WO2003053520A2 - Strahlentherapiesystem - Google Patents

Strahlentherapiesystem Download PDF

Info

Publication number
WO2003053520A2
WO2003053520A2 PCT/EP2002/014163 EP0214163W WO03053520A2 WO 2003053520 A2 WO2003053520 A2 WO 2003053520A2 EP 0214163 W EP0214163 W EP 0214163W WO 03053520 A2 WO03053520 A2 WO 03053520A2
Authority
WO
WIPO (PCT)
Prior art keywords
patient
hexapod
radiation therapy
therapy system
linear accelerator
Prior art date
Application number
PCT/EP2002/014163
Other languages
English (en)
French (fr)
Other versions
WO2003053520A3 (de
Inventor
Christian MÜLLER-HIERONIMI
Michael Vogele
Original Assignee
Medical Intelligence Medizintechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medical Intelligence Medizintechnik Gmbh filed Critical Medical Intelligence Medizintechnik Gmbh
Priority to EP02805318A priority Critical patent/EP1455898A2/de
Priority to JP2003554276A priority patent/JP2005512699A/ja
Priority to AU2002356653A priority patent/AU2002356653A1/en
Priority to US10/498,930 priority patent/US20050063510A1/en
Publication of WO2003053520A2 publication Critical patent/WO2003053520A2/de
Publication of WO2003053520A3 publication Critical patent/WO2003053520A3/de
Priority to US12/369,848 priority patent/US20090168961A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0487Motor-assisted positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1069Target adjustment, e.g. moving the patient support
    • A61N5/107Target adjustment, e.g. moving the patient support in real time, i.e. during treatment

Definitions

  • the invention relates to a radiation therapy system according to the preamble features of claim 1.
  • Known radiation therapy systems consist at least of a base on which the patient can be supported, the so-called patient bed, and an irradiation device, in particular a so-called linear accelerator.
  • the linear accelerator is usually attached to a framework, the so-called gantry.
  • the gantry is usually designed to be movable, i.e. it can be rotated around the patient lying on the couch.
  • the radiation field generated in the linear accelerator is bundled in a bundling instrument, the so-called collimator, and shaped if necessary, i.e. the shape of the radiation field is adapted to the contours of the tumor, so that targeted radiation can take place.
  • a problem with radiation therapy is to position the tumor and thus the patient relative to the radiation source in such a way that the beam or the radiation field hits the tumor as precisely as possible and adjacent tissue is spared.
  • the radiation source can remain stationary and the patient and thus the tumor can be moved relative to it.
  • the patient can be fixed and the radiation source can be moved.
  • Various systems are known for changing the position of the patient, all of which are based on the fact that the patient firmly fixed on the couch is moved by adjusting the position of the couch.
  • DE 197 28 788 describes a method for patient positioning relative to the treatment device.
  • the actual position of the patient is determined with the aid of CCD cameras and image processing and morphing and compared with a predetermined target position.
  • servo motors of the bed are controlled, which bring the patient back into the desired position. This control is carried out every second or tenth of a second in order to be able to react to the patient's breathing movements.
  • a method is also known from DE 198 05 917 with which the position of patients during radiation therapy can be recognized and the patient can be positioned accordingly.
  • the surface structure of the patient's body is detected with at least two sensors and compared with a target image, whereby deviations of the current position of the patient from the target position can be recognized.
  • a position deviation correction can then be carried out if necessary.
  • US Pat. No. 6,052,436 shows a device for radiation therapy in which two guide rails are fixed above the patient, along which a linear accelerator with a collimator attached is moved. With the aid of slots in the guide rails, the plates of the collimator are moved in such a way that the radiation window changes when the linear accelerator moves, in such a way that the shape of the radiation window is adapted to the shape of the tumor.
  • the problem remains that the positioning of the patient or, more precisely, the isocenter of the tumor relative to the radiation source is still relatively imprecise.
  • the known radiation systems have the disadvantage that the radiation source can only be adjusted to a limited extent relative to the patient, which in particular makes irradiation from unusual angles more difficult or complicated devices are necessary.
  • the object of the present invention is therefore to provide a radiation therapy system which avoids the disadvantages described above.
  • a system is to be created with which the radiation source can be adjusted as quickly and precisely as possible relative to the patient in order to achieve optimal tumor treatment.
  • the radiation therapy system consists at least of a base on which a patient is supported and an irradiation device, in particular a linear accelerator, which generates a treatment beam.
  • treatment beam 11 denotes all types of radiation generated by the linear accelerator, that is to say both photons and electron beams.
  • the term is intended not only to include punctiform bundles of rays but also so-called radiation fields at least one hexapod is adjustable.
  • hexapod denotes a device which works according to the so-called Stewart principle (D. Stewart, "A Platform With Six Degrees of Freedom", UK Institution of Mechanical Engineers Proceedings, 1965- 66, Vol.
  • a hexapod has six struts or stamps, particularly hydraulic cylinders or electrospindles, which can be adjusted along their longitudinal axis and each extend between an upper and a lower platform, one of the two platforms being fixed or stationary, while the other by changing the length of the struts, Stamp or spindles is moved.
  • the hexapod allows a combined translational and rotational movement along or around the six coordinates (X, Y, Z; theta-X, theta-Y, theta-Z). This means that a hexapod has six degrees of freedom.
  • the use of a hexapod to direct the treatment beam therefore enables it to be aligned quickly and precisely.
  • Use means that, for example, the gantry is rotated roughly and the fine adjustment can then be carried out in particular by means of the hexapod by aligning the treatment beam with the hexapod.
  • This enables particularly quick and precise adjustment.
  • the use of the hexapod for aligning the treatment beam enables a relatively small installation space (r hexap ⁇ cn ⁇ ääe) compared to other adjustment options (such as so-called cross tables).
  • the hexapod is attached between the linear accelerator and the collimator, in particular that it is attached with an annular disk.
  • at least one sensor is provided on the hexapod and / or on the linear accelerator and / or on the collimator with which the position of the patient can be detected.
  • two sensors are provided, but it can also be provided that only one sensor is provided on the hexapod or linear accelerator or collimator and the other at any other point in the treatment room. This enables an exact position determination of the patient, since at least two images are generated and can be compared with one another.
  • a particularly preferred exemplary embodiment of the invention provides that the hexapod can be controlled in such a way that the treatment beam can track the tumor contour.
  • a control can, for example, provide for the tumor contour and the position of the tumor in the patient to be detected by means of methods which generate a three-dimensional image, for example computer tomography (CT).
  • CT computer tomography
  • the treatment beam is then aligned and moved by means of the hexapod and the beam guiding element set by it so that the treatment beam follows the contours of the tumor.
  • this ensures that the tumor is completely irradiated, and on the other hand it prevents that neighboring tissue is also affected by the radiation.
  • tracking the treatment beam along the tumor contours enables the lowest possible dose to be used, since uncertainty factors regarding, for example, the tumor size are eliminated and its targeted irradiation is made possible.
  • Fig. 1 shows an inventive radiation therapy system in a schematic representation.
  • the radiation therapy system according to the invention has one
  • the linear accelerator 1 can take any shape, for example it can be designed as a device standing on the floor, or it can be mounted on the ceiling. Furthermore, the linear accelerator 1 will generally be attached to a framework, the so-called gantry. The radiation required for treatment is generated in a known manner in the linear accelerator.
  • a hexapod is provided between the head 2 of the linear accelerator 1 and a collimator 11.
  • the hexapod has two platforms 3 and 10, the platform 3 being fastened to the linear accelerator 1, preferably to its head 2, and the movable platform 10 being fastened to the collimator 11 for adjusting it.
  • any other desired bundling or beam guiding element can also be provided, depending on the desired application.
  • the platforms 3 and 10 of the hexapod have an annular design and therefore have passage openings 16 and 17 through which the treatment jet 12 passes. It is preferably provided that the platform 3 is fixed to the linear accelerator 1 or its head 2 is connected, and thus forms the platform of the hexapod, which is fixed in its position.
  • the platform 10, is adjustable by changing the length of the struts 4, 5, 6, 7, 8 and 9, the term “struts” also being intended to refer to stamps or spindles with the same effect or generally translational drives.
  • the struts 4, 5, 6, 7, 8 and / or 9 are adjustable in length along their longitudinal axis, as indicated by the arrow 18.
  • the adjustable platform 10 By changing the length of at least one strut 4, 5, 6, 7, 8, 9, the adjustable platform 10 is thus changed in its position and the collimator 11 is accordingly moved as a beam guiding element. This in turn changes the angle of incidence of the treatment beam 12. Thereby, the treatment beam 12 can be aligned so that it hits the isocenter 14 in the patient 13, which is fixed on a base 15, as precisely as possible.
  • Such an isocenter 14 is understood to be, for example, a tumor that is to be treated by means of radiation therapy.
  • a sensor system is preferably also provided, with which the position of the patient 13 on the support 15 can be determined.
  • sensors 20 and 21 can be provided on the platform, for example.
  • Scanning systems can be used as sensors 20 and 21, for example, which continuously scan the body and thus the position of the patient 13 or record the surface contour of the patient 13.
  • the sensors 20 and 21 are aligned with the patient 13, as indicated by the dash-dot lines 22 and 23. With the help of the sensors 20 and 21, the position of the patient 13 on the support 15 is thus detected and continuously checked whether the isocenter 14 and the treatment beam 12 are optimally aligned with one another, ie whether the treatment beam 12 hits the isocenter 14 exactly.
  • a controller 30 is shown schematically, which is connected via a signal output 31 to the hexapod.
  • the controller 30 can also have various inputs, for example the inputs 32 and 33 from the sensors 20 and 21.
  • the controller 30 can also have signal inputs from imaging devices, for example a CT. It is provided that the controller 30 permanently and separately controls each individual strut 4, 5, 6, 7, 8, 9 of the hexapod in order to achieve the most exact possible alignment of the treatment beam 12 in all six degrees of freedom.
  • An alternative embodiment of the invention provides that the support 15 on which the patient 13 can be placed is designed to be adjustable. This adjustability is achieved in that a hexapod is provided with which the pad 15 can be adjusted.
  • the provision of a hexapod for changing the position of the base 15 has the advantage that the hexapod ensures adjustability in six degrees of freedom.
  • the pad 15 and with it the patient 13 can be brought into any position in a stepless manner and with only a small space requirement.
  • a hexapod enables the base 15 to be adjusted extremely precisely and quickly.

Abstract

Zum Ausrichten eines Behandlungsstrahls auf ein Isozentrum (14) in einem Patienten (13), insbesondere zur Tumorbehandlung in der Strahlentherapie, wird ein Strahlentherapiesystem vorgeschlagen, das aus einer Unterlage (15), auf der der Patient (13) gelagert ist, und einer Bestrahlungsvorrichtung, insbesondere einem Linearbeschleuniger (1), der einen Behandlungsstrahl (12) erzeugt, besteht. Erfindungsgemäss ist vorgesehen, dass die Richtung des Behandlungsstrahls (12) mittels eines Hexapoden (3, 4, 5, 6, 7, 8, 9, 10) einstellbar ist.

Description

Beschreibung
Strahlentherapiesystem
Die Erfindung bezieht sich auf ein Strahlentherapiesystem gemäß den oberbegrifflichen Merkmalen des Anspruches 1.
Bekannte Strahlentherapiesysteme bestehen zumindest aus einer Unterlage, auf der der Patient gelagert werden kann, der sog. Patientenliege, und einer Bestrahlungsvorrichtung, insbesondere einem sog. Linearbeschleuniger. Der Linearbeschleuniger ist für gewöhnlich an einem Gerüst, der sog. Gantry, befestigt. Die Gantry ist in der Regel beweglich gestaltet, d.h. sie ist um den auf der Liege liegenden Patienten rotierbar. Das im Linearbeschleuniger erzeugte Bestrahlungsfeld wird in einem Bündelungsinstrument, dem sog. Kollimator, gebündelt und ggf. geformt, d.h. die Form des Bestrahlungsfeldes wird an die Konturen des Tumors angepaßt, wodurch eine gezielte Bestrahlung erfolgen kann.
Ein Problem bei der Strahlentherapie liegt darin, den Tumor und damit den Patienten relativ zur Strahlungsquelle so zu positionieren, daß der Strahl bzw. das Strahlenfeld den Tumor möglichst genau trifft und danebenliegendes Gewebe geschont wird. Hierfür gibt es prinzipiell zwei Möglichkeiten, wobei diese auch kombiniert sein können. Zum einen kann die Strahlenquelle ortsfest bleiben und der Patient und damit der Tumor relativ zu ihr bewegt werden. Zum anderen kann der Patient fixiert sein und die Strahlenquelle bewegt werden. Zur Veränderung der Position des Patienten sind verschiedene Systeme bekannt, die alle darauf beruhen, daß der fest auf der Liege fixierte Patient bewegt wird, indem die Position der Liege verstellt wird.
So beschreibt die DE 197 28 788 ein Verfahren zur Patientenpositionierung relativ zum Behandlungsgerät. Hierbei wird mit Hilfe von CCD-Kameras und durch Bildverarbeitung und Morphing die Istposition des Patienten bestimmt und mit einer zuvor festgelegten Sollposition verglichen. Daraufhin werden Servomotoren der Liege gesteuert, die den Patienten in die Soll- Lage zurückbringen. Diese Steuerung wird im Sekunden- oder Zehntelsekundentakt durchgeführt, um auch auf Atembewegungen des Patienten reagieren zu können.
Aus der DE 198 05 917 ist weiterhin ein Verfahren bekannt, mit dem die Position von Patienten bei der Strahlentherapie erkannt werden kann und der Patient entsprechend positioniert werden kann. Hierfür wird die Oberflächenstruktur des Patientenkörpers mit zumindest zwei Sensoren erfaßt und mit einem Sollbild verglichen, wodurch Abweichungen der aktuellen Position des Patienten von der Sollposition erkannt werden können. Daraufhin kann dann ggf. eine Lageabweichungskorrektur durchgeführt werden.
Bei der Verstellung der Strahlenquelle ist zudem bekannt, daß diese durch Rotation der Gantry erfolgen kann. Weiterhin zeigt die US 6,052,436 eine Vorrichtung zur Strahlentherapie, bei der über dem Patienten zwei Führungsschienen fixiert werden, an denen entlang ein Linearbeschleuniger mit aufgesetztem Kollimator bewegt werden. Anhand von Schlitzen in den Führungsschienen werden die Platten des Kollimators so bewegt, daß sich das Bestrahlungsfenster bei Bewegung des Linearbeschleunigers ändert, dahingehend, daß die Form des Bestrahlungsfensters der Form des Tumors angepaßt wird.
Trotz der bekannten Lösungsansätze verbleibt das Problem, daß die Positionierung des Patienten oder, genauer gesagt, das Isozentrum des Tumors relativ zur Strahlenquelle noch relativ ungenau ist. Weiterhin haben die bekannten Bestrahlungssysteme den Nachteil, daß die Strahlenquelle relativ zum Patienten nur eingeschränkt verstellbar ist, wodurch insbesondere die Einstrahlung aus ungewöhnlichen Winkeln erschwert ist bzw. komplizierte Vorrichtungen notwendig sind. Aufgabe der vorliegenden Erfindung ist es daher, ein Strahlentherapiesystem zur Verfügung zu stellen, das die oben geschilderten Nachteile vermeidet. Insbesondere soll ein System geschaffen werden, mit dem die Strahlenquelle relativ zum Patienten möglichst schnell und präzise eingestellt werden kann, um eine optimale Tumorbehandlung zu erzielen.
Diese Aufgabe wird gelöst durch ein Strahlentherapiesystem gemäß Anspruch 1. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
Das erfindungsgemäße Strahlentherapiesystem besteht zumindest aus einer Unterlage, auf der ein Patient gelagert ist, und einer Bestrahlungsvorrichtung, insbesondere einem Linearbeschleuniger, der einen Behandlungsstrahl erzeugt. Mit dem Begriff "Behandlungsstrahl11 werden alle vom Linearbeschleuniger erzeugten Arten von Strahlung bezeichnet, d.h. sowohl Photonenais auch Elektronenstrahlen. Weiterhin sollen von dem Begriff nicht nur punktförmige Strahlenbündel, sondern auch sog. Bestrahlungsfelder umfaßt sein. Erfindungsgemäß ist vorgesehen, daß die Richtung des Behandlungsstrahls mittels zumindest einem Hexapoden einstellbar ist. Mit dem Begriff "Hexapod" wird eine Vorrichtung bezeichnet, die nach dem sog. Stewart-Prinzip arbeitet (D. Stewart, "A Platform With Six Degrees of Freedom", UK Institution of Mechanical Engineers Proceedings, 1965-66, Vol. 180, Pt 1, No 15) . Ein Hexapod weist sechs entlang ihrer Längsachse verstellbare Streben oder Stempel, insbesondere Hydraulikzylinder oder Elektrospindeln auf, die sich jeweils zwischen einer oberen und einer unteren Plattform erstrecken. Eine der beiden Plattformen ist dabei fixiert oder stationär, während die andere durch Längenveränderung der Streben, Stempel oder Spindeln bewegt wird. Der Hexapod erlaubt eine kombinierte Translations- und Rotationsbewegung entlang der bzw. um die sechs Koordinaten (X, Y, Z; theta-X, theta-Y, theta-Z) . Damit weist ein Hexapod sechs Freiheitsgrade auf. Der Einsatz eines Hexapoden zur Direktionierung des Behandlungsstrahls ermöglicht daher dessen rasche und präzise Ausrichtung. Im praktischen Einsatz bedeutet dies, daß beispielsweise durch Rotation der Gantry eine Grobausrichtung erfolgt und die Feinjustierung dann insbesondere mittels des Hexapoden erfolgen kann, indem der Behandlungsstrahl mit dem Hexapoden ausgerichtet wird. Dadurch ist eine besonders schnelle und exakte Justierung möglich. Weiterhin ermöglicht der Einsatz des Hexapoden zur Ausrichtung des Behandlungsstrahles, daß ein im Vergleich zu anderen Verstellmöglichkeiten (wie sog. Kreuztischen) geringer Platz§ (r Hexap§cnιääe relativ geringe Aufbauhöhe auf.
Es ist vorzugsweise vorgesehen, daß der Hexapod zwischen Linearbeschleuniger und Kollimator angebracht ist, insbesondere daß dieser mit einer Ringscheibe aufgesteckt ist. Weiterhin ist vorzugsweise vorgesehen, daß zumindest ein Sensor am Hexapoden und/oder am Linearbeschleuniger und/oder am Kollimator vorgesehen ist, mit dem die Position des Patienten erfaßt werden kann. Vorzugsweise sind zwei Sensoren vorgesehen, wobei jedoch auch vorgesehen sein kann, daß nur ein Sensor am Hexapod bzw. Linearbeschleuniger bzw. Kollimator vorgesehen ist und der andere an einem beliebigen anderen Punkt im Behandlungsraum. Dadurch ist eine genaue Positionsbestimmung des Patienten möglich, da zumindest zwei Bilder erzeugt werden und miteinander verglichen werden können.
Ein besonders bevorzugtes Ausführungsbeispiel der Erfindung sieht vor, daß der Hexapod so steuerbar ist, daß der Behandlungsstrahl der Tumorkontur nachführbar ist. Eine derartige Steuerung kann beispielsweise vorsehen, daß mittels Verfahren, die ein dreidimensionales Bild erzeugen, beispielsweise der Computertomographie (CT) , die Tumorkontur und die Position des Tumors im Patienten erfaßt werden. Anhand dieser Daten wird dann mittels des Hexapoden und des von ihm eingestellten Strahlführungselements der Behandlungsstrahl so ausgerichtet und bewegt, daß der Behandlungsstrahl die Konturen des Tumors nachfährt. Dadurch wird zum einen erzielt, daß der Tumor vollständig bestrahlt wird, und zum anderen verhindert, daß benachbartes Gewebe mit von der Bestrahlung betroffen wird. Weiterhin ermöglicht eine Nachführung des Behandlungsstrahls entlang der Tumorkonturen, daß mit einer geringstmöglichen Dosis gearbeitet werden kann, da Unsicherheitsfaktoren bezüglich beispielsweise der Tumorgröße ausgeschaltet sind und dessen gezielte Bestrahlung ermöglicht wird.
Nachfolgend wird die Erfindung anhand der Zeichnung näher erläutert und beschrieben. Hierbei zeigt:
Fig. 1 ein erfindungsgemäßes Strahlentherapiesystem in schematischer Darstellung.
Wie aus (der einzigen) Fig. 1 ersichtlich ist, weist das erfindungsgemäße Strahlentherapiesystem einen
Linearbeschleuniger 1 auf. Der Linearbeschleuniger 1 kann jede beliebige Gestalt annehmen, so kann er beispielsweise als am Boden stehendes Gerät ausgebildet sein, als auch an der Decke montiert sein kann. Weiterhin wird der Linearbeschleuniger 1 in der Regel an einem Gerüst, der sog. Gantry, befestigt sein. Im Linearbeschleuniger wird die zur Behandlung benötigte Strahlung auf bekannte Art und Weise erzeugt. Der Behandlungsstrahl 12, angedeutet durch einen entsprechenden Pfeil, passiert somit den Kopf 2 des Linearbeschleunigers 1. Erfindungsgemäß ist dabei vorgesehen, daß zwischen dem Kopf 2 des Linearbeschleunigers 1 und einem Kollimator 11 ein Hexapod vorgesehen ist. Der Hexapod weist zwei Plattformen 3 und 10 auf, wobei die Plattform 3 am Linearbeschleuniger 1, vorzugsweise an dessen Kopf 2 befestigt ist, und die bewegliche Plattform 10 am Kollimator 11 zu dessen Verstellung befestigt ist. Anstelle eines Kollimators 11 kann auch jedes andere beliebige Bündelungs- oder Strahlführungselement vorgesehen sein, je nach gewünschter Anwendung.
Die Plattformen 3 und 10 des Hexapoden sind ringförmig gestaltet und weisen daher Durchtrittsöffnungen 16 und 17 auf, durch die der Behandlungsstrahl 12 hindurchtritt. Es ist vorzugsweise vorgesehen, daß die Plattform 3 fest mit dem Linearbeschleuniger 1 bzw. dessen Kopf 2 verbunden ist, und so die Plattform des Hexapoden bildet, die in ihrer Position fixiert ist. Die Plattform 10 ist dagegen verstellbar durch Längenveränderung der Streben 4, 5, 6, 7, 8 und 9, wobei sich der Begriff "Streben" auch auf gleichwirkende Stempel oder Spindeln bzw. allgemein tranlatorische Antriebe beziehen soll. Die Streben 4, 5, 6, 7, 8 und/oder 9 sind entlang ihrer Längsachse längenverstellbar, wie durch den Pfeil 18 angedeutet. Durch Veränderung der Länge von zumindest einer Strebe 4, 5, 6, 7, 8, 9 wird die verstellbare Plattform 10 somit in ihrer Position verändert und dadurch der Kollimator 11 als Strahlführungselement entsprechend mitbewegt. Dadurch wiederum wird der Einstrahlwinkel des Behandlungsstrahles 12 verändert. Dadurch kann der Behandlungsstrahl 12 so ausgerichtet werden, daß er das Isozentrum 14 in dem Patienten 13, der auf einer Unterlage 15 fixiert ist, möglichst präzise trifft. Als ein derartiges Isozentrum 14 wird beispielsweise ein Tumor verstanden, der mittels Strahlentherapie behandelt werden soll.
Vorzugsweise ist weiterhin ein SensorSystem vorgesehen, mit dem die Position des Patienten 13 auf der Unterlage 15 festgestellt werden kann. Hierfür können beispielsweise an der Plattform 10 Sensoren 20 und 21 vorgesehen sein. Als Sensoren 20 und 21 können beispielsweise Scanning-Systeme verwendet werden, die den Körper und damit die Position des Patienten 13 fortlaufend abtasten bzw. die Oberflächenkontur des Patienten 13 aufnehmen. Die Sensoren 20 und 21 sind dabei auf den Patienten 13 ausgerichtet, wie dies durch die Strichpunkt-Linien 22 und 23 angedeutet ist. Mit Hilfe der Sensoren 20 und 21 wird somit die Position des Patienten 13 auf der Unterlage 15 erfaßt und so fortlaufend überprüft, ob das Isozentrum 14 und der Behandlungsstrahl 12 optimal aufeinander ausgerichtet sind, d.h. ob der Behandlungsstrahl 12 das Isozentrum 14 genau trifft. Werden Abweichungen festgestellt, so ist vorgesehen, daß der oben beschriebene Hexapod dahingehend gesteuert wird, daß der Behandlungsstrahl 12 nachgeführt wird und dieser das Isozentrum 14 wieder genau trifft. Alternativ dazu könnte beispielsweise auch vorgesehen sein, daß bei einer Abweichung der Istposition des Patienten 13 von seiner Sollposition das Bestrahlungssystem abgeschaltet wird, um Schädigungen des umgebenden Gewebes zu vermeiden. In Fig. 1 ist schematisch eine Steuerung 30 dargestellt, die über jeweils einen Signalausgang 31 mit dem Hexapoden verbunden ist. Die Steuerung 30 kann weiterhin verschiedene Eingänge aufweisen, beispielsweise die Eingänge 32 und 33 von den Sensoren 20 und 21. Weiterhin kann die Steuerung 30 auch Signaleingänge von bildgebenden Geräten, z.B. einem CT aufweisen. Hierbei ist vorgesehen, daß die Steuerung 30 jede einzelne Strebe 4, 5, 6, 7, 8, 9 des Hexapoden permanent und gesondert ansteuert, um eine möglichst exakte Ausrichtung des Behandlungsstrahles 12 in allen sechs Freiheitsgraden zu erzielen.
Ein alternatives Ausführungsbeispiel der Erfindung sieht vor, daß die Unterlage 15, auf der der Patient 13 gelagert werden kann, verstellbar gestaltet ist. Diese Verstellbarkeit wird dadurch erzielt, daß ein Hexapod vorgesehen ist, mit dem die Unterlage 15 verstellt werden kann. Das Vorsehen eines Hexapoden zum Verändern der Position der Unterlage 15 bringt den Vorteil mit sich, daß der Hexapod eine Verstellbarkeit in sechs Freiheitsgraden gewährleistet. Dadurch ist die Unterlage 15 und mit ihr der Patient 13 stufenlos und mit nur geringem Platzbedarf in jede Lage bringbar. Weiterhin ermöglicht ein Hexapod eine äußerst präzise und rasche Verstellbarkeit der Unterlage 15.

Claims

Patentansprüche
1. Strahlentherapiesystem, bestehend zumindest aus einer Unterlage, auf der ein Patient gelagert ist, und einer Bestrahlungsvorrichtung, insbesondere einem Linearbeschleuniger, der einen Behandlungsstrahl erzeugt, dadurch gekennzeichnet, daß die Richtung des Behandlungsstrahles (12) mittels zumindest einem Hexapoden (3, 4, 5, 6, 7, 8, 9, 10) einstellbar ist.
2. Strahlentherapiesystem nach Anspruch 1, dadurch gekennzeichnet, daß der Hexapod (3, 4, 5, 6, 7, 8, 9, 10) zwischen Linearbeschleuniger (1) und einem Kollimator (11) angeordnet ist.
3. Strahlentherapiesystem nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß
Plattformen (3, 10) des Hexapoden so gestaltet sind, daß Durchtrittsöffnungen (16, 17) zum Durchtritt des Behandlungsstrahles (12) vorgesehen sind, insbesondere daß die Plattformen (3, 10) ringförmig gestaltet sind.
4. Strahlentherapiesystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß der Hexapod (3, 4, 5, 6, 7, 8, 9, 10) so steuerbar ist, daß der Behandlungsstrahl (12) einer Kontur eines Tumors nachführbar ist.
5. Strahlentherapiesystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß zumindest ein Sensor (20, 21) am Hexapod (3, 4, 5, 6, 7, 8, 9, 10) und/oder Linearbeschleuniger (1) und/oder Kopf (2) des Linearbeschleunigers (1) und/oder Kollimator (11) vorgesehen ist, mit dem die Position des Patienten (13) auf der Unterlage (15) erfaßbar ist.
6. Strahlentherapiesystem nach Anspruch 5, dadurch gekennzeichnet, daß zwei Sensoren (20, 21) zur Lageerfassung vorgesehen sind.
7. Strahlentherapiesystem nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß eine Steuerung (30) vorgesehen ist, die eine mittels der Sensoren (20, 21) erfaßte Istposition mit einer vorgegebenen Sollposition des Patienten (13) vergleicht und den Hexapoden (3, 4, 5, 6, 7, 8, 9, 10) so steuert, daß der Behandlungsstrahl (12) ein Isozentrum (14) im Patienten (13) zumindest annähernd genau trifft.
8. Strahlentherapiesystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Unterlage (15) mittels zumindest einem Hexapoden verstellbar ist.
PCT/EP2002/014163 2001-12-12 2002-12-12 Strahlentherapiesystem WO2003053520A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP02805318A EP1455898A2 (de) 2001-12-12 2002-12-12 Strahlentherapiesystem
JP2003554276A JP2005512699A (ja) 2001-12-12 2002-12-12 放射線療法システム
AU2002356653A AU2002356653A1 (en) 2001-12-12 2002-12-12 Radiotherapy system
US10/498,930 US20050063510A1 (en) 2001-12-12 2002-12-12 Radiotherapy system
US12/369,848 US20090168961A1 (en) 2001-12-12 2009-02-12 Radiotherapy system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10161152.8A DE10161152B4 (de) 2001-12-12 2001-12-12 Positionierung des Behandlungsstrahls eines Strahlentherapiesystems mittels eines Hexapoden
DE10161152.8 2001-12-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/369,848 Continuation US20090168961A1 (en) 2001-12-12 2009-02-12 Radiotherapy system

Publications (2)

Publication Number Publication Date
WO2003053520A2 true WO2003053520A2 (de) 2003-07-03
WO2003053520A3 WO2003053520A3 (de) 2004-02-19

Family

ID=7709006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/014163 WO2003053520A2 (de) 2001-12-12 2002-12-12 Strahlentherapiesystem

Country Status (6)

Country Link
US (2) US20050063510A1 (de)
EP (1) EP1455898A2 (de)
JP (1) JP2005512699A (de)
AU (1) AU2002356653A1 (de)
DE (1) DE10161152B4 (de)
WO (1) WO2003053520A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1664752A2 (de) * 2003-08-12 2006-06-07 Loma Linda University Medical Center Patientenpositionierungssystem für strahlentherapiesystem
WO2008041092A2 (en) * 2006-10-05 2008-04-10 Sala, Remo Patient positioning and moving system for radiotherapy
EP2420288A1 (de) * 2003-08-12 2012-02-22 Loma Linda University Medical Center Patientenpositionierungssystem für Strahlentherapiesystem
US9084886B2 (en) 2006-11-21 2015-07-21 Loma Linda University Medical Center Device and method for immobilizing patients for breast radiation therapy

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1874388A4 (de) * 2005-04-13 2011-09-07 Univ Maryland Techniken zur kompensierung der bewegung eines behandlungsziels in einem patienten
US8747382B2 (en) 2005-04-13 2014-06-10 University Of Maryland, Baltimore Techniques for compensating movement of a treatment target in a patient
US8139718B2 (en) * 2007-10-30 2012-03-20 Elekta Ab (Publ) Radiotherapy apparatus
FR2929195B1 (fr) * 2008-03-27 2010-05-07 Peugeot Citroen Automobiles Sa Projecteur d'eclairage a orientation variable commandee, pour vehicule automobile
US9125570B2 (en) * 2010-07-16 2015-09-08 The Board Of Trustees Of The Leland Stanford Junior University Real-time tomosynthesis guidance for radiation therapy
US9186524B2 (en) 2011-06-29 2015-11-17 Triple Ring Technologies, Inc. Method and apparatus for localized X-ray radiation treatment
DE102012201857B4 (de) * 2012-02-08 2019-08-29 Siemens Healthcare Gmbh C-Bogen Röntgenanlage und Verfahren mit Kompensation von C-Bogen Deformationen und Schwingungen
US8644964B2 (en) * 2012-05-03 2014-02-04 Deere & Company Method and system for controlling movement of an end effector on a machine
DE102012214820A1 (de) * 2012-08-21 2014-02-27 Kuka Laboratories Gmbh Messvorrichtung zur Dosismessung in der Strahlentherapie und Verfahren zum Überprüfen einer Strahlentherapievorrichtung
EP2757571B1 (de) * 2013-01-17 2017-09-20 IMS Nanofabrication AG Hochspannungsisolationsvorrichtung für eine optische Vorrichtung mit geladenen Partikeln
JP2015023286A (ja) 2013-07-17 2015-02-02 アイエムエス ナノファブリケーション アーゲー 複数のブランキングアレイを有するパターン画定装置
EP2913838B1 (de) 2014-02-28 2018-09-19 IMS Nanofabrication GmbH Kompensation defekter Beamlets in einem Ladungsträger-Mehrstrahlbelichtungswerkzeug
EP2937889B1 (de) 2014-04-25 2017-02-15 IMS Nanofabrication AG Mehrstrahliges werkzeug zum schneiden von mustern
EP3358599B1 (de) 2014-05-30 2021-01-27 IMS Nanofabrication GmbH Kompensation von dosisinhomogenität mittels zeilenkalibrierung
JP6890373B2 (ja) 2014-07-10 2021-06-18 アイエムエス ナノファブリケーション ゲーエムベーハー 畳み込みカーネルを使用する粒子ビーム描画機における結像偏向の補償
US9568907B2 (en) 2014-09-05 2017-02-14 Ims Nanofabrication Ag Correction of short-range dislocations in a multi-beam writer
US9653263B2 (en) 2015-03-17 2017-05-16 Ims Nanofabrication Ag Multi-beam writing of pattern areas of relaxed critical dimension
EP3096342B1 (de) 2015-03-18 2017-09-20 IMS Nanofabrication AG Bidirektionales mehrstrahliges schreiben mit doppeldurchgang
US10410831B2 (en) 2015-05-12 2019-09-10 Ims Nanofabrication Gmbh Multi-beam writing using inclined exposure stripes
US10325756B2 (en) 2016-06-13 2019-06-18 Ims Nanofabrication Gmbh Method for compensating pattern placement errors caused by variation of pattern exposure density in a multi-beam writer
US10325757B2 (en) 2017-01-27 2019-06-18 Ims Nanofabrication Gmbh Advanced dose-level quantization of multibeam-writers
US10522329B2 (en) 2017-08-25 2019-12-31 Ims Nanofabrication Gmbh Dose-related feature reshaping in an exposure pattern to be exposed in a multi beam writing apparatus
US11569064B2 (en) 2017-09-18 2023-01-31 Ims Nanofabrication Gmbh Method for irradiating a target using restricted placement grids
US10651010B2 (en) 2018-01-09 2020-05-12 Ims Nanofabrication Gmbh Non-linear dose- and blur-dependent edge placement correction
US10840054B2 (en) 2018-01-30 2020-11-17 Ims Nanofabrication Gmbh Charged-particle source and method for cleaning a charged-particle source using back-sputtering
CN113194835A (zh) * 2018-08-24 2021-07-30 医用射束实验室有限责任公司 束传递平台和定位系统
US11099482B2 (en) 2019-05-03 2021-08-24 Ims Nanofabrication Gmbh Adapting the duration of exposure slots in multi-beam writers
KR20210132599A (ko) 2020-04-24 2021-11-04 아이엠에스 나노패브릭케이션 게엠베하 대전 입자 소스

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19728788A1 (de) 1997-07-05 1999-01-07 Nis Peter Boysen Verfahren zur Patienten-Positionierung relativ zum Behandlungsgerät
DE19805917A1 (de) 1998-02-13 1999-11-04 Reinhold G Mueller Verfahren zur reproduzierbaren Positions- oder Haltungserkennung oder Lagerung von dreidimensionalen, beweglichen und verformbaren Körpern sowie Vorrichtung zur Durchführung des Verfahrens
US6052436A (en) 1997-07-16 2000-04-18 Bionix Development Corporation Radiation therapy device employing cam pin and cam groove guiding system for controlling movement of linear multi-leaf collimator leaves

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2139966A (en) * 1935-03-25 1938-12-13 Maurice A Loebell X-ray apparatus
US3360647A (en) * 1964-09-14 1967-12-26 Varian Associates Electron accelerator with specific deflecting magnet structure and x-ray target
US4628523A (en) * 1985-05-13 1986-12-09 B.V. Optische Industrie De Oude Delft Direction control for radiographic therapy apparatus
JP3305348B2 (ja) * 1992-01-16 2002-07-22 株式会社日立メディコ 定位的放射線治療装置
DE4207632C2 (de) * 1992-03-11 1995-07-20 Bodenseewerk Geraetetech Vorrichtung und Verfahren zur Positionierung eines Körperteils für Behandlungszwecke
US5427097A (en) * 1992-12-10 1995-06-27 Accuray, Inc. Apparatus for and method of carrying out stereotaxic radiosurgery and radiotherapy
US5537452A (en) * 1994-05-10 1996-07-16 Shepherd; Joseph S. Radiation therapy and radiation surgery treatment system and methods of use of same
DE19612091C2 (de) * 1995-09-21 1998-03-19 Knapp Juergen Michael Hubsäule
DE19614643A1 (de) * 1996-04-13 1997-10-16 Werner Dipl Phys Brenneisen Verfahren und Vorrichtung zur stereotaktisch gezielten Bestrahlung eines Zieles
US6005919A (en) * 1996-10-25 1999-12-21 Radionics, Inc. Jaw and circular collimator
DE19649082C1 (de) * 1996-11-27 1998-01-08 Fraunhofer Ges Forschung Vorrichtung zur Fernsteuerung eines Werkzeugs
BE1012534A3 (fr) * 1997-08-04 2000-12-05 Sumitomo Heavy Industries Systeme de lit pour therapie par irradiation.
US6330837B1 (en) * 1997-08-28 2001-12-18 Microdexterity Systems, Inc. Parallel mechanism
US6118848A (en) * 1998-01-14 2000-09-12 Reiffel; Leonard System to stabilize an irradiated internal target
US6459769B1 (en) * 1999-05-03 2002-10-01 Sherwood Services Ag Movable miniature multi-leaf collimator
US6269499B1 (en) * 1999-06-29 2001-08-07 General Electric Company Multi-axis planar mechanism for a positioner patient platform
US6260999B1 (en) * 1999-07-26 2001-07-17 Siemens Medical Systems, Inc. Isocenter localization using electronic portal imaging
US6813336B1 (en) * 2000-08-17 2004-11-02 Siemens Medical Solutions Usa, Inc. High definition conformal arc radiation therapy with a multi-leaf collimator
US6449335B1 (en) * 2000-08-23 2002-09-10 Siemens Medical Solutions Usa, Inc. System and method for optimizing radiation treatment with an intensity modulating multi-leaf collimator
US6628746B2 (en) * 2001-10-30 2003-09-30 Agilent Technologies, Inc. Image-based inspection system including positioning compensation for non-planar targets
US6535574B1 (en) * 2001-11-01 2003-03-18 Siemens Medical Solutions Usa, Inc. Patient positioning system employing surface photogrammetry and portal imaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19728788A1 (de) 1997-07-05 1999-01-07 Nis Peter Boysen Verfahren zur Patienten-Positionierung relativ zum Behandlungsgerät
US6052436A (en) 1997-07-16 2000-04-18 Bionix Development Corporation Radiation therapy device employing cam pin and cam groove guiding system for controlling movement of linear multi-leaf collimator leaves
DE19805917A1 (de) 1998-02-13 1999-11-04 Reinhold G Mueller Verfahren zur reproduzierbaren Positions- oder Haltungserkennung oder Lagerung von dreidimensionalen, beweglichen und verformbaren Körpern sowie Vorrichtung zur Durchführung des Verfahrens

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1664752A2 (de) * 2003-08-12 2006-06-07 Loma Linda University Medical Center Patientenpositionierungssystem für strahlentherapiesystem
EP1664752A4 (de) * 2003-08-12 2009-09-16 Univ Loma Linda Med Patientenpositionierungssystem für strahlentherapiesystem
EP2420288A1 (de) * 2003-08-12 2012-02-22 Loma Linda University Medical Center Patientenpositionierungssystem für Strahlentherapiesystem
EP3153212A1 (de) * 2003-08-12 2017-04-12 Vision RT Limited Überwachungssystem
US9623263B2 (en) 2003-08-12 2017-04-18 Vision Rt Limited Path planning and collision avoidance for movement of instruments in a radiation therapy environment
WO2008041092A2 (en) * 2006-10-05 2008-04-10 Sala, Remo Patient positioning and moving system for radiotherapy
WO2008041092A3 (en) * 2006-10-05 2008-06-05 Sala Remo Patient positioning and moving system for radiotherapy
US9084886B2 (en) 2006-11-21 2015-07-21 Loma Linda University Medical Center Device and method for immobilizing patients for breast radiation therapy

Also Published As

Publication number Publication date
DE10161152B4 (de) 2014-02-13
AU2002356653A1 (en) 2003-07-09
DE10161152A1 (de) 2003-06-18
WO2003053520A3 (de) 2004-02-19
US20090168961A1 (en) 2009-07-02
US20050063510A1 (en) 2005-03-24
EP1455898A2 (de) 2004-09-15
JP2005512699A (ja) 2005-05-12

Similar Documents

Publication Publication Date Title
DE10161152B4 (de) Positionierung des Behandlungsstrahls eines Strahlentherapiesystems mittels eines Hexapoden
EP1524012B1 (de) Vorrichtung zum Plazieren eines Patienten
DE69631736T2 (de) Stereotaktische Radiochirurgie
EP1758649B1 (de) Medizinische strahlentherapieanordnung
EP1483022B1 (de) Vorrichtung zur durchführung und verifikation einer therapeutischen behandlung sowie zugehöriges computerprogramm
EP1785093B1 (de) Bildgebungsvorrichtung und Therapieanlage mit einer solchen Bildgebungsvorrichtung
DE602004011560T2 (de) Mehrzimmer-strahlungsbehandlungssystem
EP1261394B1 (de) Ionenstrahlanlage zur bestrahlung von tumorgeweben
DE102005053719B3 (de) Partikeltherapieanlage, Therapieplan und Bestrahlungsverfahren für eine derartige Partikeltherapieanlage
DE112005002171B4 (de) Teilchenstrahl-Bestrahlungsverfahren und dafür verwendete Teilchenstrahl-Bestrahlungsvorrichtung
DE102006044139B4 (de) Strahlentherapieanlage und Verfahren zur Anpassung eines Bestrahlungsfeldes für einen Bestrahlungsvorgang eines zu bestrahlenden Zielvolumens eines Patienten
EP1785161A1 (de) Behandlungsraum einer Partikeltherapieanlage, Therapieplan, Verfahren zur Erstellung eines Therapieplans und Bestrahlungsverfahren
EP0753285B1 (de) Positionierung und Markierung eines Patienten an Diagnose- und Therapiegeräten
EP0687443B1 (de) Vorrichtung zur Positionierung und Markierung eines Patienten an Diagnosegeräten vor und nach der Durchleuchtung in einem Computertomographen
EP0687444A2 (de) Vorrichtung zur Positionierung und Markierung eines Patienten an Diagnosegeräten, z.B. vor und nach der Durchleuchtung in einem Computertomographen
EP2110161A1 (de) Vorrichtung zur Durchführung einer Bestrahlung und Verfahren zur Überwachung einer solchen
DE19736192C2 (de) Bestrahlungsanlage mit mehreren auf ein Zentrum ausgerichteten Strahlenquellen
EP2186498B1 (de) Patiententransporteinheit und Verfahren zum Transport eines Patienten
EP1860465A2 (de) Positronen-Emissions-Tomograph und Verfahren zur Ermittlung einer bei einer Strahlentherapie applizierten Dosisverteilung
EP1479411B2 (de) Vorrichtung zur überwachten Tumorbestrahlung
DE19614644C2 (de) Vorrichtung zur Lagerung eines Patienten für eine stereotaktisch gezielte Strahlentherapie
DE102011006774B3 (de) Strahlentherapiegerät, das eine flexible Bewegung und Einstellung der Strahlenquelle ermöglicht
DE102011085946B4 (de) Bildgebungsverfahren bei einem Strahlentherapiegerät und Strahlentherapiegerät
DE19808402A1 (de) Stoßwellentherapiesystem und Ortungssystem in einem isozentrischen System
DE102016104324A1 (de) Lagerung und Positionierung von Tumorpatienten zur Strahlentherapie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003554276

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002805318

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002805318

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10498930

Country of ref document: US