WO2003065028A1 - Verfahren und vorrichtung zum kapazitiven nachweis von partikeln in einem fluid mittels dielektrophorese - Google Patents

Verfahren und vorrichtung zum kapazitiven nachweis von partikeln in einem fluid mittels dielektrophorese Download PDF

Info

Publication number
WO2003065028A1
WO2003065028A1 PCT/EP2003/000034 EP0300034W WO03065028A1 WO 2003065028 A1 WO2003065028 A1 WO 2003065028A1 EP 0300034 W EP0300034 W EP 0300034W WO 03065028 A1 WO03065028 A1 WO 03065028A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
dielectrophoresis
electrode
measuring
electrodes
Prior art date
Application number
PCT/EP2003/000034
Other languages
English (en)
French (fr)
Inventor
Bettina Borchert
Ullrich Demisch
Juergen Hall
Bernhard Wolf
Ralf Ehret
Original Assignee
Testo Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Testo Ag filed Critical Testo Ag
Publication of WO2003065028A1 publication Critical patent/WO2003065028A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/005Dielectrophoresis, i.e. dielectric particles migrating towards the region of highest field strength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods

Definitions

  • the invention relates to a method for the detection of particles, in particular for measuring their concentration, in a fluid, in which the particles are first shifted by means of dielectrophoresis in an arrangement with at least two electrodes generating an alternating field and then at least partially detected.
  • the invention relates to a device for the detection of particles, in particular for measuring their concentration in a fluid with at least a first and a second electrode, between which an alternating field can be generated in the context of a dielectrophoresis.
  • particles are to be understood as living or non-living cells, cell collections, organic and non-organic particles of homogeneous and inhomogeneous composition, cell parts, viruses, plasmids and liquid droplets in an emulsion or any solid constituents in a suspension that are movable in a fluid ,
  • the method of electrophoresis is known for influencing such particles. This is based on the fact that electrically neutral particles, if they are polarized, that is, if the positive and negative charge centers of gravity fall apart, are subject to a force effect in an electrical gradient field.
  • Such polarization of polarizable particles is achieved by applying an alternating electric field.
  • the interaction of the electrical alternating field, the frequency of which typically lies in the range from a few kilohertz to megahertz, with an electrical gradient field thus allows the displacement of particles, that is to say they can be separated and / or detected in the fluid.
  • the force effect on the particles depends on their polarizability and on the dielectric constant of the fluid as well as on the frequency of the alternating field and the gradient of the electrical field.
  • US6056861 is known in principle for the method of dielectrophoresis and its use for the separation of particles in fluids or for their detection. There, however, preference is given to the method of rotating fields or traveling waves for influencing the particles, since these methods should in particular be effective for particles which are also weakly polarizable.
  • GB 2238619 discloses the use of dielectrophoresis on microorganisms and other polarizable particles in a fluid.
  • a liquid flows between two electrodes, which generate an alternating electric field with a gradient in order to retain the polarizable particles in the area of the electric field.
  • the electrodes are switched off, so that the particles accumulated by the dielectrophoresis effect are flushed out of the electrode arrangement in a surge.
  • This surge of particles is detected downstream by a change in the light absorption in a light beam and the quantity or density of the particles is thus determined.
  • the present invention is based on the object of a method and an apparatus of the initially to provide the type mentioned for the detection of particles in a fluid, in which, after the particles have been displaced, they can be detected quantitatively with the least possible effort.
  • the object is achieved according to the invention by a method in which the particles which have reached one of the electrodes by means of dielectrophoresis are detected there by measuring an impedance change at the electrode.
  • This object is achieved in particular with a device in which at least a first of the electrodes forms a first measuring capacitor with a first counterelectrode and that the capacitance of the first measuring capacitor can be measured by means of a measuring device.
  • the method of detecting the particles by means of an impedance measurement is particularly simple and inexpensive, in that no further markers are required and that no special device, for example for generating light and measuring, is required.
  • the method of impedance measurement can be used with high sensitivity, in particular, if the dielectric constant of the particles differs greatly from the dielectric constant of the fluid, because in this case the force effect due to dielectrophoresis is particularly large on the one hand, and the impedance change due to the concentration of particles nearby an electrode is also large.
  • the concentration of particles on one of the electrodes becomes particularly high when there is a particularly strong inhomogeneity of the electric field at a corner or edge of the electrode. Then the field gradient is large there and accordingly the force on the particles is particularly large.
  • the impedance measurement is particularly sensitive when a first counterelectrode is provided in the vicinity of one of the electrodes used for the dielectrophoresis, which forms a measuring capacitor with the first electrode.
  • the capacitance of this measuring capacitor is heavily dependent on the concentration of the particles in its vicinity.
  • the particles to be analyzed are not only detectable qualitatively, but also within certain limits, also quantitatively.
  • the method and the device can be used, for example, to determine the bacterial count for hygiene measuring devices, but also as a sensor for the quantitative analysis of liquid constituents, for example in the case of emulsions.
  • microorganisms can be detected in a concentration of 10 6 per milliliter and less.
  • An advantageous embodiment of the method according to the invention provides that the dielectrophoresis is operated for a certain time under specified electrical and geometric conditions and that a capacitance measurement is then carried out on at least one of the electrodes and the measured capacitance is compared with a reference value and the particle concentration in from the deviation the fluid is determined.
  • the concentration of the particles in the fluid can thus be determined by comparison with a reference value.
  • An advantageous embodiment of the device according to the invention provides that the first and the second electrode each form a first and a second measuring capacitor with a counter electrode.
  • a further advantageous embodiment of the device according to the invention provides that the first and optionally the second electrode with the respective counter electrode each form a measuring capacitor in the form of a plate capacitor. Otherwise, the measuring capacitors can also be configured, for example, as cylindrical capacitors.
  • the two plate capacitors are arranged at a distance from one another in one plane.
  • the dielectrophoresis is carried out between the plate capacitors, so that the particles collect on at least one of the electrodes of a plate capacitor and can be registered there with high accuracy and probability of detection. Since the plates of the plate capacitors run essentially parallel to the field lines of the alternating field in the central region between the electrodes, a particularly strong field gradient results at the mutually facing edges of the plate capacitors. Accordingly, the particles will concentrate particularly there in the dielectrophoresis and are easily detectable there by the change in impedance of the respective plate capacitor.
  • the device also provides that the first and second electrodes can be acted upon by an alternating field of a selectable frequency.
  • a DC voltage field with a field gradient can advantageously be superimposed on this.
  • the selectable frequency of the alternating field can, on the one hand, determine the probability of detection of a particular particle type
  • different types of particles can be detected in succession within a fluid.
  • the force effect on the particles can be increased by an additional DC voltage field.
  • FIG. 1 shows the arrangement of the plate capacitors for performing the dielectrophoresis
  • Figure 2 schematically shows one of the plate capacitors with a device for impedance measurement.
  • a liquid level 1 indicates that there are two measuring capacitors 2, 3 designed as plate capacitors in a liquid.
  • the respective upper electrodes 4, 5 of the plate capacitors 2, 3 each form the first and second electrodes for dielectrophoresis.
  • the electrodes 4, 5 are connected by means of connections 6, 7 to a high-frequency AC voltage source 8 which generates an AC voltage in the frequency range between a few kilohertz and 100 megahertz.
  • the particles 9 are polarized by the alternating electric field that arises between the electrodes 4, 5 and then preferably shifted towards areas of high field strength by a field gradient. Such points of high field strength are formed, for example, by the mutually facing edges of the electrodes 4, 5, so that the particles 9 collect there in the course of the dielectrophoresis.
  • Each of the electrodes 4, 5 is assigned a counter electrode 10, 11 to form a measuring capacitor 16 which is designed as a plate capacitor.
  • the majority of the field lines within a plate capacitor 2, 3 runs directly from one electrode to another, but a stray field also results at the edge of a plate capacitor 2, 3. In the present case, this is influenced by the presence of particles at the edge of the plate capacitor 2, 3. If the particles have a higher dielectric constant than the fluid in which the respective plate capacitor 2, 3 is located, which can be water, for example, they increase the capacitance of the capacitor when they accumulate on its edge.
  • the presence of the particles (9) can be verified.
  • the amount of particles present can also be determined by the amount of change in the capacitance of the plate capacitors.
  • FIG. 2 shows a measuring device which has a connection 14, 15 on each of the electrodes of a plate capacitor 16.
  • the connections 14, 15 are connected to a measuring device 17 which, for example, the AC resistance of the capacitor 16 at a fixed frequency measure and thus determine its capacity.
  • the measured capacitance value is then passed on to a comparison device 18, where the measured value is compared with a stored reference value. The comparison of these two values then becomes the number of particles at the edge of the
  • Plate capacitor 16 determines, from which the concentration of the particles in the fluid is determined by means of reference values and fed to a display 19.
  • the device with two plate capacitors shown in the figures can, for example, be arranged on a ceramic carrier onto which a drop of the liquid to be analyzed is placed.
  • the liquid level shown in FIG. 1 is only to be understood symbolically.
  • the device can also analyze a liquid as it flows past the plate capacitors (2, 3) in a channel at a defined speed.
  • the implementation of the invention means that measurements can be carried out very quickly, that no markers are required and that the measurement results can simply be evaluated quantitatively.
  • the design effort of the device is limited, so that the device can be manufactured very inexpensively.

Abstract

Verfahren und Vorrichtung zum Nachweis von polarisierbaren Partikeln (9) in einer Flüssigkeit, wobei zunächst mittels eines elektrischen Wechselfeldes eine Dielektrophorese durchgeführt wird, als deren Ergebnis die Partikel (9) im Randbereich einer als Plattenkondensator (2, 3, 16) ausgeführten Elektrode konzentriert werden. Sodann kann dort durch eine Kapazitätmessung des Plattenkondensators (2, 3, 16) die Anwesenheit der Partikel (9) qualitativ und quantitativ nachgewiesen werden, da diese die Impedanz des Kondensators ändern.

Description

Beschreibung
VERFAHREN UND VORRICHTUNG ZUM KAPAZITIVEN NACHWEIS VON PARTIKELN IN EINEM FLUID MITTELS DIELEKTROPHORESE
Die Erfindung bezieht sich auf ein Verfahren zum Nachweis von Partikeln, insbesondere zur Messung ihrer Konzentration, in einem Fluid, bei dem zunächst mittels Dielektrophorese in einer Anordnung mit wenigstens zwei ein Wechselfeld erzeugenden Elektroden die Partikel verschoben und danach wenigstens teilweise nachgewiesen werden.
Außerdem bezieht sich die Erfindung auf eine Vorrichtung zum Nachweis von Partikeln, insbesondere zur Messung ihrer Kon- zentration in einem Fluid mit wenigstens einer ersten und einer zweiten Elektrode, zwischen denen im Rahmen einer Dielektrophorese ein Wechselfeld erzeugbar ist.
Unter Partikeln sollen in diesem Zusammenhang in einem Fluid beweglich sich befindende lebende oder nicht lebende Zellen, Zellansammlungen, organische und nichtorganische Teilchen homogener und inhomogener Zusammensetzung, Zellteile, Viren, Plasmide sowie Flüssigkeitströpfchen in einer Emulsion oder irgendwelche festen Bestandteile in einer Suspension verstan- den werden.
Oft ergibt sich die Notwendigkeit, solche Partikel aus einem Fluid zu isolieren oder zumindest nachzuweisen, dass und in welchem Anteil sie sich in dem Fluid befinden. Dazu sind ver- schiedene Verfahren bekannt. Es können beispielsweise biologische Nachweisverfahren oder chemische Nachweisverfahren mit sogenannten Markern durchgeführt werden, bei denen eine fremde Substanz zugegeben wird, die die Partikel in irgendeiner Weise beeinflusst, beispielsweise sich mit ihnen verbindet, so dass die entstehende Verbindung leicht nachzuweisen oder abzutrennen ist.
Dies erfordert jedoch immer einen gewissen Aufwand, da meistens eine auf die besondere Art der Partikel abgestimmte Substanz als Marker erforderlich ist.
Außerdem ist bekannt, dass in einem elektrischen Feld die in einer Flüssigkeit beziehungsweise einem Fluid in geladener Form vorliegenden Teilchen durch elektrische Felder getrennt werden können. Die Teilchen wandern aufgrund der Kraftwirkung im elektrischen Feld zu einer Elektrode mit der der Teilchenladung entgegengesetzten Polarität.
Oft ergibt sich jedoch in der Realität, dass Partikel vorliegen, die nicht in dem Fluid dissoziieren, und somit keine Nettoladung tragen, sondern elektrisch neutral sind.
Zur Beeinflussung solcher Partikel ist die Methode der Die- lektrophorese bekannt. Diese beruht darauf, dass elektrisch neutrale Teilchen, wenn sie polarisiert werden, das heißt, wenn der positive und der negative Ladungsschwerpunkt auseinanderfallen, in einem elektrischen Gradientenfeld einer Kraftwirkung unterliegen.
Eine derartige Polarisation polarisierbarer Teilchen wird durch Anlegen eines elektrischen Wechselfeldes erreicht. Das Zusammenwirken des elektrischen Wechselfeldes, dessen Fre- quenz typisch im Bereich von einigen Kilohertz bis Megaherz liegt mit einem elektrischen Gradientenfeld erlaubt somit die Verschiebung von Partikeln, das heißt diese können in dem Fluid abgesondert und/oder nachgewiesen werden. Die Kraftwirkung auf die Partikel hängt dabei von ihrer Pola- risierbarkeit und von der Dielektrizitätskonstante des Fluids sowie von der Frequenz des Wechselfeldes und dem Gradienten des elektrischen Feldes ab. Aus der US-Patentschrift
US6056861 ist grundsätzlich die Methode der Dielektrophorese und ihre Verwendung zur Absonderung von Partikeln in Fluiden oder zu deren Nachweis bekannt. Dort wird jedoch der Methode von rotierenden Feldern beziehungsweise Wanderwellen zur Be- einflussung der Partikel der Vorzug gegeben, da diese Methoden auf insbesondere auch schwach polarisierbare Partikel effektiv anwendbar sein sollen.
Ein konkreter Weg zum qualitativen oder quantitativen Nach- weis der Partikel geht aus der Entgegenhaltung jedoch nicht hervor .
Aus der GB 2238619 ist die Anwendung der Dielektrophorese auf Mikroorganismen und andere polarisierbare Partikel in einem Fluid bekannt. Dort strömt eine Flüssigkeit zwischen zwei E- lektroden durch, die ein elektrisches Wechselfeld mit einem Gradienten erzeugen, um die polarisierbaren Partikel im Bereich des elektrischen Feldes zurückzuhalten. Nach einer bestimmten Zeit werden die Elektroden abgeschaltet, so dass die durch die dielektrophoresische Wirkung angesammelten Partikel schwallartig aus der Elektrodenanordnung ausgeschwemmt werden. Dieser Schwall von Partikeln wird stromabwärts durch eine Änderung der Lichtabsorbtion in einem Lichtstrahl nachgewiesen und somit wird die Menge beziehungsweise Dichte der Partikel bestimmt.
Der vorliegenden Erfindung liegt demgegenüber die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs ge- nannten Art zum Nachweis von Partikeln in einem Fluid zu schaffen, bei dem nach der Verschiebung der Partikel diese mit möglichst geringem Aufwand und quantitativ erfassbar sind.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, bei dem die durch die Dielektrophorese zu einer der Elektroden gelangten Partikel dort durch Messung einer Impedanzänderung an der Elektrode nachgewiesen werden.
Die Lösung dieser Aufgabe gelingt insbesondere mit einer Vorrichtung, bei der wenigstens eine erste der Elektroden mit einer ersten Gegenelektrode einen ersten Messkondensator bildet und dass die Kapazität des ersten Messkondensators mit- tels einer Messeinrichtung messbar ist.
Die Methode, die Partikel mittels einer Impedanzmessung nachzuweisen, ist besonders einfach und wenig aufwendig, dadurch dass keine weiteren Marker benötigt werden und dass auch kei- ne besondere Vorrichtung beispielsweise zur Lichterzeugung und Messung erforderlich ist. Die Methode der Impedanzmessung ist besonders dann mit hoher Empfindlichkeit einsetzbar, wenn die Dielektrizitätskonstante der Partikel sich von der Dielektrizitätskonstanten des Fluides stark unterscheidet, denn in diesem Fall ist einerseits die Kraftwirkung durch die Dielektrophorese besonders groß, andererseits die Impedanzänderung durch Konzentration von Partikeln in der Nähe einer E- lektrode ebenfalls groß.
Die Konzentration von Partikeln an einer der Elektroden wird dann besonders groß, wenn sich dort an einer Ecke oder Kante der Elektrode eine besonders starke Inhomogenität des elektrischen Feldes befindet. Dann ist dort der Feldgradient groß und entsprechend ist die Kraftwirkung auf die Partikel besonders groß.
Besonders empfindlich ist die Impedanzmessung dann, wenn in der Nähe einer der Elektroden, die für die Dielektrophorese verwendet werden, eine erste Gegenelektrode vorgesehen ist, die mit der ersten Elektrode einen Messkondensator bildet. Die Kapazität dieses Messkondensators ist dann stark von der Konzentration der Partikel in seiner Nähe abhängig. Dadurch sind die Partikel, die analysiert werden sollen, nicht nur qualitativ, sondern in gewissen Grenzen auch quantitativ nachweisbar. Das Verfahren und die Vorrichtung können beispielsweise zur KeimzahlbeStimmung für Hygienemessgeräte aber auch als Sensor für die quantitative Analyse von Flüssig- keitsinhaltsstoffen beispielsweise bei Emulsionen angewendet werden.
Mikroorganismen können jedenfalls in einer Konzentration von 106 pro Milliliter und weniger nachgewiesen werden.
Eine vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass die Dielektrophorese für eine bestimmte Zeit unter festgelegten elektrischen und geometrischen Bedingungen betrieben wird und dass danach eine Kapazitätsmessung an wenigstens einer der Elektroden durchgeführt und die gemessene Kapazität mit einem Referenzwert verglichen sowie aus der Abweichung die Partikelkonzentration in dem Fluid ermittelt wird.
Um quantitativ das Vorhandensein von Partikeln durch das erfindungsgemäße Verfahren nachweisen zu können, ist es sinnvoll, zunächst unter Referenzbedingungen die Dielekrophorese durchzuführen und dann die Impedanzänderung zu messen. Dabei hängt die Zahl der Partikel, die an einer Elektrode angesammelt werden, von der Dauer der Dielektrophorese, der Konzentration der Partikel im Fluid, Amplitude und Frequenz des Wechselfeldes, Feldgradient und den Dielektrizitätskonstanten des Fluids und der Partikel ab. Wenn bei einer gegebenen geometrischen Elektrodenanordnung alle übrigen Parameter konstant gehalten werden, kann somit die Konzentration der Partikel im Fluid durch Vergleich mit einem Referenzwert bestimmt werden.
Da verschiedenartige Partikel bei unterschiedlichen Frequenzen des Wechselfeldes unterschiedlichen Kraftwirkungen unterliegen, gibt es für jede Partikelart günstige Frequenzbereiche des Wechselfeldes, bei denen der Nachweis besonders ef- fektiv gelingt. Je nach der Art der nachzuweisenden Partikel ist somit bei einem Test die entsprechende Frequenz einzustellen, um das Verfahren besonders effektiv durchzuführen. Dadurch können auch verschiedene Partikelarten selektiv gemessen werden.
Eine vorteilhafte Ausgestaltung der erfindungsgemäßen Vorrichtung sieht vor, dass die erste und die zweite Elektrode jeweils mit einer Gegenelektrode einen ersten und einen zweiten Messkondensator bilden.
Somit ist an jeder der das Wechselfeld erzeugenden Elektroden nach der Dielektrophorese eine Impedanzmessung möglich. Dies ergibt eine zusätzliche Möglichkeit zum Nachweis der Partikel, was insbesondere dann wichtig ist, wenn sich aufgrund der Polarität des Gradientenfeldes die Partikel an einer der Elektroden besonders sammeln. Eine weitere vorteilhafte Ausgestaltung der erfindungsgemäßen Vorrichtung sieht vor, dass die erste und gegebenenfalls die zweite Elektrode mit der jeweiligen Gegenelektrode jeweils einen Messkondensator in Form eines Plattenkondensators bil- det. Ansonsten können die Messkondensatoren auch beispielsweise als Zylinderkondensatoren ausgestaltet sein.
Vorteilhaft kann außerdem sein, dass die beiden Plattenkondensatoren in einer Ebene mit Abstand voneinander angeordnet sind.
In diesem Fall wird die Dielektrophorese zwischen den Plattenkondensatoren durchgeführt, so dass sich die Partikel an wenigstens einer der Elektroden eines Plattenkondensators sammeln und dort mit hoher Genauigkeit und Nachweiswahrscheinlichkeit registriert werden können. Da die Platten der Plattenkondensatoren im wesentlichen parallel zu den Feldlinien des Wechselfeldes im Mittelbereich zwischen den Elektroden verlaufen, ergibt sich an den einander zugewandten Kanten der Plattenkondensatoren ein besonders starker Feldgradient. Dort werden sich demnach die Partikel bei der Dielektrophorese besonders konzentrieren und sind dort durch die Impedanzänderung des jeweiligen Plattenkondensators gut nachweisbar.
Zur besonders wirkungsvollen Ausführung des erfindungsgemäßen Verfahrens ist bei der Vorrichtung außerdem vorgesehen, dass die erste und die zweite Elektrode mit einem Wechselfeld wählbarer Frequenz beaufschlagbar sind. Diesem kann vorteilhaft ein Gleichspannungsfeld mit einem Feldgradienten überla- gerbar sein.
Durch die wählbare Frequenz des Wechselfeldes kann einerseits die Nachweiswahrscheinlichkeit einer bestimmten Partikelart erhöht werden, andererseits können innerhalb eines Fluids auch verschiedene Partikelarten nacheinander detektiert werden. Durch ein zusätzliches Gleichspannungsfeld kann die Kraftwirkung auf die Partikel verstärkt werden.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels in einer Zeichnung gezeigt und anschließend beschrieben.
Dabei zeigt
Figur 1 die Anordnung der Plattenkondensatoren zur Durchführung der Dielektrophorese,
Figur 2 schematisch einen der Plattenkondensatoren mit einer Einrichtung zur Impedanzmessung.
In der Figur 1 ist durch einen Flüssigkeitsspiegel 1 angedeutet, dass sich dort zwei als Plattenkondensatoren ausgebildete Messkondensatoren 2, 3 in einer Flüssigkeit befinden.
Die jeweils oberen Elektroden 4, 5 der Plattenkondensatoren 2, 3 bilden jeweils die erste und zweite Elektrode für die Dielektrophorese. Dazu sind die Elektroden 4, 5 mittels Anschlüssen 6, 7 mit einer hochfrequenten Wechselspannungsquelle 8 verbunden die eine Wechselspannung im Frequenzbereich zwischen einigen Kilohertz und 100 Megaherz erzeugt.
Durch das zwischen den Elektroden 4, 5 entstehende elektrische Wechselfeld werden die Partikel 9 polarisiert und dann durch einen Feldgradienten bevorzugt zu Bereichen hoher Feld- stärke hin verschoben. Solche Punkte hoher Feldstärke werden beispielsweise durch die einander zugewandten Kanten der E- lektroden 4, 5 gebildet, so dass sich die Partikel 9 dort im Laufe der Dielektrophorese ansammeln. Jeder der Elektroden 4, 5 ist zur Bildung eines als Plattenkondensator ausgebildeten Messkondensators 16 eine Gegenelektrode 10, 11 zugeordnet. Jeweils zwischen der Elektrode 4, 5 und der Gegenelektrode 10, 11 ist eine Isolationsschicht 12, 13, z. B. Keramik, Siliziumdioxid, Siliziumnitrid angeordnet .
Der Großteil der Feldlinien innerhalb eines Platten- kondensators 2, 3 verläuft zwar direkt von einer Elektrode zur anderen, jedoch ergibt sich am Rand eines Plattenkondensators 2, 3 auch ein Streufeld. Dieses wird im vorliegenden Fall bei der Anwesenheit von Partikeln am Rand des Plattenkondensators 2, 3 von diesen beeinflusst. Haben die Partikel eine höhere Dielektrizitätskonstante als das Fluid, in dem der jeweilige Plattenkondensator 2, 3 sich befindet, das beispielsweise Wasser sein kann, so erhöhen sie die Kapazität des Kondensators, wenn sie sich an dessen Kante ansammeln.
Somit kann durch Messung der Impedanz beziehungsweise Kapazität der in dem Fluid angeordneten Plattenkondensatoren nach der Dielektrophorese der Nachweis des Vorhandenseins der Partikel (9) geführt werden.
Außerdem kann auch durch den Betrag der Änderung der Kapazität der Plattenkondensatoren die Menge der vorhandenen Partikel bestimmt werden.
Die Figur 2 zeigt hierzu eine Messvorrichtung, die jeweils einen Anschluss 14, 15 an jeder der Elektroden eines Plattenkondensators 16 aufweist. Die Anschlüsse 14, 15 sind mit einem Messgerät 17 verbunden, das beispielsweise bei einer festen Frequenz den Wechselstromwiderstand des Kondensators 16 messen und somit dessen Kapazität bestimmen kann. Der gemessene Kapazitätswert wird dann an eine Vergleichseinrichtung 18 weitergegeben, wo der gemessene Wert mit einem gespeicherten Referenzwert verglichen wird. Aus dem Vergleich dieser beiden Werte wird dann die Zahl der Partikel am Rand des
Plattenkondensators 16 bestimmt, hieraus mittels Referenzwerten die Konzentration der Partikel in dem Fluid ermittelt und einer Anzeige 19 zugeführt.
Die in den Figuren dargestellte Einrichtung mit zwei Plattenkondensatoren kann beispielsweise auf einem Keramikträger angeordnet sein, auf den ein Tropfen der zu analysierenden Flüssigkeit gebracht wird. Der in der Figur 1 dargestellte Flüssigkeitsspiegel ist insofern nur symbolisch zu verstehen. Die Vorrichtung kann auch eine Flüssigkeit analysieren, während sie in einem Kanal mit definierter Geschwindigkeit an den Plattenkondensatoren (2, 3) vorbeiströmt. Die Verwirklichung der Erfindung führt dazu, dass Messungen sehr schnell durchführbar sind, dass keine Marker benötigt werden und dass die Messergebnisse einfach auch quantitativ auswertbar sind. Dabei hält sich der konstruktive Aufwand der Vorrichtung in Grenzen, so dass die Vorrichtung sehr kostengünstig herstellbar ist.

Claims

Patentansprüche
1. Verfahren zum Nachweis von Partikeln (9), insbesondere zur Messung ihrer Konzentration, in einem Fluid, bei dem zunächst mittels Dielektrophorese in einer Anordnung mit wenigstens zwei ein Wechselfeld erzeugenden Elektroden (4, 5) die Partikel (9) verschoben und danach wenigstens teilweise nachgewiesen werden, d a d u r c h g e k e n n z e i c h n e t, d a ß die durch Dielektrophorese zu einer der Elektroden (4, 5) gelangten Partikel (9) dort durch Messung einer Impedanzänderung an der Elektrode (4, 5) nachgewiesen werden.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, d a ß die Dielektrophorese für eine bestimmte Zeit unter festgelegten elektrischen und geometrischen Bedingungen betrieben wird und dass danach eine elektrische Kapazitätsmessung an wenigstens einer der Elektroden (4, 5) durchgeführt und die gemes- sene Kapazität mit einem Referenzwert verglichen sowie aus der Abweichung die Partikelkonzentration in dem Fluid ermittelt wird.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, d a ß zum Zweck der Dielektrophorese das Wechselfeld zwischen den zwei Elektroden (4, 5) mit einer Frequenz betrieben wird, die auf die Art der nachzuweisenden Partikel (9) abgestimmt ist.
4. Vorrichtung zum Nachweis von Partikeln (9), insbesondere zur Messung ihrer Konzentration in einem Fluid, mit wenigstens einer ersten und einer zweiten Elektrode (4, 5), zwi- sehen denen im Rahmen einer Dielektrophorese ein Wechselfeld erzeugbar ist, d a d u r c h g e k e n n z e i c h n e t, d a ß wenigstens eine erste der Elektroden (4, 5) mit einer ersten Gegenelektrode (10, 11) einen ersten Messkondensator (16) bildet und dass die Kapazität des ersten Messkondensators (16) mittels einer Messeinrichtung (14, 15, 17) messbar ist.
5. Vorrichtung nach Anspruch 4 , d a d u r c h g e k e n n z e i c h n e t, d a ß die erste (4) und die zweite Elektrode (5) jeweils mit einer Gegenelektrode (10, 11) einen ersten und einen zweiten Messkondensator (2, 3, 16) bilden.
6. Vorrichtung nach Anspruch 4 oder 5, d a d u r c h g e k e n n z e i c h n e t, d a ß die erste (4) und gegebenenfalls die zweite Elektrode (5) mit der jeweiligen Gegenelektrode (10, 11) jeweils einen Messkondensator (16) in Form eines Plattenkondensators (2, 3) bil- det.
7. Vorrichtung nach Anspruch 5 und 6, d a d u r c h g e k e n n z e i c h n e t, d a ß die beiden Plattenkondensatoren (2, 3) in einer Ebene mit Ab- stand voneinander angeordnet sind.
8. Vorrichtung nach Anspruch 4 oder einem der folgenden, d a d u r c h g e k e n n z e i c h n e t, d a ß die erste (4) und die zweite Elektrode (5) mit einem Wechsel- feld wählbarer Frequenz beaufschlagbar sind.
PCT/EP2003/000034 2002-01-30 2003-01-03 Verfahren und vorrichtung zum kapazitiven nachweis von partikeln in einem fluid mittels dielektrophorese WO2003065028A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10203636.5 2002-01-30
DE2002103636 DE10203636B4 (de) 2002-01-30 2002-01-30 Vorrichtung zum Nachweis von Partikeln in einem Fluid

Publications (1)

Publication Number Publication Date
WO2003065028A1 true WO2003065028A1 (de) 2003-08-07

Family

ID=27588146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/000034 WO2003065028A1 (de) 2002-01-30 2003-01-03 Verfahren und vorrichtung zum kapazitiven nachweis von partikeln in einem fluid mittels dielektrophorese

Country Status (2)

Country Link
DE (1) DE10203636B4 (de)
WO (1) WO2003065028A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083408A1 (en) * 2004-02-27 2005-09-09 Daprox Ab Process and gauge for measuring fiber concentration
CN100439908C (zh) * 2004-02-27 2008-12-03 达普罗克斯公司 用于测量纤维浓度的方法和装置
US7479789B2 (en) 2004-02-27 2009-01-20 Daprox Ab Method and device for measuring the degree of fiber concentration
US11921028B2 (en) 2011-10-28 2024-03-05 Menarini Silicon Biosystems S.P.A. Method and device for optical analysis of particles at low temperatures

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20040420A1 (it) 2004-07-07 2004-10-07 Type S R L Macchina per taglio e formatura di piattine metalliche
ITBO20050481A1 (it) 2005-07-19 2007-01-20 Silicon Biosystems S R L Metodo ed apparato per la manipolazione e/o l'individuazione di particelle
ITBO20050646A1 (it) 2005-10-26 2007-04-27 Silicon Biosystem S R L Metodo ed apparato per la caratterizzazione ed il conteggio di particelle
ITTO20060226A1 (it) 2006-03-27 2007-09-28 Silicon Biosystem S P A Metodo ed apparato per il processamento e o l'analisi e o la selezione di particelle, in particolare particelle biologiche
ITTO20070771A1 (it) 2007-10-29 2009-04-30 Silicon Biosystems Spa Metodo e apparato per la identificazione e manipolazione di particelle
IT1391619B1 (it) 2008-11-04 2012-01-11 Silicon Biosystems Spa Metodo per l'individuazione, selezione e analisi di cellule tumorali
US10895575B2 (en) 2008-11-04 2021-01-19 Menarini Silicon Biosystems S.P.A. Method for identification, selection and analysis of tumour cells
CN102427883B (zh) 2009-03-17 2014-08-20 硅生物系统股份公司 用于细胞隔离的微流体装置
IT1403518B1 (it) 2010-12-22 2013-10-31 Silicon Biosystems Spa Dispositivo microfluidico per la manipolazione di particelle
ITBO20110766A1 (it) 2011-12-28 2013-06-29 Silicon Biosystems Spa Dispositivi, apparato, kit e metodo per il trattamento di un campione biologico

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5546006A (en) * 1994-07-01 1996-08-13 Cornell Research Foundation, Inc. Guarded capacitance probes for measuring particle concentration and flow
WO2001005511A1 (en) * 1999-07-20 2001-01-25 University Of Wales, Bangor Electrodes for generating and analysing dielectrophoresis
GB2358473A (en) * 2000-01-22 2001-07-25 Cell Analysis Ltd Detecting microscopic bodies using dielectrophoretic separation
WO2001083113A1 (en) * 2000-05-03 2001-11-08 Cell Analysis Limited Method and apparatus for analysing low concentrations of particles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8926781D0 (en) * 1989-11-27 1990-01-17 Nat Res Dev Identification of micro-organisms
US6294063B1 (en) * 1999-02-12 2001-09-25 Board Of Regents, The University Of Texas System Method and apparatus for programmable fluidic processing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5546006A (en) * 1994-07-01 1996-08-13 Cornell Research Foundation, Inc. Guarded capacitance probes for measuring particle concentration and flow
WO2001005511A1 (en) * 1999-07-20 2001-01-25 University Of Wales, Bangor Electrodes for generating and analysing dielectrophoresis
GB2358473A (en) * 2000-01-22 2001-07-25 Cell Analysis Ltd Detecting microscopic bodies using dielectrophoretic separation
WO2001083113A1 (en) * 2000-05-03 2001-11-08 Cell Analysis Limited Method and apparatus for analysing low concentrations of particles

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUKUMA H ET AL: "MEASUREMENT OF IMPEDANCE OF COLUMNAR BOTANICAL TISSUE USING THE MULTIELECTRODE METHOD", ELECTRONICS & COMMUNICATIONS IN JAPAN, PART III - FUNDAMENTAL ELECTRONIC SCIENCE, SCRIPTA TECHNICA. NEW YORK, US, vol. 84, no. 2, PART 3, 2001, pages 1 - 11, XP000975436, ISSN: 1042-0967 *
LAUGERE F ET AL: "Design of an electronic interface for capacitively coupled four-electrode conductivity detection in capillary electrophoresis microchip", SENSORS AND ACTUATORS B, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 83, no. 1-3, 15 March 2002 (2002-03-15), pages 104 - 108, XP004344492, ISSN: 0925-4005 *
SUEHIRO J ET AL: "QUANTITATIVE ESTIMATION OF BIOLOGICAL CELL CONCENTRATION SUSPENDED IN AQUEOUS MEDIUM BY USING DIELECTROPHORETIC IMPEDANCE MEASUREMENT METHOD", JOURNAL OF PHYSICS D. APPLIED PHYSICS, IOP PUBLISHING, BRISTOL, GB, vol. 32, no. 21, 7 November 1999 (1999-11-07), pages 2814 - 2820, XP000928348, ISSN: 0022-3727 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083408A1 (en) * 2004-02-27 2005-09-09 Daprox Ab Process and gauge for measuring fiber concentration
CN100439908C (zh) * 2004-02-27 2008-12-03 达普罗克斯公司 用于测量纤维浓度的方法和装置
US7479789B2 (en) 2004-02-27 2009-01-20 Daprox Ab Method and device for measuring the degree of fiber concentration
US11921028B2 (en) 2011-10-28 2024-03-05 Menarini Silicon Biosystems S.P.A. Method and device for optical analysis of particles at low temperatures

Also Published As

Publication number Publication date
DE10203636A1 (de) 2003-08-14
DE10203636B4 (de) 2004-02-12

Similar Documents

Publication Publication Date Title
DE10203636B4 (de) Vorrichtung zum Nachweis von Partikeln in einem Fluid
DE10243748B4 (de) Elektromagnetischer Durchflussmesser
EP3152530B1 (de) Verfahren und vorrichtung zur überwachung des füllstandes eines mediums in einem behälter
EP2533035B1 (de) Vorrichtung und Verfahren zur Erfassung von Materialeigenschaften
EP2577253B1 (de) Verfahren zum erfassen von partikeln in einem abgasstrom
DE102010025118A1 (de) Berührungslose Füllstandsmessung von Flüssigkeiten
EP2010896A1 (de) Gittersensor zur zweidimensionalen messung von verschiedenen komponenten im querschnitt einer mehrphasenströmung
CH640055A5 (de) Verfahren und vorrichtung zur bestimmung des dielektrischen durchbruches und der groesse von als umhuellung eine membran aufweisenden partikeln.
DE3228767C2 (de) Vorrichtung zur Bestimmung der Grenzfläche zwischen Blutplasma und einer Blutkörperchen-Suspension
DE112008000244T5 (de) Verfahren und Vorrichtung zum Messen physikalischer Eigenschaften eines TFT-Flüssigkristall-Panels
WO2007115416A1 (de) Verfahren und vorrichtung zur untersuchung von bewegtem, festem, länglichem prüfgut
WO2011080199A2 (de) Verfahren und vorrichtung zur detektion von phasengrenzen und entsprechend ausgestattetes laborgerät
DE102010049488B4 (de) Verfahren zum Testen eines Laborgeräts und entsprechend ausgestattetes Laborgerät
DE102006031332B4 (de) Messvorrichtung zum Nachweis von Fremdstoffen in einer Flüssigkeit
DE102016115483A1 (de) Verfahren zum Betreiben eines magnetisch-induktiven Durchflussmessgeräts und magnetisch-induktives Durchflussmessgerät
DE102012106384A1 (de) Verfahren zur Ermittlung zumindest einer Fehlfunktion eines konduktiven Leitfähigkeitssensors
WO2007121879A1 (de) Verfahren und sensorvorrichtung zur bestimmung der partikelzahl in einem ölvolumen
DE102011117681A1 (de) Verfahren und Vorrichtung zur Messung des Grenzschichtpotentials von Partikeln und Makromolekülen in flüssigen Medien, Computerprogramm zur Durchführung des Verfahrens und Maschienenlesbarer Träger hierfür
DE2326409C3 (de) Verfahren zur Messung des elektrokinetischen Potentials (Z-Potentials)
EP1867422A2 (de) Vorrichtung und Verfahren zur elektrochemischen Bearbeitung von Werkstücken
WO2015044027A1 (de) Multiplexverfahren für eine magnetische durchflusszytometrie
DE102021204556A1 (de) Verfahren und Vorrichtung zum Überwachen einer Messposition hinsichtlich einer Präsenz, Menge und/oder Art einer an der Messposition auftretenden Chemikalie
DE102021108182B3 (de) Vorrichtung und Verfahren zur Erfassung und Auswertung von Laufzeitunterschieden von Spannungsverläufen
DE112012005510T5 (de) Asymetrisches Feldionenmobilitätsspektrometer
EP0281780B1 (de) Verfahren und Einrichtung zum Bestimmen der volumetrischen Zusammensetzung einer Mehrkomponentenströmung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 164262

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 164316

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 164596

Country of ref document: IL

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP