WO2003064085A1 - Element d'outil de coupe revetu a couche de revetement dure et procede de formation de la couche de revetement dure sur l'outil de coupe - Google Patents

Element d'outil de coupe revetu a couche de revetement dure et procede de formation de la couche de revetement dure sur l'outil de coupe Download PDF

Info

Publication number
WO2003064085A1
WO2003064085A1 PCT/JP2003/000903 JP0300903W WO03064085A1 WO 2003064085 A1 WO2003064085 A1 WO 2003064085A1 JP 0300903 W JP0300903 W JP 0300903W WO 03064085 A1 WO03064085 A1 WO 03064085A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
content point
point
hard coating
coating layer
Prior art date
Application number
PCT/JP2003/000903
Other languages
English (en)
French (fr)
Inventor
Eiji Nakamura
Hidemitsu Takaoka
Yasuhiko Tashiro
Original Assignee
Mitsubishi Materials Corporation
Mitsubishi Materials Kobe Tools Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002023094A external-priority patent/JP3944900B2/ja
Priority claimed from JP2002027896A external-priority patent/JP3944901B2/ja
Priority claimed from JP2002060206A external-priority patent/JP3944902B2/ja
Priority claimed from JP2002060207A external-priority patent/JP3944903B2/ja
Application filed by Mitsubishi Materials Corporation, Mitsubishi Materials Kobe Tools Corporation filed Critical Mitsubishi Materials Corporation
Priority to KR1020047011697A priority Critical patent/KR100594333B1/ko
Priority to EP03703085.5A priority patent/EP1470880B1/en
Priority to US10/503,325 priority patent/US7144639B2/en
Publication of WO2003064085A1 publication Critical patent/WO2003064085A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/27Cutters, for shaping comprising tool of specific chemical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a surface-coated cutting tool member having a hard coating layer and a method of forming the hard coating layer on a cutting tool surface.
  • the present invention relates to a coated cutting tool exhibiting excellent life characteristics because the hard coating layer has excellent high-temperature characteristics and strength, and a method for forming the hard coating layer on the surface of the cutting tool.
  • coated cutting tools include a throw-away tip that is detachably attached to the tip of a byte for turning or planing of various materials such as steel and iron,
  • drills and miniature drills used for drilling and drilling
  • solid type end mills used for face milling, grooving, and shoulder milling of the work material.
  • a throw-away end mill tool or the like is known which performs cutting in the same manner as the solid type end mill by being attached to the end mill.
  • TiCN titanium carbonitride
  • c cubic boron nitride
  • a base sintered material substrate hereinafter referred to collectively as a hard substrate
  • Coated carbide tools made by physical vapor deposition with an average layer thickness of ⁇ m are known, and it is well known that they can be used for continuous or interrupted cutting of various types of steel and mirror iron.
  • Coated cutting tools are, for example, physical vapor deposition as shown schematically in Figure 2.
  • the above-described hard substrate is charged into an arc ion plating apparatus, which is one type of apparatus, and the inside of the apparatus is heated to a temperature of, for example, 500 ° C. by a heater.
  • an arc discharge is generated between the power source electrode (evaporation source) on which the Ti alloy is set and an electric current of 90 A, for example, and simultaneously, nitrogen gas is introduced into the apparatus as a reaction gas. Then, for example, a reaction atmosphere of 2 Pa is applied.
  • a bias voltage of, for example, 100 V is applied to the hard substrate, the surface of the cemented carbide substrate is subjected to the above (A l, T i) It is also known to be manufactured by evaporating a hard coating layer composed of an N layer.
  • composition formula by ion mixing method (T i Z R Z) N (However, Z takes a value in the range of 0.005 to 0.20.
  • R represents a rare earth element. Candidates for this include Dy, Y, La, Nd, and Gd.
  • Z represents the atomic ratio of rare earth elements in all metal elements) and a hard coating layer composed of a composite nitride of Ti and a rare earth element [hereinafter, referred to as (T i, R) N].
  • T i Z a hard coating layer composed of a composite nitride of Ti and a rare earth element
  • the ratio (atomic ratio) of the Y component to the total amount of the Ti component is adjusted to be in the range of 0.05 to 0.15, Due to the coexistence effect of Ti ion and Y ion in the steel, it has extremely high coating hardness and heat resistance, and when this is used for cutting, it is extremely excellent even in high speed cutting with high heat generation. To exhibit high wear resistance.
  • the (T i, Y) N layer has a substantially uniform composition throughout the layer thickness, and thus has a uniform high-temperature hardness and heat resistance.
  • FIG. An arc ion plating apparatus having a structure schematically shown in a front view in FIG. 1B, that is, a rotary table for mounting a hard substrate was provided in the center of the apparatus, and one side of the rotary table contained a Y component.
  • a Ti—Y alloy and a metal Ti on the other side are both arranged as cathode electrodes (evaporation sources)
  • a plurality of hard substrates are arranged along the outer periphery of the rotary table of the apparatus.
  • the rotary table is rotated while the atmosphere in the apparatus is a nitrogen atmosphere, and the hard base itself is rotated for the purpose of uniforming the thickness of the hard coating layer formed by vapor deposition.
  • the atmosphere in the apparatus is a nitrogen atmosphere
  • the hard base itself is rotated for the purpose of uniforming the thickness of the hard coating layer formed by vapor deposition.
  • a T i N point (a Y component free point) is formed in the layer
  • the Y-component maximum content point and the Y-component non-content point alternately and repeatedly appear at predetermined intervals in the layer thickness direction, and from the Y-component maximum content point to the Y-component non-content point.
  • the content of the Y component from the non-Y component content point to the Y component maximum content point Component concentration distribution changes continue to To have a structure.
  • the highest content point of the Y component satisfies the composition formula: (T i, - ⁇ ) ⁇ (where X represents 0.005 to 0.10) ', and Assuming that the distance between the ⁇ component maximum content point and the ⁇ component non-content point in the thickness direction is 0.01 to 0.1 / m, the above (T i, Y) N layer It shows excellent high-temperature hardness corresponding to the high-temperature hardness of, while the above-mentioned Y component-free portion has a substantially low Y component content centered on the TiN point. The high strength and high toughness of iN are ensured, and the interval between these Y component maximum content points and Y component non-content points is extremely small.
  • the hardened coating layer has higher strength and toughness, and therefore has a hardened coating layer consisting of a (T i, Y) N layer.
  • the hard coating layer has excellent chipping resistance, especially when performing intermittent cutting of various types of steel and steel under heavy cutting conditions such as high cutting and high feed with high mechanical impact. Will be able to demonstrate.
  • the present invention has been made based on the above research results, and has a hard coating layer composed of a (Ti, Y) N layer having a total average layer thickness of 1 to 15 ⁇ m on the surface of a hard substrate.
  • the present invention provides a coated cutting tool in which a hard coating layer exhibits excellent chipping resistance by intermittent heavy cutting.
  • the Y component maximum content point (Ti component minimum content point) and the Y component non-content point (T i N point) are alternately repeated at predetermined intervals along the layer thickness direction. It is preferable to have a component concentration distribution structure in which the Y component content continuously changes from the Y component maximum content point to the Y component non-content point, and from the Y component non-content point to the Y component maximum content point.
  • the Y component maximum content point composition formula: (T i - ⁇ ⁇ ⁇ ) ⁇ ( where atoms In the ratio, X represents 0.005 to 0.10), and the distance between the adjacent Y component maximum content point and the Y component non-content point is 0.01 to 0.1. It would be nice if there were.
  • the range of X is preferably from 0.005 to 0.10, more preferably from 0.005 to 0.07, and still more preferably from 0.01 to 0.05.
  • the hard substrate is preferably a WC-based cemented carbide substrate, a TiCN-based cermet substrate, or a c-BN-based sintered material substrate.
  • a cutting tool made of a hard substrate can be rotated on a rotary table in an arc ion plating apparatus at a position radially away from a center axis of the rotary table.
  • the reaction atmosphere in the arc ion plating apparatus is set to a nitrogen gas atmosphere, and the Y component maximum content point (T i component minimum content point) forming the Ti-Y alloy force source electrode and the Y-alloy force electrode disposed opposite each other across the rotary table.
  • An arc discharge is generated between the force source electrodes of the metal Ti for forming the Y component-free point (TiN point) and the anode electrodes arranged in parallel with each of these force source electrodes,
  • the Y component maximum content point (T i component minimum content point) and the Y component non-content point (T i N point) are arranged along the thickness direction on the surface of the cutting tool that rotates while rotating on the rotary table. ) Are alternately and repeatedly present at predetermined intervals, and the Y component content is continuous from the Y component maximum content point to the Y component non-content point, and from the Y component non-content point to the Y component maximum content point. Having a component concentration distribution structure that changes
  • the highest content point of the Y component is represented by a composition formula: (TixYx) ⁇ (where X represents 0.005 to 0.10 in atomic ratio),
  • Hard coating layer with excellent chipping resistance in intermittent heavy cutting consisting of physical vapor deposition of a hard coating layer consisting of N layers with an overall average layer thickness of 1 to 15 / im.
  • the method is characterized in that the method of forming the surface on the cutting tool surface.
  • the range of X is preferably from 0.005 to 0.10, more preferably from 0.005 to 0.07, and still more preferably from 0.001 to 0.05.
  • the hard substrate includes a WC-based cemented carbide substrate, a TiCN-based cermet substrate, and Alternatively, a c-BN based sintered material substrate is preferred.
  • the Y component in the N layer is included for the purpose of improving the temperature hardness of the Ti N layer having high strength and high toughness, and therefore, if the content ratio of the Y component increases, The higher temperature characteristics are improved, the higher the ratio (atomic ratio) of the ratio (atomic ratio) to the total amount with Ti exceeds 0.10, the higher the strength and the higher the toughness. It is difficult to maintain the strength and toughness required for intermittent cutting under heavy cutting conditions such as high cutting and high feed with high mechanical impact even if the T i N points are adjacent to each other. As a result, chipping or the like is likely to occur. On the other hand, if the ratio (X value) is less than 0.0005, a desired effect of improving the high-temperature characteristics cannot be obtained. 10, preferably 0.005 to 0.07, more preferably 0.01 to 0.05.
  • the interval is less than 0.01 ⁇ , it is difficult to clearly define each point with the above composition, and as a result, it becomes impossible to secure desired high-temperature properties, strength and toughness in the layer, and When the distance exceeds 0.1 ⁇ , the defects of each point appear: ⁇ Insufficient strength and toughness at the highest content point, and ⁇ Insufficient high-temperature properties at the non-content point. However, this causes chipping to easily occur or accelerates wear, so the interval is set to 0.01 to 0. ⁇ .
  • the layer thickness is less than 1 ⁇ m, the desired wear resistance cannot be ensured.On the other hand, if the average layer thickness exceeds 15 ⁇ m, chipping is likely to occur. The thickness was determined to be 1 to 15 ⁇ m. Furthermore, the present inventors have developed a coated cutting tool exhibiting excellent life characteristics from the above-mentioned viewpoints, and in particular, a coated cutting tool exhibiting excellent wear resistance in high-speed cutting. As a result, we focused on the hard coating layer that constitutes the above-mentioned conventional coated cutting tool and conducted research.
  • the highest content point of the Y component is represented by a composition formula: (T i,-xYx) ⁇ (where X represents 0.05 to 0.15 in atomic ratio),
  • the distance between the adjacent ⁇ component maximum content point and ⁇ component non-content point in the thickness direction is 0.0 1 to 0 .. ⁇
  • the ⁇ component highest content point shows excellent high-temperature hardness and heat resistance, while the ⁇ component non-content portion has substantially lower ⁇ component content around the T i ⁇ point. Therefore, the high strength and high toughness of TIN are ensured, and the interval between the maximum content of Y component and the content of non-Y component is extremely small, so that the characteristics of the entire layer are high strength and high toughness.
  • the cutting tool with the (T i, Y) N layer with the hard coating layer is made of steel or mild steel with a high heat generation. Higher-speed cutting to achieve even better wear resistance.
  • the present invention has been made based on the above research results, and has a hard coating layer composed of a (Ti, Y) N layer having a total average layer thickness of 1 to 15 ⁇ m on the surface of a hard substrate.
  • the purpose of the present invention is to provide a coated cutting tool in which a hard coating layer exhibits excellent wear resistance by high-speed cutting.
  • the Y component maximum content point (Ti component minimum content point) and the Y component non-content point (T i N point) are alternately repeated at predetermined intervals along the layer thickness direction. It is preferable to have a component concentration distribution structure in which the Y component content continuously changes from the Y component maximum content point to the Y component non-content point, and from the Y component non-content point to the Y component maximum content point.
  • the maximum content point of the Y component is represented by a composition formula: (T i,-xYx) ⁇ (where, In the ratio, X represents 0.05 to 0.15),
  • the distance between the adjacent Y component maximum content point and the Y component non-content point be 0.1 to 0.1 ⁇ m.
  • the hard substrate is preferably a WC-based cemented carbide substrate, a TiCN-based cermet substrate, or a CBN-based sintered material substrate.
  • a cutting tool made of a hard substrate can be rotated on a rotary table in an arc ion plating apparatus at a position radially away from a center axis of the rotary table.
  • the reaction atmosphere in the arc ion plating apparatus is set to a nitrogen gas atmosphere, and the Y-component maximum content point (Ti-component minimum content point) forming a Ti-Y alloy force source electrode oppositely disposed with the rotary table interposed therebetween.
  • An arc discharge is generated between the force source electrodes of the metal Ti for forming the Y component-free point (TiN point) and the anode electrodes arranged in parallel with each of these force source electrodes,
  • the Y component maximum content point (T i component minimum content point) and the Y component non-content point (T i N point) are arranged along the thickness direction on the surface of the cutting tool that rotates while rotating on the rotary table. ) Are alternately and repeatedly present at predetermined intervals, and the Y component content is continuous from the Y component maximum content point to the Y component non-content point, and from the Y component non-content point to the Y component maximum content point. Having a component concentration distribution structure that changes
  • the maximum content point of the Y component is represented by a composition formula: (T i ⁇ -x Y x) ⁇ (where X represents 0.05 to 0.15 in atomic ratio),
  • the hard coating layer consisting of N layers is physically deposited with an overall average layer thickness of 1 to 15 ⁇ m, and the hard coating layer with excellent wear resistance is cut by high-speed cutting.
  • the method is characterized in that it is formed on the surface of a cutting tool.
  • the hard substrate is preferably a WC-based cemented carbide substrate, a TiCN-based cermet substrate, or a CBN-based sintered material substrate.
  • the Y component in the N layer is included for the purpose of improving the high-temperature hardness and the heat resistance of the Ti N layer having high strength and high toughness.
  • the higher the temperature the higher the high-temperature characteristics are.
  • the ratio (atomic ratio) of the ratio (atomic ratio) to the total amount with Ti exceeds 0.15, the Even if TiN points having strength and toughness exist adjacent to each other, a decrease in the strength and toughness of the layer itself is inevitable, and as a result, chipping (micro chipping) is likely to occur on the cutting edge,
  • the ratio (X value) is less than 0.05, the desired improvement effect cannot be obtained in the high-temperature characteristics, so the ratio is set to 0.05 to 0.15.
  • the spacing is less than 0.01 ⁇ m, it is difficult to form each point clearly with the above composition, and as a result, it becomes impossible to secure desired high-temperature properties, strength and toughness in the layer. If the distance exceeds 0.1 ⁇ m, the defects of each point are localized in the layer, that is, the strength and toughness are insufficient at the point where the Y component is the highest, and the high temperature properties are insufficient if the point is the Y component free. Since the tipping tends to occur on the cutting edge and the wear progresses more rapidly due to this, the interval is set to 0.01 to 0. ⁇ .
  • the layer thickness is less than 1 ⁇ m, the desired wear resistance cannot be secured, while if the average layer thickness exceeds 15 ⁇ m, chipping tends to occur on the cutting edge.
  • the average layer thickness was determined to be 1 to 15 ⁇ m.
  • FIG. 1A and 1B show an arc ion plating apparatus used to form a hard coating layer constituting the coated cutting tool of the present invention.
  • FIG. 1A is a schematic plan view
  • FIG. 1B is a schematic front view. is there.
  • FIG. 2 is a schematic explanatory view of a conventional arc ion plating apparatus used for forming a hard coating layer constituting a conventional coated cutting tool.
  • FIG. 3A is a schematic perspective view of the coated carbide tip, and
  • FIG. 3B is a schematic longitudinal sectional view of the coated carbide tip.
  • Fig. 4A is a schematic front view of the coated carbide end mill
  • Fig. 4B is a schematic cross-sectional view of the cutting edge.
  • Fig. 5A is a schematic front view of the coated carbide drill
  • Fig. 5B is a schematic cross-sectional view of the groove forming part.
  • Examples 1 to 3 shown below relate to a coated cutting tool exhibiting excellent life characteristics, particularly to a coated cutting tool exhibiting excellent wear resistance.
  • both WC powder having an average particle size of 1 ⁇ 3 ⁇ m, T i C Powder, VC powder, T a C powder, Nb C powder, C r 3 C 2 powder, and a C o powder The raw material powders were prepared, blended into the composition shown in Table 1, wet-mixed in a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of lO OMPa.
  • the powder is sintered in a vacuum of 6 Pa and maintained at a temperature of 1400 ° C for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.04.
  • ISO standard ⁇ CNMG Hard substrates A1 to A10 made of a WC-based cemented carbide having a chip shape of 120408 were formed.
  • T i C / T i N 50/50 by weight ratio
  • T i CN both having an average particle diameter of 0.. 5 to 2 mu m powder, Mo 2 C powder, Z r C Powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder are prepared, and these raw material powders are blended into the composition shown in Table 2, and wet-mixed for 24 hours in a ball mill. After drying, it is pressed into a green compact at a pressure of 100 MPa, and this green compact is sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour.
  • the cutting edge is subjected to a honing process of R: 0.04, and is an ISO standard ⁇
  • a rigid substrate made of TiCN-based cermet with a chip shape of CNMG 1 204 08 B1-B 6 was formed.
  • each of the above-mentioned hard substrates A1 to A10 and B1 to B6 is subjected to ultrasonic cleaning in acetone and dried, and then the arc ion plating apparatus shown in FIGS. 1A and 1B is used.
  • a force electrode evaporation source
  • Ti-Y alloy for forming the highest Y component content point with various component compositions
  • a force source electrode evaporation source
  • a metal Ti for forming a Y-component-free point is disposed opposite to the rotary table with the rotary table interposed therebetween.
  • a DC bias voltage of 100 V was applied to the hard substrate rotating while rotating on the rotating table, and the cathode electrode on the other side was applied. This condition is such that an arc discharge is generated between the certain metal Ti and the anode electrode.
  • the hard substrate surface was cleaned by Ti bombardment, and then nitrogen gas was introduced into the apparatus as a reaction gas to obtain a 5.3 Pa reaction atmosphere, and the substrate was rotated on the rotary table.
  • a DC bias voltage of ⁇ 30 V is applied to the rotating hard substrate while rotating, and the respective cathode electrodes (the Ti component for forming the highest Y component and the Ti alloy for forming the Y component-free point) are connected to the respective cathode electrodes.
  • An arc discharge is generated between the anode and the electrode, so that the Y component maximum content point and the Y component non-content point (Ti) of the target composition shown in Tables 3 and 4 are formed on the surface of the hard substrate along the layer thickness direction.
  • N points are alternately and repeatedly present at the target intervals shown in Tables 3 and 4, respectively, and the points are as follows: from the highest Y component content point to the Y component non-content point; from the Y component non-content point to the Y component content. To the highest content point Component concentration where the Y component content changes continuously By depositing a hard coating layer having a cloth structure and a target overall layer thickness also shown in Tables 3 and 4,
  • FIG. 3A is a schematic perspective view
  • FIG. 3B is a schematic longitudinal sectional view
  • FIG. 3B is a coated tip of the present invention as a cutting tool. 1 to 16 were manufactured respectively.
  • these hard substrates A1 to A10 and B1 to B6 were subjected to ultrasonic cleaning in acetone and dried, and then each was subjected to a normal arc ion plating shown in FIG.
  • a Ti-Y alloy having various component compositions was installed as a power source electrode (evaporation source), and the inside of the device was evacuated and maintained at 0.5 Pa vacuum. After heating the inside of the device to 500 ° C with a heater, Ar gas was introduced into the device to create an Ar atmosphere of 10 Pa, and in this state, the hard substrate was subjected to a 180 V by-pass.
  • the surface of the hard substrate is subjected to Ar gas bombarding cleaning by applying a voltage, and then a nitrogen gas is introduced into the apparatus as a reaction gas to form a 2 Pa reaction atmosphere and a bias voltage applied to the hard substrate.
  • a nitrogen gas is introduced into the apparatus as a reaction gas to form a 2 Pa reaction atmosphere and a bias voltage applied to the hard substrate.
  • the conventional method was carried out under the condition of generating an arc discharge between the cathode electrode and the anode electrode, whereby each of the hard substrates A 1 to A 10 and B 1 to B 6
  • a hard coating layer consisting of a (Ti, Y) N layer having the target composition and target layer thickness shown in Tables 5 and 6 and having substantially no composition change in the layer thickness direction is deposited on the surface of
  • conventional surface-coated cemented carbide throwaway inserts hereinafter referred to as conventional coated carbide tips
  • conventional coated carbide tips as conventional coated cutting tools having the same shape as shown in Figs. 3A and 3B were manufactured,
  • Cutting time 5 minutes, A dry high-speed intermittent turning test was performed on iron under the following conditions, and the flank wear width of the cutting edge was measured in each turning test. The measurement results are shown in Tables 3 to 6.
  • Target composition (atomic ratio) No 3, pointed Target interval H, intermittent intermittent child
  • the surfaces of these hard substrates (end-minoles) C1-1 to C-18 are honed, ultrasonically cleaned in acetone, and dried, and the arc ions shown in FIGS. 1A and IB are also shown.
  • the sample was charged into a plating apparatus, and the method of the present invention was carried out under the same conditions as in Example 1 described above.
  • the maximum and free points of the Y component of the target composition shown in Table 8 were determined along the layer thickness direction. Are alternately present at the target intervals also shown in Table 8 and the Y component content is from the Y component highest content point to the Y component non-content point, and from the Y component non-content point to the Y component maximum content point.
  • the coated cutting tool of the present invention having a shape shown in a schematic cross-sectional view of a cutting edge portion.
  • the surface coating cemented carbide end mill hereinafter, referred to as the present invention coated cemented carbide end mill 1-1 0 were prepared, respectively.
  • the surface of the above-mentioned hard substrate (end mill) C-1 to C-18 was subjected to HOUNG, ultrasonically washed in acetone, and dried. Installed in an arc ion plating apparatus, and The conventional method was implemented under the following conditions, and the (T i, Y) N layer having the target composition and target layer thickness shown in Table 9 and having substantially no composition change along the layer thickness direction was formed.
  • end mills made of a conventional surface-coated cemented carbide as conventional coated cutting tools hereinafter, referred to as conventional coated carbide end minoles
  • coated carbide end mills 4-6 and conventional coated carbide end mills 4-6 Wet high-speed groove cutting test of tool steel under the conditions of the present invention, coated carbide end mills 4-6 and conventional coated carbide end mills 4-6,
  • Work material Plane dimensions: 100 mmX 250 mm, thickness: 50 mm JIS ⁇ SUS304 plate material,
  • the diameters produced in Example 2 above were 8 mm (for forming the rigid substrate C-1! To C-3), 13 mm (for forming the rigid substrate C1-4 to C-16), and 26 mm (for forming the rigid substrate C-1 to C-16).
  • the three types of round bar sintered bodies were subjected to grinding to form a groove with a diameter X length of 4 mm X 13 mm (rigid substrate D—1 to D—3), 8 mm X 22 mm (rigid substrate D—4 to D—6), and 16 mm X 45 mm (rigid substrate D—7, D-8)
  • Hard substrates (Dori-no) D-1 to D-8 each having the dimensions of D-8) were manufactured.
  • FIG. 5A is a schematic front view, and FIG. B.
  • the present invention has a coating cut having a shape shown in a schematic cross-sectional view of a groove forming portion.
  • the present invention surface coating cemented carbide drill as the tool (hereinafter, the present invention coating referred to as cemented carbide Dorinore) 1-8 were prepared, respectively.
  • the surface of D-8 was subjected to homing, ultrasonically cleaned in acetone, dried, and charged in a usual arc ion plating apparatus also shown in FIG. (T i, Y) N layer with the target composition and target layer thickness shown in Table 11 and with substantially no composition change along the layer thickness direction
  • a hard coating layer consisting of, end mills made of conventional surface-coated cemented carbide (hereinafter referred to as conventional coated carbide end mills) 1 to 8 as conventional cutting tools were manufactured, respectively.
  • Work material Plane dimensions: 100 mmX 250 mm, thickness: 50 mm JIS ⁇ FCD450 plate,
  • coated carbide drills 7, 8 of the present invention were:
  • Work material Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS ⁇ FC 300 plate material,
  • the coated carbide inserts 1 to 16 of the present invention, the coated carbide end mills 1 to 8 of the present invention, and the coated carbide drills 1 to 8 of the present invention, which are obtained as the coated cutting tools of the present invention, are obtained.
  • the composition of the Y component maximum content point and the Y component non-content point in the hard coating layer, as well as the conventional coated carbide inserts 1 to 16 as conventional coated cutting tools, the conventional coated carbide end mills 1 to 8, and the conventional coated super When the compositions of the hard coating layers of the hard drills 1 to 8 were measured using a laser spectrophotometer, they each showed substantially the same composition as the target composition.
  • the distance between the Y component maximum content point and the Y component non-content point in the hard coating layer of the coated cutting tool of the present invention, the total layer thickness thereof, and the thickness of the hard coating layer of the conventionally coated cutting tool are shown.
  • the cross-section was measured using a scanning electron microscope, all showed substantially the same value as the target value.
  • the Y component highest content points and the Y component non-content points are alternately present at predetermined intervals alternately in the layer thickness direction, and the Y ′ component highest
  • the coated cutting tool of the present invention which has a component concentration distribution structure in which the Y component content continuously changes from the content point to the Y component non-content point and from the Y component non-content point to the Y component maximum content point, ⁇ ⁇
  • the hard coating layer Substantially no change in composition along the layer thickness direction and contains Y component
  • conventional coated cutting tools consisting of (T i, Y) N layers, the amount of which is relatively low as compared with the maximum content point of the Y component, in high-speed cutting involving high temperatures, the cutting edge It is clear that the wear progresses quickly and the service life is reached in a relatively short time.
  • the coated cutting tool of the present invention exhibits excellent wear resistance especially in high-speed cutting of various steels and irons, and exhibits excellent cutting performance over a long period of time. Therefore, it is possible to satisfactorily cope with the high performance of the cutting equipment, the labor saving and energy saving of the cutting processing, and the cost reduction.
  • the coated cutting tool of the present invention will be specifically described with reference to further examples. Examples 4 to 6 shown below relate to a coated cutting tool exhibiting excellent life characteristics, in particular, a coated cutting tool exhibiting excellent resistance to chipping.
  • WC powder both having an average particle size of 1 to 3 m
  • T i C powder powder prepared VC powder
  • T a C powder prepared VC powder
  • T a C powder prepared VC powder
  • Nb C powder prepared VC powder
  • C r 3 C 2 powder prepared VC powder
  • C o powder a C o powder
  • Table 12 wet-mixed in a ball mill for 72 hours, dried, and then pressed into green compacts at a pressure of lO OMPa.
  • the powder is sintered in a vacuum of 6 Pa and maintained at a temperature of 1400 ° C for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.04 to ISO standard.
  • Mo2C powder, ZrC each having an average particle size of 5 to 2 ⁇ Powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder
  • these raw material powders are blended in the composition shown in Table 13 and wet-processed in a ball mill for 24 hours.
  • the cutting edge is subjected to a honing process of R: 0.04 and has a chip shape of ISO standard ⁇ CNMG 12 04 08 Ti CN based cermet hard base B 1 to B 6 Was formed.
  • each of the above-mentioned hard substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIGS. 1A and 1B is used.
  • Attached along the outer periphery on the rotating table inside as one side force electrode (evaporation source), Ti-Y alloy for forming the highest Y component content point with various component compositions, and the other side
  • a force source electrode evaporation source
  • a metal Ti for forming a Y component-free point is disposed opposite to the rotary table with the rotary table interposed therebetween.
  • the inside of the apparatus is evacuated to maintain a vacuum of 0.5 Pa, After heating the inside of the device to 350 ° C, a DC bias voltage of 1 000 V was applied to the hard substrate rotating while rotating on the rotating table. 0903
  • the method of the present invention is carried out under the condition that an arc discharge is generated between the metal T i, which is the cathode electrode on the other side, and the anode electrode, and the surface of the hard substrate is cleaned by Ti bombardment, Then, a nitrogen gas was introduced into the apparatus as a reaction gas to obtain a 5.3 Pa reaction atmosphere, and a DC bias voltage of 130 V was applied to the hard substrate rotating while rotating on the rotary table. An arc discharge is generated between each of the force source electrodes (the Ti component for forming the highest content point Ti and the Y component and the metal for forming the non-Y component content point T i) and the anode electrode.
  • the Y component maximum content point and the Y component non-content point (TiN point) of the target composition shown in Tables 14 and 15 are alternately shown in Tables 14 and 15 along the layer thickness direction.
  • the maximum content point of the Y component And the Y component-free point, and the component concentration distribution structure in which the Y component content continuously changes from the Y component-free point to the Y-component maximum content point and is also shown in Tables 14 and 15.
  • the present invention as a coated cutting tool of the present invention having a shape shown in a schematic perspective view in FIG. 3A and a schematic longitudinal sectional view in FIG. 3B by depositing a hard coating layer having a target overall layer thickness. Throwaway tips made of a surface-coated cemented carbide (hereinafter referred to as coated cemented carbide tips of the present invention) 1 to 20 were produced.
  • these hard substrates A1 to A10 and B1 to B6 were subjected to ultrasonic cleaning in acetone and dried, and then each was subjected to a normal arc ion plating shown in FIG.
  • a Ti-Y alloy having various component compositions was installed as a power source electrode (evaporation source), and the inside of the device was evacuated and maintained at 0.5 Pa vacuum. After heating the inside of the device to 500 ° C with a heater, Ar gas was introduced into the device to create an Ar atmosphere of 10 Pa, and in this state, a bias voltage of 180 V was applied to the hard substrate. Is applied to clean the surface of the hard substrate by Ar gas bombardment.
  • each of the hard substrates A 1 to A 10 and B 1 to B 6 had a target composition and a target layer thickness shown in Tables 16 and 17 on each surface.
  • the conventional coating cutting having the same shape as shown in FIGS. 3A and 3B is performed.
  • Conventional surface coated cemented carbide throw as a tool Free chips (hereinafter referred to as conventional coated carbide chips) 1 to 20 were manufactured respectively.
  • Step 20 B-6 0.970 0.030 1.00 ⁇ TiN 0.10 9 0.15 0.14 0.10
  • the temperature is raised to a specified temperature within the range of 1370 to 1470 ° C, and after maintaining at this temperature for 1 hour, sintering is performed under furnace cooling conditions.
  • the cutting edge diameter X length is 6 mm X 1 each Hard substrates (end mills) C-1 to C-8 having dimensions of 3 mm, 10 mm X 22 mm, and 20 mm X 45 mm were manufactured, respectively.
  • a component concentration distribution structure in which the Y component content continuously changes from the Y component maximum content point to the Y component non-content point, from the Y component non-content point to the Y component maximum content point, and Similarly, by depositing a hard coating layer having a target overall layer thickness shown in Table 19, a book having a shape shown in a schematic front view in FIG. 4A and a schematic cross-sectional view of a cutting edge in FIG. 4B is obtained.
  • Inventive coated cutting end mill made of surface coated cemented carbide according to the present invention as a tool 1 to 10 were manufactured respectively.
  • the above-mentioned hard substrate (end mill) C11 to C-18 was ultrasonically cleaned in acetone and dried, and then a conventional arc ion plating apparatus also shown in FIG. And the conventional method was carried out under the same conditions as in Example 4 above.
  • a hard coating layer composed of a (Ti, Y) N layer having a target composition and a target layer thickness shown in Table 20 and having substantially no composition change along the layer thickness direction.
  • Conventional surface-coated cemented carbide end mills as conventional coated cutting tools hereinafter referred to as conventional coated cemented carbide end mills
  • Work material Plane dimensions: 100 mm X 250 mm, thickness: 50 mm JIS ⁇ SKD 11 plate,.
  • Work material Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS ⁇ SUS 304 plate,
  • the diameters produced in Example 5 above were 8 mm (for forming rigid substrates C1-1-3), 13 mm (for forming rigid substrates C14-C16), and 26 mm (for forming rigid substrates C-14).
  • C-17, C-18 forming) three round rod sintered bodies were used, and the diameter X length of the groove forming part was 4 mm X 13 mm (rigid substrate D—1 to D—3), 8 mm X 22 mm (rigid substrate D—4 to D—6), and 16 mm X 45 mm (rigid substrate D—7, Hard substrates (drills) D-1 to D-8 having dimensions of D_8) were manufactured.
  • FIG. 5B shows a coating cut according to the present invention having a shape shown in a schematic cross-sectional view of a groove forming portion.
  • the present invention surface coating cemented carbide drill as the tool hereinafter, referred to as the present invention coated cemented carbide drills 1-1 0 were prepared, respectively.
  • the cutting edge of ⁇ D-8 is subjected to honing, ultrasonically cleaned in acetone, dried, and charged into the usual arc ion plating apparatus also shown in Fig. 2, and
  • the conventional method was performed under the same conditions as in Example 4, and had the target composition and target layer thickness shown in Table 22 and had substantially no composition change along the layer thickness direction (T i, Y)
  • a hard coating layer composed of N layers drills made of conventional surface-coated cemented carbide (hereinafter referred to as conventional coated carbide drills) 1 to 10 as conventional coated cutting tools were manufactured, respectively.
  • the coated carbide drills of the present invention 1, 2, 3, 9, 10 and the conventionally coated carbide drills For 1, 2, 3, 9 and 10
  • Work material Plane dimensions: 100 mmX 2 50 mm, thickness: 50 mm JIS ⁇ SKD 61 (hardness: HR C 53) plate,
  • Work material Plane dimensions: 100 mm x 2 50 mm, thickness: 50 mm JIS 'FC D 450 plate material,
  • Work material Plane dimensions: 100 mm x 2 50 mm, thickness: 50 mm JIS ⁇ F C300 sheet,
  • Hard coating layer Drilling type ⁇ Maximum content point of component ⁇ Component Total target number of processing between both points ⁇ self “5” Target composition (atomic ratio) Non 3 points Target interval Layer thickness (hole)
  • the hard coatings constituting the coated carbide inserts 1 to 20 of the present invention, coated carbide end mills 1 to 10 of the present invention, and coated carbide drills 1 to 10 of the present invention obtained as the coated cutting tools of the present invention obtained as a result.
  • Composition of maximum Y component content point and non-Y component content in coating layer, and conventional coated carbide tips 1 to 20, conventional coated carbide end mills 1 to 10 as conventional coated cutting tools, and conventional coated super When the compositions of the hard coating layers of the hard coating layers 1 to 10 were measured using an Auger spectroscopic analyzer, the compositions were substantially the same as the target compositions.
  • the distance between the Y component maximum content point and the Y component non-content point in the hard coating layer of the coated cutting tool of the present invention, and the total layer thickness thereof, and the thickness of the hard coating layer of the conventional coated cutting tool When the cross-section was measured using a scanning electron microscope, all the values showed substantially the same values as the target values.
  • the hard coating layer alternates in the thickness direction with the highest content of Y component, which has high temperature hardness and heat resistance, and the non-content of Y component, which has high strength and high toughness.
  • a component concentration which is present repeatedly at predetermined intervals and at which the Y component content continuously changes from the Y component maximum content point to the Y component non-content point and from the Y component non-content point to the Y component maximum content point.
  • the coated cutting tool of the present invention which has a distributed structure, can be used to perform intermittent cutting of various types of steel such as cycling iron under heavy cutting conditions such as high cutting and high feed with high mechanical impact.
  • the hard coating layer exhibits excellent chipping resistance
  • the hard coating layer has a (T i, Y) N layer with substantially no composition change along the thickness direction.
  • the said hard coating layer has excellent high temperature hardness and heat resistance
  • chipping occurs due to poor strength and toughness, which leads to a relatively short service life.
  • the coated cutting tool of the present invention can be used not only for cutting under ordinary conditions, but also for intermittent cutting of various types of steel and iron, etc. Even when performed under heavy cutting conditions such as feed, it exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time. It can respond sufficiently to cost reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

明 細 書
硬質被覆層を有する表面被覆切削工具部材及び該硬質被覆層を 切削工具表面に形成する方法 技術分野
この発明は、 各種の鋼ゃ鎵鉄などの切削加工を、 高熱発生を伴う高速切削条件 で行った場合、 あるいは、 高い機械的衝撃を伴う高切り込みや高送りなどの重切 削条件で行った場合に、 硬質被覆層がすぐれた高温特性および強度を有すること により、 すぐれた寿命特性を示す被覆切削工具、 及び、 前記硬質被覆層を切削ェ 具表面に形成する方法に関するものである。
. 背景技術
一般に、 被覆切削工具には、 各種の鋼ゃ鎳鉄などの被削材の旋削加工や平削り 加工にバイ トの先端部に着脱自在に取り付けて用いられるスローァゥヱイチップ 、 前記被削材の穴あけ切削加工などに用いられる ドリルやミニチュアドリル、 さ らに前記被削材の面削加工や溝加工、 肩加工などに用いられるソリッ ドタイプの ェンドミルなどがあり、 また前記スローアウエイチップを着脱自在に取り付けて 前記ソリ ッ ドタイプのエンドミルと同様に切削加工を行うスローアウエイエンド ミル工具などが知られている。
また、 被覆切削工具として、 炭化タングステン (以下、 W Cで示す) 基超硬合 金、 炭窒化チタン (以下、 T i C Nで示す) 基サーメッ 卜からなる基体、 または 立方晶窒化硼素 (以下、 c 一 B Nで示す) 基焼結材料基体 (以下、 これらを総称 して硬質基体と云う) の表面に、 T i Nや組成式: (A l z T i ,— N (ただし 、 原子比で、 Zは 0 . 4〜0 . 6 5を示す) を満足する A 1 と T iの複合窒化物 [以下、 (A 1 , T i ) Nで示す] 層などからなる硬質被覆層を 1〜 1 5 μ mの 平均層厚で物理蒸着してなる被覆超硬工具が知られており、 これが各種の鋼や鏡 鉄などの連続切削や断続切削加工に用いられることも良く知られるところである さらに、 上記の被覆切削工具が、 例えば図 2に概略説明図で示される物理蒸着 装置の 1種であるアークイオンプレーティング装置に上記の硬質基体を装入し、 ヒータで装置内を、 例えば 5 0 0 °Cの温度に加熱した状態で、 アノード電極と所 定組成を有する A 1一 T i合金がセッ トされた力ソード電極 (蒸発源) との間に 、 例えば、 電流: 9 0 Aの条件でアーク放電を発生させ、 同時に装置内に反応ガ スとして窒素ガスを導入して、 例えば 2 P aの反応雰囲気とし、 一方上記硬質基 体には、 例えば一 1 0 0 Vのバイアス電圧を印加した条件で、 前記超硬合金基体 の表面に、 上記 (A l , T i ) N層からなる硬質被覆層を蒸着することにより製 造されることも知られている。
一方、 硬質被覆層の摺動特性の向上を目的として、 例えば特開平 5 - 3 3 0 9 5 6号に開示されているように、 イオンミキシング法により組成式: (T i Z R Z ) N (ただし、 Zは 0 . 0 0 5〜0 . 2 0の範囲の値をとる。 Rは希土類元素を 表し、 これの候補としては D y、 Y、 L a、 N d、 G d等が挙げられる。 また、 Zは全金属元素中の希土類元素の原子比を表す) を満足する T i と希土類元素の 複合窒化物 [以下、 (T i, R ) Nで示す] 層からなる硬質被覆層が提案されて いる。
近年の切削加工装置の高性能化はめざましく、 一方で切削加工に対する省力化 および省エネ化、 さらに低コス ト化の要求は強く、 これに伴い、 切削加工は高速 化の傾向にあるが、 上記の従来被覆切削工具においては、 これを通常の切削加工 条件で用いた場合には問題はないが、 これを高い発熱を伴う高速切削条件で用い た場合には、 硬質被覆層の摩耗進行が促進され、 比較的短時間で使用寿命に至る のが現状である。
さらに、 近年、 切削加工は高切り込みや高送りなどの重切削条件で行なわれる 傾向にあるが、 上記の従来被覆切削工具においては、 これを通常の切削加工条件 で用いた場合には問題はないが、 断続切削加ェを高レ、機械的衝撃を伴う高切り込 みや高送りなどの重切削条件で行なった場合には、 特に硬質被覆層の強度および 靭性不足が原因でチッビング (微小割れ) が発生し易くなり、 比較的短時間で使 用寿命に至るのが現状である。 発明の開示 そこで、 本発明者等は、 前述のような観点から、 すぐれた寿命特性を示す被覆 切削工具、 特に断続重切削加工で硬質被覆層がすぐれた耐チッビング性を発揮す る被覆切削工具を開発すべく、 上記の従来被覆切削工具を構成する硬質被覆層に 着目し、 研究を行った結果、
( a ) 上記の図 2に示されるアークイオンプレーティング装置を用いて (T i
, Y ) N層を形成した場合において、 さらに Y成分が T i成分との合量に占める 割合 (原子比) で 0 . 0 0 5〜0 . 1 5の範囲をとるように調整すると、 被膜中 における T iイオンと Yイオンとの共存効果により極めて高い被膜硬度、 および 耐熱性を具備するようになり、 これを切削加工に用いた場合には、 高い熱発生を 伴う高速切削においても極めてすぐれた耐摩耗性を発揮するようになること。
( b ) 上記 (T i , Y ) N層は層厚全体に亘つて実質的に均一な組成を有し、 したがって均質な高温硬さと耐熱性を有するが、 例えば図 1 Aに概略平面図で、 図 1 Bに概略正面図で示される構造のアークイオンプレーティング装置、 すなわ ち装置中央部に硬質基体装着用回転テーブルを設け、 前記回転テーブルを挟んで 、 一方側に Y成分を含有した T i— Y合金、 他方側に金属 T i をいずれもカソー ド電極 (蒸発源) として対向配置したアークイオンプレーティング装置を用い、 この装置の前記回転テーブルの外周部に沿って複数の硬質基体をリング状に装着 し、 この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させる と共に、 蒸着形成される硬質被覆層の層厚均一化を図る目的で硬質基体自体も自 転させながら、 前記の両側の力ソード電極 (蒸発源) とアノード電極との間にァ ーク放電を発生させて、 前記硬質基体の表面に (T i , Y ) N層を形成すると、 この結果の (T i , Y ) N層においては、 回転テーブル上にリング状に配置され た前記硬質基体が上記の一方側の T i—Y合金の力ソード電極 (蒸発源) に最も 接近した時点で層中に Y成分最高含有点が形成され、 また前記硬質基体が上記の 他方側の金属 T iのカソード電極に最も接近した時点で層中に T i N点 (Y成分 不含有点) が形成され、 上記回転テーブルの回転によって層中には層厚方向にそ つて前記 Y成分最高含有点と Y成分不含有点が所定間隔をもつて交互に繰り返し 現れると共に、 前記 Y成分最高含有点から前記 Y成分不含有点、 前記 Y成分不含 有点から前記 Y成分最高含有点へ Y成分含有量が連続的に変化する成分濃度分布 構造をもつようになること。
(c) 上記 (b) の繰り返し連続変化成分濃度分布構造の (T i , Y) N層を 形成する際に、 対向配置の一方側の力ソード電極 (蒸発源) である T i一 Y合金 における Y成分含有量と、 硬質基体が装着されている回転テーブルの回転速度と を制御して、
上記 Y成分最高含有点が、 組成式: (T i ,-χΥχ) Ν (ただし、 原子比で、 X は 0. 00 5〜0. 1 0を示す)' 、 を満足し、 かつ隣り合う上記 Υ成分最高含有 点と Υ成分不含有点の厚さ方向の間隔を 0. 0 1〜0. 1 / mとすると、 上記 Υ成 分最高含有点部分では、 上記 (T i , Y) N層のもつ高温硬さに相当するすぐれ た高温硬さを示し、 一方上記 Y成分不含有点部分では、 実質的に T i N点を中心 にして Y成分含有量の著しく低いものとなるので、 T i Nのもつ高強度と高靭性 が確保され、 かつこれら Y成分最高含有点と Y成分不含有点の間隔をきわめて小 さく したことから、 層全体の特性としてすぐれた高温特性を保持した状態で一段 とすぐれた強度と靭性を具備するようになり、 したがって、 硬質被覆層がかかる 構成の (T i , Y) N層からなる被覆切削工具は、 特に各種の鋼ゃ鎳鉄などの断 続切削加工を、 高い機械的衝擊を伴う高切り込みや高送りなどの重切削条件で行 なった場合にも、 硬質被覆層がすぐれた耐チッビング性を発揮するようになるこ と。
以上 (a) から (c) に示される研究結果を得たのである。
この発明は、 上記の研究結果に基づいてなされたものであって、 硬質基体の表 面に、 (T i, Y) N層からなる硬質被覆層を 1〜 1 5 μ mの全体平均層厚で物 理蒸着して、 断続重切削加工で硬質被覆層がすぐれた耐チッビング性を発揮する 被覆切削工具を提供するものである。
上記硬質被覆層は、 層厚方向にそって、 Y成分最高含有点 (T i成分最低含有 点) と Y成分不含有点 (T i N点) とが所定間隔をおいて交互に繰り返し存在し 、 かつ前記 Y成分最高含有点から前記 Y成分不含有点、 前記 Y成分不含有点から 前記 Y成分最高含有点へ Y成分含有量が連続的に変化する成分濃度分布構造を有 すると好ましい。
さらに、 上記 Y成分最高含有点が、 組成式: (T i — χγχ) Ν (ただし、 原子 比で、 Xは 0. 00 5〜0. 1 0を示す) 、 を満足し、 かつ隣り合う上記 Y成分 最高含有点と Y成分不含有点の間隔が、 0. 0 1〜0. 1 であると好ましレ、。
Xの範囲は、 0. 00 5〜0. 1 0が好ましいが、 0. 00 5〜0. 0 7とす るとより好ましく、 0. 0 1〜0. 0 5とするとさらに好ましい。
前記硬質基体としては、 WC基超硬合金基体、 T i CN基サーメッ ト基体、 ま たは c一 B N基焼結材料基体などが好ましい。
この発明は、 また、 上記の研究結果に基づき、 アークイオンプレーティング装 置内の回転テーブル上に、 前記回転テーブルの中心軸から半径方向に離れた位置 に硬質基体からなる切削工具を自転自在に装着し、
上記アークイオンプレーティング装置内の反応雰囲気を窒素ガス雰囲気として 、 上記回転テーブルを挟んで対向配置した Y成分最高含有点 (T i成分最低含有 点) 形成用 T i一 Y合金の力ソード電極および Y成分不含有点 (T i N点) 形成 用金属 T iの力ソード電極と、 これら力ソード電極のそれぞれに並設されたァノ 一ド電極との間にアーク放電を発生させ、
もって、 上記回転テーブル上で自転しながら回転する上記切削工具の表面に、 厚さ方向にそって、 Y成分最高含有点 (T i成分最低含有点) と Y成分不含有 点 (T i N点) とが所定間隔をおいて交互に繰り返し存在し、 かつ前記 Y成分最 高含有点から前記 Y成分不含有点、 前記 Y成分不含有点から前記 Y成分最高含有 点へ Y成分含有量が連続的に変化する成分濃度分布構造を有し、
さらに、 上記 Y成分最高含有点が、 組成式: (T i xYx) Ν (ただし、 原子 比で、 Xは 0. 00 5〜0. 1 0を示す) 、
を満足し、 かつ隣り合う上記 Υ成分最高含有点と Υ成分不含有点の間隔が、 0. 0 1〜0. Ι μ πιである、
(T i , Y) N層からなる硬質被覆層を 1〜 1 5 /i mの全体平均層厚で物理蒸着 することからなる、 断続重切削加工ですぐれた耐チッピング性を発揮する硬質被 覆層を切削工具表面に形成する方法に特徴を有するものである。
Xの範囲は、 0. 00 5〜0. 1 0が好ましいが、 0. 00 5〜0. 0 7とす るとより好ましく、 0. 0 1 ~0. 0 5とするとさらに好ましい。
前記硬質基体としては、 WC基超硬合金基体、 T i CN基サーメッ ト基体、 ま たは c—BN基焼結材料基体などが好ましい。
つぎに、 この発明の被覆切削工具において、 これを構成する硬質被覆層の構成 を上記の通りに限定した理由を説明する。
(A) Y成分最高含有点の組成
(T i , Y) N層における Y成分は、 高強度および高靭性を有する T i N層の 髙温硬さを向上させる目的で含有するものであり、 したがって Y成分の含有割合 が高くなればなるほど前記高温特性は向上したものになるが、 その割合 (X値) が T i との合量に占める割合 (原子比) で 0. 1 0を越えて高くなると、 高強度 および高靭性を有する T i N点が隣接して存在しても、 高い機械的衝撃を伴う高 切り込みや高送りなどの重切削条件での断続切削加工に要求される強度および靭 性を保持することが困難になり、 この結果チッビングなどが発生し易くなり、 一 方その割合 (X値) が同 0. 00 5未満では前記高温特性に所望の向上効果が得 られないことから、 その割合を 0. 005〜0. 1 0、 好ましくは 0. 00 5〜 0. 0 7、 より好ましくは 0. 0 1〜0. 05と定めた。
(B) Y成分最高含有点と Y成分不含有点間の間隔
その間隔が 0. 0 1 μπι未満ではそれぞれの点を上記の組成で明確に形成するこ とが困難であり、 この結果層に所望の高温特性と強度および靭性を確保すること ができなくなり、 またその間隔が 0. 1 μπιを越えるとそれぞれの点もつ欠点、 す なわち Υ成分最高含有点であれば強度および靭性不足、 Υ不含有点であれば高温 特性不足が層内に局部的に現れ、 これが原因でチッビングが発生し易くなったり 、 摩耗進行が促進されるようになることから、 その間隔を 0. 0 1〜0. Ι μπιと 定めた。
(C) 硬質被覆層の全体平均層厚
その層厚が 1 μ m未満では、 所望の耐摩耗性を確保することができず、 一方そ の平均層厚が 1 5 μ mを越えると、 チッビングが発生し易くなることから、 その 平均層厚を 1〜 1 5 μ mと定めた。 さらに、 本発明者等は、 上述のような観点から、 すぐれた寿命特性を示す被覆 切削工具、 特に高速切削加工ですぐれた耐摩耗性を発揮する被覆切削工具を開発 すべく、 上記の従来被覆切削工具を構成する硬質被覆層に着目し、 研究を行った 結果、
(d) 上記 (b) の繰り返し連続変化成分濃度分布構造の (T i , Y) N層を 形成する際に、 対向配置の一方側の力ソード電極 (蒸発源) である T i一 Y合金 における Y成分含有量と、 硬質基体が装着されている回転テーブルの回転速度と を制御して、
上記 Y成分最高含有点が、 組成式: (T i ,- xYx) Ν (ただし、 原子比で、 X は 0. 0 5〜0. 1 5を示す) 、
を満足し、 かつ隣り合う上記 Υ成分最高含有点と Υ成分不含有点の厚さ方向の間 隔を 0. 0 1〜0. Ι μπιとすると、
上記 Υ成分最高含有点部分では、 すぐれた高温硬さと耐熱性を示し、 一方上記 Υ 成分不含有点部分では、 実質的に T i Ν点を中心にして Υ成分含有量の著しく低 いものとなるので、 T i Nのもつ高強度と高靭性が確保され、 かつこれら Y成分 最高含有点と Y成分不含有点の間隔をきわめて小さく したことから、 層全体の特 性として高強度と高靭性を保持した状態で一段とすぐれた高温特性を具備するよ うになり、 したがって、 硬質被覆層がかかる構成の (T i , Y) N層からなる被 覆切削工具は、 高い発熱を伴う鋼や軟鋼などの高速切削加工で一段とすぐれた耐 摩耗性を発揮するようになること。
以上 (b) および (d) に示される研究結果を得たのである。
この発明は、 上記の研究結果に基づいてなされたものであって、 硬質基体の表 面に、 (T i, Y) N層からなる硬質被覆層を 1〜 1 5 μ mの全体平均層厚で物 理蒸着して、 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆切削 工具を提供するものである。
上記硬質被覆層は、 層厚方向にそって、 Y成分最高含有点 (T i成分最低含有 点) と Y成分不含有点 (T i N点) とが所定間隔をおいて交互に繰り返し存在し 、 かつ前記 Y成分最高含有点から前記 Y成分不含有点、 前記 Y成分不含有点から 前記 Y成分最高含有点へ Y成分含有量が連続的に変化する成分濃度分布構造を有 すると好ましい。
さらに、 上記 Y成分最高含有点が、 組成式: (T i ,- xYx) Ν (ただし、 原子 比で、 Xは 0 · 0 5〜 0 . 1 5を示す) 、
を満足し、 かつ隣り合う上記 Y成分最高含有点と Y成分不含有点の間隔が、 0 · 0 1〜 0 . 1 μ mであると好ましレヽ。
前記硬質基体としては、 W C基超硬合金基体、 T i C N基サーメッ ト基体、 ま たは c— B N基焼結材料基体などが好ましい。
この発明は、 また、 上記の研究結果に基づき、 アークイオンプレーティング装 置内の回転テーブル上に、 前記回転テーブルの中心軸から半径方向に離れた位置 に硬質基体からなる切削工具を自転自在に装着し、
上記アークイオンプレーティング装置内の反応雰囲気を窒素ガス雰囲気として 、 上記回転テーブルを挟んで対向配置した Y成分最高含有点 (T i成分最低含有 点) 形成用 T i 一 Y合金の力ソード電極および Y成分不含有点 (T i N点) 形成 用金属 T iの力ソード電極と、 これら力ソード電極のそれぞれに並設されたァノ 一ド電極との間にアーク放電を発生させ、
もって、 上記回転テーブル上で自転しながら回転する上記切削工具の表面に、 厚さ方向にそって、 Y成分最高含有点 (T i成分最低含有点) と Y成分不含有 点 (T i N点) とが所定間隔をおいて交互に繰り返し存在し、 かつ前記 Y成分最 高含有点から前記 Y成分不含有点、 前記 Y成分不含有点から前記 Y成分最高含有 点へ Y成分含有量が連続的に変化する成分濃度分布構造を有し、
さらに、 上記 Y成分最高含有点が、 組成式: (T i 〖 - x Y x) Ν (ただし、 原子 比で、 Xは 0 . 0 5〜 0 . 1 5を示す) 、
を満足し、 かつ隣り合う上記 Υ成分最高含有点と Υ成分不含有点の間隔が、 0 . 0 1〜 0 . 1 mでめる、
( T i , Y ) N層からなる硬質被覆層を 1〜 1 5 μ mの全体平均層厚で物理蒸着 することからなる、 高速切削加工ですぐれた耐摩耗性を発揮する硬質被覆層を切 削工具表面に形成する方法に特徴を有するものである。
前記硬質基体としては、 W C基超硬合金基体、 T i C N基サーメッ ト基体、 ま たは c— B N基焼結材料基体などが好ましい。
つぎに、 この発明の被覆切削工具を構成する硬質被覆層、 及び、 この発明の硬 質被覆層形成方法により形成される硬質被覆層の構成を上記の通りに限定した理 由を説明する。
(D) Y成分最高含有点の組成
(T i , Y) N層における Y成分は、 高強度および高靭性を有する T i N層の 高温硬さおよび耐熱性を向上さ る目的で含有するものであり、 したがって Y成 分の含有割合が高くなればなるほど前記高温特性は向上したものになるが、 その 割合 (X値) が T i との合量に占める割合 (原子比) で 0. 1 5を越えて高くな ると、 高強度および髙靭性を有する T i N点が隣接して存在しても層自体の強度 およぴ靭性の低下は避けられず、 この結果切刃にチッビング (微小欠け) などが 発生し易くなり、 一方その割合 (X値) が同 0. 0 5未満では前記高温特性に所 望の向上効果が得られないことから、 その割合を 0. 0 5〜0. 1 5と定めた。
(E) Y成分最高含有点と Y成分不含有点間の間隔
その間隔が 0. 0 1 μ m未満ではそれぞれの点を上記の組成で明確に形成する ことが困難であり、 この結果層に所望の高温特性と強度および靭性を確保するこ とができなくなり、 またその間隔が 0. 1 μ mを越えるとそれぞれの点がもつ欠 点、 すなわち Y成分最高含有点であれば強度および靭性不足、 Y成分不含有点で あれば高温特性不足が層内に局部的に現れ、 これが原因で切刃にチッビングが発 生し易くなつたり、 摩耗進行が促進されるようになることから、 その間隔を 0. 0 1〜0. Ι μπιと定めた。
(F) 硬質被覆層の全体平均層厚
その層厚が 1 μ m未満では、 所望の耐摩耗性を確保することができず、 一方そ の平均層厚が 1 5 μ mを越えると、 切刃にチッビングが発生し易くなることから 、 その平均層厚を 1〜 1 5 μ mと定めた。 図面の簡単な説明
図 1 A, Bは、 この発明の被覆切削工具を構成する硬質被覆層を形成するのに 用いたアークイオンプレーティング装置を示し、 図 1 Aは概略平面図、 図 1 Bは 概略正面図である。
図 2は、 従来被覆切削工具を構成する硬質被覆層を形成するのに用いた通常の アークイオンプレーティング装置の概略説明図である。 図 3 Aは被覆超硬チップの概略斜視図、 図 3 Bは被覆超硬チップの概略縦断面 図である。
図 4 Aは被覆超硬ェンドミル概略正面図、 図 4 Bは同切刃部の概略横断面図で める。
図 5 Aは被覆超硬ドリルの概略正面図、 図 5 Bは同溝形成部の概略横断面図で める。 発明を実施するための最良の形態
つぎに、 この発明の被覆切削工具を実施例により具体的に説明する。
以下に示す実施例 1〜 3は、 すぐれた寿命特性を示す被覆切削工具、 特に、 す ぐれた耐摩耗性を発揮する被覆切削工具に関するものである。
(実施例 1 )
原料粉末として、 いずれも 1〜3 μ mの平均粒径を有する WC粉末、 T i C粉 末、 VC粉末、 T a C粉末、 Nb C粉末、 C r 3C2粉末、 および C o粉末を用意 し、 これら原料粉末を、 表 1に示される配合組成に配合し、 ボールミルで 7 2時 間湿式混合し、 乾燥した後、 l O OMP a の圧力で圧粉体にプレス成形し、 この 圧粉体を 6 P aの真空中、 温度: 1 400°Cに 1時間保持の条件で焼結し、 焼結 後、 切刃部分に R : 0. 04のホーニング加工を施して I S O規格 · CNMG 1 2 0408のチップ形状をもった WC基超硬合金製の硬質基体 A 1〜A 1 0を形 成した。
また、 原料粉末として、 いずれも 0. 5〜 2 μ mの平均粒径を有する T i CN (重量比で T i C/T i N= 50/50) 粉末、 Mo 2C粉末、 Z r C粉末、 N b C粉末、 T a C粉末、 WC粉末、 C o粉末、 および N i粉末を用意し、 これら原 料粉末を、 表 2に示される配合組成に配合し、 ボールミルで 24時間湿式混合し 、 乾燥した後、 1 00MP aの圧力で圧粉体にプレス成形し、 この圧粉体を 2 k P aの窒素雰囲気中、 温度: 1 5 00°Cに 1時間保持の条件で焼結し、 焼結後、 切刃部分に R : 0. 04のホーニング加工を施して I S O規格 · CNMG 1 20 4 0 8のチップ形状をもった T i CN系サーメッ ト製の硬質基体 B 1〜B 6を形 成した。 ついで、 上記の硬質基体 A 1〜A 1 0および B 1〜B 6のそれぞれを、 ァセト ン中で超音波洗浄し、 乾燥した状態で、 図 1 A , 1 Bに示されるアークイオンプ レーティング装置内の回転テーブル上に外周部にそって装着し、 一方側の力ソー ド電極 (蒸発源) として、 種々の成分組成をもった Y成分最高含有点形成用 T i 一 Y合金、 他方側の力ソード電極 (蒸発源) として Y成分不含有点形成用金属 T iを前記回転テーブルを挟んで対向配置し、 まず、 装置内を排気して 0 . 5 P a の真空に保持しながら、 ヒーターで装置內を 3 5 0 °Cに加熱した後、 前記回転テ 一ブル上で自転しながら回転する硬質基体に一 1 0 0 0 Vの直流バイアス電圧を 印加して、 他方側のカソード電極である前記金属 T i とァノード電極との間にァ ーク放電を発生させる条件で本発明法を実施し、 もって硬質基体表面を T i ボン バート洗浄し、 ついで装置内に反応ガスとして窒素ガスを導入して 5 . 3 P aの 反応雰囲気とすると共に、 前記回転テーブル上で自転しながら回転する硬質基体 に— 3 0 Vの直流バイアス電圧を印加して、 それぞれのカソード電極(前記 Y成分 最高含有点形成用 T i一 Y合金および Y成分不含有点形成用金属 T i )とアノード 電極との間にアーク放電を発生させ、 もって前記硬質基体の表面に、 層厚方向に 沿って表 3 , 4に示される目標組成の Y成分最高含有点と Y成分不含有点 (T i N点) とが交互に同じく表 3 , 4に示される目標間隔で繰り返し存在し、 がつ前 記 Y成分最高含有点から前記 Y成分不含有点、 前記 Y成分不含有点から前記 Y成 分最高含有点へ Y成分含有量が連続的に変化する成分濃度分布構造を有し、 かつ 同じく表 3 , 4に示される目標全体層厚の硬質被覆層を蒸着することにより、 図
3 Aに概略斜視図で、 図 3 Bに概略縦断面図で示される形状を有する本発明被覆 切削工具としての本発明表面被覆超硬合金製スローアウエィチップ (以下、 本発 明被覆超硬チップと云う) 1〜 1 6をそれぞれ製造した。
また、 比較の目的で、 これら硬質基体 A 1〜A 1 0および B 1〜B 6を、 ァセ トン中で超音波洗浄し、 乾燥した状態で、 それぞれ図 2に示される通常のアーク イオンプレーティング装置に装入し、 一方力ソード電極 (蒸発源) として種々の 成分組成をもった T i—Y合金を装着し、 装置内を排気して 0 . 5 P aの真空に 保持しながら、 ヒーターで装置内を 5 0 0 °Cに加熱した後、 A rガスを装置内に 導入して 1 0 P aの A r雰囲気とし、 この状態で硬質基体に一 8 0 0 vのバイ了 ス電圧を印加して硬質基体表面を A rガスボンバート洗浄し、 ついで装置内に反 応ガスとして窒素ガスを導入して 2 P aの反応雰囲気とすると共に、 前記硬質基 体に印加するバイアス電圧を一 250 Vに下げて、 前記カソード電極とァノード 電極との間にアーク放電を発生させる条件で従来法を実施し、 もって前記硬質基 体 A 1〜A 1 0および B 1〜B 6のそれぞれの表面に、 表 5 , 6に示される目標 組成および目標層厚を有し、 かつ層厚方向に沿って実質的に組成変化のない (T i , Y) N層からなる硬質被覆層を蒸着することにより、 同じく図 3 A, Bに示 される形状の従来被覆切削工具としての従来表面被覆超硬合金製スローァウェイ チップ (以下、 従来被覆超硬チップと云う) 1〜1 6をそれぞれ製造した。
つぎに、 上記本発明被覆超硬チップ 1〜 1 6および従来被覆超硬チップ 1〜 1 6について、 これを工具鋼製バイ トの先端部に固定治具にてネジ止めした状態で 被削材: J I S · S CM440の丸棒、
切削速度 : 2 8 5 m/m i n . 、
切り込み: 1. 5 mm,
送り : 0. ci mm/ r e v . 、
切削時間 : 5分、
の条件での合金鋼の乾式高速連続旋削加工試験、
被削材 : J I S · S 4 5 Cの長さ方向等間隔 4本縦溝入り丸棒、
切削速度: 3 1 5 m/m i n . 、
切り込み: 2 mm、
送り : 0. 2 o mm/ r e v. 、
切削時間 : 5分、
の条件での炭素鋼の乾式高速断続旋削加工試験、 さらに、
被削材 : J I S · FC 300の長さ方向等間隔 4本縦溝入り丸棒、
切削速度: 3 5 5 /m i η.' 、
切り込み: 2 mm、
送り : 0. 2 5 mmZ r e v. 、
切削時間 : 5分、 の条件での鎳鉄の乾式高速断続旋削加工試験を行い、 いずれの旋削加ェ試験でも 切刃の逃げ面摩耗幅を測定した。 この測定結果を表 3〜 6に示した。
[表 1 ] 種別 配合組成 (質 1%)
Co TiC TaC Nbc VC C「3C2 WC
A-1 5.5 ― 1 ― ― 一
A-2 6 ― 一 0.5 硬
A-3 6.5 0,5 0.5
A-4 7 0.4 1.5
A-5 •8 2
チ A - 6 8.5 8 9 1
ッ A-7 8.5 6 5
A-8 10 10 5 0.5
A-9 12 0.8
A-10 12.5 1.5 0.5 0.5
[表 2] 種別 配合組成 (質量%)
Co Ni Z「C TaC NbC M02C WC TiCN 硬 B-1 12.5 5 10 10 16
B-2 8.5 7 5 7.5
体 B-3 6 2 6 10 チ B-4 10 5 8
、 B-5 9 4 1 5 10 10 ブ
B - 6 12 5.5 6 9.5 14.5
[表 3] 硬質被覆層 逃げ面摩耗幅(mm) 別 硬質基体 丫成分最高含有点 Y成分 両点間の 目標全体 合金鋼 灰 阿 鎳鉄
□D"5" 目標組成 (原子比) 不 3、有点 目標間隔 H,子 の連続 の断続 の断続
Ti Y N Cum) Cum) 高速 问速 r¾¾
1 A-1 0.950 0.050 1.00 TiN 0.01 3 0.25 0.20 0.19 本
2 A-2 0.925 0.075 1.00 TiN 0.01 15 0.12 0.10 0.08 明 3 A-3 0.910 0.090 1.00 TiN 0.03 5 0.21 0.20 0.18 被 4 A-4 0.895 0.105 1.00 TiN 0.04 13 0.14 0.12 0.09
5 A-5 0.880 0.120 1.00 TiN 0.02 8 0.17 0.17 0.13
6 A-6 0.860 0.140 1.00 TiN 0.05 11 0.16 0.15 0.11 チ 7 A-7 0.850 0.150 1.00 TiN 0.06 6 0.21 0.19 0.16
、リ 8 A-8 0.945 0.055 1.00 TiN 0.07 9 0.15 0.13 0.12 プ 9 A - 9 0.940 0.060 1.00 TiN 0.10 4 0.22 0.21 0.18
10 A- 10 0.935 0.065 1.00 TiN 0.08 7 0.19 0.18 0.13
[表 4] 硬質被覆層 逃げ面摩耗幅 (mm) 種別 硬負 1不 Υ成分最高含有点 ノ J S 1山R」i)占間の vン 土 |斗、 合伞 $鬧 . 、' ¾1 镜禅
□し 目標組成 (原子比) S有点 目標間隔 層厚 の連 の断続 の断続
Ti Y N ( m) ( m) 高速 问速 本 11 Β-1 0.950 0.050 1.00 TiN 0.01 5 0.22 0.20 0.19 明 12 Β-2 0.930 0.070 1.00 TiN 0.02 7 0.20 0.19 0.15 被
覆 13 Β-3 0.910 0.090 1.00 TiN 0.04 9 0.16 0.15 0.12
14 Β-4 0.890 0.110 1.00 TiN 0.05 11 0.15 0.15 0.11 チ
ッ 15 Β-5 0.870 0.130 1.00 TiN 0.07 13 0.14 0.13 0.10 プ 16 Β-6 0.850 0.150 1.00 TiN 0.10 15 0.13 0.12 0.09
[表 5] 硬質被覆層 逃げ面摩耗幅(mm) 種別 硬質基体 目標組成 (原子比) 目標層厚 合金鋼 灰 ¾鋼 鏡鉄の
Ti Y N (ju m) の連続高速 の断続高速 断 ik咼速
1 Α-1 0.995 0.005 1.00 3 0.68 0.58 0.53
2 Α-2 0.975 0.025 1.00 15 0.55 0. 8 0.45 従
来 3 Α - 3 0.970 0.030 1.00 5 0.66 0.56 0.51 被 4 A-4 0.965 0.035 1.00 13 0.57 0.48 0.46 覆
5 A-5 0.980 0.020 1.00 8 0.61 0.53 0.49 硬
チ 6 A - 6 0.970 0.030 1.00 11 0.58 0.49 0.48 ッ 7 A - 7 0.960 0.040 1.00 6 0.65 0.56 0.50 プ
8 A-8 0.990 0.010 1.00 9 0.60 0.52 0.48
9 A-9 0.985 0.015 1.00 4 0.68 0.58 0.53
10 A-10 0.980 0.020 1.00 7 0.63 0.55 0.49
[表 6] 硬質被覆層 逃げ面摩耗幅 (mm) 種別 目標組成 (原子比) 合金鋼の 炭素鋼の 鏡鉄の
Ti Y N ( u m) 連 问: 断糸兀咼速 断 ¾7Π问速 従 11 B-1 0.995 0.005 1.00 5 0.65 0.56 0.54 来
被 12 B-2 0.985 0.015 1.00 7 0.64 0.54 0.52 覆 13 B-3 0.980 0.020 1.00 9 0.60 0.52 0.51 □
14 B-4 0.975 0.025 1.00 11 0.58 0.51 0.49 チ
ッ 15 B-5 0.970 0.030 1.00 13 0.56 0.50 0.48 プ 16 B - 6 0.960 0.400 1.00 15 0.55 0.50 0.48
(実施例 2)
原料粉末として、 平均粒径: 5. 5 μ mを有する中粗粒 WC粉末、 同 0. 8 μ mの微粒 WC粉末、 同 1. 3 111の丁 &〇粉末、 同 1. 2 111の 1 。粉末、 同 1. 2 111の2 ]:〇粉末、 同 2. 3 111の〇 ]: 32粉末、 同 1. 5 ]11の¥〇粉 末、 同 1. Ο μπιの (T i, W) C粉末、 および同 1. 8 /zmの C o粉末を用意 し、 これら原料粉末をそれぞれ表 7に示される配合組成に配合し、 さらにヮック スを加えてアセトン中で 24時間ボールミル混合し、 減圧乾燥した後、 1 0 0M P aの圧力で所定形状の各種の圧粉体にプレス成形し、 これらの圧粉体を、 6 P aの真空雰囲気中、 7°C/分の昇温速度で 1 3 70〜1 4 70°Cの範囲内の所定 の温度に昇温し、 この温度に 1時間保持後、 炉冷の条件で焼結して、 直径が 8m m、 1 3 mm, および 26 mmの 3種の硬質基体形成用丸棒焼結体を形成し、 さ らに前記の 3種の丸棒焼結体から、 研削加工にて、 表 7に示される組合せで、 切 刃部の直径 X長さがそれぞれ 6 mmX 1 3 mm、 1 0 mmX 2 2 mm および 2 OmmX 4 5 mmの寸法をもった硬質基体 (エンドミル) C一:!〜 C— 8をそれ ぞれ製造した。
ついで、 これらの硬質基体 (エンドミノレ) C一 1〜C一 8の表面に、 ホーニン グを施し、 アセ トン中で超音波洗浄し、 乾燥した状態で、 同じく図 1 A, I Bに 示されるアークイオンプレーティング装置に装入し、 上記実施例 1と同一の条件 で本発明法を実施し、 層厚方向に沿って表 8に示される目標組成の Y成分最高含 有点と Y成分不含有点とが交互に同じく表 8に示される目標間隔で繰り返し存在 し、 かつ前記 Y成分最高含有点から前記 Y成分不含有点、 前記 Y成分不含有点か ら前記 Y成分最高含有点へ Y成分含有量が連続的に変化する成分濃度分布構造を 有し、 かつ同じく表 8に示される目標全体層厚の硬質被覆層を蒸着することによ り、 図 4 Aに概略正面図で、 図 4 Bに切刃部の概略横断面図で示される形状を有 する本発明被覆切削工具としての本発明表面被覆超硬合金製エンドミル (以下、 本発明被覆超硬エンドミルと云う) 1〜1 0をそれぞれ製造した。
また、 比較の目的で、 上記の硬質基体 (エンドミル) C— 1〜C一 8の表面に 、 ホーユングを施し、 アセトン中で超音波洗浄し、 乾燥した状態で、 同じく図 2 に示される通常のアークイオンプレーティング装置に装入し、 上記実施例 1 と同 —の条件で従来法を実施し、 表 9に示される目標組成および目標層厚を有し、 か つ層厚方向に沿って実質的に組成変化のない (T i , Y) N層からなる硬質被覆 層を蒸着することにより、 従来被覆切削工具としての従来表面被覆超硬合金製ェ ンドミル (以下、 従来被覆超硬ェンドミノレと云う) 1〜 1 0をそれぞれ製造した つぎに、 上記本発明被覆超硬ェンドミル 1〜 1 0およぴ従来被覆超硬ェンドミ ル 1〜 1 0のうち、 本発明被覆超硬エンドミル 1, 2, 3, 9 , 1 0および従来 被覆超硬エンドミル 1 , 2, 3, 9, 1 0については、
被削材:平面寸法: 1 00 mmX 250 mm、 厚さ : 50 mmの J I S · S K D 6 1 (硬さ : HRC 5 3) の板材、
切削速度 : 6 0 m/m i n. ,
溝深さ (切り込み) : 0. 2mm、
テーブル送り : 1 2 Omm/分、
の条件での工具鋼の湿式高速溝切削加工試験、 本発明被覆超硬エンドミル 4〜 6 および従来被覆超硬ェンドミル 4〜6については、
被削材:平面寸法: 1 00 mmX 250 mm、 厚さ : 50 mmの J I S · S U S 304の板材、
切削速度 : 7 5 m/m i n . 、
溝深さ (切り込み) : 3mm、
テーブル送り : 2 3 Omm/分、
の条件でのステンレス鋼の湿式高速溝切削加工試験、 本発明被覆超硬ェンドミル 7, 8および従来被覆超硬ェン ミル 7, 8については、
被削材:平面寸法: 1 00 mmX 250 mm、 厚さ : 50 mmの J I S · S N CM4 39の板材、
切削速度 : 1 70 m/m i n. ,
溝深さ (切り込み) : 6mm、
テープノレ送り : 240mmZ分、
の条件での合金鋼の湿式高速溝切削加ェ試験 (いずれの試験も水溶性切削油使用 ) 、 をそれぞれ行い、 いずれの溝切削加ェ試験でも切刃部先端面の直径が使用寿命の 目安とされる 0 . 1 5 m m減少するまでの切削溝長を測定した。 この測定結果を 表 8、 9にそれぞれ示した。
[表 7] 種別 配合組成 (質量%) 切刃部の直径
Co (Ti,W)C TaC NbC Z「C Cr3C2 VC C X長さ(m m)
C-1 6 微粒:残 6X13
C-2 6 1 0.5 微粒:残 6X13
1 0.5 0.5 微粒:残 6X13 体 C-3 6 1
C-4 8 0.5 0.5 微粒:残 10X22 ェ
C-5 9 9 9 1 中粗粒:残 10X22
C-6 9 8 8 中粗粒:残 10X22 ル C- 7 12 17 5 中粗粒:残 20X45
C - 8 14 11 10 中粗粒:残 20X45
[表 8] 硬質被覆層
種別 丫成分最高含有点 Y成分ノ J jffii占問の 曰擇伞汰 切肖 II溝長 コ 目標組成 (原子比) ィヽ ώ 目標間隔 (m)
Ti Y N i m) m)
本 1 C-1 0.950 0.050 1.00 TiN 0.01 2 105 明 2 C-2 0.935 0.065 1.00 TiN 0.02 2 124 被 3 C-3 0.920 0.080 1.00 TiN 0.04 1 88 覆
4 C-4 0.905 0.095 1.00 TiN 0.03 3 57 硬
ェ 5 C-5 0.895 0.105 1.00 TiN 0.05 4 69 ン 6 C - 6 0.880 0.120 1.00 TiN 0.06 5 78
7 C- 7 0.865 0.135 1.00 TiN 0.08 2.5 163
8 C-8 0.850 0.150 1.00 TiN 0.1 3.5 185
[表 9]
51員^本 切削溝長 種別 目標組成 (原子比) 目標層厚 (m)
Ti Y N ( m)
従 1 C-1 0.995 0.005 1.00 2 28 来 2 C-2 0.990 0.010 1.00 2 32 被
3 C-3 0.985 0.015 1.00 1 23 硬 4 C-4 0.980 0.020 1.00 3 14 ェ 5 C-5 0.975 0.025 1.00 4 17 ン
6 C-6 0.970 0.030 1.00 5 21
1 7 C - 7 0.965 0.035 1.00 2.5 45
8 C-8 0.960 0.040 1.00 3.5 49
(実施例 3 )
上記の実施例 2で製造した直径が 8 mm (硬質基体 C一:!〜 C— 3形成用) 、 1 3 m m (硬質基体 C一 4〜C一 6形成用) 、 および 2 6 m m (硬質基体 C— 7 、 C一 8形成用) の 3種の丸棒焼結体を用い、 この 3種の丸棒焼結体から、 研削 加工にて、 溝形成部の直径 X長さがそれぞれ 4 m m X 1 3 mm (硬質基体 D— 1 〜D— 3 ) 、 8 m m X 2 2 m m (硬質基体 D— 4〜 D— 6 ) 、 および 1 6 m m X 4 5 m m (硬質基体 D— 7、 D - 8 ) の寸法をもった硬質基体 (ドリノレ) D— 1 〜D— 8をそれぞれ製造した。
ついで、 これらの硬質基体 (ドリノレ) D— 1〜D— 8の表面に、 ホーニングを 施し、 アセ トン中で超音波洗浄し、 乾燥した状態で、 同じく図 1 A , 1 Bに示さ れるアークイオンプレーティング装置に装入し、 上記実施例 1 と同一の条件で本 発明法を実施し、 層厚方向に沿って表 1 0に示される目標組成の Y成分最高含有 点と Y成分不含有点とが交互に同じく表 1 0に示される目標間隔で繰り返し存在 し、 かつ前記 Y成分最高含有点から前記 Y成分不含有点、 前記 Y成分不含有点か ら前記 Y成分最高含有点へ Y成分含有量が連続的に変化する成分濃度分布構造を 有し、 かつ同じく表 1 0に示される目標全体層厚の硬質被覆層を蒸着することに より、 図 5 Aに概略正面図で、 図 5 Bに溝形成部の概略横断面図で示される形状 を有する本発明被覆切削工具としての本発明表面被覆超硬合金製ドリル (以下、 本発明被覆超硬ドリノレと云う) 1〜8をそれぞれ製造した。
また、 比較の目的で、 上記の硬質基体 (ドリル) D—:!〜 D— 8の表面に、 ホ 一二ングを施し、 アセトン中で超音波洗浄し、 乾燥した状態で、 同じく図 2に示 される通常のアークイオンプレーティング装置に装入し、 上記実施例 1 と同一の 条件で従来法を実施し、 表 1 1に示される目標組成および目標層厚を有し、 かつ 層厚方向に沿って実質的に組成変化のない (T i , Y ) N層からなる硬質被覆層 を蒸着することにより、 従来被學切削工具としての従来表面被覆超硬合金製ェン ドミル (以下、 従来被覆超硬エンドミルと云う) 1〜8をそれぞれ製造した。 つぎに、 上記本発明被覆超硬ドリル 1〜 8および従来被覆超硬ドリル 1〜 8の うち、 本発明被覆超硬ドリノレ 1〜 3および従来被覆超硬ドリノレ 1〜 3については' 被削材: 平面寸法: 1 00mmX 250厚さ : 50mmの J I S · SKD 6 1 (硬さ : HRC 5 3). の板材、
切削速度 : 50 m/m i n . 、
送り : 0. 2mm/ r e v、
の条件での工具鋼の湿式高速穴あけ切削加工試験、 本発明被覆超硬ドリル 4〜 6 および従来被覆超硬ドリル 4〜 6については、
被削材:平面寸法: 1 00 mmX 250 mm、 厚さ : 50 mmの J I S · F C D 4 5 0の板材、 ·
切削速度 : 1 20 m/m i n - 、
送り : 0. 3 5 mm/ r e v、
の条件でのダクタイル鎳鉄の湿式高速穴あけ切削加工試験、 本発明被覆超硬ドリ ル 7, 8および従来被覆超硬ドリル 7, 8については、
被削材: 平面寸法: 1 00 mmX 250 mm、 厚さ : 5 0 mmの J I S · F C 3 0 0の板材、
切削速度 : 1 50 m/m i n . 、
り : 0. 45mm/ r e v、
の条件での鎵鉄の湿式高速穴あけ切削加工試験、 をそれぞれ行い、 いずれの湿式 高速穴あけ切削加工試験 (水溶性切削油使用) でも先端切刃面の逃げ面摩耗幅が 0. 3 mmに至るまでの穴あけ加工数を測定した。 この測定結果を表 1 0、 1 1 にそれぞれ示した。
:表 1 o] 硬質被覆層 穴あけ 種別 硬質基体 丫成分最高含有点 Y成分 両点間の 目標全体 加工数 記 5 目標組成 (原子比) 不 3¾点 目標間隔 (穴)
Ti Y N ( m) (u m
1 D-1 0.950 0.050 1.00 TiN 0.01 5 468 本 2 D-2 0.935 0.065 1.00 TiN 0.01 3 422 明 3 D-3 0.920 0.080 1.00 TiN 0.03 7 505 被
覆 4 D-4 0.905 0.095 1.00 TiN 0.06 3 1172
5 D-5 0.895 0.105 1.00 TiN 0.10 4 1340
6 D-6 0.880 0.120 1.00 TiN 0.05 2 1096
U
ル 7 D-7 0.865 0.135 1.00 TiN 0.08 2.5 2042
8 D-8 0.850 0.150 1.00 TiN 0.04 3.5 2156
[表 1 1 ] 顧臾暂其 1 硬質被覆層 ノ 0 l J 種別 目標組成 (原子比) t jte, /JU丄女乂
Ti Y N (ju m) 、ノ ノ
1 D-1 0.995 0.005 1.00 5 123 従
来 2 D - 2 0.990 0.010 1.00 3 105 被 3 D-3 0.985 0.015 1.00 7 138 覆
4 D-4 0.980 0.020 1.00 3 304 硬
5 D-5 0.975 0.025 1.00 4 433
U 6 D-6 0.970 0.030 1.00 2 285 ル
7 D-7 0.965 0.035 1.00 2.5 499
8 D-8 0.960 0.040 1.00 3.5 592
なお、 この結果得られた本発明被覆切削工具としての本発明被覆超硬チップ 1 〜 1 6、 本発明被覆超硬ェンドミル 1〜 8、 およぴ本発明被覆超硬ドリル 1〜 8 を構成する硬質被覆層における Y成分最高含有点と Y成分不含有点の組成、 並び に従来被覆切削工具としての従来被覆超硬チップ 1〜 1 6、 従来被覆超硬ェンド ミル 1〜 8、 および従来被覆超硬ドリル 1〜 8の硬質被覆層の組成を才ージヱ分 光分析装置を用いて測定したところ、 それぞれ目標組成と実質的に同じ組成を示 した。
また、 これらの本発明被覆切削工具の硬質被覆層における Y成分最高含有点と Y成分不含有点間の間隔、 およびこれの全体層厚、 並びに従来被覆切削工具の硬 質被覆層の厚さを、 走査型電子顕微鏡を用いて断面測定したところ、 いずれも目 標値と実質的に同じ値を示した。
表 3〜1 1に示される結果から、 硬質被覆層が層厚方向に Y成分最高含有点と Y成分不含有点とが交互に所定間隔をおいて繰り返し存在し、 かつ前記 Y'成分最 高含有点から前記 Y成分不含有点、 前記 Y成分不含有点から前記 Y成分最高含有 点へ Y成分含有量が連続的に変化する成分濃度分布構造を有する本発明被覆切削 工具は、 いずれも鋼ゃ鍀鉄の切削加工を高い発熱を伴う高速で行っても、 硬質被 覆層が Y成分の含有量が一段と高い前記 Y成分最高含有点の存在によって一段と すぐれた高温特性 (高温硬さと耐熱性) 、 さらに実質的に T i Nからなる Y成分 不含有点によつて高強度と高靭性を具備するようになることから、 すぐれた耐摩 耗性を発揮するのに対して、 硬質被覆層が層厚方向に沿って実質的に組成変化が なく、 かつ Y成分含有量が前記 Y成分最高含有点に比して相対的に低い (T i , Y ) N層からなる従来被覆切削工具においては、 高温を伴う高速切削加工では高 温特性不足が原因で切刃の摩耗進行が速く、 比較的短時間で使用寿命に至ること が明らかである。
上述のように、 この発明の被覆切削工具は、 特に各種の鋼ゃ铸鉄などの高速切 削加工でもすぐれた耐摩耗性を発揮し、 長期に亘つてすぐれた切削性能を示すも のであるから、 切削加工装置の高性能化、 並びに切削加工の省力化および省エネ 化、 さらに低コスト化に十分満足に対応できるものである。 つぎに、 この発明の被覆切削工具をさらなる実施例により具体的に説明する。 以下に示す実施例 4〜 6は、 すぐれた寿命特性を示す被覆切削工具、 特に、 す ぐれた耐チッビング性を発揮する被覆切削工具に関するものである。
(実施例 4)
原料粉末として、 いずれも 1〜3 mの平均粒径を有する WC粉末、 T i C粉 末、 VC粉末、 T a C粉末、 Nb C粉末、 C r 3C2粉末、 および C o粉末を用意 し、 これら原料粉末を、 表 1 2に示される配合組成に配合し、 ボールミルで 7 2 時間湿式混合し、 乾燥した後、 l O OMP a の圧力で圧粉体にプレス成形し、 こ の圧粉体を 6 P aの真空中、 温度: 1 400°Cに 1時間保持の条件で焼結し、 焼 結後、 切刃部分に R : 0. 04のホーニング加工を施して I S O規格 · CNMG
1 204 1 2のチップ形状をもった WC基超硬合金製の硬質基体 A 1〜A 1 0を 形成した。
また、 原料粉末として、 いずれも◦. 5〜2 μιηの平均粒径を有する T i CN (重量比で T i C/T i N= 5 0/50) 粉末、 Mo 2C粉末、 Z r C粉末、 N b C粉末、 T a C粉末、 WC粉末、 C o粉末、 および N i粉末を用意し、 これら原 料粉末を、 表 1 3に示される配合組成に配合し、 ボールミルで 24時間湿式混合 し、 乾燥した後、 1 00MP aの圧力で圧粉体にプレス成形し、 この圧粉体を 2 k P aの窒素雰囲気中、 温度: 1 500°Cに 1時間保持の条件で焼結し、 焼結後 、 切刃部分に R : 0. 04のホーユング加工を施して I S O規格 · CNMG 1 2 040 8のチップ形状をもった T i CN系サーメッ ト製の硬質基体 B 1〜B 6を 形成した。 ·
ついで、 上記の硬質基体 A 1〜A 1 0および B 1〜B 6のそれぞれを、 ァセト ン中で超音波洗浄し、 乾燥した状態で、 図 1 A, 1 Bに示されるアークイオンプ レーティング装置内の回転テーブル上に外周部にそって装着し、 一方側の力ソー ド電極 (蒸発源) として、 種々の成分組成をもった Y成分最高含有点形成用 T i 一 Y合金、 他方側の力ソード電極 (蒸発源) として Y成分不含有点形成用金属 T iを前記回転テーブルを挟んで対向配置し、 まず、 装置内を排気して 0. 5 P a の真空に保持しながら、 ヒーターで装置内を 3 50°Cに加熱した後、 前記回転テ 一ブル上で自転しながら回転する硬質基体に一 1 000Vの直流バイアス電圧を 0903
32
印加して、 他方側のカソード電極である前記金属 T i とァノード電極との間にァ —ク放電を発生させる条件で本発明法を実施し、 もって硬質基体表面を T iボン バート洗浄し、 ついで装置内に反応ガスとして窒素ガスを導入して 5 . 3 P aの 反応雰囲気とすると共に、 前記回転テーブル上で自転しながら回転する硬質基体 に一 3 0 Vの直流バイアス電圧を印加して、 それぞれの力ソード電極(前記 Y成分 最高含有点形成用 T i一 Y合金および Y成分不含有点形成用金属 T i )とアノード 電極との間にアーク放電を発生させ、 もって前記硬質基体の表面に、 層厚方向に 沿って表 1 4 , 1 5に示される目標組成の Y成分最高含有点と Y成分不含有点 ( T i N点) とが交互に同じく表 1 4 , 1 5に示される目標間隔で繰り返し存在し 、 かつ前記 Y成分最高含有点から前記 Y成分不含有点、 前記 Y成分不含有点から 前記 Y成分最高含有点へ Y成分含有量が連続的に変化する成分濃度分布構造を有 し、 かつ同じく表 1 4, 1 5に示される目標全体層厚の硬質被覆層を蒸着するこ とにより、 図 3 Aに概略斜視図で、 図 3 Bに概略縦断面図で示される形状を有す る本発明被覆切削工具としての本発明表面被覆超硬合金製スローァウェイチップ (以下、 本発明被覆超硬チップと云う) 1〜2 0をそれぞれ製造した。
また、 比較の目的で、 これら硬質基体 A 1〜A 1 0および B 1〜B 6を、 ァセ トン中で超音波洗浄し、 乾燥した状態で、 それぞれ図 2に示される通常のアーク イオンプレーティング装置に装入し、 一方力ソード電極 (蒸発源) として種々の 成分組成をもった T i—Y合金を装着し、 装置内を排気して 0 . 5 P aの真空に 保持しながら、 ヒーターで装置内を 5 0 0 °Cに加熱した後、 A rガスを装置内に 導入して 1 0 P aの A r雰囲気とし、 この状態で硬質基体に一 8 0 0 vのバイァ ス電圧を印加して硬質基体表面を A rガスボンバート洗浄し、 ついで装置内に反 応ガスとして窒素ガスを導入して 2 P aの反応雰囲気とすると共に、 前記硬質基 体に印加するバイアス電圧を一 2 5 0 Vに下げて、 前記カソード電極とァノード 電極との間にアーク放電を発生させる条件で本発明法を実施し、 もって前記硬質 基体 A 1〜A 1 0および B 1〜B 6のそれぞれの表面に、 表 1 6 , 1 7に示され る目標組成および目標層厚を有し、 かつ層厚方向に沿って実質的に組成変化のな レヽ (T i , Y ) N層からなる硬質被覆層を蒸着することにより、 同じく図 3 A , 3 Bに示される形状の従来被覆切削工具としての従来表面被覆超硬合金製スロー ァゥヱイチップ (以下、 従来被覆超硬チップと云う) 1〜20をそれぞれ製造し た。
つぎに、 上記本発明被覆超硬チップ 1〜 20およぴ従来被覆超硬チップ 1〜 2 0について、 これを工具鋼製バイ トの先端部に固定治具にてネジ止めした状態で 被削材: J I S · S CM440の長さ方向等間隔 4本縦溝入り丸棒、 切削速度 : 1 50 mZm i n . 、
切り込み : 6. 8 mm、
送り : 0. 2 mm/ r e v. 、
切削時間 : 7分、
の条件での合金鋼の乾式断続高切り込み切削加工試験、
被削材: J I S · S 45 Cの長さ方向等間隔 4本縦溝入り丸棒、
切削速度 : 1 50 m/m i n - 、
切り込み: 1. 5 mm、 .
り : 0. 7mm/ r e v. 、
切削時間 : 7分、
の条件での炭素鋼の乾式断続高送り切削加工試験、 さらに、
被削材: J I S · FC 300の長さ方向等間隔 4本縦溝入り丸棒、
切削速度 : 1 80 m/m i n . 、
切り込み: 7 mm、
送り : 0. 2mm/ r e v. 、
切削時間 : 7分、
の条件での鍚鉄の乾式断続高切り込み切削加工試験を行い、 いずれの切削加工試 験でも切刃の逃げ面摩耗幅を測定した。 この測定結果を表 14〜1 7に示した。 [表 1 2]
Figure imgf000036_0001
[表 Ί 3] 種別 配合組成 (質量%)
Co Ni ZrC TaC NbC M02C C TiCN 硬 B-1 13 5 10 10 16
B-2 9 7 5 7.5
体 B-3 6.5 2 6 10 チ B-4 10 5.5 8
、 B-5 9 4.5 1 5 10 10 プ
B-6 12 6 6 9.5 14.5
[表 14] 硬質被覆層 逃げ面摩耗幅(mm) 種別 硬質 Y成分最 6 a有点 Y成分 両点間の 目標全体 合金鋼の 灰 ί岡 鏡鉄の 基体 目標組成 (原子比) 不 3、有点 目標間隔 層厚 ET!TG冋 の断続 断糸冗! ¾
SC-5" Ti Y N ( u m) ( m) 切り込み 高速し」 切り込み
1 A-1 0.995 0.005 1.00 ΠΝ 0.10 15 0.20 0.18 0.15
2 A-2 0.985 0.015 1.00 TiN 0.03 10 0.16 0.15 0.13 本 3 A - 3 0.975 0.025 1.00 TiN 0.06 7 0.17 0.15 0.15 明 4 A-4 0.965 0.035 1.00 TiN 0.02 3 0.22 0.22 0.21 被 5 A-5 0.955 0.045 1.00 TiN 0.01 5 0.21 0.18 0.16 覆 6 A - 6 0.990 0.010 1.00 TiN 0.05 1 0.29 0.27 0.25 硬 7 A - 7 0.980 0.020 1.00 TiN 0.04 6 0.20 0.19 0.15 チ 8 A-8 0.970 0.030 1.00 TiN 0.06 8 0.18 0.16 0.10 ッ 9 A-9 0.960 0.040 1.00 TiN 0.01 12 0.14 0.12 0.08 プ 10 A-10 0.975 0.025 1.00 TiN 0.08 9 0.17 0.14 0.12
11 A-1 0.950 0.050 1.00 TiN 0.01 3 0.21 0.25 0.18
12 A-2 0.925 0.075 1.00 TiN 0.01 15 0.25 0.24 0.18
13 A-3 0.910 0.090 1.00 TiN 0.03 5 0.24 0.22 0.19
14 A-4 0.900 0.100 1.00 TiN 0.04 10 0.29 0.26 0.18
[表 15] 硬質 逃げ面摩耗幅(mm) 種別 基体 Y成分最高含有点 丫成分 両点間の 目標全体 合金鋼の 灰素鋼 篛鉄の
日日 ョ :
5D"5" 目標組成 (原子比) 不ョ有点 目標間 l½ 層'子 の關冗
Ti Y N (u m) u m) 切り込み 咼速り 切り込み 本 15 B-1 0.955 0.045 1.00 ΠΝ 0.01 15 0.12 0.11 0.08 明 16 B-2 0.990 0.010 1.00 TiN 0.03 11 0.19 0.18 0.17 被
覆 17 B-3 0.965 0.035 1.00 TIN 0.07 5 0.22 0.20 0.19 ロ
18 B-4 0.995 0.005 1.00 TiN 0.02 13 0.19 0.17 0.16 チ 19 B-5 0.980 0.020 1.00 TiN 0.05 7 0.16 0.15 0.12
V
プ 20 B - 6 0.970 0.030 1.00 ^ TiN 0.10 9 0.15 0.14 0.10
[表 Ί 6] チプッ
Figure imgf000040_0001
(表中、 使用寿命はチッビングが原因)
[表 1 7]
Figure imgf000041_0001
(表中、 使用寿命はチッビングが原因)
(実施例 5)
原料粉末として、 平均粒径 : 5. 5 μ mを有する中粗粒 WC粉末、 同 0. 8 ^ mの微粒 WC粉末、 同 1. 3 111の丁 &。粉末、 同 1. 2 μ mの N b C粉末、 同 1. 2 11の2 〇粉末、 同 2. 3 mの C r 3C2粉末、 同 1. 5 /1 111の¥0粉 末、 同 1. Ο μιηの (T i, W) C粉末、 および同 1. 8 μ πιの C o粉末を用意 し、 これら原料粉末をそれぞれ表 1 8に示される配合組成に配合し、 さらにヮッ クスを加えてァセトン中で 24時間ボールミル混合し、 減圧乾燥した後、 1 00 MP aの圧力で所定形状の各種の圧粉体にプレス成形し、 これらの圧粉体を、 6 P aの真空雰囲気中、 7°C/分の昇温速度で 1 3 70〜1 4 70°Cの範囲内の所 定の温度に昇温し、 この温度に 1時間保持後、 炉冷の条件で焼結して、 直径が 8 mm、 1 3 mm, および 26 mmの 3種の硬質基体形成用丸棒焼結体を形成し、 さらに前記の 3種の丸棒焼結体から、 研削加工にて、 表 1 8に示される組合せで 、 切刃部の直径 X長さがそれぞれ 6 mmX 1 3 mm、 1 0mmX 22mm、 およ び 20 mm X 45 mmの寸法をもつた硬質基体 (エンドミル) C一 1〜 C— 8を それぞれ製造した。
ついで、 これらの硬質基体 (エンドミル) C一:!〜 C一 8を、 アセ トン中で超 音波洗浄し、 乾燥した状態で、 同じく図 1 A, 1 Bに示されるアークイオンプレ 一ティング装置に装入し、 上記実施例 4と同一の条件で本発明法を実施し、 層厚 方向に沿って表 1 9に示される目標組成の Y成分最高含有点と Y成分不含有点と が交互に同じく表 1 9に示される目標間隔で繰り返し存在し、 かつ前記 Y成分最 高含有点から前記 Y成分不含有点、 前記 Y成分不含有点から前記 Y成分最高含有 点へ Y成分含有量が連続的に変化する成分濃度分布構造を有し、 かつ同じく表 1 9に示される目標全体層厚の硬質被覆層を蒸着することにより、 図 4 Aに概略正 面図で、 図 4 Bに切刃部の概略横断面図で示される形状を有する本発明被覆切削 工具としての本発明表面被覆超硬合金製エンドミル (以下、 本発明被覆超硬ェン ドミノレと云う) 1〜 1 0をそれぞれ製造した。
また、 比較の目的で、 上記の硬質基体 (エンドミル) C一 1〜C一 8を、 ァセ トン中で超音波洗浄し、 乾燥した状態で、 同じく図 2に示される通常のアークィ オンプレーティング装置に装入し、 上記実施例 4と同一の条件で従来法を実施し 、 表 2 0に示される目標組成および目標層厚を有し、 かつ層厚方向に沿って実質 的に組成変化のない (T i , Y) N層からなる硬質被覆層を蒸着することにより 、 従来被覆切削工具としての従来表面被覆超硬合金製エンドミル (以下、 従来被 覆超硬ェンドミノレと云う) 1〜 1 0をそれぞれ製造した。
つぎに、 上記本発明被覆超硬ェンドミル 1〜 1 0および従来被覆超硬ェンドミ ル 1〜 1 0のうち、 本発明被覆超硬ェン ドミノレ 1 , 2 , 3 , 9 , 1 0および従来 被覆超硬エンドミル 1, 2, 3, 9 , 1 0については、
被削材: 平面寸法: 1 0 0 mmX 2 5 0 mm、 厚さ : 5 0 mmの J I S · S K D 1 1の板材、 .
切削速度: 2 0 m/m i n. ,
溝深さ (切り込み) : 1. 5 mm、
テーブル送り : 5 OmmZ分、
の条件での工具鋼の湿式高切り込み溝切削加工試験、 本発明被覆超硬ェンドミル 4〜 6および従来被覆超硬ェンドミノレ 4〜 6については、
被削材: 平面寸法 : 1 0 0 mmX 2 5 0 mm、 厚さ : 5 0 mmの J I S · S U S 3 0 4の板材、
切削.速度: 5 0 mZm i n. ,
溝深さ (切り込み) : 1 Omm、
テーブル送り : 2 9 O mm/分、
の条件でのステンレス鋼の湿式高切り込み溝切削加工試験、 本発明被覆超硬ェン ドミル 7 , 8および従来被覆超硬エンドミル 7 , 8については、
被削材: 平面寸法: 1 0 0 mmX 2 5 0 mm、 厚さ : 5 0 mmの J I S · S N CM4 3 9の板材、
切削速度 : 6 0 m/m i n . 、
溝深さ (切り込み) : 5 mm、
テーブル送り : 4 5 OmmZ分、
の条件での合金鋼の湿式高送り溝切削加工試験 (いずれの試験も水溶性切削油使 用) 、 '
をそれぞれ行い、 いずれの溝切削加工試験でも切刃部先端面の直径が使用寿命の 目安とされる 0. 2 mm減少するまでの切削溝長を測定した。 この測定結果を表 1 9 , 2 0にそれぞれ示した。
[表 1 8] 種別 配合組成 (質量%) 切刃部の直径
Co (Ti,W)C TaC NbC ZrC C「3C2 VC WC X長さ(m m)
C-1 6 0.5 微粒:残 6X13
C-2 8 1 0.5 微粒:残 6X13
C-3 10 1 1 0.5 0.5 微粒:残 6X13 体
C-4 6 0.5 0.5 微粒:残 10X22 ェ
ン C- 5 10 9 9 1 中粗粒:残 10X22
C - 6 12 8 8 中粗粒:残 10X22
C-7 16 17 5 中粗粒:残 20X45
C-8 10 0.7 微粒:残 20X45
[表 19] 硬質被覆層
1
種別 丫成分最高含有点 Υ成分 両点間の 目標全体 切削)冓長 目標組成 (原子比) 不 3有点 目標間隔 層厚 Cm)
Ti Y Ν (ju m) ( m)
本 1 C-1 0.995 0.005 1, 00 TiN 0.10 3.5 48 明 2 C-2 0.985 0.015 1.00 TiN 0.08 2 3 on9 被 3 C-3 0.975 0.025 1.00 TiN 0.01 2.5 42
¾
4 し - 4 0.990 0.010 1.00 TiN 0.04 2 3D ェ 5 C-5 0.980 0.020 1.00 TiN 0.02 2 58 ン 6 C - 6 0.965 0.035 1.00 TiN 0.10 1 43
7 C-7 0.970 0.030 1.00 TiN 0.03 1.5 92
)ύ 8 C-8 0.955 0.045 1.00 TiN 0.06 2.5 116
9 C-1 0.935 0.065 1.00 TiN 0.02 2 38
10 C-2 0.905 0.095 1.00 TiN 0.03 3 23
[表 20] 硬質基体 硬質被覆層 切削溝長 種別 目標組成 (原子比) 目標層厚 (m)
Ti Y N (u m)
従 1 C-1 0.995 0.005 1.00 3.5 10mで使用寿命 来 2 C-2 0.985 0.015 1.00 2 8 mで使用寿命 被
覆 3 C - 3 0.975 0.025 1.00 2.5 9 mで使用寿命
2 12mで使用寿命 硬 4 C-4 0.990 0.010 1.00
ェ 5 C-5 0.980 0.020 1.00 2 13mで使用寿命 ン
ド 6 C-6 0.965 0.035 1.00 1 10mで使用寿命
7 C-7 0.970 0.030 1.00 1.5 21 mで使用寿命
8 C-8 0.955 0.045 1.00 2.5 27 mで使用寿命
9 C-1 0.935 0.065 1.00 2 9 mで使用寿命
10 C - 2 0.905 0.905 1.00 3 6 mで使用寿命
T JP03/00903
46 '
(実施例 6 )
上記の実施例 5で製造した直径が 8 mm (硬質基体 C一 1〜C一 3形成用) 、 1 3 m m (硬質基体 C一 4〜C一 6形成用) 、 および 2 6 mm (硬質基体 C一 7、 C一 8形成用) の 3種の丸棒焼結体を用い、 この 3種の丸棒焼結体から、 研 削加工にて、 溝形成部の直径 X長さがそれぞれ 4 m m X 1 3 m m (硬質基体 D— 1〜D— 3 ) 、 8 m m X 2 2 mm (硬質基体 D— 4〜 D— 6 ) 、 および 1 6 mm X 4 5 m m (硬質基体 D— 7、 D _ 8 ) の寸法をもつた硬質基体 (ドリル) D— 1〜D— 8をそれぞれ製造した。
ついで、 これらの硬質基体 (ドリノレ) D— 1〜D— 8の切刃に、 ホーユングを 施し、 アセ トン中で超音波洗浄し、 乾燥した状態で、 同じく図 1 A , 1 Bに示さ れるアークイオンプレーティング装置に装入し、 上記実施例 4と同一の条件で本 . 発明法を実施し、 層厚方向に沿って表 2 1に示される目標組成の Y成分最高含有 点と Y成分不含有点とが交互に同じく表 2 1に示される目標間隔で繰り返し存在 し、 かつ前記 Y成分最高含有点から前記 Y成分不含有点、 前記 Y成分不含有点か ら前記 Y成分最高含有点へ Y成分含有量が連続的に変化する成分濃度分布構造を 有し、 かつ同じく表 2 1に示される目標全体層厚の硬質被覆層を蒸着することに より、 図 5 Aに概略正面図で、 図 5 Bに溝形成部の概略横断面図で示される形状 を有する本発明被覆切削工具としての本発明表面被覆超硬合金製ドリル (以下、 本発明被覆超硬ドリルと云う) 1〜 1 0をそれぞれ製造した。
また、 比較の目的で、 上記の硬質基体 (ドリノレ) D— ;! 〜 D— 8の切刃に、 ホ 一二ングを施し、 アセ トン中で超音波洗浄し、 乾燥した状態で、 同じく図 2に示 される通常のアークイオンプレーティング装置に装入し、 上記実施例 4と同一の 条件で従来法を実施し、 表 2 2に示される目標組成および目標層厚を有し、 かつ 層厚方向に沿って実質的に組成変化のない (T i, Y ) N層からなる硬質被覆層 を蒸着することにより、 従来被覆切削工具としての従来表面被覆超硬合金製ドリ ル (以下、 従来被覆超硬ドリノレと云う) 1〜 1 0をそれぞれ製造した。
つぎに、 上記本発明被覆超硬ドリル 1〜 1 0および従来被覆超硬ドリル 1〜 1 0のうち、 本発明被覆超硬ドリノレ 1 , 2 , 3, 9 , 1 0および従来被覆超硬ドリ ノレ 1 , 2 , 3 , 9 , 1 0については、 被削材: 平面寸法: 1 00 mmX 2 50 mm、 厚さ : 50 mmの J I S · S K D 6 1 (硬さ : HR C 5 3) の板材、
切削速度: 20 m/m i 11. 、
送り : 0. 3mm/ r e v、
の条件での工具鋼の湿式高送り穴あけ切削加工試験、 本発明被覆超硬ドリル4〜 6および従来被覆超硬ドリル 4〜 6については、
被削材: 平面寸法: 1 00mm X 2 50 mm、 厚さ : 50 mmの J I S ' FC D 4 5 0の板材、
切削速度: 3 5 m/m i n. ,
送り : ◦. 6mm/ r e v、
の条件でのダクタィル鎳鉄の湿式高送り穴あけ切削加工試験、 本発明被覆超硬ド リル 7 , 8および従来被覆超硬ドリノレ 7 , 8については、
被削材: 平面寸法: 1 00 mmX 2 50 mm、 厚さ : 50 mmの J I S · F C 3 00の板材、 ,
切冃1 j速-度 : 6 5 m/ m i n . 、
送り : 0. 9 mmZr e v、
の条件での铸鉄の湿式高送り穴あけ切削加工試験、 をそれぞれ行い、 いずれの湿 式高速穴あけ切削加工試験 (水溶性切削油使用) でも先端切刃面の逃げ面摩耗幅 が 0. 3 mmに至るまでの穴あけ加工数を測定した。 この測定結果を表 2 1 , 2 2にそれぞれ示した。
[表 21 ] 硬質被覆層 穴あけ 種別 Υ成分最高含有点 丫成分 両点間の 目標全体 加工数 δ己" 5" 目標組成 (原子比) 不 3有点 目標間隔 層厚 (穴)
Ti Y N Cu m) u m)
1 D-1 0.975 0.025 1.00 TiN 0.04 10 625 本 2 D-2 0.985 0.015 1.00 TiN 0.10 6.5 584 明 3 D-3 0.990 0.010 1.00 TiN 0.03 8 603 被
覆 4 D-4 0.965 0.035 1.00 TiN 0.06 5 1562
5 D-5 0.975 0.025 1.00 TiN 0.05 6 1515 硬
6 D-6 0.995 0.005 1.00 TiN 0.01 7 1398 U
jし 7 D - 7 0.955 0.045 1.00 TiN 0.08 4 2167
8 D-8 0.980 0.020 1.00 TiN 0.02 5.5 2346
9 D-1 0.935 0.065 1.00 TiN 0.01 3 415
10 D-2 0.905 0.095 1.00 TiN 0.06 3 440
[表 22]
Figure imgf000051_0001
(表中、 使用寿命はチッビングが原因)
この結果得られた本発明被覆切削工具としての本発明被覆超硬チップ 1〜 2 0 、 本発明被覆超硬ェンドミル 1〜 1 0、 および本発明被覆超硬ドリル 1〜 1 0を 構成する硬質被.覆層における Y成分最高含有点と Y成分不含有点の組成、 並びに 従来被覆切削工具としての従来被覆超硬チップ 1〜 2 0、 従来被覆超硬エンドミ ル 1〜 1 0、 および従来被覆超硬ドリノレ 1〜 1 0の硬質被覆層の組成をォ一ジェ 分光分析装置を用いて測定したところ、 それぞれ目標組成と実質的に同じ組成を 示した。 また、 これらの本発明被覆切削工具の硬質被覆層における Y成分最高 含有点と Y成分不含有点間の間隔、 およびこれの全体層厚、 並びに従来被覆切削 工具の硬質被覆層の厚さを、 走査型電子顕微鏡を用いて断面測定したところ、 い ずれも目標値と実質的に同じ値を示した。
表 1 4〜 2 2に示される結果から、 硬質被覆層が層厚方向に、 高温硬さと耐熱 性を有する Y成分最高含有点と高強度と高靭性を有する Y成分不含有点とが交互 に所定間隔をおいて繰り返し存在し、 かつ前記 Y成分最高含有点から前記 Y成分 不含有点、 前記 Y成分不含有点から前記 Y成分最高含有点へ Y成分含有量が連続 的に変化する成分濃度分布構造を有す 本発明被覆切削工具は、 いずれも各種の 鋼ゃ鐃鉄などの断続切削加工を、 高い機械的衝擊を伴う高切り込みや高送りなど の重切削条件で行なつた場合にも、 硬質被覆層がすぐれた耐チッピング性を発揮 するのに対して、 硬質被覆層が層厚方向に沿って実質的に組成変化のない (T i , Y ) N層からなる従来被覆切削工具においては、 前記硬質被覆層がすぐれた高 温硬さと耐熱性を有するものの、 強度おょぴ靭性に劣るものであるために、 チッ ピングが発生し、 これが原因で比較的短時間で使用寿命に至ることが明らかであ る。
上述のように、 この発明の被覆切削工具は、 通常の条件での切削加工は勿論の こと、 特に各種の鋼ゃ鍚鉄などの断続切削加工を、 高い機械的衝撃を伴う高切り 込みや高送りなどの重切削条件で行なつた場合にも、 すぐれた耐チッピング性を 発揮し、 長期に亘つてすぐれた耐摩耗性を示すものであるから、 切削加工の省力 化および省エネ化、 さらに低コスト化に十分満足に対応できるものである。

Claims

請求の範囲
1. 硬質基体の表面に、 T i と Yの複合窒化物層からなる硬質被覆層を 1〜 1 5 μ mの全体平均層厚で物理蒸着してなる表面被覆切削工具部材であって、 前記硬質被覆層は、 層厚方向にそって、 Y成分最高含有点 (T i成分最低含有 点) と Y成分不含有点 (T i N点) とが所定間隔をおいて交互に繰り返し存在し 、 かつ前記 Y成分最高含有点から前記 Y成分不含有点、 前記 Y成分不含有点から 前記 Y成分最高含有点へ Y成分含有量が連続的に変化する成分濃度分布構造を有 していることを特徴とする表面被覆切削工具部材。
2. 前記 Y成分最高含有点は、 組成式: (T i ,- χΥχ) Ν (ただし、 原子比で、 Xは 0. 0 5〜0. 1 5を示す) を満足し、 かつ隣り合う前記 Υ成分最高含有点 と Υ成分不含有点の間隔が、 0. 0 1〜0. 1 μ mであることを特徴とする請求 項 1に表面被覆切削工具部材。
3. 前記 Y成分最高含有点は、 組成式: (T i xYx) Ν (ただし、 原子比で、 Xは 0. 00 5〜0. 1 0を示す) を満足し、 かつ隣り合う前記 Υ成分最高含有 点と Υ成分不含有点の間隔が、 0. 0 1〜0. 1 mであることを特徴とする請 求項 1に表面被覆切削工具部材。
4. 前記 Y成分最高含有点は、 組成式: (T i Ν (ただし、 原子比で、 Xは 0. 00 5〜0. 0 7を示す) を満足することを特徴とする請求項 3に記載 の表面被覆切削工具部材。
5. 前記 Υ成分最高含有点は、 組成式: (Τ - χΥχ) Ν (ただし、 原子比で、 Xは 0. 0 1〜0. 0 5を示す) を満足することを特徴とする請求項 3に記載の 表面被覆切削工具部材。
6. 前記硬質基体は、 炭化タングステン基超硬合金基体であることを特徴とする 請求項 1に記載の表面被覆切削工具部材。
7 . 前記硬質基体は、 炭窒化チタン基サーメット基体であることを特徴とする請 求項 1に記載の表面被覆切削工具部材。
8 . 前記硬質基体は、 立方晶窒化硼素基焼結材料基体であることを特徴とする請 求項 1に記載の表面被覆切削工具部材。
9 . アークイオンプレーティング装置内の回転テーブル上に、 前記回転テーブル の中心軸から半径方向に離れた位置に硬質基体からなる切削工具を自転自在に装 着し、
前記アークイオンプレーティング装置内の反応雰囲気を窒素ガス雰囲気として 、 前記回転テーブルを挟んで対向配置した Y成分最高含有点 (T i成分最低含有 点) 形成用 T i 一 Y合金の力ソード電極および Y成分不含有点 (T i N点) 形成 用金属 T iの力ソード電極と、 これら力ソード電極のそれぞれに並設されたァノ 一ド電極との間にアーク放電を発生させ、
もって、 前記回転テーブル上で自転しながら回転する前記切削工具の表面に、 厚さ方向にそって、 Y成分最高含有点 (T i成分最低含有点) と Y成分不含有 点 (T i N点) とが所定間隔をおいて交互に繰り返し存在し、 かつ前記 Y成分最 高含有点から前記 Y成分不含有点、 前記 Y成分不含有点から前記 Y成分最高含有 点へ Y ( T i ) 成分含有量が連続的に変化する成分濃度分布構造を有する T i と Yの複合窒化物からなる硬質被覆層を 1〜 1 5 μ mの全体平均層厚で物理蒸着す ること、 を特徴とする、 硬質被覆層を切削工具表面に形成する方法。
1 0 . 前記硬質被覆層は、 前記 Y成分最高含有点が、 組成式: (T i , -χ Υ χ) Ν (ただし、 原子比で、 Xは 0 . 0 5〜0 . 1 5を示す) を満足し、 かつ隣り合う 前記 Υ成分最高含有点と Υ成分不含有点の間隔が、 0 . 0 1〜0 . l mである ことを特徴とする、 請求項 9に記載の、 硬質被覆層を切削工具表面に形成する方 法。 '
1 1. 前記硬質被覆層は、 前記 Y成分最高含有点が、 組成式: (T i ,-χΥχ) Ν (ただし、 原子比で、 Xは 0. 00 5〜0. 1 0を示す) を満足し、 かつ隣り合 う前記 Υ成分最高含有点と Υ成分不含有点の間隔が、 0. 0 1〜0. であ ることを特徴とする、 請求項 9に記載の、 硬質被覆層を切削工具表面に形成する 方法。
1 2. 前記硬質被覆層は、 前記 Y成分最高含有点が、 組成式: (T i !-χΥχ) N (ただし、 原子比で、 Xは 0. 00 5〜0. 07を示す) を満足し、 かつ隣り合 う前記 Y成分最高含有点と Y成分不含有点の間隔が、 0. 0 1〜0. l / mであ ることを特徴とする、 請求項 9に記載の、 硬質被覆層を切削工具表面に形成する 方法。
1 3. 前記硬質被覆層は、 前記 Y成分最高含有点が、 組成式: (T i ,-χΥχ) Ν (ただし、 原子比で、 Xは 0. 0 1〜0. 0 5を示す) を満足し、 かつ隣り合う 前記 Υ成分最高含有点と Υ成分不含有点の間隔が、 0. 0 1〜0. l /zmである ことを特徴とする、 請求項 9に記載の、 硬質被覆層を切削工具表面に形成する方 法。
1 4. 前記硬質基体は、 炭化タングステン基超硬合金基体であることを特徴とす る、 請求項 9に記載の、 硬質被覆層を切削工具表面に形成する方法。
1 5. 前記硬質基体は、 炭窒化チタン基サーメット基体であることを特徴とする 、 請求項 9に記載の、 硬質被覆層を切削工具表面に形成する方法。
1 6. 前記硬質基体は、 立方晶窒化硼素基焼結材料基体であることを特徴とする 、 請求項 9に記載の、 硬質被覆層を切削工具表面に形成する方法。
PCT/JP2003/000903 2002-01-31 2003-01-30 Element d'outil de coupe revetu a couche de revetement dure et procede de formation de la couche de revetement dure sur l'outil de coupe WO2003064085A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020047011697A KR100594333B1 (ko) 2002-01-31 2003-01-30 경질 피복층을 가진 표면 피복 절삭 공구 부재 및 이 경질피복층을 절삭 공구 표면에 형성하는 방법
EP03703085.5A EP1470880B1 (en) 2002-01-31 2003-01-30 Coated cutting tool member having hard coating layer and method for forming the hard coating layer on cutting tool
US10/503,325 US7144639B2 (en) 2002-01-31 2003-01-30 Surface-coated cutting tool member having hard coating layer and method for forming the hard coating layer on surface of cutting tool

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002023094A JP3944900B2 (ja) 2002-01-31 2002-01-31 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2002-23094 2002-01-31
JP2002-27896 2002-02-05
JP2002027896A JP3944901B2 (ja) 2002-02-05 2002-02-05 断続重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
JP2002060206A JP3944902B2 (ja) 2002-03-06 2002-03-06 断続重切削加工ですぐれた耐チッピング性を発揮する硬質被覆層を切削工具表面に形成する方法
JP2002-60206 2002-03-06
JP2002060207A JP3944903B2 (ja) 2002-03-06 2002-03-06 高速切削加工ですぐれた耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法
JP2002-60207 2002-03-06

Publications (1)

Publication Number Publication Date
WO2003064085A1 true WO2003064085A1 (fr) 2003-08-07

Family

ID=27670912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000903 WO2003064085A1 (fr) 2002-01-31 2003-01-30 Element d'outil de coupe revetu a couche de revetement dure et procede de formation de la couche de revetement dure sur l'outil de coupe

Country Status (5)

Country Link
US (1) US7144639B2 (ja)
EP (1) EP1470880B1 (ja)
KR (1) KR100594333B1 (ja)
CN (1) CN1325212C (ja)
WO (1) WO2003064085A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090052174A (ko) * 2007-11-20 2009-05-25 아이시스(주) 확산박막 증착 방법 및 장치
CN101767477B (zh) * 2008-12-30 2014-05-07 河南富耐克超硬材料股份有限公司 纳米无钴硬质合金-立方氮化硼聚晶复合片及其制造方法
JP6198176B2 (ja) * 2013-02-26 2017-09-20 三菱マテリアル株式会社 表面被覆切削工具
JP5834329B2 (ja) * 2014-04-25 2015-12-16 住友電工ハードメタル株式会社 複合焼結体および表面被覆窒化硼素焼結体工具
JP6593776B2 (ja) * 2015-01-22 2019-10-23 三菱マテリアル株式会社 表面被覆切削工具
JP6037255B1 (ja) * 2016-04-08 2016-12-07 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
CN114654506B (zh) * 2020-12-22 2023-09-19 武汉苏泊尔炊具有限公司 抗菌刀具及抗菌刀具的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797679A (ja) * 1993-09-30 1995-04-11 Sumitomo Electric Ind Ltd 超薄膜積層体
JPH07205362A (ja) * 1994-01-21 1995-08-08 Sumitomo Electric Ind Ltd 耐摩耗性に優れた表面被覆部材
JPH09104965A (ja) * 1995-10-06 1997-04-22 Toshiba Tungaloy Co Ltd 高靭性被覆部材
JPH1096077A (ja) * 1996-09-24 1998-04-14 Akihisa Inoue 傾斜機能薄膜およびその製造方法
JPH1161380A (ja) * 1997-08-20 1999-03-05 Kobe Steel Ltd 耐磨耗性多層型硬質皮膜
JPH11505573A (ja) * 1996-03-12 1999-05-21 ハウツァー インダストリーズ ベスローテン フェンノートシャップ イットリウムを使用する硬質材料コーティングおよびその蒸着方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2585730B1 (fr) * 1985-08-01 1987-10-09 Centre Nat Rech Scient Procede de depot de metaux en couche mince sur un substrat non metallique, avec depot intermediaire d'hydrures par pulverisation cathodique reactive
US5246787A (en) * 1989-11-22 1993-09-21 Balzers Aktiengesellschaft Tool or instrument with a wear-resistant hard coating for working or processing organic materials
JP3205943B2 (ja) * 1992-05-26 2001-09-04 日本真空技術株式会社 Ti−希土類元素−N系超硬質化合物膜およびその形成方法
EP0592986B1 (en) * 1992-10-12 1998-07-08 Sumitomo Electric Industries, Limited Ultra-thin film laminate
US5783295A (en) * 1992-11-09 1998-07-21 Northwestern University Polycrystalline supperlattice coated substrate and method/apparatus for making same
JPH08206902A (ja) * 1994-12-01 1996-08-13 Sumitomo Electric Ind Ltd 切削用焼結体チップおよびその製造方法
JP3712241B2 (ja) * 1995-01-20 2005-11-02 日立ツール株式会社 被覆切削工具・被覆耐摩耗工具
US5593234A (en) * 1995-05-16 1997-01-14 Ntn Corporation Bearing assembly with polycrystalline superlattice coating
CZ301516B6 (cs) * 1997-09-12 2010-03-31 Oerlikon Trading Ag, Truebbach Nástroj s ochranným vrstvovým systémem a zpusob jeho výroby
US6274249B1 (en) * 1997-09-12 2001-08-14 Unaxis Balzers Aktiengesellschaft Tool with tool body and protective layer system
DE19818782A1 (de) * 1998-04-27 1999-10-28 Muenz Wolf Dieter Werkzeugbeschichtung und Verfahren zu deren Herstellung
KR100707755B1 (ko) * 2002-01-21 2007-04-17 미츠비시 마테리알 고베 툴스 가부시키가이샤 고속 절삭가공에서 경질 피복층이 우수한 내마모성을발휘하는 표면 피복 절삭공구 부재 및 그 경질 피복층을절삭공구 표면에 형성하는 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797679A (ja) * 1993-09-30 1995-04-11 Sumitomo Electric Ind Ltd 超薄膜積層体
JPH07205362A (ja) * 1994-01-21 1995-08-08 Sumitomo Electric Ind Ltd 耐摩耗性に優れた表面被覆部材
JPH09104965A (ja) * 1995-10-06 1997-04-22 Toshiba Tungaloy Co Ltd 高靭性被覆部材
JPH11505573A (ja) * 1996-03-12 1999-05-21 ハウツァー インダストリーズ ベスローテン フェンノートシャップ イットリウムを使用する硬質材料コーティングおよびその蒸着方法
JPH1096077A (ja) * 1996-09-24 1998-04-14 Akihisa Inoue 傾斜機能薄膜およびその製造方法
JPH1161380A (ja) * 1997-08-20 1999-03-05 Kobe Steel Ltd 耐磨耗性多層型硬質皮膜

Also Published As

Publication number Publication date
EP1470880A1 (en) 2004-10-27
EP1470880B1 (en) 2015-08-12
US7144639B2 (en) 2006-12-05
CN1325212C (zh) 2007-07-11
CN1638900A (zh) 2005-07-13
EP1470880A4 (en) 2011-02-02
KR100594333B1 (ko) 2006-06-30
KR20040077902A (ko) 2004-09-07
US20050089727A1 (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP4702520B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP3669334B2 (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP3928481B2 (ja) 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
WO2003064085A1 (fr) Element d'outil de coupe revetu a couche de revetement dure et procede de formation de la couche de revetement dure sur l'outil de coupe
JP4702538B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4244377B2 (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具
JP2004225065A (ja) 高速重切削条件ですぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法
JP3969260B2 (ja) 高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
JP4697660B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4678582B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2006289537A (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2007007765A (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP3991272B2 (ja) 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2004338008A (ja) 高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
JP2004344990A (ja) 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具およびその製造方法
JP4120499B2 (ja) 高速切削加工で表面被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP4320707B2 (ja) 高速重切削加工条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
JP2004130495A (ja) 高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4029329B2 (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具
JP3944901B2 (ja) 断続重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
JP2004344991A (ja) 高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具およびその製造方法
JP4320706B2 (ja) 高速重切削加工条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
JP3928498B2 (ja) 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP3972293B2 (ja) 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP3982347B2 (ja) 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200401837

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2003703085

Country of ref document: EP

Ref document number: 10503325

Country of ref document: US

Ref document number: 1020047011697

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038055694

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003703085

Country of ref document: EP