 270 then reverses the cam system 440 such that the injector head 420 returns to its original position.
  • Figs. 7 and 8 show an ejector system 550.
  • the ejector system 550 may be positioned about the dispenser frame 305 adjacent to the injector assembly 400.
  • the ejector system 550 may include a lift system 560.
  • the lift system 560 may be positioned underneath the turret plate 320.
  • the lift system 560 may include a lift pad 570 positioned underneath the turret plate 320.
  • the lift pad 570 may be made out of stainless steel, other types of steel, plastics, or similar types of materials.
  • the lift plate 570 may be substantially plunger-like in shape with a top plate 580 extending from a shaft 590.
  • the lift pad 570 may move in a substantially vertical direction as powered by an ejector solenoid 600.
  • the ejector solenoid 600 may be of conventional design and may operate at about 0.6 to about 1.4 kilograms (about 1.5 to about 3 pounds) of force. Operation of the ejector solenoid 600 may be controlled by the electronic control 270.
  • a return spring 610 may be positioned about the shaft 590 of the lift pad 570. The return spring 610 may limit the vertical extent of travel of the lift pad 570 and also then return the lift pad 570 to its original position.
  • the ejector system 550 also may include a sweep system 620.
  • the sweep system 620 may be positioned above the turret plate 320.
  • the sweep system 620 may be positioned on the tunet frame 325.
  • the sweep system 620 may include a sweeper arm 630.
  • the sweeper arm 630 may be positioned for rotation on an arm post 640.
  • a sweeper solenoid 650 may be positioned on the turret frame 325.
  • the sweeper solenoid 650 may be of conventional design and may operate at about 0.2 to about 0.7 kilograms (about 0.5 to about 1.5 pounds) of force. Operation of the sweeper solenoid 650 may be controlled by the electronic control 270.
  • Activation of the sweeper solenoid 650 causes the arm 630 to rotate about the arm post 640.
  • Positioned adjacent to the sweeper solenoid 650 may be a disposal hole 660 positioned within the turret frame 325.
  • the sweeper arm 630 thus may sweep the spent pod cartridges 210 as lifted by the lift system 560 into the disposal hole 660.
  • the lift system 560 lifts the pod cartridge 210 out of the pod aperture 330.
  • the sweeper system 620 then sweeps the pod cartridge 210 off of the tunet plate 320 and into the disposal hole 660.
  • One or more collection bins 665 may be positioned underneath or in communication with the disposal hole 660 so as to collect the spent cartridges 210.
  • the loading assembly 700 may be mounted adjacent to the tunet frame 325.
  • the loading assembly 700 may include a pod carousel 710.
  • the pod carousel 710 may be a substantially tubular structure with a number of pod compartments 720 positioned therein. A number of the pod cartridges 210 may be positioned within each of the pod compartments 720.
  • the pod compartments 720 may be substantially tubular or cylindrical in shape structures.
  • the pod carousel 710 may be rotated about a pod spindle 730.
  • the pod carousel 710 may be rotated via a spindle motor 740.
  • the spindle motor 740 may be in conventional AC motor similar to the tunet motor 350 described above.
  • the spindle motor 740 also may be a shaded pole or a DC type motor.
  • the spindle motor 740 may rotate the pod carousel 710 via a drive belt system 750.
  • the spindle motor 740 may rotate the pod carousel 710 at about six (6) to about thirty (30) rpm, with about twenty-five (25) rpm prefened.
  • the pod carousel 710 also may have a number of detents or similar structures positioned about each pod compartment 720. The detents may cooperate with a limit switch so as to control the rotation of the pod carousel 710 in a manner similar to the use of the limit switch 360 and the detents 370 of the tunet assembly 310 described above.
  • the loading mechanism 760 may include an escapement ratchet 770.
  • the escapement ratchet 770 may be powered by a dispensing solenoid 780.
  • the dispensing solenoid 780 may be of conventional design.
  • the dispensing solenoid 780 may operate at about 1.3 to about 2.3 kilograms (about three (3) to about five (5) pounds).
  • a return spring 790 may be positioned about the dispensing solenoid 780 so as to return the escapement ratchet 770 to its original position after use.
  • Activation of the dispensing solenoid 780 causes the escapement ratchet 770 to rotate so as to permit one of the pod cartridges 210 to drop out of the pod compartment 720 and into one of the apertures 330 of the turret assembly 310. Operation of the loading assembly 700 and the elements therein may be controlled by the electronic control 270.
  • the pod cartridge 210 may include a cup 800.
  • the cup 800 may be made out of a conventional thermoplastic such as polystyrene or polyethylene. Alternatively, metal such as stainless steel or similar types of substantially nonconosive materials also may be used.
  • the cup 800 may be substantially rigid.
  • An insert 810 may enclose the top end of the cup 800.
  • the insert 810 also may be made out of a thermoplastic or a similar material as is used for the cup 800.
  • the insert 810 may have a plurality of apertures 820 therein.
  • the insert 810 may be offset somewhat from the top of the cup 800. In other words, a gap 825 may exist over the insert 810.
  • the top of the cup 800 may be enclosed with a seal 830.
  • the seal 830 may be made out of a foil or a similar type of substantially airtight materials.
  • the bottom end of the cup 800 may include a filter layer 840.
  • the filter layer 840 may be made out of a paper filter material or similar types of material.
  • a bottom seal 850 may enclose the bottom end of the cup 800.
  • the bottom seal 850 also may be made out of a foil or a similar type of material.
  • the bottom seal 850 may have a scored area 860 positioned therein. The scored area 860 may detach from the bottom seal 850 upon the application of internal pressure.
  • the cup 800 may be filled with a brewing material 900.
  • the brewing material 900 may be coffee, espresso, or similar types of coffee grinds; tealeaves; or any other type of beverage material that is desired to be brewed. If the cup 800 has a diameter of about 3.7 to four (4) centimeters (about 1.5 to 1.6 inches) and a depth of about 1.8 to about two (2) centimeters (about 0.7 to about 0.8 inches), about six (6) to about eight (8) grams of the brewing material 900 may be positioned within the cup 800.
  • the seals 830, 850 may keep the beverage material 900 in a substantially airtight manner for freshness purposes.
  • Fig. 13 shows one embodiment of the beverage dispenser system 100.
  • a vending machine, machine 910 is shown.
  • the pod brewing apparatus 300 as described above, may function within the vending machine 910.
  • the vending machine 910 may include a dispensing area 920.
  • the dispensing area 920 allows the consumer to remove the cup 230 from the vending machine 910.
  • the vending machine 910 also may have a number of selection indicators 930.
  • the selection indicators may be push buttons or other types of signals by which the consumer can indicate a preference for coffee, tea, espresso, etc.
  • the vending machine 910 also may have a number of addition indicators 940.
  • the addition indicators 940 may allow the consumer to add a measure of, for example, milk, cream, sugar, or other types of additives and/or flavorings to the brewed beverage.
  • the vending machine 910 also may have a payment device 950.
  • the payment device 950 may be of conventional design.
  • a number of the pod cartridges 210 may be filled with different types of grinds, leaves, or other types of the brewing material 900.
  • a single serving sized espresso beverage of about thirty (30) milliliters
  • about six (6) to about eight (8) grams of espresso grinds may be placed in the pod cartridge 210.
  • about six (6) to about (8) grams of coffee grinds may be added to the pod cartridge 210 in order to produce about a 240 milliliter (about eight (8) ounce) cup of coffee.
  • About three (3) to about five (5) grams of tealeaves may be added to the pod cartridge 210 in order to make about a 150 milliliter (about five (5) ounce) cup of tea.
  • the pod cartridges 210 may then be sealed and inserted within the loading assembly 700.
  • a different type of pod cartridge 210 may be positioned within each of the pod compartment 720.
  • the electronic control 270 may operate the spindle motor 740 such that the conect pod compartment 720 of the pod carousel 710 rotates into place.
  • the pod carousel 710 rotates such that the appropriate pod cartridge 210 may drop into the conect tunet aperture 330 of the turret assembly 310. As is shown in Figs.
  • the loading mechanism 760 of the loading assembly 700 then activates the dispensing solenoid 780 to rotate the escapement ratchet 770 so as to allow the pod cartridge 210 to drop into place.
  • the user may place the pod cartridge 210 into place on the on the tunet plate 320.
  • the electronic control 270 activates the tunet motor 350 so as to rotate the tunet plate 320 towards the injector assembly 400.
  • the tunet motor 350 ceases operation when the limit switch 360 and the detent 370 on the tunet plate 320 align.
  • the electronic control 270 activates the drive motor 950 of the cam system 440.
  • the drive motor 450 may activate the drive belt system 470 so as to rotate the eccentric cam 460.
  • the eccentric cam 460 may rotate so as to lower the support plate 490 and the injector head 420.
  • the injector head 420 may be lowered about 0.64 centimeters (about a quarter inch). The injector head 420 thus comes into contact with the pod cartridge 210.
  • the injector head 420 may engage the pod cartridge 210 with a downward force of about 136 to 160 kilograms (about 300 to 350 pounds).
  • the sealing ring 430 thus may form a substantially airtight and water tight seal about the pod cartridge 210.
  • the downward motion of the injector head 420 and the operation of the drive motor 450 are stopped by the position of the limit switch 530.
  • the injection nozzle 200 of the injector head 420 may penetrate the top seal 830 of the pod cartridge 210.
  • the electronic control 270 then may activate the solenoid valve 190 so as to allow hot, high pressure water to flow from the heat exchanger 150 into the injection nozzle 200.
  • the water may be at about 82 to about 93 degrees Celsius (about 180 to about 200 degrees Fahrenheit).
  • the incoming water flow may be pressurized at about 11 to 14 kilograms per square centimeter (about 160 to 200 pounds per square inch).
  • the pressure of the water passing through the pod cartridge 210 may be about 1.4 to 14 kilograms per square centimeter (about 20 to about 200 pounds per square inch).
  • the pressure of the water flowing through the pod cartridge 210 may vary with the nature of the brewing material 900.
  • the water passes through the injection nozzle 200 and spreads out over the insert 810 of the plastic cup 800 of the pod cartridge 210.
  • the water then flows through the apertures 820 of the insert and passes into the brewing material 900.
  • the pressure of the incoming water flow may cause the scored area 860 of the bottom seal 850 to open such that the brewed beverage passes out of the pod cartridge 210, into the collection funnel 220, and into the cup 230.
  • the electronic control 270 also may turn on the extraction pump 130 so as to draw in more water from the water source 110.
  • the flow sensor 140 may monitor the amount of water flowing through the water lines 120. The water passes into the heat exchanger 150 positioned within the hot water reservoir 160. The water is then heated to the appropriate temperature. Once a sufficient amount of water has passed into the injector nozzle 200, the electronic control 270 may close the solenoid valve 190 and turn off the extraction pump 130.
  • the water may flow through the pod compartment 210 with a pressure of about 9.8 to 14 kilograms per square centimeter (about 140 to about 200 pounds per square inch).
  • the water may take about ten (10) seconds to brew a cup 230 of espresso.
  • a cup 230 of tea may be brewed in the same manner as the espresso beverage described above. Because of the nature of brewing material 900, in this case the tealeaves, the water flows through the pod cartridge 210 with only about 3 kilograms per square centimeter (about 40 pounds per square inch) of pressure. The tea may take about ten to about 20 seconds to brew.
  • a cup 230 of coffee may be brewed in a somewhat different manner.
  • the pod cartridge 210 with the brewing material 900 therein, in this case the coffee grinds is brewed in the same manner as described above with respect to the espresso beverage.
  • the water may flow through the pod cartridge 210 with a pressure of about 9.8 to 14 kilograms per square centimeter (about 140 to about 200 pounds per square inch), with a pressure of about 12.6 kilograms per square centimeter (about 180 pounds per square inch) prefened.
  • the water may have a pressure of about only 3 kilograms per square centimeter (about 40 pounds per square inch).
  • the coffee may take about 10 to about 12 seconds to brew.
  • an amount of makeup water may then be added to the beverage at the collection funnel 220 before or while the beverage is being dispensed into the cup 230.
  • the electronic control 270 may open the make-up water solenoid valve 260 and activate the make-up water pump 240.
  • An amount of water from the hot water reservoir 160 then flows into the collection funnel 220 as monitored by the flow sensor 250.
  • the make-up water pump 240 and the flow sensor 250 may be omitted such that the water flows from the hot water reservoir 160 under the force of gravity. Either way, once the appropriate amount of water has been added to the collection funnel 220, the electronic control 270 again closes the solenoid valve 260.
  • the drive motor 450 of the cam system 400 of the injector assembly 400 may then reverse direction so as to lift the injector head 420 away from the pod cartridge 210.
  • the tunet motor 350 then may rotate the tunet plate 320 of the tunet assembly 310 such that the pod cartridge 210 is positioned within the ejector system 550 as is shown in Figs. 7 and 8.
  • the rotation of the tunet plate 320 may be controlled via the detents 370 aligning with the limit switch 360.
  • the electronic control 270 may then activate the lift system 560. Specifically, the solenoid 600 may lift the lift pad 570 so as to push the pod cartridge 210 out of the aperture 330 of the tunet plate 320. The electronic control 270 may then activate the sweep system 620 such that the sweeper solenoid 650 rotates the arm 630. The arm 630 may then push the pod cartridge 210 into the disposal hole 660. The return spring 610 then returns the lift pad 570 to its original position. The pod cartridges 210 may then be disposed of or cleaned and refilled with the brewing material 900.
  • An additional pod cartridge 210 may be loaded onto the tunet assembly 310 by the loading assembly 700 while one pod cartridge 210 is in the injector assembly 400 and a further pod cartridge 210 is in the ejector system 550.
  • a number of beverages therefore may be brewed immediately one after another in a high speed and high quality manner. Further, a number of loading, injection, and ejection stations may be used together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Apparatus For Making Beverages (AREA)
  • Tea And Coffee (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

Système de boisson pour mélanger une boisson à partir d'une matière à boisson et une source d'eau bouillante sous pression. Ce système de boisson peut comprendre une cartouche contenant la matière à boisson. La cartouche peut comprendre un élément d'étanchéité placé autour de la matière à boisson. Ce système peut aussi comprendre un système d'injection pour injecter l'eau bouillante sous pression dans la cartouche afin de mélanger la boisson à partir de la matière à boisson.
PCT/US2003/003075 2002-02-07 2003-02-03 Distributeur de cafe et de the WO2003065859A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60306337T DE60306337T2 (de) 2002-02-07 2003-02-03 Kaffee- und Teeverteiler
MXPA04007329A MXPA04007329A (es) 2002-02-07 2003-02-03 Despachador de cafe y te.
CA2474729A CA2474729C (fr) 2002-02-07 2003-02-03 Distributeur de cafe et de the
EP03737587A EP1474021B1 (fr) 2002-02-07 2003-02-03 Distributeur de cafe et de the
JP2003565292A JP2005516602A (ja) 2002-02-07 2003-02-03 コーヒー及び茶の分配装置
AU2003210798A AU2003210798B2 (en) 2002-02-07 2003-02-03 Coffee and tea dispenser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/071,643 US6786134B2 (en) 2002-02-07 2002-02-07 Coffee and tea dispenser
US10/071,643 2002-02-07

Publications (2)

Publication Number Publication Date
WO2003065859A2 true WO2003065859A2 (fr) 2003-08-14
WO2003065859A3 WO2003065859A3 (fr) 2003-12-31

Family

ID=27659284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/003075 WO2003065859A2 (fr) 2002-02-07 2003-02-03 Distributeur de cafe et de the

Country Status (11)

Country Link
US (2) US6786134B2 (fr)
EP (1) EP1474021B1 (fr)
JP (2) JP2005516602A (fr)
AT (1) ATE330521T1 (fr)
AU (1) AU2003210798B2 (fr)
CA (2) CA2474729C (fr)
DE (1) DE60306337T2 (fr)
ES (1) ES2264765T3 (fr)
MX (1) MXPA04007329A (fr)
WO (1) WO2003065859A2 (fr)
ZA (1) ZA200405980B (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1440910A1 (fr) * 2003-01-24 2004-07-28 Kraft Foods R & D, Inc. Système et méthode de préparation de boissons
WO2004065258A2 (fr) * 2003-01-24 2004-08-05 Kraft Foods R & D, Inc. Cartouche et procede pour preparer des boissons
WO2008033657A2 (fr) * 2006-09-12 2008-03-20 The Coca-Cola Company Thé infusé frais concentré
JP2009512493A (ja) * 2005-10-20 2009-03-26 ブレイビロア・ホールディング・ビー.ブイ. 熱水生成の装置およびこの装置を備えたコーヒーマシン
JP2011518597A (ja) * 2008-04-28 2011-06-30 タタ ティー リミテッド 新鮮で温かい飲料の自動ポッドコンベア及び浸出アセンブリ
JP2011522568A (ja) * 2008-04-28 2011-08-04 タタ ティー リミテッド 温かい飲料を自動的に新鮮に浸出し分注するアセンブリ
KR101260504B1 (ko) 2011-12-13 2013-05-06 컨벡스코리아(주) 카트리지 추출용 유니버설 음료 메이커
US8567304B2 (en) 2007-05-18 2013-10-29 Kraft Foods R&D, Inc. Beverage preparation machines
US8771768B2 (en) 2007-11-09 2014-07-08 Kraft Foods R & D, Inc. Beverage cartridge
US8887622B2 (en) 2007-02-27 2014-11-18 Kraft Foods R & D, Inc. Machine for the preparation of beverages
US8950317B2 (en) 2007-05-18 2015-02-10 Kraft Foods R & D, Inc. Beverage preparation machines
US8974846B2 (en) 2007-05-18 2015-03-10 Kraft Foods R & D, Inc. Beverage preparation machines and methods for operating beverage preparation machines
US9084509B2 (en) 2007-05-18 2015-07-21 Kraft Foods R & D, Inc. In or relating to beverage preparation machines
US9101163B2 (en) 2009-03-27 2015-08-11 Kraft Foods R & D, Inc. Sealed cartridge containing beverage concentrates
US9169112B2 (en) 2010-10-29 2015-10-27 Whirlpool Corporation Beverage dispenser with multi-chambered carousel and automatic coordination of flavorant flow rate
US9386877B2 (en) 2007-05-18 2016-07-12 Kraft Foods R & D, Inc. Beverage preparation machines and beverage cartridges
US9451847B2 (en) 2003-01-24 2016-09-27 Koninklijke Douwe Egberts B.V. Cartridge and method for the preparation of beverages
CN108903658A (zh) * 2018-08-21 2018-11-30 孝感市元达新材料科技有限公司 一种智能化咖啡制作机
US11524268B2 (en) 2016-11-09 2022-12-13 Pepsico, Inc. Carbonated beverage makers, methods, and systems

Families Citing this family (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7418899B2 (en) * 2001-02-08 2008-09-02 Kraft Foods R & D, Inc. Cartridge for the preparation of beverages
US6786134B2 (en) 2002-02-07 2004-09-07 The Coca-Cola Company Coffee and tea dispenser
US20050095158A1 (en) * 2002-02-07 2005-05-05 The Coca-Cola Company Coffee and tea dispenser with removable pod turret wheel
US20050188854A1 (en) * 2002-02-07 2005-09-01 The Coca-Cola Co. Coffee and tea dispenser
DE20221780U1 (de) * 2002-03-14 2007-10-18 Caffita System S.P.A., Gaggio Montano Portionenkapsel mit einer partikelförmigen mittels Wasser extrahierbaren Substanz zur Herstellung eines Getränks
EP1519670B1 (fr) * 2002-07-09 2007-02-28 The Coca-Cola Company Systeme et procede de production de lait en mousse et traite a la vapeur pour boissons chaudes
US7213506B2 (en) * 2003-01-24 2007-05-08 Kraft Foods R & D, Inc. Cartridge for the preparation of beverages
US7328651B2 (en) * 2003-01-24 2008-02-12 Kraft Foods R & D, Inc. Cartridge for the preparation of beverages
US7533603B2 (en) * 2003-01-24 2009-05-19 Kraft Foods R & D, Inc. Cartridge for the preparation of beverages
US7097074B2 (en) * 2003-01-24 2006-08-29 Kraft Foods R&D, Inc. Machine for the preparation of beverages
US7607385B2 (en) * 2003-01-24 2009-10-27 Kraft Foods R & D, Inc. Machine for the preparation of beverages
GB2397494B (en) * 2003-01-24 2005-03-02 Kraft Foods R & D Inc Cartridge for the preparation of beverages and method of manufacturing a cartridge
US7219598B2 (en) * 2003-01-24 2007-05-22 Kraft Foods R & D, Inc. Cartridge for the preparation of beverages
US7340990B2 (en) * 2003-01-24 2008-03-11 Kraft Foods R & D, Inc. Cartridge and method for the preparation of beverages
US7533604B2 (en) * 2003-01-24 2009-05-19 Kraft Foods R & D, Inc. Cartridge system for the preparation of beverages and method of manufacturing said system
US7322277B2 (en) * 2003-01-24 2008-01-29 Kraft Foods R & D, Inc. Cartridge and method for the preparation of beverages
US7243598B2 (en) * 2003-01-24 2007-07-17 Kraft Foods R & D, Inc. Cartridge for the preparation of beverages
US7255039B2 (en) * 2003-01-24 2007-08-14 Kraft Foods R & D, Inc. Machine for the preparation of beverages
US7231869B2 (en) * 2003-01-24 2007-06-19 Kraft Foods R & D Inc. Machine for the preparation of beverages
US7287461B2 (en) * 2003-01-24 2007-10-30 Kraft Foods R & D, Inc. Cartridge for the preparation of beverages
US7592027B2 (en) * 2003-01-24 2009-09-22 Kraft Foods R & D, Inc. Method for the preparation of beverages
US7316178B2 (en) * 2003-01-24 2008-01-08 Kraft Foods R & D, Inc. Machine for the preparation of beverages
US20040261625A1 (en) * 2003-06-25 2004-12-30 Fowlkes Vaheed Munir Infant-formula preparation device
US7550169B2 (en) * 2003-07-08 2009-06-23 The Coca-Cola Company System and method for producing foamed and steamed milk from milk concentrate
US20060196364A1 (en) * 2003-07-22 2006-09-07 The Coca-Cola Company Coffee & Tea Pod
US8505440B2 (en) * 2003-07-22 2013-08-13 The Coca-Cola Company System for varying coffee intensity
US6948420B2 (en) * 2003-07-22 2005-09-27 The Coca-Cola Company Coffee and tea pod
US8327754B2 (en) * 2003-07-22 2012-12-11 The Coca-Cola Company Coffee and tea pod
US20080038441A1 (en) * 2003-07-22 2008-02-14 The Coca-Cola Company Systems and Methods of Brewing Low-Cholesterol Espresso
DE602004017013D1 (en) * 2003-08-05 2008-11-20 Gaillard Jean Paul Ks
ATE529027T1 (de) * 2003-08-25 2011-11-15 Nestec Sa Verfahren und vorrichtung zum herstellen eines getränkes aus einer eine substanz enthaltenden kapsel
DE10353452A1 (de) * 2003-11-15 2005-06-16 Braun Gmbh Gerät zur Zubereitung heißer Getränke, insbesondere Getränke, die mit löslichem Pulver hergestellt werden
DE102004002004A1 (de) * 2004-01-14 2005-08-11 Schifferle, René Kaffeemaschine zum Aufbrühen von in einer Kapsel abgepacktem Pulverkaffee
DE102004002005A1 (de) * 2004-01-14 2005-08-11 Schifferle, René Portionskapsel mit gemahlenem Kaffee zur Herstellung eines Kaffeegetränks
US7651015B2 (en) 2004-02-13 2010-01-26 Intelligent Coffee Company, Llc Liquid concentrate/extract beverage dispenser with replaceable concentrate/extract cartridge
AU2005214741B2 (en) * 2004-02-13 2009-05-07 Intelligent Coffee Company, L.L.C. Liquid concentrate beverage dispenser with replaceable cartridge
GB2411106B (en) * 2004-02-17 2006-11-22 Kraft Foods R & D Inc Cartridge for the preparation of beverages
GB2411105B (en) 2004-02-17 2006-08-30 Kraft Foods R & D Inc An insert and a system for the preparation of beverages
GB2413479B (en) 2004-02-17 2006-06-28 Kraft Foods R & D Inc An insert and a system for the preparation of beverages
GB2413480B (en) 2004-02-17 2006-08-30 Kraft Foods R & D Inc An insert and a system for the preparation of beverages
CA2556984A1 (fr) * 2004-03-09 2005-09-22 Hayes Bicycle Group, Inc. Ensemble levier et maitre-cylindre
ITMI20040463A1 (it) * 2004-03-11 2004-06-11 Ohg F Lli Manea S R L Gruppo dispensatore di caffe' in particolare caffe' espresso per distributore di bevande
US20050217213A1 (en) * 2004-03-30 2005-10-06 Lozinski Gerald J Method and apparatus for manufacturing coffee infusion pods
WO2005105660A2 (fr) * 2004-04-21 2005-11-10 Bunn-O-Matic Corporation Systeme de prevention de bouchon sec pour appareil d'infusion
NL1026437C2 (nl) * 2004-06-17 2005-12-20 Sara Lee De Nv Een systeem voor het bereiden van porties van een voor consumptie geschikte drank.
FR2873011B1 (fr) * 2004-07-16 2007-12-14 Reneka Internat Sarl Groupe de preparation d'au moins une tasse de cafe de type expresso ou autre boisson chaude a partir d'une dose individuelle preemballee appelee dosette
GB2416480B (en) * 2004-07-27 2007-12-27 Kraft Foods R & D Inc A system for the preparation of beverages
JP4575952B2 (ja) * 2004-10-01 2010-11-04 ハウスブラント トリエステ 1892 エスピーエー カートリッジに収納された原料を用いて飲料を準備し供給する装置および方法
US7644653B2 (en) * 2005-02-17 2010-01-12 Hamilton Beach Brands, Inc. Coffee maker brew basket
US7540232B2 (en) 2005-02-17 2009-06-02 Hamilton Beach Brands, Inc. Hot beverage maker brew basket adaptor
US8863649B1 (en) * 2005-03-21 2014-10-21 Ip Holdings, Inc. Intelligent beverage and culinary appliances
US9844292B2 (en) 2009-10-30 2017-12-19 Adrian Rivera Coffee maker with multi and single cup modes
US7775152B2 (en) * 2005-06-28 2010-08-17 The Coca-Cola Company Portafilter system for use with a rigid pod
US20070051836A1 (en) * 2005-09-07 2007-03-08 The Coca-Cola Company Bi-modal roller grinder
EP1792849A1 (fr) * 2005-12-02 2007-06-06 Tuttoespresso S.p.a. Procédé et capsule pour la préparation sous pression d'une boisson
US20070187325A1 (en) * 2006-01-27 2007-08-16 L'oreal Method of preparing a cosmetic composition, and an apparatus and a refill for preparing such a composition
US20070183999A1 (en) * 2006-01-27 2007-08-09 L'oreal Method of preparing a cosmetic composition, and an apparatus for implementing such a method
US20070196402A1 (en) * 2006-01-27 2007-08-23 L'oreal Method of preparing a cosmetic composition, and an assembly and a refill for implementing such a method
US20070184138A1 (en) * 2006-01-27 2007-08-09 L'oreal Method of preparing a cosmetic composition, and an apparatus for implementing such a method
ITLE20060009A1 (it) * 2006-03-10 2006-06-09 Giovanni Spinelli Invenzione nel campo delle macchine da caffe' a fap/capsule
GB2468047B (en) * 2006-04-27 2010-12-08 Kraft Foods R & D Inc System, pod and method for preparing a beverage
US7964230B2 (en) 2006-08-04 2011-06-21 The Coca-Cola Company Method of sealing a pod for dispersible materials
US7947316B2 (en) * 2006-08-04 2011-05-24 The Coca-Cola Company Pod for dispersible materials
US20090285953A1 (en) * 2006-12-14 2009-11-19 Nikolaos Renieris Apparatus and method for brewing coffee, tea and espresso
DE102006060745A1 (de) * 2006-12-21 2008-06-26 BSH Bosch und Siemens Hausgeräte GmbH Halterung für Servicefunktionsobjekt
TW201718635A (zh) * 2007-03-06 2017-06-01 安美基公司 變異之活動素受體多肽及其用途
PL1967099T3 (pl) 2007-03-06 2010-06-30 Nestec Sa Urządzenie do przygotowania płynu spożywczego z kapsułki
DE602007001147D1 (de) * 2007-03-06 2009-07-02 Nestec Sa System zur Herstellung eines Getränkes aus einer Kapsel und Verfahren
JP5400039B2 (ja) 2007-06-05 2014-01-29 ネステク ソシエテ アノニム 遠心分離によって食品液体を生成するためのカプセルおよび方法
US9226611B2 (en) * 2007-06-05 2016-01-05 Nestec S.A. Capsule system, device and method for preparing a food liquid contained in a receptacle by centrifugation
JP5349465B2 (ja) * 2007-06-05 2013-11-20 ネステク ソシエテ アノニム 遠心分離によって食品液体を生成するための使い捨てカプセル
US8431175B2 (en) * 2007-06-05 2013-04-30 Nestec S.A. Method for preparing a beverage or food liquid and system using brewing centrifugal force
DE602008006068D1 (de) 2007-06-05 2011-05-19 Nestec Sa Verfahren zur herstellung eines getränks oder flüssigen nahrungsmittels
US8628122B2 (en) * 2007-06-06 2014-01-14 Pridgeon & Clay, Inc. Pipe compression joint
US8322271B2 (en) 2007-07-02 2012-12-04 Brewl Technologies, Inc. Infusible material capsule for brewing a beverage
US8180204B2 (en) * 2007-07-02 2012-05-15 Brewl Technologies, Inc. Hot beverage brewing apparatus
ATE518458T1 (de) * 2008-01-03 2011-08-15 Babas S R L Ausgabesystem für aufbrühgetränke
US7987768B2 (en) 2008-03-27 2011-08-02 The Coca-Cola Company Brewing mechanism
DE102008028059B4 (de) * 2008-06-12 2016-12-01 Wmf Württembergische Metallwarenfabrik Ag Verdrängerpumpe
US8151694B2 (en) * 2008-08-01 2012-04-10 Keurig, Incorporated Beverage forming apparatus with centrifugal pump
US8522668B2 (en) * 2008-08-08 2013-09-03 The Coca-Cola Company Systems and methods for on demand iced tea
US20100034943A1 (en) * 2008-08-08 2010-02-11 The Coca-Cola Company System and Methods for On Demand Iced Tea
EP2330953B1 (fr) * 2008-09-02 2015-06-03 Nestec S.A. Procédé de préparation par centrifugation d'un liquide alimentaire contenu dans une capsule et système conçu pour un tel procédé
ES2550307T3 (es) * 2008-09-02 2015-11-06 Nestec S.A. Dispositivo de producción controlada de bebidas usando fuerzas centrífugas
JP5497778B2 (ja) 2008-12-09 2014-05-21 ネステク ソシエテ アノニム 遠心によって液状食品を調製するための液状食品調製システム
DE102009012970A1 (de) * 2009-03-12 2010-10-28 Wmf Württembergische Metallwarenfabrik Ag Kaffeemaschine
EP2287090B1 (fr) * 2009-08-19 2013-05-29 Nestec S.A. Capsule pour la préparation d'extrait de café dotée d'une structure facilitant la perforation pour l'injection d'eau
US8658232B2 (en) * 2009-08-28 2014-02-25 Nestec S.A. Capsule system for the preparation of beverages by centrifugation
JP2013502925A (ja) * 2009-08-28 2013-01-31 グリーン マウンテン コーヒー ロースターズ,インク. ろ過助剤を用いた飲料カートリッジおよび飲料生成方法
US9527661B2 (en) 2009-09-29 2016-12-27 Lbp Manufacturing Llc Disposable single use beverage package
US9108794B2 (en) 2009-09-29 2015-08-18 Lbp Manufacturing, Inc. Disposable single use beverage package
US9414617B2 (en) * 2009-09-30 2016-08-16 Jui-Tai Cheng Automatic bean curd maker
MX2009010745A (es) * 2009-10-02 2011-04-20 Pablo Gonzalez Cid Cafetera electrica de gran capacidad para preparar cafe americano fresco.
US8881958B2 (en) 2009-12-16 2014-11-11 Intelligent Coffee Company, Llc Fluid dose-measuring device
US8247010B2 (en) * 2010-03-01 2012-08-21 Concordia Coffee Company, Inc. Accelerated low pressure brewer and a method for making a beverage
US8623441B2 (en) * 2010-03-01 2014-01-07 Concordia Coffee Company, Inc. Method and apparatus for controlling brewed beverage quality
US8616116B2 (en) * 2010-03-01 2013-12-31 Concordia Coffee Company, Inc. High speed brewing apparatus
WO2011107574A2 (fr) * 2010-03-05 2011-09-09 Nestec S.A. Réduction de problèmes de pompe
US20150125586A1 (en) * 2010-05-03 2015-05-07 Apiqe Beverage system with flavor pod dispenser
CN201727359U (zh) * 2010-05-07 2011-02-02 漳州灿坤实业有限公司 咖啡胶囊萃取机构
EP2575561B1 (fr) 2010-05-31 2017-02-15 Tuttoespresso S.r.l. Dispositif et procédé pour la préparation de boissons avec des goûts différents
USD637484S1 (en) 2010-09-02 2011-05-10 Keurig, Incorporated Beverage cartridge
US8361527B2 (en) 2010-09-02 2013-01-29 Keurig, Incorporated Beverage cartridge
USD647399S1 (en) 2010-09-02 2011-10-25 Keurig, Incorporated Beverage cartridge
USD647398S1 (en) 2010-09-02 2011-10-25 Keurig Incorporated Beverage cartridge
US9062912B2 (en) 2010-10-29 2015-06-23 Whirlpool Corporation Multi-single serve beverage dispensing apparatus, method and system
US9664437B2 (en) 2010-10-29 2017-05-30 Whirlpool Corporation Refillable consumable beverage flavoring cartridge
AU2011328110B2 (en) * 2010-11-11 2016-07-21 Société des Produits Nestlé S.A. Capsule, beverage production machine and system for the preparation of a nutritional product
WO2012063273A1 (fr) * 2010-11-12 2012-05-18 Lorenzo Giacomin Machine alimentée par la tension en courant alternatif (ca)/courant continu (cc) permettant de préparer un café expresso et d'autres consommations et boissons infusées
USD694620S1 (en) 2011-03-08 2013-12-03 Kraft Foods R&D, Inc. Beverage cartridge
GB2488799A (en) 2011-03-08 2012-09-12 Kraft Foods R & D Inc Drinks Pod without Piercing of Outer Shell
US20120244362A1 (en) 2011-03-22 2012-09-27 Pramanik Pranabes K Multi-layer sheet structure
GB2489409B (en) 2011-03-23 2013-05-15 Kraft Foods R & D Inc A capsule and a system for, and a method of, preparing a beverage
USD675090S1 (en) 2011-05-25 2013-01-29 Lbp Manufacturing, Inc. Disposable cup with straight rib
USD675091S1 (en) 2011-05-25 2013-01-29 Lbp Manufacturing, Inc. Disposable cup with wave rib
USD675089S1 (en) 2011-05-25 2013-01-29 Lbp Manufacturing, Inc. Disposable cup with curved rib
ITUD20110096A1 (it) * 2011-06-23 2012-12-24 San Marco Spa "metodo per la preparazione di caffè"
ITUD20110097A1 (it) 2011-06-23 2012-12-24 San Marco Spa "macchina per la preparazione di caffè"
US9452879B2 (en) 2011-07-26 2016-09-27 Lbp Manufacturing Llc Sealed beverage basket and method of making
US9149148B2 (en) 2011-12-30 2015-10-06 Nestec S. A. Multi-system beverage machine
EP2830467B1 (fr) * 2012-03-26 2015-12-30 Koninklijke Philips N.V. Dispositif d'orientation de capsules dans une machine de production de boissons
JP5897775B2 (ja) 2012-07-06 2016-03-30 ユニリーバー・ナームローゼ・ベンノートシヤープ 飲料を抽出するための方法およびデバイス
USD708057S1 (en) 2012-09-10 2014-07-01 Kraft Foods R & D, Inc. Beverage cartridge
USD697797S1 (en) 2012-09-12 2014-01-21 Kraft Foods R&D, Inc. Beverage cartridge
ES2550092T3 (es) 2013-03-21 2015-11-04 Unilever N.V. Procedimiento, dispositivo y cápsula para la infusión de una bebida
WO2015005930A1 (fr) * 2013-07-12 2015-01-15 General Mills, Inc. Système de formation de produits alimentaires
US9283591B2 (en) * 2013-10-23 2016-03-15 General Electric Company Refrigerator appliance and method for use with single serve dispenser
US9439532B2 (en) 2014-03-11 2016-09-13 Starbucks Corporation Beverage production machines with multi-chambered basket units
US9504348B2 (en) 2014-03-11 2016-11-29 Starbucks Corporation Cartridge ejection systems and methods for single-serve beverage production machines
US20150257586A1 (en) * 2014-03-11 2015-09-17 Starbucks Corporation Dba Starbucks Coffee Company Single-serve beverage production machine
EP3157395B1 (fr) * 2014-06-19 2018-04-11 Tentorio, Massimo Machine de brassage à usage unique
KR101598585B1 (ko) * 2014-07-21 2016-02-29 주식회사 대화디지탈 캡슐커피머신용 캡슐 이송장치
USD757536S1 (en) 2014-10-01 2016-05-31 Kraft Foods Group Brands Llc Container
RU2690559C2 (ru) 2014-10-01 2019-06-04 Крафт Фудс Груп Брэндс Ллк Кофейная капсула
KR101499737B1 (ko) * 2014-11-07 2015-03-10 (주)미스터커피 에스프레소 커피 추출 장치
ES2579978B2 (es) * 2015-02-16 2017-04-07 Smart Spirits, S.L. Infusor de bebidas alcohólicas
US9968217B2 (en) 2015-06-16 2018-05-15 Starbucks Corporation Beverage preparation systems with brew chamber securing mechanisms
US10602874B2 (en) 2015-06-16 2020-03-31 Starbucks Corporation Dba Starbucks Coffee Company Beverage preparation systems with brew chamber access mechanisms
US10342377B2 (en) 2015-06-16 2019-07-09 Starbucks Corporation Beverage preparation systems with adaptable brew chambers
CN105030073B (zh) * 2015-07-09 2017-11-10 万事达(杭州)咖啡机有限公司 一种自动上胶囊盒机构及全自动胶囊咖啡机
CN105054795B (zh) * 2015-07-17 2024-02-27 宁波心想科技有限公司 饮料机的水路结构
US20180146818A1 (en) * 2015-07-27 2018-05-31 Guangdong Midea Consumer Electrics Manufacturing Col., Ltd. Brewing system for beverage machine, beverage machine and beverage brewing method
EP3359000A4 (fr) * 2015-10-05 2019-04-17 Grindmaster Corporation Infuseur de boissons doté d'une étagère réglable
CN107212757A (zh) * 2016-03-21 2017-09-29 广东美的生活电器制造有限公司 饮品机的控制方法
CN105919427B (zh) * 2016-06-14 2019-08-23 广州市拓璞电器发展有限公司 一种连续冲泡咖啡装置
DE102016212988A1 (de) 2016-07-15 2018-01-18 Wmf Group Gmbh Kaffeemaschine zur Zubereitung von druckextrahierten Kaffee mit geringem Partikelgehalt, Verfahren hierzu und Verwendung der Kaffeemaschine
DE102017202685A1 (de) 2017-02-20 2018-08-23 Wmf Group Gmbh Filterkapsel zur Nachfiltration von Kaffee und Verwendung hiervon
CN110461197B (zh) * 2017-04-11 2022-07-19 雀巢产品有限公司 带饮料排放装置的饮料制备设备
IT201700056286A1 (it) * 2017-05-24 2018-11-24 Caffitaly System Spa Apparecchiatura per la preparazione di una bevanda, capsula per la preparazione di una bevanda e combinazione di un'apparecchiatura ed almeno due diverse capsule per la preparazione di bevande
KR101837348B1 (ko) * 2017-07-24 2018-04-19 주식회사 해성엔지니어링 커피 자동판매기
PT3501345T (pt) * 2017-12-22 2021-05-20 Nestle Sa Cartucho trocável para distribuidor de porção de bebida

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968560A (en) * 1959-02-06 1961-01-17 Sealpak Corp Infusion package for producing a coffee beverage
FR2617389A1 (fr) * 1987-06-30 1989-01-06 Desaltera Cartouche filtrante et machine pour la preparation d'une boisson expresse
US5472719A (en) * 1990-10-31 1995-12-05 Coffea S.A. Apparatus for the preparation of an edible liquid
US20010052294A1 (en) * 2000-06-14 2001-12-20 Arthur Schmed Coffee machine for brewing coffee power pre-packed in a cartridge

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2283967A (en) * 1940-10-10 1942-05-26 William F Brown Beverage apparatus
US2978560A (en) * 1958-03-20 1961-04-04 Ite Circuit Breaker Ltd Interrupter unit for telescoping blade switch
CH506984A (fr) 1969-01-30 1971-05-15 Battelle Memorial Institute Cartouche pour la préparation rapide d'une boisson chaude
GB1364462A (en) * 1970-10-28 1974-08-21 Telco Group Management Ltd Cartridge containing devices for use in the making of beverages and cartridges therefor
DE2129070B2 (de) * 1971-06-11 1974-08-29 Joh. Jacobs & Co Gmbh, 2800 Bremen Vorrichtung zur maschinellen Zubereitung eines Kaffeegetränks aus über eine Fördereinrichtung einer Brühstation zugeführten Kaffeeportionen
BE782645A (nl) 1972-04-26 1972-08-16 Veken Germaine V D Verbeteringen aan koffiefilters of dergelijke met eenmalig gebruik.
US3985069A (en) * 1973-12-03 1976-10-12 Cavalluzzi Frank J Coffee beverage drip brewer
US3952641A (en) 1975-01-27 1976-04-27 Cory Food Services, Inc. Beverage brewer apparatus
US4254694A (en) 1978-06-08 1981-03-10 Ernesto Illy Coffee machine
US4158330A (en) 1978-08-02 1979-06-19 Cory Food Services, Inc. Dual vented brewer
IT1210982B (it) 1981-02-03 1989-09-29 Giuseppe Stefano Piana Capsula a perdere, per la confezione di preparati idrosolubili in dosi, atti a consentire la preparazione di bevande calde in genere.
IT8122376V0 (it) 1981-07-16 1981-07-16 Illycaffe Spa Macchina da caffe' espresso corredata di organi amovibili per consentire di estrarre caffe'espresso da cialde di caffe'.
DK162369C (da) 1982-07-19 1992-03-23 Mars G B Ltd Fremgangsmaade og dispenser til fremstilling af en infusionsdrikkevare
FI83197C (fi) 1984-10-23 1991-06-10 Mars G B Ltd Dryckpaose.
ES2011013B3 (es) 1985-11-11 1989-12-16 Douwe Egberts Koninklijke Tabaksfabriek- Koffiebranderijen-Theehandel N V Un cartucho de filtro desechable.
CH668544A5 (fr) 1986-04-24 1989-01-13 Nestle Sa Dispositif d'extraction de cafe de cartouches.
NL8602863A (nl) 1986-11-12 1988-06-01 Philips Nv Filtreerinrichting.
CA1280903C (fr) * 1987-05-30 1991-03-05 Hirosato Takeuchi Debiteur
JPH01160510A (ja) * 1987-12-17 1989-06-23 Naoharu Kasai コーヒなどの抽出装置
IT1216706B (it) 1988-01-26 1990-03-08 Brasilia S R L Gruppo automatico per lapreparazione di caffe' espresso.
US4921712A (en) * 1988-08-19 1990-05-01 Malmquist Neil A Automatic low volume beverage brewing system
JPH03198821A (ja) * 1989-12-26 1991-08-30 Yamaoka Kinzoku Kogyo Kk 飲料抽出装置
US5134924A (en) * 1990-04-02 1992-08-04 Wayne Vicker Automatic coffee or like beverage making machine
DE69015629T2 (de) 1990-07-27 1995-05-04 Nestle Sa Verfahren zur Extraktion von offenen Kaffeekapseln, Kaffeekapsel und Extraktionsvorrichtung zur Durchführung dieses Verfahrens.
ES2047777T3 (es) 1990-07-27 1994-03-01 Nestle Sa Inserto adaptable a un portacartuchos.
ATE128614T1 (de) 1990-07-27 1995-10-15 Nestle Sa Aufbrühvorrichtung für geschlossene portionspackungen.
DE69002945T2 (de) * 1990-07-27 1994-01-20 Nestle Sa Verfahren zum Aufbrühen von geschlossenen Portionspackungen und Vorrichtung zur Durchführung dieses Verfahrens.
NL9002072A (nl) 1990-09-21 1992-04-16 Sara Lee De Nv Werkwijze en inrichting voor het zetten van koffie met behulp van een filterpan en een filterpatroon.
TW199884B (fr) 1991-05-08 1993-02-11 Sociere Des Produits Nestle S A
US5897899A (en) * 1991-05-08 1999-04-27 Nestec S.A. Cartridges containing substances for beverage preparation
ES2080196T3 (es) 1991-07-05 1996-02-01 Nestle Sa Dispositivo para la extraccion de cartuchos.
DK0521187T3 (da) 1991-07-05 1996-03-18 Nestle Sa Indretning til ekstraktion af patroner der kan tilpasses til alle espressomaskiner
DK0521186T3 (da) 1991-07-05 1995-04-18 Nestle Sa Blød emballage og fremgangsmåde til dens fremstilling
DE69216159T2 (de) * 1991-07-05 1997-04-10 Nestle Sa Stabile Kaffeekassette und Verfahren zu ihrer Herstellung
IT1256690B (it) 1992-03-04 1995-12-12 Lavazza Luigi Spa Capsula a perdere per l'uso nelle macchine per l'estrazione e la distribuzione di bevande calde.
JPH0646815A (ja) * 1992-07-02 1994-02-22 Gureesu Sangyo Kk 被抽出物封入カプセル
US5840189A (en) * 1992-09-16 1998-11-24 Keurig, Inc. Beverage filter cartridge
US5325765A (en) 1992-09-16 1994-07-05 Keurig, Inc. Beverage filter cartridge
CH685667A5 (de) * 1993-10-18 1995-09-15 Max Hugentobler Filtereinheit zur Herstellung von Filterkaffee.
US5505120A (en) 1994-12-12 1996-04-09 Albertson; David V. Water filter
NZ324255A (en) * 1995-12-28 1999-08-30 Creaholic Sa Coffee machine having a continuous flow heater and a control loop to control the water-output temperature
IT1284317B1 (it) * 1996-01-16 1998-05-18 Essegielle Srl Macchina per caffe' espresso.
US5638741A (en) * 1996-05-06 1997-06-17 Cisaria; Salvatore Group module for coffee machine
DE69615001T2 (de) * 1996-05-10 2002-03-21 Nestle Sa Geschlossene Patrone mit Zonen verminderter Dicke
NL1003716C2 (nl) * 1996-07-31 1998-02-05 Sara Lee De Nv Werkwijze, systeem en inrichting voor het bereiden van een voor consumptie geschikte drank zoals koffie.
US6079298A (en) * 1998-03-18 2000-06-27 Snap-On Tools Company Ergonomic handle and driver incorporating same
US6103116A (en) 1998-10-01 2000-08-15 Kx Industries, L.P. Collapsible filter
US6095032A (en) 1998-11-06 2000-08-01 La Marzocco International L.L.C. Coffee grinding, portioning, and pressing device
US6142063A (en) 1999-01-19 2000-11-07 Keurig, Inc. Automated beverage brewing system
US6082247A (en) 1999-01-19 2000-07-04 Keurig, Inc. Apparatus for consecutively dispensing an equal volume of liquid
US6079315A (en) 1999-01-19 2000-06-27 Keurig, Inc. Beverage filter cartridge holder
US6517880B2 (en) 2000-01-14 2003-02-11 Kx Industries, L.P. Beverage brewing system and method for using same
US6589577B2 (en) * 2000-02-18 2003-07-08 Keurig, Inc. Disposable single serve beverage filter cartridge
US6440256B1 (en) 2000-06-20 2002-08-27 Keurig, Incorporated Method of forming and inserting filter elements in cup-shaped containers
US6786134B2 (en) 2002-02-07 2004-09-07 The Coca-Cola Company Coffee and tea dispenser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968560A (en) * 1959-02-06 1961-01-17 Sealpak Corp Infusion package for producing a coffee beverage
FR2617389A1 (fr) * 1987-06-30 1989-01-06 Desaltera Cartouche filtrante et machine pour la preparation d'une boisson expresse
US5472719A (en) * 1990-10-31 1995-12-05 Coffea S.A. Apparatus for the preparation of an edible liquid
US20010052294A1 (en) * 2000-06-14 2001-12-20 Arthur Schmed Coffee machine for brewing coffee power pre-packed in a cartridge

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9451847B2 (en) 2003-01-24 2016-09-27 Koninklijke Douwe Egberts B.V. Cartridge and method for the preparation of beverages
WO2004065258A2 (fr) * 2003-01-24 2004-08-05 Kraft Foods R & D, Inc. Cartouche et procede pour preparer des boissons
WO2004065258A3 (fr) * 2003-01-24 2004-12-02 Kraft Foods R & D Inc Cartouche et procede pour preparer des boissons
EP1440910A1 (fr) * 2003-01-24 2004-07-28 Kraft Foods R & D, Inc. Système et méthode de préparation de boissons
US10442611B2 (en) 2003-01-24 2019-10-15 Koninklijke Douwe Egberts B.V. Machine for the preparation of beverages
US10676273B2 (en) 2003-01-24 2020-06-09 Koninklijke Douwe Egberts B.V. Cartridge and method for the preparation of beverages
US9994388B2 (en) 2003-01-24 2018-06-12 Koninklijke Douwe Egberts B.V. Cartridge and method for the preparation of beverages
JP2009512493A (ja) * 2005-10-20 2009-03-26 ブレイビロア・ホールディング・ビー.ブイ. 熱水生成の装置およびこの装置を備えたコーヒーマシン
WO2008033657A2 (fr) * 2006-09-12 2008-03-20 The Coca-Cola Company Thé infusé frais concentré
WO2008033657A3 (fr) * 2006-09-12 2008-09-12 Coca Cola Co Thé infusé frais concentré
US9723944B2 (en) 2007-02-27 2017-08-08 Koninklijke Douwe Egberts B.V. Machine for the preparation of beverages
US9668606B2 (en) 2007-02-27 2017-06-06 Koninklijke Douwe Egberts B.V. Machine for the preparation of beverages
US8887622B2 (en) 2007-02-27 2014-11-18 Kraft Foods R & D, Inc. Machine for the preparation of beverages
US11684200B2 (en) 2007-02-27 2023-06-27 Koninklijke Douwe Egberts B.V. Machine for the preparation of beverages
US10729276B2 (en) 2007-02-27 2020-08-04 Koninklijke Douwe Egberts B.V. In or relating to a machine for the preparation of beverages
US9386877B2 (en) 2007-05-18 2016-07-12 Kraft Foods R & D, Inc. Beverage preparation machines and beverage cartridges
US10952562B2 (en) 2007-05-18 2021-03-23 Koninklijke Douwe Egberts B.V. Beverage preparation machines and beverage cartridges
US9084509B2 (en) 2007-05-18 2015-07-21 Kraft Foods R & D, Inc. In or relating to beverage preparation machines
US8974846B2 (en) 2007-05-18 2015-03-10 Kraft Foods R & D, Inc. Beverage preparation machines and methods for operating beverage preparation machines
US8950317B2 (en) 2007-05-18 2015-02-10 Kraft Foods R & D, Inc. Beverage preparation machines
US8567304B2 (en) 2007-05-18 2013-10-29 Kraft Foods R&D, Inc. Beverage preparation machines
US9730547B2 (en) 2007-05-18 2017-08-15 Koninklijke Douwe Egberts B.V. Beverage preparation machines
US9907432B2 (en) 2007-05-18 2018-03-06 Koninklijke Douwe Egberts B.V. Beverage preparation machines
US8771768B2 (en) 2007-11-09 2014-07-08 Kraft Foods R & D, Inc. Beverage cartridge
US9828153B2 (en) 2007-11-09 2017-11-28 Koninklijke Douwe Egberts B.V. Beverage cartridge
JP2011522568A (ja) * 2008-04-28 2011-08-04 タタ ティー リミテッド 温かい飲料を自動的に新鮮に浸出し分注するアセンブリ
JP2011518597A (ja) * 2008-04-28 2011-06-30 タタ ティー リミテッド 新鮮で温かい飲料の自動ポッドコンベア及び浸出アセンブリ
US9113654B2 (en) 2009-03-27 2015-08-25 Kraft Foods R & D, Inc. Beverage concentrates
US9101163B2 (en) 2009-03-27 2015-08-11 Kraft Foods R & D, Inc. Sealed cartridge containing beverage concentrates
US9169112B2 (en) 2010-10-29 2015-10-27 Whirlpool Corporation Beverage dispenser with multi-chambered carousel and automatic coordination of flavorant flow rate
KR101260504B1 (ko) 2011-12-13 2013-05-06 컨벡스코리아(주) 카트리지 추출용 유니버설 음료 메이커
US11524268B2 (en) 2016-11-09 2022-12-13 Pepsico, Inc. Carbonated beverage makers, methods, and systems
CN108903658A (zh) * 2018-08-21 2018-11-30 孝感市元达新材料科技有限公司 一种智能化咖啡制作机
CN108903658B (zh) * 2018-08-21 2020-12-08 孝感市元达新材料科技有限公司 一种智能化咖啡制作机

Also Published As

Publication number Publication date
AU2003210798B2 (en) 2007-05-17
MXPA04007329A (es) 2004-11-26
US20040255790A1 (en) 2004-12-23
JP2010075714A (ja) 2010-04-08
EP1474021B1 (fr) 2006-06-21
DE60306337D1 (de) 2006-08-03
US6786134B2 (en) 2004-09-07
CA2698735A1 (fr) 2003-08-14
US20030145736A1 (en) 2003-08-07
DE60306337T2 (de) 2007-06-14
CA2474729A1 (fr) 2003-08-14
WO2003065859A3 (fr) 2003-12-31
ATE330521T1 (de) 2006-07-15
ZA200405980B (en) 2006-02-22
CA2474729C (fr) 2011-04-19
EP1474021A2 (fr) 2004-11-10
JP2005516602A (ja) 2005-06-09
ES2264765T3 (es) 2007-01-16
AU2003210798A1 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
CA2474729C (fr) Distributeur de cafe et de the
EP1893063B1 (fr) Distributeur de cafe et de the
US20050095158A1 (en) Coffee and tea dispenser with removable pod turret wheel
CN102015471B (zh) 一种用于新鲜热饮料的自动料盒输送机和冲泡机组件
AU2015343718B2 (en) Capsule-based system for preparing and dispensing a beverage
US4757752A (en) Tea brewing and dispensing apparatus
JP2009526599A (ja) 飲料のような食品の作製のためのパッケージ及び装置
JP7494114B2 (ja) 様々な種類の容器からの複数原材料飲料調製システム
US20200046162A1 (en) Beverage Preparation And Infusion System
WO2020201469A1 (fr) Dispositif de préparation de boissons à architecture thermiquement optimisée
CA3176458A1 (fr) Prechauffage d'air d'une chambre d'infusion
WO2007105944A2 (fr) Dispositif de moussage pour dispositif distributeur
US20220304502A1 (en) Beverage machine heated water source with horizontal heating coil
CN114727716A (zh) 用于加冰冲泡的方法和装置
WO2023118246A1 (fr) Préparation de boisson à soupape de sortie flexible

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2474729

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/007329

Country of ref document: MX

Ref document number: 2003565292

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003210798

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003737587

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003737587

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003737587

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003210798

Country of ref document: AU