Beschreibung
Messanordnung und Sensoranordnung zur Bestimmung einer Eigenschaft eines Fluides sowie Verfahren zu ihrem Betrieb.
Die Erfindung ist in der Messtechnik einsetzbar und zwar insbesondere bei der Messung von Eigenschaften von Fluiden. Besonders bei Ölen, insbesondere bei flüssigen Frittierfetten, lassen sich bestimmte Eigenschaften aufgrund messbarer die- lektrischer Eigenschaften mittels der vorliegenden Erfindung bestimmen.
Die Erfindung bezieht sich auf eine Messanordnung zur Bestimmung einer Eigenschaft, insbesondere des Alterungszustandes eines Fluides insbesondere eines Frittierf ttes, aus einer dielektrischen Eigenschaft des Fluides mit einem ersten Sensor zur Messung einer elektrischen Kapazität und mit einem zweiten Sensor zur Temperaturmessung.
Außerdem bezieht sich die Erfindung auf eine Sensoranordnung zur Messung einer dielektrischen Eigenschaft eines Fluides mit einem in das Fluid eintauchbaren dielektrischen Sensor, der einen als Streufeldkondensator ausgebildeten Messkondensator aufweist.
Es ist bekannt, dass sowohl für Speisezwecke verwendete als auch für industrielle Anwendungen in der Mechanik verwendete Öle einem Alterungsprozess unterliegen, der unter anderem durch den Einfluss erhöhter Temperaturen bestimmt ist. Es finden verschiedene chemische Reaktionen statt, die die Qualität des jeweiligen Öls verändern.
Oft findet eine Begutachtung des Öls zunächst aufgrund des optischen Eindrucks, das heißt der mit der Zeit abnehmenden optischen Transmission oder Verfärbung statt.
Diese Größe stellt jedoch nur einen einzelnen Parameter dar, der zur Beurteilung der Qualität im allgemeinen unzureichend ist.
Beispielsweise lässt Frittierfett schon vor einer sichtbaren Verfärbung anhand anderer Parameter einen Qualitätsverlust erkennen, der dazu führen kann, dass ein Austausch notwendig wird.
Die maßgebliche Qualität eines Öls kann beispielsweise durch chemische Tests, auch in Verbindung mit optischen Tests festgestellt werden.
Seit einiger Zeit ist auch die Möglichkeit bekannt, den Alterungszustand eines Öls anhand der gemessenen Dielektrizi- tätskonstante zu beurteilen.
Eine Schwierigkeit stellt dabei die zusätzliche Abhängigkeit der Dielektrizitätskonstante von der Temperatur dar. Es kann zur Lösung dieses Problems beispielsweise vorgesehen sein, eine Ölprobe auf eine fest vorgegebene Temperatur zu erhitzen oder abzukühlen, um bei dieser Temperatur eine Dielektrizi- tätsmessung durchzuführen. Eine derartige Meßmethode ist beispielsweise in der US-Patentschrift US 5818731 als Stand der Technik gewürdigt.
Dort sind außerdem Meßmethoden beschrieben, durch die eine Ölqualität mittels mehrerer gemessener physikalischer Parame-
ter bestimmt werden soll, wie beispielsweise einer dielektrischen Messgröße und der Viskosität des Öls.
Da die Farbe eines Frittierfettes eine der sensitivsten Grö- ßen für die Bestimmung der Qualität ist, wird gemäß der US- Patentschrift 5818731 vorgeschlagen, eine Dielektrizitätsmes- sung mit einer Messung der optischen Transmission in einem bestimmten Wellenlängenbereich zu verbinden, um eine umfassende Bewertung der Ölqualität durchzuführen. Dazu wird eine Ölprobe in einen Messbehälter gefüllt und dort mit Licht aus einer Laserdiode mit Licht der Wellenlänge 675 Nanometer bestrahlt, um die Transmission in diesem Wellenlängenbereich zu messen. Außerdem wird mittels eines Messkondensators die Dielektrizitätskonstante gemessen. Die Messung findet dort statt, nachdem die Probe auf eine Temperatur zwischen 155 Grad Celsius und 185 Grad Celsius aufgeheizt worden ist. Nachdem die Dielektrizitätsmessung durchgeführt worden ist, wird mit Hilfe einer Temperaturmessung und einer gespeicherten Regressionskurve die gemessene Dielektrizitätskonstante aufgrund der bekannten Temperaturabhängigkeit auf den Wert bei einer Standardtemperatur zwischen 155 Grad Celsius und 185 Grad Celsius umgerechnet. Dieser Wert soll dann in Verbindung mit der gemessenen Transmission eine Aussage über die Qualität des Fettes erlauben.
Ein Nachteil der bekannten Messanordnungen ist, dass die Messdauer mehrere Minuten bis etwa 10 Minuten beträgt und dass zur Messung eine bestimmte Menge des verwendeten Öles als Probe entnommen und temperiert werden muss . Vor einer neuen Messung muss der Probenbehälter gründlich gereinigt werden.
Der vorliegenden Erfindung liegt demgegenüber die Aufgabe zugrunde, eine Messanordnung und eine Sensoranordnung der eingangs genannten Art zu schaffen, die einfach aufgebaut sind und mit geringem konstruktiven Aufwand sowie bei einfa- eher und wenig aufwendiger Bedienung eine schnelle Bestimmung der Qualität des jeweiligen Fluides erlauben.
Die Aufgabe wird bei einer Messanordnung gemäß der Erfindung dadurch gelöst, dass der erste Sensor als ein in das Fluid eintauchbarer, einen als Messkondensator dienenden Streufeldkondensator aufweisender dielektrischer Sensor und der zweite Sensor als in das Fluid eintauchbarer Temperatursensor ausgebildet ist.
Dadurch, dass die Dielektrizitätskonstante und die Temperatur gemessen wird, ist grundsätzlich eine Aussage über den Zustand und die Eigenschaften des jeweiligen Fluids ableitbar. Die Ausführung der Sensoren als eintauchbare Sensoren erlaubt die Messung in situ, ohne dass eine Probe zur Einfüllung in eine Messanordnung entnommen werden muss. Dadurch wird die Messzeit verkürzt einerseits hinsichtlich der entfallenden Notwendigkeit der Probenentnahme, andererseits dadurch, dass bei der in dem Fluidvolumen gegebenen Temperatur ohne eine Temperaturänderung gemessen wird. Dadurch wird zwar die Auswertung der Messwerte anspruchsvoller, jedoch wird der Mess- vorgang selbst einfacher und schneller ausführbar. Bei der Auswertung muss die jeweilige Temperatur, bei der gemessen wird, berücksichtigt werden, wenn die gemessene Dielektrizi- tätskonstante zur Ableitung einer Qualitätsaussage über das
Fluid ausgewertet- wird.
Eine derartige Messanordnung ist leicht transportabel und kann zur Messung in Behältern, in denen das Fluid verwendet wird beispielsweise in Friteusen, direkt verwendet werden. Derartige Messanordnungen können auch dauerhaft in Friteusen zur Überprüfung des verwendeten Frittierfettes eingebaut werden beziehungsweise nachgerüstet werden.
Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, dass der erste und der zweite Sensor mit einer Auswerteeinrichtung verbunden sind, die jeweils einem gemessenen Temperaturwert und einem gemessenen elektrischen Kapazitätswert einen Wert der zu bestimmenden Eigenschaft zuordnet.
In der Auswerteeinrichtung kann entweder ein Rechnenalgo- rithmus oder eine Wertematrix hinterlegt sein, mittels deren dem jeweils gemessen Temperaturwert und dem gemessenen Kapazitätswert beziehungsweise der daraus sich ergebenden Dielektrizitätskonstante ein Qualitätswert des Fluides, beispielsweise ein Alterungszustand eines Frittierfettes zuge- ordnet wird. Beispielsweise kann mittels vorher empirisch ermittelter Werte aus der Dielektrizitätskonstanten und der Temperatur, bei der diese gemessen wurde, eine Konzentration von bestimmten polaren Stoffanteilen in dem Fluid bestimmt werden, die ihrerseits auf den Alterungszustand des Fluids schließen lassen.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass in einer Vergleichseinrichtung der Auswerteeinrichtung der jeweils durch den dielektrischen Sensor gemessene Wert der elektrischen Kapazität mit einem dem gemessenen Temperaturwert zugeordneten gespeicherten Referenzwert verglichen und in Abhängigkeit vom Erreichen oder Überschreiten des Referenzwertes ein Signal ausgegeben wird.
In diesem Fall enthält die Auswerteeinrichtung für jeden Temperaturwert, bei dem eine Messung durchgeführt werden kann, also beispielsweise zwischen 30 Grad Celsius und 200 Grad Celsius, in Abständen von 0,5 Grad Celsius oder 1 Grad Celsius einen Wert der gemessenen Kapazität beziehungsweise der daraus ermittelten Dielektrizitätskonstante, der bezüglich des sich ergebenden Alterungszustandes des Fluides gerade noch vertretbar ist. Wird dieser Wert als Referenzwert über- schritten, so gibt die Auswerteeinrichtung nach einem Vergleich ein Signal aus, das den Benutzer warnt, beispielsweise in Form eines optischen oder akustischen Warnsignals.
Die Erfindung kann außerdem vorteilhaft ausgestaltet sein durch eine Kompensationseinrichtung zur Korrektur des Mess- wertes der elektrischen Kapazität unter Berücksichtigung eines an einem in der Nähe des Messkondensators angeordneten Hilfskondensator gemessenen Referenzmesswertes einer Kapazität.
Die Dielektrizitätskonstante des Fluids wird dadurch bestimmt, dass der Einfluss des Fluids auf den als Messkondensator dienenden Streufeldkondensator bestimmt wird, wenn dieser in das Fluid eingetaucht ist. Durch eine hohe Dielektri- zitätskonstante des Fluids ergibt sich eine Vergrößerung der elektrischen Kapazität des Messkondensators. Dabei ist jedoch zu berücksichtigen, dass auch über das Eintauchen des Messkondensators in das Fluid hinaus störende Einflüsse bei der Messung der Kapazität auftreten können. Beispielsweise be- steht auch zwischen den Zuleitungen des Messkondensators eine Kapazität, die durch- äußere Einflüsse geändert werden kann. Tauchen die Zuleitungen des Messkondensators in das Fluid ein, so erhöht sich auch zwischen ihnen die Kapazität, was zu
einer Störung der durchzuführenden Kapazitätsmessung an dem Messkondensator selbst führt. Aus diesem Grund ist ein Hilfskondensator vorgesehen, dessen Kapazität sich beispielsweise bei einem zu weiten Eintauchen des Messkondensators in das Fluid in dem selben Sinn ändert, wie die Kapazität der Zuleitungen des Messkondensators. Wird die Kapazität des Hilfskondensators überwacht, so ergibt eine Erhöhung der elektrischen Kapazität des Hilfskondensators, dass dieser in das Fluid eingetaucht ist. Dies führt zu einer notwendigen Kompensation der Messung am Messkondensator. Die dort gemessene Kapazität ist durch die Einwirkungen auf die Zuleitung verfälscht und muss entsprechend kompensiert werden.
Die Kompensation kann auch vorsehen, dass bei der Beobachtung einer Erhöhung der Kapazität des Hilfskondensators der Sensor aus dem Fluid ein Stück weit herausgezogen wird, bis die Kapazität des Hilfskondensators dem Normalwert entspricht. Dann ist' sichergestellt, dass auch die Zuleitungen des Messkondensators nicht in das Fluid hineinragen.
Aber auch andere Umgebungseinflüsse auf die Zuleitungen des Messkondensators beziehungsweise auf den Messkondensator selbst, beispielsweise Temperatureinflüsse, die über die Abhängigkeit der Dielektrizitätskonstanten des Fluids von der Temperatur hinausgehen, können durch die Einbeziehung des Verhaltens des Hilfskondensators kompensiert werden.
Eine vorteilhafte Ausgestaltung der Erfindung sieht außerdem vor, dass bei einer Sensoranordnung zur Messung einer die- lektrischen Eigenschaft eines Fluides mit einem in das Fluid eintauchbaren dielektrischen Sensor, der einen als Streufeldkondensator ausgebildeten Messkondensator aufweist, der Sensor einen Hilfskondensator aufweist und dass beim Einbringen
des Sensors in das Fluid der Hilfskondensator frühestens dann in das Fluid eintaucht, wenn der Messkondensator in das Fluid völlig eingetaucht ist.
Eine derartige Sensoranordnung ist in dem oben geschilderten Sinne optimal für die Messanordnung die ebenfalls Gegenstand der vorliegenden Erfindung ist, zu verwenden. Es kann dann für eine möglichst gute Kompensation vorgesehen sein, dass Zuleitungen des Messkondensators und des Hil skondensators symmetrisch und baugleich zueinander ausgebildet sind. Sie unterliegen dann denselben Störungseinflüssen in derselben Weise.
Außerdem kann die erfindungsgemäße Sensoranordnung so ausgestaltet sein, dass der Hilfskondensator aus zwei vor dem Mess- kondensator endenden Stichleitungen besteht, die gleichartig wie die Zuleitungen des Messkondensators ausgebildet und angeordnet sind. Durch die Symmetrie der Zuleitungen des Mess- kondensators und des Hilfskondensators können eventuelle Störeinflüsse, die auf beide Zuleitungen gleichmäßig wirken, optimal kompensiert werden, beispielsweise durch Subtraktion der Messwerte.
Eine weitere vorteilhafte Ausgestaltung der erfindungsgemäßen Sensoranordnung sieht vor, dass der Messkondensator durch ei- ne Mehrzahl von flachen Leiterbahnen insbesondere in Form eines Interdigitalkondensators gebildet ist.
Die Sensoranordnung kann beispielsweise dadurch besonders einfach aufgebaut sein, dass die Leiterbahnen in Dünnschicht- oder Dickschichttechnik auf einen isolierenden Träger aufgedruckt sind.
Die Leiterbahnen können beispielsweise auf einen flachen, jedoch auch auf einen runden oder zylindrischen Körper aufgebracht sein.
Die zylindrische Form zeichnet sich dadurch aus, dass sie besonders platzsparend ist, während die flache Bauform durch die größere Interaktionsfläche mit dem Fluid eine sehr geringe Zeit zum Temperaturausgleich in dem Fluid benötigt .
Vorteilhaft kann bei der erfindungsgemäßen Sensoranordnung der Temperatursensor in Form eines NTC-Widerstandes, eines PCT-Widerstandes oder eines Temperaturelementes ausgeführt sein. Diese Temperatursensoren sind kostengünstig, gut eichbar und widerstandsfähig sowie in ihrem Verhalten stabil, so dass die gesamte Sensoranordnung nicht allzu häufig kalibriert werden muss .
Es erweist sich als günstig, wenn der Temperatursensor mit dem dielektrischen Sensor zu einer konstruktiven Einheit ver- bunden ist. Der Temperatursensor kann beispielsweise an dem Träger für die Leiterbahnen des Messkondensators befestigt sein. In diesem Falle vereinfacht sich die Verwendung der Sensoranordnung beziehungsweise der Messanordnung, da nur eine einzige Sonde mit den beiden Sensoren in das Fluid bezie- hungsweise in das Frittierfett eingebracht werden muss.
Als vorteilhaft ergibt sich außerdem, dass die Zuleitungen des Temperatursensors auf den isolierenden Träger in Form von Leiterbahnen aufgebracht sind. Durch diese bauliche Ausfüh- rung ist die Sensoranordnung besonders einfach und kostengünstig aufgebaut und es ergibt sich durch die Zuleitungen des Temperatursensors auch keine Störung bei den Kapazitäts- messungen.
Im folgenden wird die Erfindung anhand eines Ausführungsbei- spiels in einer Zeichnung gezeigt und anschließend beschrieben. Dabei zeigt Figur 1 schematisch eine erfindungsgemäße Messanordnung in einer ersten Ausführung,
Figur 2 schematisch die erfindungsgemäße Messanordnung in einer zweiten Ausführung,
Figuren 3, 4, 5 verschiedene Ausgestaltungen eines dielektri- sehen Sensors, in Figur 5 mit einem Temperatursensor.
In der Figur 1 ist schematisch eine Messanordnung dargestellt, die eine Sensoranordnung 1 aufweist, die in ein Fluid 2, beispielsweise ein Frittierfett eingetaucht ist. Die Sen- soranordnung 1 weist einen dielektrischen Sensor sowie einen Temperatursensor auf, die weiter unten näher beschrieben werden.
Die Sensoranordnung 1 ist über elektrische Zuleitungen 3 mit einer digitalen Auswerteeinrichtung 4 verbunden. Die Auswerteeinrichtung 4 weist eine erste Recheneinrichtung 5 auf, in der aus den Messdaten eine Kapazität, eine Dielektrizitätskonstante oder ein dieser entsprechender Wert bestimmt wird. In einer zweiten Recheneinrichtung 6 wird aus den von dem Temperatursensor gelieferten Daten die Temperatur des Fluids bestimmt .
In einer dritten Recheneinrichtung 7 wird dem Wert der Die- lektizitätskonstante und der gemessenen Temperatur ein tempe- raturunabhängiger Wert der Dielektrizitätskonstante zugeordnet, der ein objektives Kriterium für den Zustand des Fluides, in diesem Fall den Alterungszustand des Frittierfettes darstellt. Dies kann beispielsweise ein auf eine feste Tempe-
ratur bezogener Wert sein. Dieser so bestimmte Wert wird in der Anzeige 8 dargestellt und an den Benutzer ausgegeben. Anstelle der Anzeige 8 kann auch ein Interface zur Übergabe der Daten an ein weiteres Datenverarbeitungsgerät vorgesehen sein.
In der Figur 2 ist eine ähnliche Messanordnung wie in Figur 1 dargestellt, wobei gleiche Elemente mit dem selben Bezugszeichen bezeichnet sind wie in der Figur 1.
Ebenso wie in dem oben beschriebenen Beispiel wird in der ersten Recheneinrichtung die Dielektrizitätskonstante oder eine entsprechende Größe bestimmt. In der zweiten Recheneinrichtung 6 wird die Temperatur bestimmt.
Zusätzlich wird in der zweiten Recheneinrichtung 6 der Temperatur aufgrund von gespeicherten Referenzdaten für verschiedene Temperaturwerte eine bestimmte, bei der jeweiligen Temperatur gerade noch zulässige Dielektrizitätskonstante oder ein entsprechender Wert, beispielsweise die gemessene Kapazität für das zu vermessende Frittierfett zugeordnet. Die Referenzdaten sind in einer Speichereinheit 9 gespeichert. Der durch die erste Recheneinrichtung 5 bestimmte Wert der Dielektrizitätskonstante oder der entsprechenden Größe wird mit dem durch die zweite Recheneinrichtung 6 der gemessenen Temperatur zugeordneten gerade noch zulässigen Referenzgröße in der Vergleichseinrichtung 10 verglichen. Der Vergleich wird derart bewertet, dass bei einer Übereinstimmung der beiden Werte oder einer Unterschreitung des Referenzwertes eine ent- sprechende erste Anzeigeeinrichtung 11 betätigt wird, die anzeigt,- dass das Frittierfett noch in Ordnung und verwendbar ist .
Übersteigt die durch die erste Recheneinrichtung 5 bestimmte Dielektrizitätskonstante oder entsprechende Größe den zugeordneten Referenzwert, so wird die zweite Anzeigeeinrichtung 12 bestätigt, durch die angezeigt wird, dass das Frittierfett nicht mehr verwendet, sondern ausgetauscht werden soll.
Die erste Anzeigeeinrichtung 11 kann beispielsweise als grüne Leuchte, die zweite Anzeigeeinrichtung 12 als rote Leuchte ausgestaltet sein. Die Vergleichseinrichtung 10 kann auch so eingerichtet sein, dass bereits bei einer Übereinstimmung des gemessenen Wertes für die Dielektrizitätskonstante mit dem Referenzwert das Frittierfett verworfen und ein notwendiger Wechsel mittels der zweiten Anzeigeeinrichtung angezeigt wird.
Im folgenden soll genauer die Gewinnung der Messwerte für die Dielektrizitätskonstante und die Temperatur beschrieben werden. Dabei wird zunächst auf die Figuren 3, 4 und 5 bezug genommen. In der Figur 3 ist ein Teil der in den Figuren 1 und 2 dargestellten Sensoranordnung 1 in einer Seitenansicht dar- gestellt. Die Figur 3 zeigt einen flachen Keramikträger, 13, auf den flache Leiterbahnen mittels Dünnschicht- oder Dickschichttechnik aufgedruckt sind. Die Leiterbahnen bestehen vorteilhaft aus Edelmetall, zum Beispiel Gold. Im linken Teil der Darstellung sind vier Zuleitungen gezeigt, die gleichar- tig ausgebildet sind und parallel zueinander verlaufen.
Im rechten Teil der Darstellung ist der Messkondensator 14 dargestellt, der in Form eines Streufeldkondensators mit mä- anderförmig ineinander verschlungenen Leiterbahnen ausgebil- det ist. Der Messkondensator ist in der kreisförmig dargestellten Detailvergrößerung ein- zweites Mal gezeigt und dort besser zu erkennen. Er weist zwei Zuleitungen 15, 16 auf, die
von dem Messkondensator 14 bis zu der ersten Recheneinrichtung 5 der Auswerteeinrichtung 4 führen.
Die Kapazität des Messkondensators 14 ist, da die Feldlinien dessen unmittelbare Umgebung durchsetzen, von dem Medium abhängig, in dem der Messkondensator 14 sich befindet. Wird der Messkondensator, wie in den Figuren 1 und 2 dargestellt, in ein Fluid 2 eingetaucht, das eine höhere Dielektrizitätskonstante aufweist als Luft, so vergrößert sich die Kapa- zität des Messkondensators 14 erheblich. Von der Vergrößerung der gemessenen Kapazität kann auf die Dielektrizitätskonstante des den Messkondensator 14 umgebenden Mediums geschlossen werden .
Außer den Zuleitungen 15, 16 des Messkondensators sind auf dem Keramikträger 13 die Zuleitungen 17, 18 vorgesehen, die als blinde Stichleitungen vor dem Messkondensator 14 enden und die einen Hilfskondensator bilden, dessen Kapazität in der Auswerteeinrichtung 4 ebenfalls überwacht wird. Änderun- gen der Umgebung der Zuleitungen 15, 16 des Messkondensators, die die Kapazitätsmessung an dem Messkondensator 14 verfälschen würden, verändern ebenfalls die Messung des Hilfskondensators, der durch die Zuleitungen 17, 18 gebildet ist. Durch die Änderung der Kapazität des Hilfskondensators kann die Größe der Störung bestimmt und die Störung der Messung an dem Messkondensator kompensiert werden. Dies kann zum Beispiel dann wichtig werden, wenn die Sensoranordnung 1 so tief in das Fluid 2 eingetaucht wird, dass die Zuleitungen 15, 16, 17, 18 zu einem Teil in das Fluid eintauchen und somit die Kapazität der Zuleitungen signifikant erhöht wird.
Durch diese Kompensation, die in einer Kompensationseinrichtung 5a der ersten Recheneinheit 5 geschieht, wird die Mes-
sung der Dielektrizitätskonstante des Fluids wesentlich weniger fehleranfällig und unabhängig von einer idealen Handhabung der Sensoranordnung. Auch die Kalibrierung der Messanordnung kann gegenüber bekannten Messanordnungen wesentlich seltener erfolgen.
Während gemäß der Figur 3 die Zuleitungen 15, 16 des Messkondensators und 17, 18 abwechselnd zueinander angeordnet sind, zeigt die Figur 4 eine Anordnung, bei der jeweils die beiden Zuleitungen des Messkondensators 14 und die beiden blinden
Stichleitungen des Hilfskondensators direkt nebeneinander angeordnet sind. Dabei ist der Abstand zwischen den Zuleitungen so gewählt, dass die gesamte Breite der nebeneinander und parallel verlaufenden Zuleitungen etwa der Breite des Messkon- densators 14 entspricht.
In der Figur 5 ist dagegen eine Anordnung dargestellt, bei der die Zuleitungen des Messkondensators 14 direkt nebeneinander und ebenso die Stichleitungen direkt nebeneinander und parallel zueinander angeordnet sind, wobei jedoch alle vier Leitungen sehr eng parallel zueinander geführt sind, was zu einer Erhöhung der Zuleitungskapazität führt. Dadurch wird die Anordnung beispielsweise sensitiver dafür, ob der Sensor so tief in das Fluid eingetaucht ist, dass auch die Zuleitun- gen bereits von dem Fluid umgeben sind.
An dem Ende des in der Figur 5 dargestellten Keramikträgers 13 ist beispielhaft und schematisch ein Temperatursensor 19 in Form eines Temperaturelementes dargestellt. Durch dieses wird bei eingetauchtem Messkondensator 14 in dessen unmittelbarer Umgebung die Temperatur des Fluids gemessen. Der Temperatursensor 19 ist mittels zweier Zuleitungen, die auf der Rückseite des Keramikträgers 13 verlaufen und in der Figur
nicht dargestellt sind, mit der Auswerteeinrichtung 4 und dort mit der zweiten Recheneinrichtung 6 zur Bestimmung der Temperatur verbunden.
Die in den Figuren 3, 4 und 5 dargestellten Zuleitungen enden am Ende des Keramikträgers 13 jeweils mit verbreiterten Leiterbahnstücken 20, die als Steckkontakte für einen dort aufzusetzenden Stecker dienen können der das Ende eines flexiblen Kabels bildet, dessen anderes Ende mit der Auswerteein- richtung 4 verbunden ist. Das flexible Kabel kann entsprechend abgeschirmt werden, um Einflüsse auf die Kapazität der Zuleitungen der Kondensatoren zu verhindern.
Durch die dargestellte Messanordnung in Verbindung mit der hierfür verwendeten Sensoranordnung sind kurze Messzeiten, hohe Messgenauigkeiten und ein reduzierter Kalibrieraufwand bei der Bestimmung von dielektrischen Eigenschaften von Ölen, insbesondere Frittierfetten gegeben. Die Messeinrichtung kann jedoch auch bei der Bestimmung anderer, mit der Dielektrizi- tätskonstanten zusammenhängender Größen von Fluiden dienen.
Dies beschränkt sich nicht auf Flüssigkeiten sondern die Anwendung ist beispielsweise auch in Gasen, beispielsweise Isoliergasen für elektrische Anlagen denkbar. Als Massenprodukt ist beispielsweise auch der serienmäßige Einsatz einer Mess- einrichtung, wie sie hier dargestellt ist, bei der Überwachung der Qualität von Motoröl von Kraftfahrzeugen denkbar. Die Benachrichitung des Kraftfahrzeugführers wird dann nicht nur in Abhängigkeit von der Motorlaufleistung, sondern nach tatsächlich erfolgter Qualitätsmessung des Motoröls durch ei- ne Leuchte am Armaturenbrett erfolgen können.