WO2003061036A2 - Wiederaufladbare elektrochemische batteriezelle - Google Patents

Wiederaufladbare elektrochemische batteriezelle Download PDF

Info

Publication number
WO2003061036A2
WO2003061036A2 PCT/DE2003/000103 DE0300103W WO03061036A2 WO 2003061036 A2 WO2003061036 A2 WO 2003061036A2 DE 0300103 W DE0300103 W DE 0300103W WO 03061036 A2 WO03061036 A2 WO 03061036A2
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
porous structure
cell according
solid particles
particles
Prior art date
Application number
PCT/DE2003/000103
Other languages
English (en)
French (fr)
Other versions
WO2003061036A3 (de
Inventor
Günther Hambitzer
Claudia Wollfarth
Ingo Stassen
Klaus Schorb
Christiane Ripp
Original Assignee
Fortu Bat Batterien Gmbh
Hambitzer Guenther
Claudia Wollfarth
Ingo Stassen
Klaus Schorb
Christiane Ripp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fortu Bat Batterien Gmbh, Hambitzer Guenther, Claudia Wollfarth, Ingo Stassen, Klaus Schorb, Christiane Ripp filed Critical Fortu Bat Batterien Gmbh
Priority to JP2003561021A priority Critical patent/JP4589627B2/ja
Priority to US10/501,760 priority patent/US7901811B2/en
Priority to AU2003205523A priority patent/AU2003205523A1/en
Priority to EP03702333A priority patent/EP1481430A2/de
Priority to DE10390156T priority patent/DE10390156D2/de
Publication of WO2003061036A2 publication Critical patent/WO2003061036A2/de
Publication of WO2003061036A3 publication Critical patent/WO2003061036A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a, preferably non-aqueous, rechargeable electrochemical battery cell with a negative electrode, an electrolyte and a positive electrode, in which at least one of the electrodes has a (usually flat) electronically conductive substrate with a surface on which an active one when the cell is charged Mass is deposited electrolytically.
  • alkali metal cells in which the active mass is an alkali metal which is deposited on the negative electrode when the cell is charged.
  • the invention is particularly directed to a battery cell in which the active composition is a metal, in particular an alkali metal, alkaline earth metal or a metal of the second subgroup of the periodic table, lithium being particularly preferred.
  • the electrolyte used in the context of the invention is preferably based on SO2.
  • SO 2 based electrolyte SO 2 based electrolytes
  • SO 2 based electrolytes SO 2 based electrolytes
  • a tetrahaloaluminate of the alkali metal for example, is preferably used as the conductive salt
  • LiAlCl4 used.
  • An alkali metal cell with an SC> 2 based electrolyte is called an alkali metal SO 2 cell.
  • the required safety is an important problem with battery cells. For many cell types, particularly strong heating can lead to safety-critical conditions. It may happen that the cell housing bursts or at least becomes leaky and harmful gaseous or solid substances or even fire escape. A rapid increase in temperature can be caused not only by improper handling, but also by internal or external short circuits when the cell is operating.
  • Battery manufacturers use electronic, mechanical or chemical mechanisms to control the charging or discharging circuit in such a way that the current flow is interrupted below a critical temperature so that no "thermal runaway” can occur.
  • pressure-sensitive mechanical or temperature-sensitive electronic switches are integrated in the internal battery circuit.
  • chemical reactions in the electrolyte or mechanical Changes in the battery separator irreversibly interrupt the current transport within these components as soon as a critical temperature threshold is reached.
  • Li-ion cells are only used with complex electronic monitoring because the security risks based on the current state of the art are very high.
  • the invention is based on the problem of improving the function, in particular the safety, of electrochemical battery cells in a simple and inexpensive manner.
  • a microporous structure is provided in direct contact with the electronically conductive substrate, the pore size of which is dimensioned such that the active mass deposited during the charging process is controlled in its way Pore grows into it.
  • the pores are preferably completely filled by the active mass growing into the porous structure, so that the active Mass is only in contact with the electrolyte over the relatively small interfaces at which further deposition takes place.
  • the overall reduction in the electrolyte volume contained in the cell has also proven to be advantageous.
  • the invention is therefore particularly advantageous to use in connection with a battery cell according to international patent application WO 00/79631 AI, which can be operated with a very small amount of electrolyte.
  • It is a cell whose negative electrode contains an active metal, in particular an alkali metal, in the charged state, whose electrolyte is based on sulfur dioxide and which has a positive electrode which contains the active metal and from which ions are charged into the electrolyte during the charging process escape.
  • the electrolyte is based on sulfur dioxide.
  • a self-discharge reaction takes place at the negative electrode, in which the sulfur dioxide of the electrolyte reacts with the active metal of the negative electrode to form a poorly soluble compound.
  • the electrochemical charge quantity of the sulfur dioxide contained in the cell is smaller than the electrochemically theoretically in the positive Electrode storable amount of charge of the active metal.
  • the battery cell can be operated with a significantly reduced amount of electrolyte and yet an improved function.
  • the structure of a layer directly adjoining the substrate of the negative electrode is determined by the size and shape of the solid particles, which are also referred to below as "structure-forming particles".
  • the porous structure can be formed both from particles that are not connected to one another and from a particle composite. If a binder is present in the porous structure for the production of a particle composite, the binder should not have an excessively high proportion of less than 50%, preferably less than 30%, of the total solid volume of the porous structure.
  • the proportion of binder is preferably so low that the binder is located only in the region of the contact points between the structure-forming particles. For this reason, binder proportions (volume ratio of the binder to the total volume of the structure-forming particles) of less than 20% or even less than 10% are particularly preferred.
  • this connection should have a certain elasticity.
  • a particle composite produced by sintering is too rigid, because the mechanical stresses on the porous structure during operation of the cell can lead to fractures, which impair the safety properties of the battery cell.
  • a porous structure made up of particles that are not connected to one another is advantageous in this regard because the forces and stresses occurring during the loading and unloading of the cell are absorbed more uniformly without breaking or gaps occurring.
  • the structure-forming particles should be packed so tightly that they cannot be moved within the structure during operation of the cell.
  • the volume filling level of the solid portion of the porous structure (percentage relation between the solid volume and the total volume of the porous structure) should be high , It should be at least 40%, preferably at least 50%, particularly preferably at least 55%. These values are higher than the volume filling level of conventional fillings of (usually crystalline) solid particles.
  • the desired compact structure can be achieved with different methods:
  • the density (and thus the degree of volume filling) of a loose bed can be increased by mechanical vibration (tapping, shaking or pounding) beyond the bulk density that is characteristic of the respective particles. According to the experimental testing of the invention, such methods can be economically integrated into the manufacturing process of the battery cells.
  • the degree of volume filling depends to a large extent on the shape of the structure-forming particles.
  • particles are used to form the porous structure, the shape of which largely approximates the spherical shape, so that their bulk density is higher than the bulk density of the same substance in crystalline form.
  • An increased degree of volume filling can also be achieved in that the porous structure contains two fractions of structure-forming solid particles with defined different average particle sizes, the particle sizes of the fractions complementing one another in such a way that an increased volume filling degree results.
  • the structure-forming particles of the finer fraction are preferably stored in the
  • the structure-forming solid particles should preferably consist of a material which is inert to the electrolyte, its charge products and the active composition.
  • a material which is inert to the electrolyte, its charge products and the active composition For example, ceramic powders are suitable, under certain circumstances also particles made of amorphous materials, in particular glasses, while ionically dissociating materials (salts) should not be used for the structure-forming component.
  • the material of the structure-forming solid particles should have a sufficiently high melting point of at least 200 ° C., preferably at least 400 ° C.
  • Compounds which do not contain oxygen are particularly suitable from a safety point of view.
  • Silicon carbide is particularly suitable in view of its good availability and high thermal conductivity.
  • connections are preferred which have a high thermal conductivity of at least 5 W / mK, preferably at least 20 W / mK.
  • oxygen-containing compounds can also be advantageous. This applies in particular to Si0 2 , which is also available inexpensively in the form of spherical particles.
  • FIG. 1 shows a cross-sectional illustration of a battery cell according to the invention
  • Fig. 2 is a perspective view of the interior
  • FIG. 3 shows a basic illustration of a porous structure between a conductor element (substrate) of a negative electrode and a separator
  • FIG. 4 shows an enlarged detailed illustration of FIG. 3,
  • Fig. 5 is a detailed representation of the principle of one of two fractions with different mean
  • Fig. 6 shows a detailed representation of the principle of a porous
  • the housing 1 of the battery 2 shown in FIG. 1 consists for example of stainless steel and encloses the electrode arrangement 3 shown in FIG. 2, which has a plurality of positive electrodes 4 and negative electrodes 5.
  • the electrodes 4, 5 are - as is common in battery technology - connected to corresponding connection contacts 9, 10 of the battery via electrode connections 6, 7, the negative contact 10 being formed by the housing 1.
  • the electrodes 4, 5 are flat in the usual way, i.e. as layers with a small thickness in relation to their surface area. They are separated from each other by separators 11.
  • the positive electrodes are covered on both sides by two layers 11a, 11b of the separator material.
  • the surface area of the two layers 11a, 11b is somewhat larger than the area of the positive electrodes, wherein they are connected to one another at their projecting edges, for example by means of a circumferential adhesive layer 13, which is only indicated schematically.
  • the positive electrodes 4 are completely enclosed by the separators 11.
  • the positive electrodes preferably consist of an intercalation compound of a metal oxide, in the case of a lithium cell, for example, of lithium cobalt oxide.
  • the negative electrodes each have an electronically conductive substrate 14 as a conductor element, on which an active mass is electrolytically deposited when the cell is being charged.
  • the substrate 14 is very thin in comparison to the positive electrode 4 and therefore only shown as a dark line.
  • it preferably consists of a porous metal structure, for example wise in the form of a perforated plate, grid, metal foam or expanded metal.
  • a porous structure 16 made of solid particles 17 which is more clearly recognizable in FIGS. 3 and 4 and which is so firm and compact that the solid particles are immovably fixed therein.
  • the active mass 15 (only shown in FIG. 4), which is electrolytically deposited on the surface of the substrate 14, penetrates into its pores 18 and is evenly deposited therein, gradually displacing the electrolyte 19 from the pores 18.
  • the contact area 20 between the electrolyte and the active mass is very small because it is limited to the narrow pores 18 of the porous structure 16.
  • the porous structure 16 should be designed and arranged such that no accumulations of the active mass 15 can form in cavities that are substantially larger than the pores of the porous structure. Since the porous structure 16 does not form a bond with the substrate 14 or the separator 11 in the sense that the layers adhere to one another (without the action of external forces), such cavities can exist between the substrate 14 and the porous structure 16 as well also be present between the porous structure 16 and the separator 11 and within the porous structure 16 itself or arise during operation of the cell. In order to avoid this, the intermediate space 21 between the substrate 14 and the separator 11 should be completely filled in such a way that no voids remain which are substantially larger than the pores of the porous structure and in which there are accumulations of the active mass deposited during charging could form.
  • the porous structure can be produced by filling the solid particles dry into the cell as a free-flowing powder.
  • the solid particles can then be compressed by tapping, shaking or shaking in order to achieve the desired degree of volume filling.
  • it is generally sufficient to fill the intermediate space 21 between the substrate 14 and the separator 11 in practice it is expedient if all of the cavities present in the cell are filled. Therefore, in the cell shown in FIG. 1, the porous structure 16 is also present in the space above the electrode arrangement 3.
  • spacers for example in the form of plastic strips, can be used, which ensure a defined distance between the substrate layers 14 and the separator layers 11 before filling. These spacers can be removed after filling in a first subset of the solid particles, but constructions are also possible in which spacer elements (e.g. glass fiber grids) remain in the cell.
  • spacer elements e.g. glass fiber grids
  • a suspension of the solid particles 17 in a volatile liquid is first introduced into the cell and the liquid is then drawn off (using a vacuum and / or elevated temperature).
  • the solid particles 17 can be processed into a pasty mass by means of a binder material, such as, for example, methyl cellulose, with the addition of a liquid is positioned outside the cell housing during assembly of the electrode arrangement 3 between the substrate 14 and the separator 11.
  • a binder material such as, for example, methyl cellulose
  • the binder can be removed from the layer, for example by the action of temperature. In contrast to a binder remaining in the cell, it does not have to be inert.
  • FIG. 5 shows the preferred embodiment already mentioned, in which two fractions of structure-forming solid particles 23, 24 are used to increase the degree of volume filling, the sizes of which complement one another such that the particles 24 of the finer fraction fit into the gusset 25 between the particles of the coarser fraction ,
  • the ratio of the average particle size of the two fractions is preferably between about 1: 6 and
  • Particles of a middle fraction fit into the gusset between the particles of a coarsest fraction and the particles of a finest fraction fit into the gusset of the middle fraction.
  • the particle size is selected by sieving.
  • the particle size is therefore defined by the hole size of the sieves used.
  • the mean particle size is the average particle size of the size distribution curve of a fraction.
  • FIG. 6 shows a particularly preferred embodiment in which the porous structure 16 contains a solid salt 26.
  • the salt 26 is preferably in the form of finely divided particles 27 in the porous structure 16 included, the salt particles 27 being so much smaller than the structure-forming solid particles 17 that the salt particles fit into the pores 18 of the porous structure 16.
  • the salt particles 27 are preferably very much smaller than the structure-forming particles 17.
  • the mean particle sizes of suitable structure-forming particles are between approximately 10 ⁇ m and approximately 200 ⁇ m, values between 50 ⁇ m and 150 ⁇ m being particularly preferred.
  • the ratio of the average particle size of the salt to the average particle size of the structure-forming particles 17 should be less than 1: 2, preferably less than 1: 4 and particularly preferably less than 1: 8. If the porous structure 16 contains several particle fractions, the mean value of their average particle sizes weighted according to the amounts of the particle fractions is to be used for this comparison.
  • the proportion of the salt particles in the total volume of the solid substances of the porous structure should be low.
  • the total volume of the salt particles is preferably at most 20%, preferably at most 10% and particularly preferably at most 5% of the total solid volume of the porous structure.
  • the salt is preferably an alkali halide, in particular -LiF, NaCl or LiCl, with LiF being particularly preferred.
  • the advantageous effect of a solid salt in contact with the discharge element of the negative electrode of the electrochemical cell is known from WO 00/44061.
  • the safety-relevant effect of the salt reference can be made to this document. In the context of the present invention, it was found that the safety of the cells can still be significantly improved if the one provided according to WO 00/44061 loose bed of grains of salt is replaced by a compact porous structure formed from nonionic inert particles and the salt is used only in significantly smaller amounts within this porous structure.
  • LiCo ⁇ 2 was used, on the negative electrode of which a quantity of lithium equivalent to 250 mAh was deposited during charging.
  • the cell in particular the space between the substrate of the negative electrode and the separator
  • the cell was filled with a mixture of two SiC fractions, the particle size of which was restricted to definable size ranges by sieving.
  • An addition of LiF was also used.
  • the ingredients were dried, mixed and filled in the following proportions:
  • the resulting degree of volume filling was approximately 60%.
  • the cell was loaded. An artificial internal short circuit was then caused by means of a needle pierced through the electrode (needle test). Result: The deposited lithium grew very regularly into the layer of the porous structure during charging. No growth through to the separator was observed. During the short circuit, partial reaction was only registered in the area of the needle tip. The reaction did not continue from there to other areas of the electrode and there was no flame front. The reaction came to a halt within about two seconds. There was practically no smoke development.
  • Cells with the construction according to the invention warmed up after reaching a critical temperature just below 60 ° C. due to a reaction taking place in the cell to about 80 to 90 ° C. and then cooled again to the ambient temperature. After the furnace test, they could be discharged to over 50% of their original loading capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

Wiederaufladbare elektrochemische Batteriezelle mit einer negativen Elektrode (5), einem Elektrolyten (19) und einer positiven Elektrode, wobei die negative Elektrode (5) ein elektronisch leitendes Substrat (14) aufweist, an dem beim Laden der Zelle eine aktive Masse (15) elektrolytisch abgeschieden wird. Eine wesentliche Verbesserung der Betriebssicherheit wird dadurch erreicht, dass die Zelle in Kontakt zu dem Substrat (14) der negativen Elektrode (5) eine aus Feststoffpartikeln (17) gebildete poröse Struktur (16) aufweist, die so ausgebildet und angeordnet ist, dass die beim Laden der Zelle abgeschiedene aktive Masse (15) von der Oberfläche des Substrats (14) in ihre Poren (18) eindringt und dort weiter abgeschieden wird.

Description

Wiederaufladbare elektrochemische Batteriezelle
Die Erfindung betrifft eine, vorzugsweise nichtwässrige, wiederaufladbare elektrochemische Batteriezelle mit einer negativen Elektrode, einem Elektrolyten und einer positiven Elektrode, bei der mindestens eine der Elektroden ein (üblicherweise flächiges) elektronisch leitendes Substrat mit einer Oberfläche aufweist, an der beim Laden der Zelle eine aktive Masse elektrolytisch abgeschieden wird.
Wichtige Beispiele sind Alkalimetallzellen, bei denen die aktive Masse ein Alkalimetall ist, das beim Laden der Zelle an deren negativer Elektrode abgeschieden wird. Die Erfindung richtet sich insbesondere auf eine Batteriezelle, bei der die aktive Masse ein Metall, insbesondere ein Alkalimetall, Erdalkalimetall oder ein Metall der zweiten Nebengruppe des Periodensystems ist, wobei Lithium besonders bevorzugt ist .
Der im Rahmen der Erfindung verwendete Elektrolyt basiert vorzugsweise auf SO2. Als "auf SO2 basierende Elektrolyten" (SO2 based electrolytes) werden Elektrolyten bezeichnet, die SO2 nicht nur als Zusatz in geringer Kon- zentration enthalten, sondern bei denen die Beweglichkeit der Ionen des Leitsalzes, das in dem- Elektrolyten enthalten ist und den Ladungstransport bewirkt, zumindest teilweise durch das SO2 gewährleistet wird. Im Falle einer Alkalimetallzelle wird als Leitsalz vorzugsweise ein Te- trahalogenoaluminat des Alkalimetalls, beispielsweise
LiAlCl4, verwendet. Eine Alkalimetallzelle mit einem auf SC>2 basierenden Elektrolyten wird als Alkalimetall-SO2- Zelle bezeichnet.
Bei Batteriezellen ist die erforderliche Sicherheit ein wichtiges Problem. Bei vielen Zelltypen kann insbesondere eine starke Erwärmung zu sicherheitskritischen Zuständen führen. Es kann vorkommen, daß das Zellgehäuse platzt oder zumindest undicht wird und schädliche gasförmige oder feste Substanzen oder sogar Feuer austreten. Eine rasche Temperaturerhöhung kann nicht nur durch unsachgemäße Behandlung, sondern auch durch interne oder externe Kurzschlüsse beim Betrieb der Zelle verursacht werden.
Besonders kritisch sind Batteriezellen, bei denen ein starker Temperaturanstieg im Zeilinnenraum dazu führt, daß in verstärktem Umfang exotherme Reaktionen stattfinden, die ihrerseits zu einem weiteren Anstieg der Temperatur führen. Dieser selbstverstärkende Effekt wird in der Fachwelt als "thermal runaway" bezeichnet.
Batteriehersteller versuchen, durch elektronische, mechanische oder chemische Mechanismen den Lade- bzw. Entladestromkreis so zu kontrollieren, daß der Stromfluß unter- halb einer kritischen Temperatur unterbrochen wird, so daß kein "thermal runaway" auftreten kann. Hierzu werden beispielsweise drucksensible mechanische oder temperatursensible elektronische Schalter in den internen Batterieschaltkreis integriert. Weiterhin wird diskutiert, durch chemische Reaktionen in dem Elektrolyten oder mechanische Veränderungen des Batterieseparators den Stromtransport innerhalb dieser Komponenten irreversibel zu unterbrechen, sobald eine kritische Temperaturschwelle erreicht wird.
Trotz dieser Maßnahmen ist der Sicherheitsstandard bei vielen Batteriezellen nicht im vollen Umfang befriedigend. Beispielsweise werden Li-Ionen-Zellen nur mit aufwendiger elektronischer Überwachung eingesetzt, weil die Sicherheitsrisiken auf Basis des gegenwärtigen Standes der Technik sehr hoch sind.
Der Erfindung liegt das Problem zugrunde, die Funktion, insbesondere die Sicherheit elektrochemischer Batterie- zellen auf einfache und kostengünstige Weise zu verbessern.
Dieses Problem wird bei einer Batteriezelle der eingangs bezeichneten Art dadurch gelöst, daß sie in Kontakt zu dem Substrat der negativen Elektrode eine aus Feststoffpartikeln gebildete poröse Struktur aufweist, die so ausgebildet und angeordnet ist, daß die beim Laden der Zelle abgeschiedene aktive Masse von der Oberfläche des Substrats in ihre Poren eindringt und dort weiter abgeschie- den wird.
Im Rahmen der Erfindung wurde festgestellt, daß wesentliche Verbesserungen der Funktion elektrochemischer Batteriezellen erreicht werden, wenn man in unmittelbarem Kon- takt zu dem elektronisch leitenden Substrat eine mikroporöse Struktur vorsieht, deren Porengröße so bemessen ist, daß die beim Ladevorgang abgeschiedene aktive Masse kontrolliert in ihre Poren hineinwächst. Vorzugsweise werden die Poren durch die in die poröse Struktur hineinwach- sende aktive Masse vollständig gefüllt, so daß die aktive Masse im wesentlichen nur über die relativ kleinen Grenzflächen, an denen die weitere Abscheidung stattfindet, in Kontakt zu dem Elektrolyt steht .
Wenn die aktive Masse nur über eine verhältnismäßig kleine Fläche mit dem Elektrolyten in Kontakt steht, muß die elektrolytische Leitung durch die engen Poren der porösen Partikelstruktur erfolgen. Dies scheint zunächst nachteilig für die Funktion der Zelle: - Aufgrund der engen Poren war eine Erhöhung des Elektrolytwiderstandes in der Zelle mit entsprechender Reduzierung der maximalen Lade- bzw. Entladeströme zu erwarten.
Aufgrund der reduzierten Beweglichkeit der Elektro- lytionen war die Ausbildung eines Konzentrationsgradienten zu befürchten, der zu einem Spannungsabfall führt .
Außerdem erscheint es zunächst unvorteilhaft, daß die po- rose Struktur der Feststoffpartikel keinen unmittelbaren Beitrag zu der für die Kapazität der Zelle entscheidenden Zellreaktion leistet, jedoch deren Gewicht und Volumen erhöht. Dies läuft dem allgemeinen Bestreben der Batterieentwicklung entgegen, mit möglichst wenig Gewicht und Volumen eine möglichst hohe Batteriekapazität zu erzielen.
Im Rahmen der Erfindung wurde festgestellt, daß entgegen diesen Bedenken die Funktion der Zelle insgesamt wesent- lieh verbessert wird.
Auf einfache Weise und mit Mitteln, die gut und kostengünstig in den Herstellungsprozeß einer Batterie integriert werden können, wird die Zellsicherheit wesentlich erhöht. Selbst bei Nageltests und Temperaturbelastungs- tests, die extreme Fehlbehandlungen der Zelle (wie sie in der Praxis normalerweise nicht auftreten) simulieren, sind keinerlei sicherheitskritische Temperatur- oder Druckerhöhungen oder gar Flammenbildungen zu beobachten. Da es möglich ist, das Substrat der negativen Elektrode vollständig von der porösen Struktur zu umschließen, ist diese Sicherheitswirkung unabhängig davon, an welcher Stelle der Zelle ein sicherheitskritischer Zustand (beispielsweise durch eine mechanische Beschädigung) auf- tritt. Es wurde festgestellt, daß die aktive Masse in der porösen Struktur beim Laden kontrolliert und weitgehend gleichmäßig wächst bzw. beim Entladen wieder abnimmt. Probleme, die auf die Bildung einer Deckschicht (die im Falle einer Lithiumzelle beispielsweise aus Li2S204 be- steht) zurückzuführen sind, werden reduziert. Außerdem wird eine bessere Abführung der Reaktionswärme exothermer Reaktionen in der Zelle erreicht. Es wurde keine für die praktische Nutzung der Zelle signifikante Erhöhung des Zellwiderstandes beobachtet.
Aufgrund der bei der Erprobung der Erfindung durchgeführten experimentellen Untersuchungen ist davon auszugehen, daß deren vorteilhafte Wirkung wesentlich damit zusammenhängt, daß ein ungleichmäßiges Wachstum der aktiven Masse während des Ladens der Zelle verhindert wird. Normalerweise erfolgt die Abscheidung der aktiven Masse an der Oberfläche des Substrats in Form fadenförmiger Gebilde, die als Whisker oder Dendriten bezeichnet werden. Eine Ungleichmäßigkeit des Wachstums wird vor allem nach meh- reren Lade- und Entladezyklen der Zelle durch minimale Inhomogenitäten, beispielsweise in der Oberfläche des Substrats oder hinsichtlich der Elektrolytverteilung, verursacht und verstärkt sich von Zyklus zu Zyklus. Damit sind wesentliche sicherheitsrelevante Nachteile verbun- den: Die große Oberfläche der ungleichmäßigen Abscheidung • beschleunigt unkontrollierte sicherheitsrelevante Reaktionen.
Selbstentladereaktionen, die zur Bildung einer Deck- Schicht der aktiven Masse führen, werden durch deren große Oberfläche gefördert.
Es finden verstärkt irreversible Reaktionen (im Fall einer Lithiumzelle beispielsweise die Bildung von totem Lithium) statt, die zu einer allmählichen Reduzie- rung der Zellkapazität führen.
Diese Probleme werden durch die Erfindung vermieden.
Als insgesamt vorteilhaft hat sich auch die mit der Er- findung verbundene Verminderung des in der Zelle enthaltenen Elektrolytvolumens erwiesen. Die Erfindung ist deshalb besonders vorteilhaft in Verbindung mit einer Batteriezelle gemäß der internationalen Patentanmeldung WO 00/79631 AI zu verwenden, die mit einer sehr geringen Elektrolytmenge betrieben werden kann. Dabei handelt es sich um eine Zelle, deren negative Elektrode im geladenen Zustand ein aktives Metall, insbesondere ein Alkalimetall, enthält, deren Elektrolyt auf Schwefeldioxid basiert und die eine positive Elektrode aufweist, die das aktive Metall enthält und aus der beim Ladevorgang Ionen in den Elektrolyt austreten. Der Elektrolyt basiert auf Schwefeldioxid. An der negativen Elektrode findet eine Selbstentladereaktion statt, bei der das Schwefeldioxid des Elektrolyten mit dem aktiven Metall der negativen Elektrode zu einer schwerlöslichen Verbindung reagiert. Gemäß der in der internationalen Patentanmeldung beschriebenen Erfindung ist die elektrochemische Ladungs- menge des in der Zelle enthaltenen Schwefeldioxids, berechnet mit einem Faraday pro Mol Schwefeldioxid, kleiner als die elektrochemisch theoretisch in der positiven Elektrode speicherbare Ladungsmenge des aktiven Metalls. Dadurch kann die Batteriezelle mit einer wesentlich verminderten Elektrolytmenge und dennoch verbesserter Funktion betrieben werden. Wegen weiterer Einzelheiten wird auf das genannte Dokument Bezug genommen, dessen Inhalt durch die Bezugnahme auch zum Inhalt der vorliegenden Anmeldung gemacht wird.
Erfindungsgemäß wird die Struktur einer sich unmittelbar an das Substrat der negativen Elektrode anschließenden Schicht durch die Größe und Form der Feststoffpartikel, die nachfolgend auch als "strukturbildende Partikel" bezeichnet werden, bestimmt. Die poröse Struktur kann sowohl von miteinander nicht verbundenen Partikeln als auch von einem Partikelverbund gebildet werden. Sofern zur Herstellung eines Partikelverbundes ein Bindemittel in der porösen Struktur vorhanden ist, sollte das Bindemittel einen nicht zu hohen Anteil von weniger als 50%, bevorzugst weniger als 30% an dem gesamten Feststoffvolu- men der porösen Struktur haben. Bevorzugt ist der Bindemittelanteil so niedrig, daß das Bindemittel nur im Bereich der Kontaktstellen zwischen den strukturbildenden Partikeln sitzt. Deswegen sind Bindemittelanteile (Volumenrelation des Bindemittels zu dem Gesamtvolumen der strukturbildenden Partikel) von weniger als 20% oder sogar weniger als 10% besonders bevorzugt.
Soweit die strukturbildenden Partikel zu einem Partikel- verbünd verbunden sind, sollte diese Verbindung eine ge- wisse Elastizität aufweisen. Insbesondere ist ein durch Sintern erzeugter Partikelverbund zu starr, weil die mechanischen Beanspruchungen der porösen Struktur im Betrieb der Zelle zu Brüchen führen können, durch die die Sicherheitseigenschaften der Batteriezelle verschlechtert werden. Eine poröse Struktur aus nicht miteinander verbundenen Partikeln ist in dieser Hinsicht vorteilhaft, weil die beim Laden und Entladen der Zelle auftretenden Kräfte und Spannungen gleichmäßiger aufgenommen werden, ohne daß Brüche oder Spalten entstehen. Dabei sollten jedoch die strukturbildenden Partikel so eng gepackt sein, daß sie im Betrieb der Zelle nicht innerhalb der Struktur verschoben werden können.
Um diese Unbeweglichkeit der Partikel und die gewünschte kontrollierte Abscheidung der aktiven Masse in der porösen Struktur unter weitgehend vollständiger Füllung von deren Poren zu gewährleisten, sollte der Volumenfüllgrad des Feststoffanteils der porösen Struktur (prozentuale Relation zwischen dem Feststoffvolumen und dem Gesamtvolumen der porösen Struktur) hoch sein. Er sollte mindestens 40 %, bevorzugt mindestens 50 %, besonderes bevorzugt mindestens 55 % betragen. Diese Werte liegen höher als der Volumenfüllgrad üblicher Schüttungen aus (in der Regel kristallinen) Feststoffpartikeln. Die gewünschte verdichtete Struktur läßt sich mit unterschiedlichen Verfahren erreichen:
Die Dichte (und damit der Volumenfüllgrad) einer losen Schüttung kann durch mechanische Erschütterung (Klopfen, Rütteln oder Stampfen) über die für die jeweiligen Partikel charakteristische Schüttdichte hinaus erhöht werden. Gemäß der experimentellen Erprobung der Erfindung lassen sich solche Verfahren auf Wirtschaft- liehe Weise in den Herstellungsprozeß der Batteriezellen integrieren.
Der Volumenfüllgrad hängt in hohem Maße von der Form der strukturbildenden Partikel ab. Vorzugsweise werden zur Bildung der porösen Struktur Partikel verwendet, deren Form der Kugelform weitgehend angenähert ist, so daß ihre Schüttdichte höher als die Schüttdichte der gleichen Substanz in kristalliner Form ist.
Ein erhöhter Volumenfüllgrad kann auch dadurch erreicht werden, daß die poröse Struktur zwei Frank- tionen von strukturbildenden Feststoffpartikeln mit definierten unterschiedlichen mittleren Teilchengrδßen enthält, wobei die Teilchengrößen der Fraktionen sich derartig ergänzen, daß ein erhöhter Volumenfüllgrad resultiert. Dabei lagern sich die strukturbildenden Teilchen der feineren Fraktion vorzugsweise in den
Zwickeln zwischen den Teilchen der gröberen Fraktion ab, wodurch besonders hohe Volumenfüllgrade erreicht werden können.
Die genannten Verfahren können selbstverständlich in Kombination miteinander verwendet werden, um besonders hohe Volumenfüllgrade zu erreichen.
Die strukturbildenden Feststoffpartikel sollten vorzugs- weise aus einem gegenüber dem Elektrolyten, dessen Überladeprodukten und der aktiven Masse inerten Material bestehen. Geeignet sind beispielsweise keramische Pulver, unter Umständen auch Partikel aus amorphen Materialien, insbesondere Gläser, während ionisch dissoziierende Mate- rialien (Salze) nicht für die strukturbildende Komponente verwendet werden sollten. In jedem Fall sollte das Material der strukturbildenden Feststoffpartikel einen ausreichend hohen Schmelzpunkt von mindestens 200°C, bevorzugt mindestens 400°C haben.
In sicherheitstechnischer Hinsicht besonders geeignet sind Verbindungen, die keinen Sauerstoff enthalten, insbesondere Carbide, Nitride oder Phosphide. Als besonders geeignet haben sich Carbide, Nitride oder Phosphide der vierten Hauptgruppe des Periodensystems, insbesondere des Siliziums erwiesen. Siliziumcarbid ist im Hinblick auf seine gute Verfügbarkeit und seine hohe Wärmeleitfähigkeit besonders geeignet. Allgemein sind Verbindungen bevorzugt, die eine hohe Wärmeleitfähigkeit von mindestens 5 W/mK, vorzugsweise mindestens 20 W/mK aufweisen. In bestimmten Fällen kann auch der Einsatz von Sauerstoffhaltigen Verbindungen vorteilhaft sein. Dies gilt insbesondere für Si02, das auch in Form kugelförmiger Partikel kostengünstig verfügbar ist .
Die Erfindung wird nachfolgend anhand von den in den Figuren dargestellten Ausführungsbeispielen näher erläutert. Die darin beschriebenen Besonderheiten können einzeln oder in Kombination verwendet werden, um bevorzugte Ausgestaltungen der Erfindung zu schaffen. Es zeigen:
Fig. 1 eine Querschnittsdarstellung einer erfindungs- gemäßen Batteriezelle,
Fig. 2 eine perspektivische Darstellung des inneren
Aufbaus einer erfindungsgemäßen Batteriezelle,
Fig. 3 eine Prinzipdarstellung einer porösen Struktur zwischen einem Ableitelement (Substrat) einer negativen Elektrode und einem Separator,
Fig. 4 eine vergrößerte Detaildarstellung zu Figur 3,
Fig. 5 eine Detail-Prinzipdarstellung einer aus zwei Fraktionen mit unterschiedlicher mittlerer
Teilchengröße bestehende porösen Struktur,
Fig. 6 eine Detail-Prinzipdarstellung einer porösen
Struktur, die zusätzlich zu den strukturbilden- den Partikeln ein festes Salz enthält. Das Gehäuse 1 der in Figur 1 dargestellten Batterie 2 besteht beispielsweise aus Edelstahl und umschließt die in Figur 2 dargestellte Elektrodenanordnung 3, die mehrere positive Elektroden 4 und negativen Elektroden 5 aufweist. Die Elektroden 4,5 sind - wie in der Batterietechnik üblich - über Elektrodenanschlüsse 6,7 mit entsprechenden Anschlußkontakten 9,10 der Batterie verbunden, wobei der negative Kontakt 10 von dem Gehäuse 1 gebildet wird.
Die Elektroden 4,5 sind in üblicher Weise flächig ausgebildet, d.h. als Schichten mit im Verhältnis zu ihrer Flächenausdehnung geringer Dicke. Sie sind jeweils durch Separatoren 11 voneinander getrennt. Bei der dargestellten bevorzugten Ausführungsform sind die positiven Elektroden jeweils von zwei Schichten 11a, 11b des Separatormaterials beidseitig bedeckt. Die Flächenausdehnung der beiden Schichten 11a, 11b ist etwas größer als die Fläche der positiven Elektroden, wobei sie an ihren überstehenden Rändern, zum Beispiel mittels einer lediglich schematisch angedeuteten umlaufenden KlebstoffSchicht 13, miteinander verbunden sind. Dadurch sind die positiven Elektroden 4 vollständig von den Separatoren 11 umschlossen.
Die positiven Elektroden bestehen vorzugsweise aus einer Interkalationsverbindung eines Metalloxids, im Falle einer Lithiumzelle beispielsweise aus Lithiumkobaltoxid. Die negativen Elektroden weisen jeweils ein elektronisch leitendes Substrat 14 als Ableitelement auf, an dem beim Laden der Zelle eine aktive Masse elektrolytisch abgeschieden wird. Das Substrat 14 ist im Vergleich zu der positiven Elektrode 4 sehr dünn und deswegen lediglich als dunkler Strich dargestellt. Es besteht in der Praxis vorzugsweise aus einer porösen Metallstruktur, beispiels- weise in Form eines Lochbleches, Gitters, Metallschaums oder Streckmetalls.
In Kontakt zu dem Substrat 14 der negativen Elektroden 5 steht jeweils eine in den Figuren 3 und 4 deutlicher erkennbare poröse Struktur 16 aus Feststoffpartikeln 17, die so fest und kompakt ist, daß die Feststoffpartikel darin unbeweglich fixiert sind. Die (nur in Figur 4 dargestellte) aktive Masse 15, die an der Oberfläche des Substrats 14 elektrolytisch abgeschieden wird, dringt in ihre Poren 18 ein und wird gleichmäßig darin abgeschieden, wobei sie nach und nach den Elektrolyt 19 aus den Poren 18 verdrängt. Die Kontaktfläche 20 zwischen dem Elektrolyt und der aktiven Masse ist sehr klein, weil sie auf die engen Poren 18 der porösen Struktur 16 beschränkt ist .
Die poröse Struktur 16 sollte so ausgebildet und angeordnet sein, daß sich keine Ansammlungen der aktiven Masse 15 in Hohlräumen bilden können, die wesentlich größer als die Poren der porösen Struktur sind. Da die poröse Struktur 16 weder mit dem Substrat 14 noch mit dem Separator 11 einen Verbund in dem Sinn bildet, daß die Schichten (ohne Einwirkung äußerer Kräfte) aneinander haften, kön- nen derartige Hohlräume sowohl zwischen dem Substrat 14 und der porösen Struktur 16 als auch zwischen der porösen Struktur 16 und dem Separator 11 und innerhalb der porösen Struktur 16 selbst vorhanden sein oder im Betrieb der Zelle entstehen. Um dies zu vermeiden, sollte der Zwi- schenraum 21 zwischen dem Substrat 14 und dem Separator 11 so vollständig gefüllt sein, daß keine Hohlräume verbleiben, die wesentlich größer als die Poren der porösen Struktur sind und in denen sich Ansammlungen der beim Laden abgeschiedenen aktiven Masse bilden könnten. Die poröse Struktur kann dadurch hergestellt werden, daß man die Feststoffpartikel als rieselfähiges Pulver trok- ken in die Zelle einfüllt. Danach können die Fest- stoffpartikel durch Klopfen, Rütteln oder Schütteln ver- dichtet werden, um den gewünschten Volumenfüllgrad zu erreichen. Obwohl es grundsätzlich genügt, den Zwischenraum 21 zwischen dem Substrat 14 und dem Separator 11 zu füllen, ist es in der Praxis zweckmäßig, wenn sämtliche in der Zelle vorhandenen Hohlräume gefüllt werden. Deswegen ist bei der in Figur 1 dargestellten Zelle die poröse Struktur 16 auch in dem Raum oberhalb der Elektrodenanordnung 3 vorhanden.
Um eine ausreichende Schichtstärke der porösen Struktur 16 sicherzustellen, können Abstandshalter, beispielsweise in Form von Kunststoffstreifen, verwendet werden, die vor dem Einfüllen einen definierten Abstand zwischen den Substratschichten 14 und den Separatorschichten 11 sicherstellen. Diese Abstandshalter können nach dem Einfüllen einer ersten Teilmenge der Feststoffpartikel entfernt werden, jedoch sind auch Konstruktionen möglich, bei denen Abstandshalterelemente (z.B. Glasfasergitter) in der Zelle verbleiben.
Gemäß einem alternativen Verfahren wird zum Einbringen der porösen Struktur 16 in die Zelle zunächst eine Suspension der Feststoffpartikel 17 in einer leicht flüchtigen Flüssigkeit in die Zelle eingefüllt und die Flüssigkeit anschließend (unter Anwendung von Vakuum und/oder erhöhter Temperatur) abgezogen.
Gemäß einer weiteren Verfahrensvariante können die Fest- stoffpartikel 17 mittels eines Bindemittelmaterials, wie beispielsweise Methylzellulose, unter Zusatz einer Flüs- sigkeit zu einer pastösen Masse verarbeitet werden, die außerhalb des Zellgehäuses bei der Montage der Elektrodenanordnung 3 zwischen dem Substrat 14 und dem Separator 11 positioniert wird. Das Bindemittel kann, beispielsweise durch Temperatureinwirkung, aus der Schicht ent- fernt werden. Es muß, im Gegensatz zu einem in der Zelle verbleibenden Bindemittel, nicht inert sein.
Figur 5 zeigt die bereits erwähnte bevorzugte Ausführungsform, bei der zur Erhöhung des Volumenfüllgrades zwei Fraktionen von strukturbildenden Feststoffpartikeln 23,24 verwendet werden, deren Größen sich derartig ergänzen, daß die Partikel 24 der feineren Fraktion in die Zwickel 25 zwischen den Partikeln der gröberen Fraktion passen. Vorzugsweise liegt die Relation der mittleren Teilchengröße beider Fraktionen zwischen etwa 1:6 und
1:2, wobei Relationen zwischen 1:5 und 1:3 besonders bevorzugt sind.
Selbstverständlich können auch mehr als zwei Fraktionen verwendet werden, beispielsweise in der Weise, daß die
Partikel einer mittleren Fraktion in die Zwickel zwischen den Partikeln einer gröbsten Fraktion passen und die Partikel einer feinsten Fraktion in die Zwickel der mittleren Fraktion passen.
Die Selektion der Teilchengröße erfolgt in der Praxis durch Sieben. Die Teilchengröße ist demzufolge durch die Lochgröße der verwendeten Siebe definiert. Als mittlere Teilchengrδße wird die durchschnittliche Teilchengröße der Größenverteilungskurve einer Fraktion bezeichnet.
In Figur 6 ist eine besonders bevorzugte Ausführungsform dargestellt, bei der die poröse Struktur 16 ein festes Salz 26 enthält. Das Salz 26 ist vorzugsweise in Form fein verteilter Partikel 27 in der porösen Struktur 16 enthalten, wobei die Salzpartikel 27 so viel kleiner als die strukturbildenden Feststoffpartikel 17 sind, daß die Salzpartikel in die Poren 18 der porösen Struktur 16 passen. Vorzugsweise sind die Salzpartikel 27 sehr viel kleiner als die strukturbildenden Partikel 17.
Allgemein liegen die mittleren Teilchengrößen geeigneter strukturbildender Partikel zwischen etwa 10 μm und etwa 200 μm, wobei Werte zwischen 50 μm und 150 μm besonders bevorzugt sind. Die Relation der mittleren Teilchengröße des Salzes zu der mittleren Teilchengröße der strukturbildenden Partikel 17 sollte kleiner als 1:2, bevorzugt kleiner als 1:4 und besonders bevorzugt kleiner als 1:8 sein. Falls die poröse Struktur 16 mehrere Partikelfrak- tionen enthält, ist für diesen Vergleich der nach den Mengen der Partikelfraktionen gewichtete Mittelwert von deren mittleren Teilchengrößen anzusetzen.
Der Anteil der Salzpartikel an dem Gesamtvolumen der FeststoffSubstanzen der porösen Struktur sollte gering sein. Vorzugsweise liegt das Gesamtvolumen der Salzpartikel bei höchstens 20 %, bevorzugt höchstens 10 % und besonders bevorzugt höchstens 5 % des gesamten Feststoff- volumens der porösen Struktur.
Das Salz ist vorzugsweise ein Alkalihalogenid, insbesondere -LiF, NaCl oder LiCl, wobei LiF besonders bevorzugt ist. Die vorteilhafte Wirkung eines festen Salzes in Kontakt zu dem Ableitelement der negativen Elektrode elek- trochemischer Zelle ist aus der WO 00/44061 bekannt. Hinsichtlich Einzelheiten zur sicherheitsrelevanten Wirkung des Salzes kann auf dieses Dokument verwiesen werden. Im Rahmen der vorliegenden Erfindung wurde festgestellt, daß die Sicherheit der Zellen noch wesentlich verbessert wer- den kann, wenn man die gemäß der WO 00/44061 vorgesehene lose Schüttung von Salzkörnern durch eine aus nichtionischen inerten Partikeln gebildete kompakte poröse Struktur ersetzt und das Salz nur in wesentlich kleineren Mengen innerhalb dieser porösen Struktur verwendet .
Beispiele
Zur experimentellen Erprobung der Erfindung wurde eine Batteriezelle gemäß den Figuren 1 und 2 mit einem Elektroden-Flächenmaß von etwa 70 x 40 mm und dem elektrochemischen System Li|Sθ2|LiCoθ2 verwendet, an deren negativer Elektrode beim Laden eine Lithiummenge äquivalent 250 mAh abgeschieden wurde .
Die Zelle (insbesondere der Zwischenraum zwischen dem Subtrat der negativen Elektrode und dem Separator) wurde mit einer Mischung aus zwei Fraktionen SiC gefüllt, deren Teilchengrδße durch Sieben auf definierbare Größenberei- ehe eingeschränkt war. Außerdem wurde ein Zusatz von LiF verwendet. Die Bestandteile wurden getrocknet, gemischt und in folgenden Mengenrelationen eingefüllt :
70% SiC Teilchengröße 90-125 μm 28% SiC Teilchengröße 25-32 μm 2% LiF Teilchengröße < 5 μm
Der resultierende Volumenfüllgrad betrug ca. 60%.
a) Nadeltest
Die Zelle wurde geladen. Anschließend wurde mittels einer durch die Elektrode gestochenen Nadel ein künstlicher interner Kurzschluß verursacht (Nadeltest) . Ergebnis: Das abgeschiedene Lithium wuchs beim Laden sehr regelmäßig in die Schicht der porösen Struktur ein. Ein Durchwachsen bis zum Separator wurde nicht beobachtet. Während des Kurzschlusses wurde ein partielles Abreagie- ren nur im Bereich der, Nadelspitze registriert. Die Reaktion setzte sich von dort nicht in andere Bereiche der Elektrode fort und es entstand keine Flammenfront . Innerhalb von etwa zwei Sekunden kam die Reaktion zum Erliegen. Es war praktisch keine Rauchentwicklung zu beobach- ten.
Dies zeigt ein ausgezeichnetes Sicherheitsverhalten im Falle eines Kurzschlusses.
b) Reaktion auf erhöhte Temperatur
Geladene Zellen mit dem Aufbau gemäß Beispiel a) , jedoch einer Kapazität von 2 Ah, wurden in einem Ofen unter Überwachung der Zelltemperatur erwärmt. Die Ofentempera- tur wurde auf 60 °C konstant gehalten.
Zellen mit der erfindungsgemäßen Konstruktion erwärmten sich nach Erreichen einer kritischen Temperatur knapp unter 60 °C aufgrund einer in der Zelle ablaufenden Reak- tion auf ca. 80 bis 90 °C und kühlten danach wieder auf die Umgebungstemperatur ab. Sie waren nach dem Ofentest zu über 50% der ursprünglichen Ladekapazität entladbar.
Bei Zellen ohne das erfindungsgemäße Sicherheitskonzept wurde hingegen ab ca. 60 °C ein schneller Temperaturanstieg beobachtet, der durch einen Thermal Runaway innerhalb der Zelle ausgelöst wurde. Das gesamte Lithium in den Zellen reagierte heftig ab, wobei in vielen Fällen die Berstsicherung geöffnet wurde und Elektrolyt nach au- ßen drang. Die Zellen waren nach dem Test unbrauchbar. Demzufolge ist auch das Hochtemperaturverhalten der erfindungsgemäßen Zelle entscheidend verbessert.

Claims

Patentansprüche
1. Wiederaufladbare elektrochemische Batteriezelle mit einer negativen Elektrode (5) , einem Elektrolyten (19) und einer positiven Elektrode (4) , wobei die negative Elektrode (5) ein elektronisch leitendes Substrat (14) aufweist, an dem beim Laden der Zelle eine aktive Masse (15) elektrolytisch abgeschieden wird, dadurch gekennzeichnet, daß sie in Kontakt zu dem Substrat (14) der negativen
Elektrode (5) eine aus Feststoffpartikeln (17) gebildete poröse Struktur (16) aufweist, die so ausgebildet und angeordnet ist, daß die beim Laden der Zelle abgeschiedene aktive Masse (15) von der Oberfläche des Substrats (14) in ihre Poren (18) eindringt und dort weiter abgeschieden wird.
2. Batteriezelle nach Anspruch 1, dadurch gekennzeichnet, daß der Volumenfüllgrad der Feststoffpartikel (17) in der porösen Struktur mindestens 40 %, bevorzugt mindestens 50 %, besonders bevorzugt mindestens 55 % beträgt.
3. Batteriezelle nach einem der vorhergehenden Ansprü- ehe, dadurch gekennzeichnet, daß die Form der Fest- stoffpartikel (17) , die die poröse Struktur (16) bilden, zur Erhöhung ihrer Schüttdichte der Kugelform angenähert ist .
4. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die poröse Struktur (16) mindestens zwei Fraktionen von strukturbildenden Feststoffpartikeln (23,24) mit unterschiedlicher mittlerer Teilchengröße enthält, wobei die Teilchengrößen der Fraktionen sich derartig ergänzen, daß ein erhöhter Volumenfüllgrad resultiert .
5. Batteriezelle nach einem der vorhergehenden Ansprü- ehe, dadurch gekennzeichnet, daß das Substrat (14) flächig ausgebildet und parallel zu einem flächigen Separator (11) angeordnet ist, der die negative Elektrode von der positiven Elektrode trennt, und daß die poröse Struktur (16) den Raum zwischen dem Substrat (14) und dem Separator (11) derartig vollständig füllt, daß keine Hohlräume vorhanden sind, in denen sich Ansammlungen der beim Laden der Zelle abgeschiedenen Masse (15) bilden könnten und die wesentlich größer als die Poren (18) der porösen Struktur (16) sind.
6. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Feststoffparti- kel (17) , aus denen die poröse Struktur (16) gebildet ist, aus einem gegenüber dem Elektrolyten, dessen
Überladeprodukten und der aktiven Masse inerten Material bestehen.
7. Batteriezelle nach Anspruch 6, dadurch gekennzeich- net, daß das Material ein keramisches Pulver ist.
8. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Feststoffparti- kel (17) , aus denen die poröse Struktur gebildet ist, aus einem nicht ionisch dissoziierenden Material bestehen.
9. Batteriezelle nach einem der vorhergehenden Ansprü- ehe, dadurch gekennzeichnet, daß die Feststoffpartikel (17) , aus denen die poröse Struktur gebildet ist, einen Schmelzpunkt von mindestens 200°C, bevorzugt mindestens 400°C haben.
10. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Feststoffparti- kel (17) , aus denen die poröse Struktur (16) gebildet ist, aus einem Material bestehen, dessen Wärmeleitfähigkeit mindestens 5 W/mK, bevorzugt mindestens 20 W/mK beträgt.
11. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Feststoffparti- kel (17) , aus denen die poröse Struktur (16) gebildet ist, eine sauerstoffreie Verbindung, insbesondere ein Karbid, Nitrid oder Phosphid enthalten.
12. Batteriezelle nach Anspruch 11, dadurch gekennzeichnet, daß die Feststoffpartikel (17) ein Carbid, Ni- trid oder Phosphid des Siliziums enthalten.
13. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die poröse Struktur (16) aus miteinander nicht verbundenen Feststoffpar- tikeln (17) besteht.
14. Batteriezelle nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Feststoffpartikel (17) der porösen Struktur (16) mittels eines Bindemittels miteinander verbunden sind, wobei der Volumenanteil des Bindemittels an dem gesamten Feststoffvolumen der porösen Struktur höchstens 50%, bevorzugt höchstens 30%, besonders bevorzugt höchstens 20% und noch weiter bevorzugt höchstens 10% beträgt.
15. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die poröse Struktur (16) ein festes Salz (26) enthält.
16. Batteriezelle nach Anspruch 15, dadurch gekennzeichnet, daß das feste Salz (26) in Form fein verteilter Partikel (27) in der porösen Struktur (16) enthalten ist, wobei die Salzpartikel (27) so viel kleiner sind, als die Feststoffpartikel (17) , aus denen die poröse Struktur (16) gebildet ist, daß die Salzpartikel in die Poren (18) der porösen Struktur (16) passen.
17. Batteriezelle nach Anspruch 16, dadurch gekennzeich- net, daß die Grδßenrelation der mittleren Teilchengröße der Salzpartikel (27) zu der mittleren Teilchengröße der Feststoffpartikel (17) , aus denen die poröse Struktur (16) gebildet ist, kleiner als 1:2, bevorzugt kleiner als 1:4 und besonders bevorzugt kleiner als 1:8 ist.
18. Batteriezelle nach einem der Ansprüche 16 bis 17, dadurch gekennzeichnet, daß der Anteil des Gesamtvolumens der Salzpartikel an dem gesamten Feststoffvo- lumen der porösen Struktur (16) höchstens 20%, bevorzugt höchstens 10%, besonders bevorzugt höchstens 5% beträgt .
19. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Elektrolyt auf Schwefeldioxid basiert.
20. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die aktive Masse (15) ausgewählt ist aus der Gruppe bestehend aus den
Alkalimetallen, den Erdalkalimetallen und den Metallen der zweiten Nebengruppe des Periodensystems.
21. Batteriezelle nach Anspruch 20, dadurch gekennzeichnet, daß die aktive Masse (15) Lithium, Natrium, Cal- cium, Zink oder Aluminium ist .
22. Batteriezelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die positive Elektrode (4) ein Metalloxid enthält.
23. Batteriezelle nach Anspruch 22, dadurch gekennzeich- net, daß die positive Elektrode (4) eine Interkala- tionsverbindung enthält .
PCT/DE2003/000103 2002-01-19 2003-01-16 Wiederaufladbare elektrochemische batteriezelle WO2003061036A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003561021A JP4589627B2 (ja) 2002-01-19 2003-01-16 充電可能電気化学電池
US10/501,760 US7901811B2 (en) 2002-01-19 2003-01-16 Rechargeable electrochemical battery cell
AU2003205523A AU2003205523A1 (en) 2002-01-19 2003-01-16 Rechargeable electrochemical battery cell
EP03702333A EP1481430A2 (de) 2002-01-19 2003-01-16 Wiederaufladbare elektrochemische batteriezelle
DE10390156T DE10390156D2 (de) 2002-01-19 2003-01-16 Wiederaufladbare elektrochemische Batteriezelle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10201936.3 2002-01-19
DE10201936A DE10201936A1 (de) 2002-01-19 2002-01-19 Wiederaufladbare elektrochemische Batteriezelle

Publications (2)

Publication Number Publication Date
WO2003061036A2 true WO2003061036A2 (de) 2003-07-24
WO2003061036A3 WO2003061036A3 (de) 2004-10-07

Family

ID=7712547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/000103 WO2003061036A2 (de) 2002-01-19 2003-01-16 Wiederaufladbare elektrochemische batteriezelle

Country Status (6)

Country Link
US (1) US7901811B2 (de)
EP (1) EP1481430A2 (de)
JP (1) JP4589627B2 (de)
AU (1) AU2003205523A1 (de)
DE (2) DE10201936A1 (de)
WO (1) WO2003061036A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923934A1 (de) * 2006-11-14 2008-05-21 Fortu Intellectual Property AG Wiederaufladbare elektrochemische Batteriezelle
EP2071658A1 (de) 2007-12-14 2009-06-17 Fortu Intellectual Property AG Elektrolyt für eine elektrochemische Batteriezelle
US8114542B2 (en) * 2005-05-18 2012-02-14 Centre National De La Recherche Scientifique Method for production of an anode for a lithium-ion battery
JP2012146673A (ja) * 2003-09-23 2012-08-02 Hambitzer Guenther 電気化学的電池及び電気化学的電池の製造方法
EP4199150A1 (de) * 2021-12-17 2023-06-21 Innolith Technology AG Wiederaufladbare batteriezelle

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129839A1 (en) * 2006-05-04 2007-11-15 Lg Chem, Ltd. Lithium secondary battery and method for producing the same
JPWO2010058506A1 (ja) * 2008-11-21 2012-04-19 パナソニック株式会社 アルカリ乾電池
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US9812730B2 (en) 2011-08-02 2017-11-07 Johnson & Johnson Vision Care, Inc. Biocompatible wire battery
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
DE102013201853A1 (de) 2013-02-05 2014-08-07 Robert Bosch Gmbh Elektrode für ein galvanisches Element und Verfahren zur Herstellung der Elektrode
US9599842B2 (en) 2014-08-21 2017-03-21 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US9715130B2 (en) 2014-08-21 2017-07-25 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US9793536B2 (en) 2014-08-21 2017-10-17 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US9941547B2 (en) 2014-08-21 2018-04-10 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US9383593B2 (en) 2014-08-21 2016-07-05 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and placed separators
KR101586194B1 (ko) * 2014-09-16 2016-01-20 전자부품연구원 금속염화물과 알칼리금속염화물을 함유하는 양극 및 그를 포함하는 알칼리금속이온 이차 전지
FI126390B (en) * 2015-09-30 2016-11-15 Broadbit Batteries Oy Electrochemical batteries for use in high-energy or high-power batteries
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
JP6563364B2 (ja) * 2016-05-31 2019-08-21 株式会社三五 二次電池用負極
KR102064241B1 (ko) * 2018-03-14 2020-02-11 주승기 금속 폼을 구비한 리튬 음극 및 이를 이용한 리튬 이차전지
EP3772129B1 (de) 2019-07-31 2021-06-30 Innolith Technology AG Auf so2-basierender elektrolyt für eine wiederaufladbare batteriezelle und wiederaufladbare batteriezelle denselben umfassend
CN113594410B (zh) * 2021-07-29 2023-03-24 溧阳紫宸新材料科技有限公司 一种负极结构、其制备方法以及固态电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044061A1 (de) * 1999-01-23 2000-07-27 Fortu Bat Batterien Gmbh Nichtwässrige elektrochemische zelle
WO2000079631A1 (de) * 1999-06-18 2000-12-28 Fortu Bat Batterien Gmbh Wiederaufladbare elektrochemische zelle
WO2002009213A1 (de) * 2000-07-21 2002-01-31 Fortu Bat Batterien Gmbh Elektrochemische batteriezelle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230367A (ja) * 1984-04-27 1985-11-15 Kao Corp 電池用電極及び二次電池
JPS63303877A (ja) 1986-12-23 1988-12-12 Matsushita Electric Works Ltd 微細多孔体
US5705292A (en) * 1995-06-19 1998-01-06 Sony Corporation Lithium ion secondary battery
JPH09134720A (ja) * 1995-11-10 1997-05-20 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2000173595A (ja) * 1998-12-08 2000-06-23 Sony Corp 複合負極及びそれを用いた二次電池
JP2001052758A (ja) * 1999-07-28 2001-02-23 Mitsubishi Chemicals Corp イオン伝導性ガラス質層を有する電池およびその製造方法
US20020102456A1 (en) * 1999-09-20 2002-08-01 Mitsubishi Denki Kabushiki Kaisha Battery
JP2002373707A (ja) * 2001-06-14 2002-12-26 Nec Corp リチウム二次電池及びリチウム二次電池の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044061A1 (de) * 1999-01-23 2000-07-27 Fortu Bat Batterien Gmbh Nichtwässrige elektrochemische zelle
WO2000079631A1 (de) * 1999-06-18 2000-12-28 Fortu Bat Batterien Gmbh Wiederaufladbare elektrochemische zelle
WO2002009213A1 (de) * 2000-07-21 2002-01-31 Fortu Bat Batterien Gmbh Elektrochemische batteriezelle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146673A (ja) * 2003-09-23 2012-08-02 Hambitzer Guenther 電気化学的電池及び電気化学的電池の製造方法
US8114542B2 (en) * 2005-05-18 2012-02-14 Centre National De La Recherche Scientifique Method for production of an anode for a lithium-ion battery
EP1923934A1 (de) * 2006-11-14 2008-05-21 Fortu Intellectual Property AG Wiederaufladbare elektrochemische Batteriezelle
WO2008058685A1 (de) * 2006-11-14 2008-05-22 Fortu Intellectual Property Ag Wiederaufladbare elektrochemische batteriezelle
AU2007321466B2 (en) * 2006-11-14 2011-11-03 Innolith Assets Ag Rechargeable electro chemical battery cell
US8906556B2 (en) 2006-11-14 2014-12-09 Alevo Research Ag Rechargeable electro chemical battery cell
EP2071658A1 (de) 2007-12-14 2009-06-17 Fortu Intellectual Property AG Elektrolyt für eine elektrochemische Batteriezelle
EP4199150A1 (de) * 2021-12-17 2023-06-21 Innolith Technology AG Wiederaufladbare batteriezelle
WO2023111070A1 (de) * 2021-12-17 2023-06-22 Innolith Technology AG Wiederaufladbare batteriezelle

Also Published As

Publication number Publication date
US20050106467A1 (en) 2005-05-19
DE10390156D2 (de) 2004-11-25
AU2003205523A8 (en) 2003-07-30
AU2003205523A1 (en) 2003-07-30
DE10201936A1 (de) 2003-07-31
EP1481430A2 (de) 2004-12-01
JP4589627B2 (ja) 2010-12-01
US7901811B2 (en) 2011-03-08
WO2003061036A3 (de) 2004-10-07
JP2005515601A (ja) 2005-05-26

Similar Documents

Publication Publication Date Title
EP1481430A2 (de) Wiederaufladbare elektrochemische batteriezelle
EP1665447B1 (de) Elektrochemische batteriezelle
DE3533483C2 (de) Kathode für eine elektrochemische Zelle und deren Verwendung
DE102009056756B4 (de) Material für Batterie-Elektroden, dieses enthaltende Batterie-Elektroden sowie Batterien mit diesen Elektroden und Verfahren zu deren Herstellung
DE112004001344T5 (de) Lithiummetalldispersion in Elektroden
EP1923934A1 (de) Wiederaufladbare elektrochemische Batteriezelle
DE3718921C2 (de) Verfahren zur Herstellung einer Kathode, eine nach diesem Verfahren erhältliche Kathode und Verwendung der Kathode in einer elektrochemischen Zelle
EP2678891A1 (de) Elektrodenmaterial mit hoher kapazität
EP1201004A1 (de) Wiederaufladbare elektrochemische zelle
DE10218510B4 (de) Herstellungsfrische negative Elektrode für einen wiederaufladbaren Akkumulator, Akkumulator und Verfahren zur Herstellung einer negativen Elektrode
DE4430233B4 (de) Verfahren zur Herstellung einer Kathode, Kathodenvorläufer und Verfahren zur Herstellung eines Kathodenvorläufers
DE112018003368T5 (de) Vollfeststoff-Natriumionen-Sekundärbatterie
DE102016125168A1 (de) Wiederaufladbare elektrochemische Zelle mit keramischer Separatorschicht und Indikatorelektrode
EP0673552B1 (de) Elektrochemische alkalimetall-zelle und verfahren zu ihrer herstellung
WO2016116323A1 (de) Infiltration von siliciumnanopartikeln in eine poröse kohlenstoffstruktur
EP1149429B1 (de) Nichtwässrige elektrochemische zelle
DE2445096C3 (de) Wiederaufladbare galvanische Zelle, Kadmiumelektrode und Verfahren zu deren Herstellung
DE69736411T2 (de) Anodenwerkstoff, Verfahren zu dessen Herstellung und eine, einen solchen Anodenwerkstoff anwendende Zelle mit nichtwässrigem Elektrolyt
DE112022000808T5 (de) Aktivmaterialpartikel, elektrode, energiespeichervorrichtung, festkörper-sekundärbatterie, verfahren zum herstellen von aktivmaterialpartikeln, und energiespeichergerät
DE102019211857B3 (de) Lithium-sekundärbatterie, verwendung einer lithium-sekundärbatterie und verfahren zur herstellung einer lithium-sekundärbatterie
DE102018212889A1 (de) Lithiumionen leitende Kompositmaterialien sowie deren Herstellung und deren Verwendung in elektrochemischen Zellen
DE602004000094T2 (de) Nichtgesinterte Elektrode für Batterie mit alkalischem Elektrolyt
DE10262247B4 (de) Herstellungsfrische negative Elektrode, herstellungsfrischer Akkumulator und Verfahren zur Herstellung einer negativen Elektrode
DE102021109109B4 (de) Verfahren zur Herstellung einer Lithium-Ionen-Zelle
EP3893309B1 (de) Feststoff-elektrolytmaterial für elektrochemische sekundärzelle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003561021

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10501760

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003702333

Country of ref document: EP

REF Corresponds to

Ref document number: 10390156

Country of ref document: DE

Date of ref document: 20041125

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10390156

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2003702333

Country of ref document: EP