WO2005098419A1 - Messvorrichtung zur messung des zustands von ölen oder fetten - Google Patents

Messvorrichtung zur messung des zustands von ölen oder fetten Download PDF

Info

Publication number
WO2005098419A1
WO2005098419A1 PCT/EP2005/003322 EP2005003322W WO2005098419A1 WO 2005098419 A1 WO2005098419 A1 WO 2005098419A1 EP 2005003322 W EP2005003322 W EP 2005003322W WO 2005098419 A1 WO2005098419 A1 WO 2005098419A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
water content
sensor
minimizing
measuring
Prior art date
Application number
PCT/EP2005/003322
Other languages
English (en)
French (fr)
Inventor
Mike Muhl
Jürgen HALL
Original Assignee
Testo Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Testo Ag filed Critical Testo Ag
Priority to US11/547,761 priority Critical patent/US7652490B2/en
Publication of WO2005098419A1 publication Critical patent/WO2005098419A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/03Edible oils or edible fats

Definitions

  • Measuring device for measuring the condition of oils or fats
  • the invention relates to a measuring device for measuring the state of oils or fats according to the preamble of claim 1.
  • Hot oils or fats are often used in the preparation of food, which are not only used once, but are also used in deep fryers for successive cooking of different foods.
  • the oil or fat is destroyed at hot operating temperatures between approx. 120 ° and 180 ° C due to oxidation, and undesirable chemical products such as e.g. free fatty acids or polymers that not only cause a deterioration in taste, but can also be harmful to health.
  • measuring devices are used to measure the condition of the oils or fats, with which these are examined for their electrical properties.
  • the measurement of the dielectric constant which represents a reliable measure of the degree of destruction of the fat or oil, is particularly suitable.
  • a measuring device for measuring the condition of an oil or grease which consists of a housing which comprises the electronic evaluation units and a data display, furthermore a tubular connecting element and a sensor arranged at the tip thereof, which can be immersed directly in the hot oil or fat and is suitable for determining the dielectric constants.
  • the electrical connection between the sensor and the evaluation electronics takes place via cables freely laid inside the connecting element.
  • DE 101 63 760 AI describes a further development of the above-mentioned measuring device.
  • the electrical lines between the sensor and the evaluation electronics are formed by metal lines printed on a ceramic carrier.
  • the tubular connecting element is shaped in such a way that it surrounds the majority of the carrier and narrows downwards in such a way that only the area of the carrier on which the sensor is arranged is accessible from the outside.
  • An insulating sealing adhesive is introduced and cured between the carrier and the connecting element, so that there is no electrical connection between the connecting element and the electrical lines.
  • a temperature-stable seal is achieved, which prevents oil from penetrating into the interior of the connecting element.
  • a temperature sensor can be provided, the measurement result of which can also be processed by the evaluation electronics.
  • a disadvantage of this measuring device is that the measured values are often above the actual value despite the use of reliable sensors and suitable evaluation electronics.
  • the present invention is therefore based on the object of providing a measuring device which delivers more precise and reliable measurement results.
  • the invention is based on the finding that, when frying, large quantities of water vapor are expelled from the fried food, a certain part of which remains temporarily in the deep-frying oil. Since the dielectric constant of water is about 20 times greater than that of Frittierol, Even small amounts of water get too high readings. Depending on the age and temperature of the oil, it can take between 5 minutes (fresh oil and high temperature) and 30 minutes (old oil and low temperature) until the water influence has dropped to a tolerable level and the measured value matches the actual value of the oil ,
  • the measuring device has means which are suitable for minimizing the falsifying influence of the water content in the material to be measured on the measurement result, as a result of which the measurement result is considerably more precise.
  • the means preferably comprise a moisture sensor which is arranged in the area of the measuring device to be immersed. This will safely determine if even small amounts of water are present in the oil.
  • the means comprise an electronic circuit for determining the complex impedance and the phase angle of the dielectric constant, as a result of which information is obtained which essentially correlates with the water content of the oil. It is thus possible to distinguish interference effects caused by water from the measurement effects caused by aging of the oil with a single sensor.
  • the means have a device for filtering the measured material, which surrounds the carrier of the sensor for determining the dielectric constant. Such a device ensures that only oil reaches the sensor, from which the residual moisture has been extracted by the drying filter device.
  • the measuring device also has a temperature sensor, which provides additional information that specifies the determination of the state of the material to be measured.
  • Fig. 1 shows a measuring device according to the invention in front view
  • FIG. 2 shows an enlarged front view of the lower area of the measuring device from FIG. 1 ;
  • FIG. 3 shows an enlarged rear view of the lower area to be immersed in the measuring device from FIG. 1;
  • FIG. 4 shows an enlarged rear view of a variant of the lower area to be immersed in the measuring device from FIG. 1;
  • FIG. 5 shows an enlarged front view of the lower area to be immersed in a variant of the measuring device
  • the 1 shows a measuring device 1 according to the invention for measuring the state of oils or fats, which has a housing 3 in its upper region.
  • the housing has a display 5 for the display of measured values.
  • the display is preferably designed as an LCD display and can be switched between a graphical representation, for example the color classification of the measured values, and a numerical representation.
  • a keyboard 7 is provided for entering control commands, via which commands can be issued to the central control unit (not shown).
  • the keyboard 7 is preferably designed as a foil keyboard.
  • the housing can preferably also have an interface 9, which can be used for communication with external computers.
  • the measuring device 1 is preferably adapted to perform a self-comparison. During the use of the measuring device 1, the housing 3 also serves as a handle for the operator.
  • a hollow connecting element 10 which is sufficiently long and is made of a material with poor thermal conductivity, protrudes downward from the housing 3, so that the sensitive evaluation electronics (not shown) of the measuring device 1, which are located in the region of the housing 3 and / or in the area of the connecting element 10 facing the housing 3 is adequately protected from the heat of the oil or fat to be measured. These measures also ensure that the operator can carry out the measurements safely.
  • the connecting element 10 is preferably made of stainless steel, which in addition to its low thermal conductivity is also suitable due to its unrestricted use in the food sector.
  • the connecting element 10 is designed, for example, as a tubular component and is suitable for receiving electrical lines 12, which are in the
  • the electrical lines 12 are arranged on at least one flat carrier 14, which is characterized by electrical insulation properties, for example a carrier 14 made of ceramic material.
  • a sensor 16 for measuring electrical properties of the oil or grease there is a sensor 16 for measuring electrical properties of the oil or grease and preferably a temperature sensor 18, the measured values of which via the electrical lines 12 on the carrier
  • a protective means 20 can be attached around the lower area of the carrier 14, which protects the sensors 16, 18 against external influences, in particular against contact with the bottom or the walls of the measuring vessel.
  • the protective means 20 is designed as a border of the flat carrier 14 connected to the connecting element 10.
  • the intermediate region between the carrier 14 and the connecting element 10 is sealed in one place by means of suitable sealing means (not shown).
  • a suitable adhesive for example a silicone adhesive, is injected into the intermediate area between the carrier 14 and the connecting element 10, so that they do not touch directly and are therefore insulated from one another.
  • the adhesive serves as a seal for the connecting element 10, so that no oil or grease can penetrate into the interior of the connecting element 10.
  • the design of the adhesive surface must be secure against water inclusions, since otherwise there is a risk of explosion and, on the other hand, contamination of the measured material cannot be ruled out.
  • the carrier 14 can extend as a one-piece element to the evaluation electronics, but there is also the possibility of decoupling, in that several carrier sections are strung together using suitable conductive connecting means. This provides advantages in particular with regard to the thermal load on the evaluation electronics.
  • the sensor 16 for measuring the dielectric constant consists of a capacitor which measures the dielectric constant of the oil. It is preferably designed as an interdigital capacitor which consists of fine interlocking metal lines, each of which merges into one of the electrical lines 12, which lead to the evaluation electronics.
  • the lines 12 can consist of a fine layer of gold or copper on the carrier 14, the layer being printed directly on the ceramic component.
  • a multi-layer construction of the carrier 14 is also conceivable, as a result of which the sensitive lines 12 can be better protected against environmental influences.
  • the temperature sensor 18 is designed, for example, as an electrical resistor, which can be formed, for example, from platinum or another suitable material. The temperature sensor 18 can also be arranged on the opposite side of the carrier 14 in the region of the tip of the carrier 14, as a result of which the size of the measuring device can be further reduced and both sensors 16, 18 are nevertheless exposed to the same ambient temperature.
  • a moisture sensor 25 is arranged on the back of the carrier 14, which measures the residual moisture in the oil.
  • the moisture sensor 25 is also connected via lines 12 to the evaluation electronics, which use the signals supplied by the moisture sensor 25 to correct the measured values of the sensor 16.
  • a polymer sensor is preferably used as the moisture sensor 25.
  • the entire lower region of the measuring device 1 can be surrounded by a cladding tube (not shown). It is also conceivable to arrange the moisture sensor 25 on the area to be immersed on the outside of the connecting element 10.
  • two moisture sensors 25 a, 25 b are attached to the connecting element 10, the lower moisture sensor 25 a being positioned near the surface of the measured material and registering rising moisture therefrom, while the upper moisture sensor 25 b is at a greater distance from Surface to be measured is arranged.
  • the ambient humidity measures the ambient humidity, and the difference between the measured values of the two sensors 25 a and 25 b is a measure of the moisture in the material to be measured.
  • a filter device 30 can be arranged around the lower area of the measuring device 1 to be immersed, which filters water components out of the material to be measured.
  • An oil-permeable water retention filter which is preferably designed as an exchangeable attachment, is suitable for this. It is also possible to determine the complex impedance and the phase angle of the dielectric constant using an electronic circuit known per se. From this, information can be found that essentially correlates with the water content of the oil. This makes it possible to distinguish the effects of interference from water from the effects of aging of the oil.
  • the measuring device can also have means for compensating for the measurement error in the measurement signal and / or a display device which provides a corresponding optical and / or acoustic signal when the water content is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Die Messvorrichtung zum Messen des Zustands eines flüssigen Messguts, insbesondere Öl oder Fett, besitzt ein Gehäuse (3), ein daran befestigtes hohles Verbindungselement (10) und ei­nen am gegenüberliegenden Ende des Verbindungselements (10) angebrachten Träger (14) zur Aufnahme eines Sensors (16), der geeignet ist, eine elektrische Eigenschaft des Messguts zu messen, wobei der Sen$or (16) über mindestens eine elektri­sche Leitung (12) mit einer Messelektronik in Verbindung steht, die im Bereich des Gehäuses (3) und/oder des dem Gehäuse (3) zugewandten 'Endes des Verbindungselements (10) an­geordnet ist. Die Messvorrichtung weist Mittel (25, 30) auf, die geeignet sind, den verfälschenden Einfluss des Wasserge- halts im Messgut auf das Messergebnis zu minimieren.

Description

Messvorrichtung zur Messung des Zustands von Ölen oder Fetten
Die Erfindung betrifft eine Messvorrichtung zum Messen des Zustands von Ölen oder Fetten gemäß dem Oberbegriff des Anspruchs 1.
Häufig werden bei der Zubereitung von Lebensmitteln heiße Öle oder Fette verwendet, die nicht nur einmalig verwendet werden, sondern in Friteusen über einen längeren Zeitraum zum aufeinanderfolgenden Garen von unterschiedlichen Lebensmitteln dienen. Hierbei wird das Öl oder Fett bei den heißen Betriebstemperaturen zwischen ca. 120° und 180° C aufgrund von Oxidation zerstört, und es entstehen unerwünschte chemische Produkte, wie z.B. freie Fettsäuren oder Polymere, die nicht nur eine geschmackliche Verschlechterung bewirken, sondern sich auch gesundheitsschädlich auswirken können.
Um Frittieröle oder Fette weder zu früh noch zu spät auszutauschen, werden MessVorrichtungen zum Messen des Zustandes der Öle oder Fette eingesetzt, mit denen diese auf ihre e- lektrischen Eigenschaften untersucht werden. Besonders geeignet ist die Messung der Dielektrizitätskonstanten, die ein verlässliches Maß für den Zerstörungsgrad des Fettes oder Ö- les darstellt.
Aus der EP 1 046 908 A2 ist beispielsweise eine Messvorrichtung zum Messen des Zustands eines Öles oder Fettes bekannt, die aus einem Gehäuse besteht, das die elektronischen Auswerteeinheiten sowie ein Datendisplay umfasst, des weiteren aus einem rohrartigen Verbindungselement und einem an dessen Spitze angeordneten Sensor, der direkt in das heiße Öl oder Fett eingetaucht werden kann und zur Bestimmung der Die- lektrizitätskonstanten geeignet ist. Die elektrische Verbindung zwischen dem Sensor und der Auswerteelektronik erfolgt über frei im Inneren des Verbindungselementes verlegte Kabel . Eine Weiterentwicklung der oben genannten Messvorrichtung beschreibt die DE 101 63 760 AI. Bei der hier dargestellten Messvorrichtung sind die elektrischen Leitungen zwischen Sen- sor und Auswerteelektronik durch auf einem Keramikträger aufgedruckte Metallleitungen gebildet. Das rohrfδrmige Verbindungselement ist hierbei so geformt, dass es den Großteil des Trägers umgibt und sich nach unten hin derart verengt, dass lediglich der Bereich des Trägers von außen zugänglich ist, auf dem der Sensor angeordnet ist. Zwischen Träger und Verbindungselement wird ein isolierender Dichtkleber eingebracht und ausgehärtet, so dass zwischen Verbindungselement und den elektrischen Leitungen keine elektrische Verbindung besteht. Außerdem wird dadurch eine temperaturstabile Abdichtung er- zielt, die verhindert, dass Öl in das Innere des Verbindungs- elements eindringen kann. Zusätzlich kann ein Temperatursensor vorgesehen sein, dessen Messergebnis ebenfalls durch die Auswerteelektronik verarbeitbar ist .
Nachteilig an dieser Messvorrichtung ist es, dass die Mess- werte trotz Verwendung zuverlässiger Sensoren und geeigneter Auswerteelektronik oftmals über dem tatsächlichen Wert liegen.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Messvorrichtung zu schaffen, die genauere und zuverlässigere Messergebnisse liefert.
Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Ausgestaltungen und Weiterbildungen des Erfindungsgedankens sind Gegenstand von Unteransprüchen.
Der Erfindung liegt die Erkenntnis zugrunde, dass beim Frit- tieren große Mengen an Wasserdampf aus dem Frittiergut ausge- trieben werden, von dem ein gewisser Teil im Frittierol vorübergehend verbleibt. Da die Dielektrizitätskonstante -von Wasser etwa 20 mal größer ist als die von Frittierol, verursa- chen selbst kleine Mengen an Wasser zu hohe Messwerte. Je nach Alter und Temperatur des Öls kann es zwischen 5 Minuten (frisches Öl und hohe Temperatur) und 30 Minuten (altes Öl und niedrige Temperatur) dauern, bis der Wassereinfluss auf ein tolerierbares Maß gesunken ist und der Messwert mit dem tatsächlichen Wert des Öls übereinstimmt .
Erfindungsgemäß ist nun vorgesehen, dass die Messvorrichtung Mittel aufweist, die geeignet sind, den verfälschenden Ein- fluss des Wassergehalts im Messgut auf das Messergebnis zu minimieren, wodurch das Messergebnis wesentlich genauer ist.
Vorzugsweise umfassen die Mittel einen Feuchtesensor, der im einzutauchenden Bereich der Messvorrichtung angeordnet ist. Hierdurch wird auf sichere Weise festgestellt, wenn selbst kleine Mengen an Wasser im Öl vorhanden sind.
In einer weiteren bevorzugten Ausführungsform umfassen die Mittel eine elektronische Schaltung zur Bestimmung der ko - plexen Impedanz sowie des Phasenwinkels der Dielektrizitätskonstanten, wodurch eine Information erhalten wird, die im wesentlichen mit dem Wassergehalt des Öls korreliert. Somit ist man in der Lage, mit einem einzigen Sensor Störeffekte durch Wasser von den Messeffekten durch Altern des Öls zu unterscheiden.
In einer weiteren bevorzugten Ausführungsform weisen die Mittel eine Vorrichtung zur Filterung des Messguts auf, die den Träger des Sensors zur Bestimmung der Dielektrizitätskonstan- ten umgibt. Durch eine derartige Vorrichtung wird gewährleistet, dass lediglich Öl zum Sensor gelangt, welchem die Rest- feuchte durch die trocknende Filtervorrichtung entzogen wurde.
Vorteilhafterweise weist die MessVorrichtung weiterhin einen Temperatursensor auf, der zusätzliche Angaben liefert, welche die Bestimmung des Zustands des Messguts präzisieren. Weitere Eigenschaften, Merkmale und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung unter Bezugnahme auf die Zeichnungen.
Fig. 1 zeigt eine erfindungsgemäße Messvorrichtung in Frontansicht;
Fig. 2 zeigt eine vergrößerte Frontansicht des unteren, einzutauchenden Bereichs der Messvorrichtung aus Fig . 1 ;
Fig. 3 zeigt eine vergrößerte Rückansicht des unteren, einzutauchenden Bereichs der Messvorrichtung aus Fig. 1;
Fig. 4 zeigt eine vergrößerte Rückansicht einer Variante des unteren, einzutauchenden Bereichs der Messvorrichtung aus Fig. 1; und
Fig. 5 zeigt eine vergrößerte Frontansicht des unteren, einzutauchenden Bereichs einer Variante der Messvorrichtung;
Fig. 1 zeigt eine erfindungsgemäße Messvorrichtung 1 zum Messen des Zustands von Ölen oder Fetten, die in ihrem oberen Bereich ein Gehäuse 3 aufweist. Das Gehäuse weist ein Display 5 für die Anzeige von Messwerten auf. Vorzugsweise ist das Display als LCD-Anzeige ausgebildet und ist zwischen graphi- scher Darstellung, z.B. farbliche Einstufung der Messwerte, und numerischer Darstellung umschaltbar. Zum Eingeben von Steuerungsbefehlen ist eine Tastatur 7 vorgesehen, über die Befehle an die zentrale Steuereinheit (nicht gezeigt) abgegeben werden können. Die Tastatur 7 ist vorzugsweise als Fo- lientastatur ausgebildet. Das Gehäuse kann vorzugsweise auch eine Schnittstelle 9 aufweisen, die zur Kommunikation mit externen Rechnern verwendet werden kann. Die Messvorrichtung 1 ist vorzugsweise darauf angepasst, einen Selbstabgleich durchzuführen. Während des Einsatzes der Messvorrichtung 1 dient das Gehäuse 3 gleichzeitig als Griff für die Bedienungsperson.
Von dem Gehäuse 3 ragt ein hohles Verbindungselement 10 nach unten ab, das ausreichend lang ist und aus einem Material mit einer schlechten Wärmeleitf higkeit gebildet ist, so dass die empfindliche Auswerteelektronik (nicht gezeigt) der Messvor- richtung 1, die sich im Bereich des Gehäuses 3 und/oder im dem Gehäuse 3 zugewandten Bereich des Verbindungselementes 10 befindet, ausreichend vor der Hitze des zu messenden Öls bzw. Fettes geschützt ist. Durch diese Maßnahmen ist auch gewährleistet, dass die Bedienungsperson die Messungen sicher durchführen kann. Das Verbindungselement 10 ist vorzugsweise aus Edelstahl gebildet, der neben seiner geringen Wärmeleitfähigkeit auch durch seine uneingeschränkte Einsatzfähigkeit im Lebensmittelbereich geeignet ist. Das Verbindungselement 10 ist beispielsweise als rohrförmiges Bauteil ausgebildet und zur Aufnahme elektrischer Leitungen 12 geeignet, die im
Inneren des Verbindungselements 10 verlaufen. Die elektrischen Leitungen 12 sind auf mindestens einem flachen Träger 14 angeordnet, der durch elektrische Isolationseigenschaften gekennzeichnet ist, beispielsweise einem Träger 14 aus Kera- mikmaterial.
Im unteren Bereich des ersten Trägers 14 ist ein Sensor 16 zum Messen von elektrischen Eigenschaften des Öls bzw. Fettes sowie vorzugsweise ein Temperatursensor 18 angeordnet, deren Messwerte über die elektrischen Leitungen 12 auf dem Träger
14 zur Auswerteelektronik geleitet werden. Um den unteren Bereich des Trägers 14 kann ein Schutzmittel 20 angebracht sein, das die Sensoren 16, 18 vor Außeneinflüssen, insbesondere vor Kontakt mit dem Boden oder den Wänden des Messgefä- ßes, schützt. Im vorliegenden Fall ist das Schutzmittel 20 als mit dem Verbindungselement 10 verbundene Umrandung des flachen Trägers 14 ausgestaltet. Der Zwischenbereich zwischen Träger 14 und Verbindungselement 10 ist an einer Stelle über geeignete Dichtmittel (nicht gezeigt) isolierend abgedichtet. Im unteren Endbereich des Ver- bindungselements 10 ist ein geeigneter Kleber, beispielsweise ein Silikonkleber, in den Zwischenbereich zwischen Träger 14 und Verbindungselement 10 eingespritzt, so dass sich diese nicht direkt berühren und somit voneinander isoliert sind. Gleichzeitig dient der Kleber als Abdichtung des Verbindungs- elements 10, so dass kein Öl bzw. Fett in das Innere des Verbindungselements 10 eindringen kann. Die Gestaltung der Klebefläche muss sicher gegen Wassereinschlüsse sein, da ansonsten zum einen Explosionsgefahr besteht und zum anderen eine Verunreinigung des Messguts nicht ausgeschlossen werden kann. Der Träger 14 kann als einstückiges Element bis zur Auswerteelektronik reichen, es besteht aber auch die Möglichkeit einer Entkopplung, indem mehrere Trägerabschnitte über geeignete leitende Verbindungsmittel aneinandergereiht werden. Dies liefert insbesondere Vorteile hinsichtlich der Wärmebelastung der Auswerteelektronik.
In Fig. 2 sind die unteren Abschnitte des Verbindungselements 10 und des Trägers 14 vergrößert dargestellt, die zum Eintauchen in die zu messende Flüssigkeit geeignet sind. Der Sensor 16 zur Messung der Dielektrizitätskonstanten besteht aus einem Kondensator, der die Dielektrizitätskonstante des Öls misst. Vorzugsweise ist er als Interdigitalkondensator ausgebildet, der aus feinen ineinandergreifenden Metallleitungen besteht, die jeweils in eine der elektrischen Leitungen 12 übergehen, die zur Auswerteelektronik führen. Die Leitungen 12 können aus einer feinen Auflage aus Gold bzw. Kupfer auf dem Träger 14 bestehen, wobei die Auflage direkt auf das keramische Bauelement aufgedruckt ist. Ebenso ist eine Mehrschichtkonstruktion des Trägers 14 denkbar, wodurch die sen- siblen Leitungen 12 besser vor Umwelteinflüssen geschützt werden können. Der Temperatursensor 18 ist beispielsweise als elektrischer Widerstand ausgebildet, der z.B. aus Platin oder einem anderen geeigneten Material gebildet sein kann. Der Temperatursensor 18 kann auch auf der gegenüberliegenden Seite des Trä- gers 14 im Bereich der Spitze des Trägers 14 angeordnet sein, wodurch die Größe der MessVorrichtung weiter verringert werden kann und dennoch beide Sensoren 16, 18 der selben Umgebungstemperatur ausgesetzt sind.
Wie aus Fig. 3 ersichtlich ist, ist auf der Rückseite des Trägers 14 ein Feuchtesensor 25 angeordnet, der die Rest- feuchte im Öl misst. Der Feuchtesensor 25 ist ebenfalls über Leitungen 12 mit der Auswerteelektronik verbunden, welche die vom Feuchtesensor 25 gelieferten Signale zu einer Korrektur der Messwerte des Sensors 16 verwendet. Vorzugsweise wird als Feuchtesensor 25 ein Polymersensor verwendet. Der gesamte untere Bereich der Messvorrichtung 1 kann bei dieser Anordnung von einem Hüllrohr (nicht gezeigt) umgeben sein. Ebenso ist denkbar, den Feuchtesensor 25 auf dem einzutauchenden Bereich außen am Verbindungselement 10 anzuordnen.
In der in Fig. 4 dargestellten Ausführungsform sind zwei Feuchtesensoren 25 a, 25 b am Verbindungselement 10 angebracht, wobei der untere Feuchtesensor 25 a nahe der Messgut- Oberfläche positioniert ist und daraus aufsteigende Feuchte registriert, während der obere Feuchtesensor 25 b mit größerem Abstand zur Messgutoberfläche angeordnet ist . Er misst hier die Umgebungsfeuchte, und die Differenz zwischen den Messwerten der beiden Sensoren 25 a und 25 b ist ein Maß für die Feuchte im Messgut.
Alternativ kann, wie in Fig. 5 dargestellt, um den einzutauchenden unteren Bereich der Messvorrichtung 1 eine Filtervorrichtung 30 angeordnet sein, die Wasseranteile aus dem Mess- gut herausfiltert. Hierfür eignet sich ein öldurchlässiger Wasserrückhaltefilter, der vorzugsweise als austauschbarer Aufsatz ausgebildet ist. Ebenso ist es möglich, mittels einer an sich bekannten elektronischen Schaltung die komplexe Impedanz sowie den Phasenwinkel der Dielektrizitätskonstanten zu bestimmen. Hieraus lassen sich Informationen entnehmen, die im wesentlichen mit dem Wassergehalt des Öls korrelieren. Dadurch ist man in der Lage, Störeffekte durch Wasser von den Effekten durch Altern des Öls zu unterscheiden.
Die erfindungsgemäße Messvorrichtung kann darüber hinaus Mittel zur Kompensation des Messfehlers im Messsignal und/oder eine Anzeigeeinrichtung aufweisen, die bei einem erhöhten Wassergehalt ein entsprechendes optisches und/oder akustisches Signal bereitstellt.

Claims

Patentansprüche
1. Messvorrichtung zum Messen des Zustands von Ölen oder Fetten mit einem Gehäuse (3) , einem daran befestigten hohlen Verbindungselement (10) und einem am gegenüberliegenden Ende des Verbindungseiements (10) angebrachten Träger (14) zur Aufnahme eines Sensors (16) zum Messen einer elektrischen Eigenschaft des Messguts, wobei der Sensor (16) über mindestens eine elektrische Leitung (12) mit einer Messelektronik in Verbindung steht, die im Bereich des Gehäuses (3) und/oder des dem Gehäuse (3) zugewandten Endes des Verbindungselements (10) angeordnet ist, dadurch gekennzeichnet, dass die Mess- vorrichtung Mittel (25, 30) zum Minimieren des verfälschenden Einflusses des Wassergehalts im Messgut auf das Messergebnis aufweist.
2. Messvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel (25, 30) zum Minimieren des verfälschenden Einflusses des Wassergehalts mindestens einen Feuchtesensor (25) umfassen.
3. Messvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Mittel (25, 30) zum Minimieren des verfälschenden Einflusses des Wassergehalts zwei Feuchtesensoren aufweisen, von denen einer nahe der Oberfläche des Messgutes positioniert ist und nicht in das Öl oder Fett eintaucht und der andere in der Nähe des Gehäuses (3) zur Messung der Umgebungsfeuchte angeordnet ist.
4. Messvorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass mindestens ein Feuchtesensor (25) ein Sensor auf Polymerbasis ist .
5. Mess orrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (25, 30) zum Minimieren des verfälschenden Einflusses des Wassergehalts eine e- lektronische Schaltung zur Bestimmung der komplexen Impedanz sowie des Phasenwinkels der Dielektrizitätskonstanten umfassen.
6. Messvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (25, 30) zum Minimieren des verfälschenden Einflusses des Wassergehalts eine Vorrichtung (30) zur Filterung des Messguts aufweisen, die den Träger (14) des Sensors (16) umgibt.
7. Messvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Messvorrichtung einen Temperatursensor (18) aufweist.
8. Messvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Öl oder Fett ein Frittierol bzw. Frittierfett ist.
9. Messvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (25, 30) zum Minimie- ren des verfälschenden Einflusses des Wassergehalts eine Drift im Messergebnis auswerten.
10. Messvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (25, 30) zum Minimie- ren des verfälschenden Einflusses des Wassergehalts Mittel zur Kompensation des Messfehlers im Messsignal aufweisen.
11. Messvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (25, 30) zum Minimie- ren des verfälschenden Einflusses des Wassergehalts eine Anzeigeeinrichtung aufweisen, die bei einem erhöhten Wassergehalt ein entsprechendes optisches oder akustisches Signal bereitstellen.
12. Messvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Sensor (16) mittels einer elektronischen Schaltung ausgewertet wird, wobei durch die Trennung dessen komplexer Impedanz in reale und imaginäre Anteile sowohl eine elektrische Oleigenschaft als auch der Wassergehalt des Öles erfasst werden.
PCT/EP2005/003322 2004-04-06 2005-03-30 Messvorrichtung zur messung des zustands von ölen oder fetten WO2005098419A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/547,761 US7652490B2 (en) 2004-04-06 2005-03-30 Measuring device for measuring the state of oils or fats

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004016957.8 2004-04-06
DE102004016957A DE102004016957B4 (de) 2004-04-06 2004-04-06 Messvorrichtung zum Messen des Zustands von Ölen oder Fetten

Publications (1)

Publication Number Publication Date
WO2005098419A1 true WO2005098419A1 (de) 2005-10-20

Family

ID=34963441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/003322 WO2005098419A1 (de) 2004-04-06 2005-03-30 Messvorrichtung zur messung des zustands von ölen oder fetten

Country Status (4)

Country Link
US (1) US7652490B2 (de)
DE (1) DE102004016957B4 (de)
ES (1) ES2332392B1 (de)
WO (1) WO2005098419A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196959A (zh) * 2013-04-10 2013-07-10 明尼苏达矿业制造特殊材料(上海)有限公司 用于检测油或脂的品质的装置
CN103344675A (zh) * 2013-06-20 2013-10-09 济南海能仪器股份有限公司 食用油极性有害组分传感器
US8829928B2 (en) 2010-09-14 2014-09-09 3M Innovative Properties Company Methods and devices for acquiring an oil sample and monitoring the quality thereof
CN104819996A (zh) * 2015-04-01 2015-08-05 天津工业大学 基于扫频复阻抗测量的油水两相流含水率计及其测量方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006003733B3 (de) * 2006-01-26 2007-03-29 Testo Ag Verfahren zur Prüfung eines Messgerätes
DE102007036473A1 (de) 2007-08-01 2009-02-05 Testo Ag Vorrichtung zum Messen des Zustands eines Messguts, insbesondere von Ölen oder Fetten
DE102008014477B4 (de) 2008-03-17 2018-08-30 Testo Ag Vorrichtung zum Messen des Zustands eines Messguts, insbesondere von Ölen oder Fetten
CA2952739C (en) 2014-06-30 2019-06-11 Pitco Frialator, Inc. System and method for sensing oil quality
US9841394B2 (en) 2015-11-16 2017-12-12 Pitco Frialator, Inc. System and method for sensing oil quality
US10436730B2 (en) 2015-12-21 2019-10-08 Pitco Frialator, Inc. System and method for sensing oil quality
JP6993679B2 (ja) * 2017-11-22 2022-01-13 センスプロ株式会社 潤滑油センサヘッド、及びセンサシステム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746974A (en) * 1971-03-25 1973-07-17 Thexton Mfg Co Oil permittivity sensor
US4082997A (en) * 1974-06-25 1978-04-04 Japan Gasoline Co., Ltd. Oil detecting device
DE19947669A1 (de) * 1999-10-04 2001-05-10 Testo Gmbh & Co Verfahren zur Bestimmung der Qualität von Fetten und Ölen und Vorrichtung zur Durchführung des Verfahrens
US6282947B1 (en) * 1996-07-09 2001-09-04 Hydac Filtertechnik Gmbh Arrangement for monitoring the useful properties of fluids
US6469521B1 (en) * 1999-04-22 2002-10-22 Ebro Electronic Gmbh & Co. Kg Method for measuring the state of oils or fats
US20030155935A1 (en) * 2001-12-28 2003-08-21 Wolfgang Klun Process and device for measuring the state of degradation of oils or fats
US20040060344A1 (en) * 2002-09-30 2004-04-01 Kauffman Robert E. Sensor device for monitoring the condition of a fluid and a method of using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739265A (en) * 1970-09-09 1973-06-12 J Skildum Test instrument and method for isolating and measuring the capacitance due to a particular functional group in a liquid
JPS60188835A (ja) * 1984-03-08 1985-09-26 Sharp Corp 感湿素子
KR960010689B1 (ko) * 1991-08-28 1996-08-07 미쓰비시덴키 가부시키가이샤 연료의 유전율 검지센서
US5818731A (en) * 1995-08-29 1998-10-06 Mittal; Gauri S. Method and apparatus for measuring quality of frying/cooking oil/fat
US5824889A (en) * 1997-03-06 1998-10-20 Kavlico Corporation Capacitive oil deterioration and contamination sensor
GB9709290D0 (en) * 1997-05-07 1997-06-25 Collister Christopher J Electrical measurement apparatus for oil
US6746974B1 (en) * 1999-03-10 2004-06-08 3M Innovative Properties Company Web material comprising a tackifier

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746974A (en) * 1971-03-25 1973-07-17 Thexton Mfg Co Oil permittivity sensor
US4082997A (en) * 1974-06-25 1978-04-04 Japan Gasoline Co., Ltd. Oil detecting device
US6282947B1 (en) * 1996-07-09 2001-09-04 Hydac Filtertechnik Gmbh Arrangement for monitoring the useful properties of fluids
US6469521B1 (en) * 1999-04-22 2002-10-22 Ebro Electronic Gmbh & Co. Kg Method for measuring the state of oils or fats
DE19947669A1 (de) * 1999-10-04 2001-05-10 Testo Gmbh & Co Verfahren zur Bestimmung der Qualität von Fetten und Ölen und Vorrichtung zur Durchführung des Verfahrens
US20030155935A1 (en) * 2001-12-28 2003-08-21 Wolfgang Klun Process and device for measuring the state of degradation of oils or fats
US20040060344A1 (en) * 2002-09-30 2004-04-01 Kauffman Robert E. Sensor device for monitoring the condition of a fluid and a method of using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IRION E ET AL: "Oil-Quality and Oil-Level Detection with the TEMIC QLT-Sensor Leads to Variable Maintenance Intervals", SAE TECHNICAL PAPER SERIES, SOCIETY OF AUTOMOTIVE ENGINEERS, WARRENDALE, PA, US, no. 970847, 1997, pages 105 - 110, XP002968686, ISSN: 0148-7191 *
U. DEMISCH, M. MUHL: "Electronic nose for detection of the deterioration of frying fat- comparative stdies for a new quick test", 3RD INTERNATIONAL SYMPOSIUM ON DEEP FAT FRYING, 20 March 2000 (2000-03-20), HAGEN, pages 11 - 12, XP002330509 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8829928B2 (en) 2010-09-14 2014-09-09 3M Innovative Properties Company Methods and devices for acquiring an oil sample and monitoring the quality thereof
CN103196959A (zh) * 2013-04-10 2013-07-10 明尼苏达矿业制造特殊材料(上海)有限公司 用于检测油或脂的品质的装置
CN103344675A (zh) * 2013-06-20 2013-10-09 济南海能仪器股份有限公司 食用油极性有害组分传感器
CN104819996A (zh) * 2015-04-01 2015-08-05 天津工业大学 基于扫频复阻抗测量的油水两相流含水率计及其测量方法

Also Published As

Publication number Publication date
US7652490B2 (en) 2010-01-26
US20080186033A1 (en) 2008-08-07
DE102004016957B4 (de) 2007-05-03
ES2332392A1 (es) 2010-02-03
DE102004016957A1 (de) 2005-10-27
ES2332392B1 (es) 2010-09-08

Similar Documents

Publication Publication Date Title
WO2005098419A1 (de) Messvorrichtung zur messung des zustands von ölen oder fetten
EP1324036B1 (de) Messvorrichtung zum Messen des Zustandes von Ölen und Fetten
WO2005098406A1 (de) Messvorrichtung zur messung des zustands von ölen oder fetten
EP1046908B1 (de) Vorrichtung zum Messen des Zustands von Ölen und Fetten
EP2937692B1 (de) Ölqualitätssensor und frittiervorrichtung mit einem solchen ölqualitätssensor
WO2005098407A1 (de) Messvorrichtung zur messung des zustands von ölen oder fetten
EP2183582B1 (de) Vorrichtung zum messen des zustands eines messguts, insbesondere von ölen oder fetten
DE60025181T2 (de) Verfahren und vorrichtung zur steuerung "in situ" einer fritteuse
EP1466170B1 (de) Messanordnung zur bestimmung einer eigenschaft eines fluides
DE4328966C1 (de) Verfahren zur Bestimmung des Verdorbenheitsgrads von Ölen oder Fetten zum Fritieren oder Braten von Lebensmitteln
DE10038247C2 (de) Doppeltemperatursensor
DE102005023468A1 (de) Gargerät mit Temperaturerfassungsvorrichtung
DE60116609T2 (de) Flüssigkeit enthaltendes heizelement und verfahren zum erfassen von temperaturveränderungen
DE102008014477B4 (de) Vorrichtung zum Messen des Zustands eines Messguts, insbesondere von Ölen oder Fetten
DE202005007144U1 (de) Meßvorrichtung zum Messen des Zustandes eines Meßgutes bestehend aus Ölen oder Fetten
DE19646826C2 (de) Vorrichtung zur Temperaturmessung an Kochstellen
DE4105445C2 (de) Verfahren und Anordnung zum Messen von meteorologischen Größen mit Hilfe einer Radiosonde
DE202004021049U1 (de) Messvorrichtung zur Messung des Zustands von Ölen oder Fetten
DE202004020957U1 (de) Messvorrichtung zur Messung des Zustands von Ölen oder Fetten (Temperatursensor)
EP0961191A1 (de) Anordnung zur Temperaturerfassung eines Kochbehälters
DE20122194U1 (de) Vorrichtung zum Messen des Zustandes von Fetten und Ölen
DE20023601U1 (de) Meßvorrichtung zum Messen des Zustandes eines Meßgutes bestehend aus Ölen oder Fetten
EP0911628A1 (de) Sensor zur Wassergehaltsbestimmung
EP2508873B1 (de) Flächensensor zum Messen einer thermischen Transportgröße und zugeordnetes Verfahren
DE102013114238A1 (de) Vorrichtung zur Güte-Überwachung beim Vergiessen einer Elektronik-Leiterplatte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 200650068

Country of ref document: ES

Kind code of ref document: A

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 11547761

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 200650068

Country of ref document: ES

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 200650068

Country of ref document: ES

Kind code of ref document: A