WO2003046380A1 - Pompe/moteur a piston axial avec un embrayage et un arbre traversant - Google Patents
Pompe/moteur a piston axial avec un embrayage et un arbre traversant Download PDFInfo
- Publication number
- WO2003046380A1 WO2003046380A1 PCT/IB2002/004688 IB0204688W WO03046380A1 WO 2003046380 A1 WO2003046380 A1 WO 2003046380A1 IB 0204688 W IB0204688 W IB 0204688W WO 03046380 A1 WO03046380 A1 WO 03046380A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clutch
- motor unit
- pump
- shaft member
- drive
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/08—Prime-movers comprising combustion engines and mechanical or fluid energy storing means
- B60K6/12—Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/34—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
- B60K17/356—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B63/00—Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
- F02B63/06—Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B67/00—Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/12—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
- F04B1/128—Driving means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/12—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
- F04B1/20—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
- F04B1/2014—Details or component parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/05—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by internal-combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B23/00—Pumping installations or systems
- F04B23/02—Pumping installations or systems having reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D27/00—Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
- F16D27/10—Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
- F16D27/108—Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
- F16D27/112—Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D31/00—Fluid couplings or clutches with pumping sets of the volumetric type, i.e. in the case of liquid passing a predetermined volume per revolution
- F16D31/02—Fluid couplings or clutches with pumping sets of the volumetric type, i.e. in the case of liquid passing a predetermined volume per revolution using pumps with pistons or plungers working in cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D47/00—Systems of clutches, or clutches and couplings, comprising devices of types grouped under at least two of the preceding guide headings
- F16D47/02—Systems of clutches, or clutches and couplings, comprising devices of types grouped under at least two of the preceding guide headings of which at least one is a coupling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the present invention relates to a hydrostatic pump-motor unit, and more particularly, to such a unit which is intended for use in a vehicle drive system which also includes a mechanical transmission and drive line.
- vehicle drive system which also includes a mechanical transmission and drive line.
- the term "drive line” will be understood to mean and include, but not be limited to, a conventional rear wheel drive type of prop shaft.
- the hydrostatic pump-motor unit of the present invention may be used in connection with a variety of vehicle drive systems, but it is especially adapted for use in a vehicle drive system of the type in which torque is transmitted to the drive wheels from a mechanical transmission during part of the operating cycle, and from the hydrostatic unit during the remainder of the operating cycle, and the invention will be described in connection with such a system. It should be understood that for purposes of the present invention, the vehicle drive system may involve the transmission of torque from the hydrostatic unit to the drive wheels in lieu of torque from the mechanical transmission, or in addition to such torque.
- the present invention is especially advantageous when utilized as part of a vehicle drive system having regenerative braking capability, although it should be clearly understood that the present invention is not so limited.
- the primary drive torque is transmitted from the engine through the conventional mechanical transmission and then by means of a conventional drive line to the rear drive wheels.
- the braking energy is transmitted to the hydrostatic pump-motor unit, which is then acting as a pump, and charges a high pressure accumulator.
- the hydrostatic pump-motor unit operates in a motoring mode, and the high pressure stored in the accumulator is then communicated to the pump-motor unit, and its output torque is transmitted to the vehicle drive line.
- a hydrostatic pump-motor unit which is being used in a system of the type described above needs to include the capability of being selectively clutched to, or de-clutched from, the main vehicle drive line, which further complicates the packaging of the entire system.
- the above and other objects of the invention are accomplished by the provision of an improved hydrostatic pump-motor unit adapted for use on a vehicle having a drive system including an engine, a transmission, and a drive line operable to transmit driving torque from the transmission to a drive axle.
- the hydrostatic pump-motor unit defines a housing including a fluid inlet port and a fluid outlet port, the housing defining a pumping cavity and disposed therein, a rotatable cylinder barrel defining a plurality of generally axially oriented cylinders, and a piston disposed for a reciprocable movement in each cylinder.
- the unit includes a swashplate disposed adjacent the barrel and having the pistons in engagement with the swashplate as the cylinder barrel rotates.
- the improved hydrostatic pump-motor unit is characterized by the unit having bearings adapted to fix the location of the housing relative to the drive line.
- a hollow, generally cylindrical shaft member is adapted to surround the drive line and is surrounded by, and non-rotatably fixed relative to, the cylinder barrel.
- a clutch assembly is disposed adjacent a first end of the shaft member and includes a first clutch member adapted to be fixed for rotation with the drive line and a second clutch member fixed for rotation with the shaft member.
- a clutch assembly has a first condition in which the first and second clutch members are out of driving engagement, and a second condition in which the first and second clutch members are in driving engagement.
- FIG. 1 is a schematic view of a vehicle drive system of the type with which the pump-motor unit of the present invention is especially well suited.
- FIG. 2 is an axial cross-section of one embodiment of the entire hydrostatic pump-motor unit of the present invention.
- FIG. 3 is an enlarged, fragmentary axial cross-section similar to FIG. 2, showing primarily the clutch assembly of the present invention.
- FIG. 4 is an enlarged, fragmentary axial cross-section showing only the pump-motor portion, and on a slightly smaller scale than FIG. 3.
- FIG. 1 illustrates a vehicle drive system of the type with which the present invention is especially well suited.
- the vehicle shown schematically in FIG. 1 has four drive wheels W, although it should be understood that the present invention is not limited to a vehicle having four wheel drive, but could also be used with a vehicle having only two wheel drive, and in that case, the two drive wheels could be either rear drive wheels or front drive wheels.
- Operably associated with each of the drive wheels W is a conventional type of wheel brake B, the details of which form no part of the present invention, and the wheel brakes B will be referred to only briefly hereinafter.
- the vehicle includes a vehicle drive system, generally designated 11 , which includes a vehicle engine 13 and a transmission 15. It should be understood that the particular type of engine 13 and transmission 15 and the construction details thereof form no part of the present invention and therefore, will not be described further herein.
- the drive line 17 includes a forward drive shaft 19, an intermediate drive shaft 21 (see FIG. 2), a rearward drive shaft 23, an inter wheel differential 25 and left and right rear axle shafts 27 and 29.
- the drive system 11 in the subject embodiment, also includes left and right forward axle shafts 31 and 33, respectively.
- the drive system 11 also includes a hydrostatic pump- motor unit, generally designated 35, and disposed forwardly of the pump-motor unit 35 is a valve manifold 37. Attached to a forward portion of the valve manifold 37 is a low pressure accumulator 39, and attached to a rear portion of the valve manifold 37 is a high pressure accumulator 41.
- the valve manifold 37 and the accumulators 39 and 41 are not essential features of the present invention, and therefore, the construction details of each is not illustrated or described herein. Instead, the general function and operation of each will be described briefly, but only to the extent necessary to describe the several operating modes of the pump-motor unit 35 of the present invention.
- the pump-motor unit 35 includes a clutch assembly, generally designated 43 and a pump-motor portion, generally designated 45.
- the intermediate drive shaft 21 extends completely through the hydrostatic pump-motor unit 35 and has, at its forward end, a universal joint coupling (only partially shown) 47 for connection to the forward drive shaft 19.
- the intermediate drive shaft 21 has, at its rearward end, a universal joint coupling 49, for connection to the rearward drive shaft 23.
- the clutch assembly 43 includes a clutch housing 51 which is bolted to a forward flange 53 of a pump-motor housing 55.
- a port housing 57 which defines an inlet port 59 and an outlet port 61.
- the inlet port 59 and outlet port 61 would both be plumbed to the valve manifold 37.
- a hollow, generally cylindrical shaft member 63 Surrounding a major portion of the axial length of the intermediate drive shaft 21 is a hollow, generally cylindrical shaft member 63, having its inside diameter radially spaced apart from the outside diameter of the intermediate drive shaft 21.
- a forward portion 65 of the intermediate drive shaft 21 is rotatably supported, relative to the clutch housing 51 , by means of a ball bearing set 67 while a rearward portion 69 of the intermediate drive shaft 21 is rotatably supported relative to the port housing 57 by means of a ball bearing set 71.
- the shaft hollow member 63 includes forward portion 73 which is rotatably supported relative to the pump-motor housing 55 by means of a ball bearing set 75, while a rearward portion 77 of the shaft member 63 is rotatably supported relative to the port housing 57 by means of a roller bearing set 79. It should be noted that all of the bearing sets 67, 71 , 75 and 79 are shown only schematically in FIG.
- clutch assembly 43 Disposed within the clutch housing 51 is an enlarged, externally splined portion 81 of the intermediate drive shaft 21.
- a clutch pack Surrounding the portion 81 is a clutch pack, including a set of internally splined clutch disks 83, and interleaved with the disks 83 is a set of externally splined clutch disks 85, the clutch disks 85 being in splined engagement with a clutch cage 87.
- the clutch cage 87 surrounds the clutch pack, and includes a radially extending portion 89 which is in splined engagement at its inner periphery with a set of external splines 91 formed about the forward portion 73 of the shaft member 63.
- the clutch cage 87 is fixed to rotate with the shaft member 63.
- a reaction member 90 Disposed immediately adjacent the radially extending portion 89 is a reaction member 90, preferably fixed to the portion 89, the primary function of the reaction member 90 being to provide rigidity to the entire clutch cage 87 whenever the clutch pack is loaded axially (engaged).
- a clutch apply piston 93 Disposed immediately adjacent the clutch pack (clutch disks 83 and 85) is a clutch apply piston 93, and disposed forwardly (to the left in FIG. 3) of the piston 93 is a ball ramp actuator 95, including an input ramp plate 97, an output ramp plate 99, and a plurality of cam balls 101.
- the input ramp plate 97 has its axial position, relative to the intermediate drive shaft 21 , fixed by some form of axial retention and bearing arrangement, generally designated 103, the details of which are not essential features of the invention.
- an electromagnetic coil assembly Disposed radially outwardly of the ball ramp actuator 95 is an electromagnetic coil assembly, generally designated 105, the function of which is to receive an electrical input signal, such as from the vehicle microprocessor, and initiate actuation of the ball ramp actuator 95. This is accomplished by the coil assembly 105 generating an electromagnetic field which is intersected by the input ramp plate 97 such that, when the coil assembly 105 is energized, rotation of the input ramp plate 97 is retarded somewhat which, in turn, causes ramping of the cam balls 101 on the ramp surfaces defined by the ramp plates 97 and 99, thus causing the output ramp plate 99 to be forced rearward (to the right in FIG. 3).
- the clutch assembly 43 is illustrated as including a friction disk and ball ramp actuator type of clutch assembly, the present invention is not so limited.
- the clutch assembly could be friction disks electro-hydraulically actuated, or could comprise a mechanical dog clutch (and a synchronizer, if necessary) actuated electro-mechanical ly, or could be whatever other known type of clutch and actuator meets the particular size, cost and operating criteria for the particular vehicle drive line installation.
- the pump-motor housing 55 defines an internal cavity 111.
- the hollow shaft member 63 extends into and axially through the entire extent of the internal cavity 111.
- the shaft member 63 includes a set of external splines 113, and disposed about that region of the shaft member 63 is a cylinder barrel 115 which includes a set of internal splines 117 in splined engagement with the external splines 113.
- the cylinder barrel 115 is non- rotatable relative to the shaft member 63 but in accordance with a primary aspect of the present invention, the cylinder barrel 115 surrounds the shaft member 63, and therefore, also surrounds the intermediate drive shaft 21.
- the cylinder barrel 115 defines a plurality of cylinder bores 119, and disposed for reciprocating motion within each cylinder bore 119 is a piston 121.
- Each piston 121 includes a generally spherical head 123 which is received within a piston shoe (or "slipper") 125.
- the piston shoes 125 are retained in contact with a swashplate 127 in a manner generally well know to those skilled in the art and which forms no part of the present invention.
- the swashplate 127 is shown in FIG. 4, by way of example only, as being of the "swash and cradle" type although, those skilled in the art will understand that the swashplate 127 could also be of the trunnion type.
- the swashplate 127 is shown in its neutral (zero displacement) position because the pump-motor portion 45 is of the variable displacement type although, within the scope of the present invention, it would be possible for the pump-motor portion 45 to be of the fixed displacement type.
- the pump-motor portion 45 it would be preferred that the pump-motor portion be of the variable displacement type.
- the particular mechanism by which the displacement of the swashplate 127 may be varied, from the neutral position shown in FIG. 4 toward a maximum displacement position in either direction therefrom, is well know to those skilled in the art, does not form an essential part of the invention, and will not be described herein. It is believed to be sufficient for purposes of this specification to merely point out that the displacement of the swashplate 127 would typically be varied by means of a piston and servo-type arrangement, in response to variations in a control pressure, which would typically be communicated to the pump-motor portion 45 from the valve manifold 37.
- valve plate 129 At the rearward end of the cylinder barrel 115 is a valve plate 129 which defines a plurality of inlet and outlet ports 131 , by means of which the cylinder bores 119 are in cyclical communication with the inlet port 59 and with the outlet port 61 , in a manner well know to those skilled in the art.
- the drive system 11 operates in a conventional manner, i.e., drive torque from the engine 13 is transmitted by the transmission 15, and the drive line 17 to the inter-wheel differential 25, and from there, by means of the left and right rear axle shafts 27 and 29 to the rear drive wheels W.
- the drive system 11 operates in substantially the same manner as it would if the pump-motor unit 35, the valve manifold 37 and the accumulators 39 and 41 were not present.
- the initial movement of the brake pedal results in a signal being communicated to both the valve manifold 37 and to the coil assembly 105, such that two things occur.
- the first is that the coil assembly 105 is energized, causing ramp-up of the ball ramp actuator 95 and engagement of the clutch disks 83 and 85, in the manner described previously, such that the hollow shaft member 63 is now fixed to rotate with the intermediate drive shaft 21.
- the second result of the brake pedal being depressed is that a signal is received at the valve manifold 37 which then communicates an appropriate control pressure to vary the displacement of the swashplate 127, and preferably in the system shown, the angle and direction of displacement of the swashplate 127 would correspond generally to the amount of braking "effort" applied by the vehicle operator.
- the pump-motor portion 45 is now being driven by the drive line 17 and is acting as a pump, such that high pressure fluid is pumped out of the outlet port 61 to the valve manifold 37 and from there to the high pressure accumulator 41 , such that the kinetic energy of the moving vehicle is converted to hydraulic energy, and is "stored” within the accumulator 41 , as the vehicle gradually comes to a stop.
- the individual wheel brakes B may also be utilized in bringing the vehicle to a complete stop, although it is probably desirable in such systems to size the pump-motor unit 35 and high pressure accumulator 41 such that all normal braking operations are performed using only the hydraulic system, and the wheel brakes B are needed only in the case of an emergency.
- an appropriate signal is communicated to the hydrostatic pump motor unit 35, and specifically, to the valve manifold 37.
- the valve manifold 37 communicates a control pressure to move the swashplate 127 "over-center" to an appropriate displacement in which the pump-motor portion 45 will now operate as a motor.
- the valve manifold 37 will permit the high pressure fluid stored in the accumulator 41 to flow from the accumulator 41 through the valve manifold 37 to the inlet port 59, and from there into the cylinder bores 119.
- pressurized fluid in the bores 119 With pressurized fluid in the bores 119, the cylinder barrel 115 is now being driven and that drive torque is transmitted to the shaft member 63, and from there through the clutch disks 83 and 85 to the drive line 17, and specifically, to the intermediate drive shaft 21.
- the novel arrangement of the intermediate shaft 21 and the pump-motor unit 35 in accordance with the present invention, provides a greatly improved packaging of the drive system 11 , compared to the arrangement which would result from the use of the known, prior art axial piston pump and clutch assembly.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Motor Power Transmission Devices (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002343170A AU2002343170A1 (en) | 2001-11-30 | 2002-11-08 | Axial piston pump/motor with clutch and through shaft |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/996,885 | 2001-11-30 | ||
US09/996,885 US20030103850A1 (en) | 2001-11-30 | 2001-11-30 | Axial piston pump/motor with clutch and through shaft |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003046380A1 true WO2003046380A1 (fr) | 2003-06-05 |
Family
ID=25543396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2002/004688 WO2003046380A1 (fr) | 2001-11-30 | 2002-11-08 | Pompe/moteur a piston axial avec un embrayage et un arbre traversant |
Country Status (3)
Country | Link |
---|---|
US (1) | US20030103850A1 (fr) |
AU (1) | AU2002343170A1 (fr) |
WO (1) | WO2003046380A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005087528A1 (fr) * | 2004-03-09 | 2005-09-22 | Brueninghaus Hydromatik Gmbh | Systeme d'entrainement avec raccord de pression de commande commun |
US7526919B2 (en) | 2004-03-09 | 2009-05-05 | Brueninghaus Hydromatik Gmbh | Drive system having a common control-pressure connection |
WO2009057082A2 (fr) * | 2007-11-01 | 2009-05-07 | Ducere Holdings (Pty) Limited | Dispositif d'entraînement à mécanisme hydraulique à boucle ouverte pouvant fonctionner comme pompe ou comme moteur |
EP2666657A1 (fr) | 2012-05-24 | 2013-11-27 | Poclain Hydraulics Industrie | Appareil hydraulique comprenant un assemblage amélioré d'une machine hydraulique et d'un embrayage |
WO2014117787A1 (fr) * | 2013-01-30 | 2014-08-07 | Baroud Billal | Pompe hydraulique a pistons axiaux et l'axe a rainure glisseur et distributeur |
EP2848806A1 (fr) * | 2013-08-05 | 2015-03-18 | Linde Hydraulics GmbH & Co. KG | Machine à piston axial hydrostatique dans une construction à axe oblique dotée d'un joint homocinétique destiné à l'entraînement d'un tambour cylindrique |
EP2848807A1 (fr) * | 2013-08-05 | 2015-03-18 | Linde Hydraulics GmbH & Co. KG | Machine à piston axial hydrostatique dans une construction à axe oblique |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10256307A1 (de) * | 2002-12-03 | 2004-06-24 | O&K Orenstein & Koppel Ag | Hydraulische Lenkung für Fahrzeuge |
US7152932B2 (en) | 2004-06-14 | 2006-12-26 | Eaton Corporation | Fluid power accumulator using adsorption |
US7614855B2 (en) * | 2005-03-31 | 2009-11-10 | Arimitsu Of North America, Inc. | Pump and motor assembly |
US20060222524A1 (en) * | 2005-03-31 | 2006-10-05 | Arimitsu Of North America | Bracket for pump and motor assembly |
US20060228233A1 (en) * | 2005-03-31 | 2006-10-12 | Arimitsu Of North America, Inc. | Pump and motor assembly |
US7597172B1 (en) | 2005-04-22 | 2009-10-06 | Parker-Hannifin Corporation | Gear box for hydraulic energy recovery |
US20120207620A1 (en) | 2007-07-12 | 2012-08-16 | Odyne Systems, LLC. | Hybrid vehicle drive system and method and idle reduction system and method |
US8408341B2 (en) | 2007-07-12 | 2013-04-02 | Odyne Systems, Llc | Hybrid vehicle drive system and method and idle reduction system and method |
US9283954B2 (en) | 2007-07-12 | 2016-03-15 | Odyne Systems, Llc | System for and method of fuel optimization in a hybrid vehicle |
US9878616B2 (en) | 2007-07-12 | 2018-01-30 | Power Technology Holdings Llc | Hybrid vehicle drive system and method using split shaft power take off |
US8818588B2 (en) * | 2007-07-12 | 2014-08-26 | Odyne Systems, Llc | Parallel hybrid drive system utilizing power take off connection as transfer for a secondary energy source |
US9061680B2 (en) | 2007-07-12 | 2015-06-23 | Odyne Systems, Llc | Hybrid vehicle drive system and method for fuel reduction during idle |
US8978798B2 (en) * | 2007-10-12 | 2015-03-17 | Odyne Systems, Llc | Hybrid vehicle drive system and method and idle reduction system and method |
US8166753B2 (en) | 2008-11-24 | 2012-05-01 | Robert Bosch Gmbh | Accumulator system and method of monitoring same |
US8302720B2 (en) | 2009-01-28 | 2012-11-06 | Robert Bosch Gmbh | Energy storage system for a hybrid vehicle |
US8186155B2 (en) * | 2009-01-30 | 2012-05-29 | Robert Bosch Gmbh | Hydraulic energy storage system with accumulator and method of varying charge of same |
US7913791B2 (en) * | 2009-05-04 | 2011-03-29 | Robert Bosch Gmbh | Energy storage system for a hybrid vehicle |
US11225240B2 (en) | 2011-12-02 | 2022-01-18 | Power Technology Holdings, Llc | Hybrid vehicle drive system and method for fuel reduction during idle |
US9316216B1 (en) | 2012-03-28 | 2016-04-19 | Pumptec, Inc. | Proportioning pump, control systems and applicator apparatus |
EP3071438A4 (fr) | 2013-11-18 | 2017-08-02 | Power Technology Holdings LLC | Système et procédé d'entraînement de véhicule hybride utilisant une prise de sortie de puissance d'arbre divisé |
JP6168012B2 (ja) * | 2014-08-19 | 2017-07-26 | 井関農機株式会社 | 作業車両 |
US9783065B2 (en) * | 2015-02-04 | 2017-10-10 | Borgwarner Inc. | Energy storage system and method of making and using the same |
US10760557B1 (en) | 2016-05-06 | 2020-09-01 | Pumptec, Inc. | High efficiency, high pressure pump suitable for remote installations and solar power sources |
CA2968937C (fr) * | 2016-06-03 | 2019-09-17 | Fna Group, Inc. | Mecanisme de pompe dote d'un demarreur electrique |
KR101927174B1 (ko) * | 2016-11-01 | 2018-12-10 | 현대자동차 주식회사 | 변속기용 전자 브레이크 장치 |
US10823160B1 (en) | 2017-01-12 | 2020-11-03 | Pumptec Inc. | Compact pump with reduced vibration and reduced thermal degradation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2311115A1 (de) * | 1973-03-07 | 1974-09-12 | Linde Ag | Axialkolbenmaschine mit einem nachgeschalteten umlaufraedergetriebe |
US4441573A (en) * | 1980-09-04 | 1984-04-10 | Advanced Energy Systems Inc. | Fuel-efficient energy storage automotive drive system |
US5927418A (en) * | 1996-06-13 | 1999-07-27 | Exedy Corporation | Power transmission device in a fluid pressure accumulating hybrid vehicle |
DE10055753A1 (de) * | 1999-11-30 | 2001-05-31 | Linde Ag | Hydrostatische Axialkolbenmaschine in Schrägscheibenbauweise |
-
2001
- 2001-11-30 US US09/996,885 patent/US20030103850A1/en not_active Abandoned
-
2002
- 2002-11-08 AU AU2002343170A patent/AU2002343170A1/en not_active Withdrawn
- 2002-11-08 WO PCT/IB2002/004688 patent/WO2003046380A1/fr active Search and Examination
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2311115A1 (de) * | 1973-03-07 | 1974-09-12 | Linde Ag | Axialkolbenmaschine mit einem nachgeschalteten umlaufraedergetriebe |
US4441573A (en) * | 1980-09-04 | 1984-04-10 | Advanced Energy Systems Inc. | Fuel-efficient energy storage automotive drive system |
US5927418A (en) * | 1996-06-13 | 1999-07-27 | Exedy Corporation | Power transmission device in a fluid pressure accumulating hybrid vehicle |
DE10055753A1 (de) * | 1999-11-30 | 2001-05-31 | Linde Ag | Hydrostatische Axialkolbenmaschine in Schrägscheibenbauweise |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005087528A1 (fr) * | 2004-03-09 | 2005-09-22 | Brueninghaus Hydromatik Gmbh | Systeme d'entrainement avec raccord de pression de commande commun |
US7526919B2 (en) | 2004-03-09 | 2009-05-05 | Brueninghaus Hydromatik Gmbh | Drive system having a common control-pressure connection |
WO2009057082A2 (fr) * | 2007-11-01 | 2009-05-07 | Ducere Holdings (Pty) Limited | Dispositif d'entraînement à mécanisme hydraulique à boucle ouverte pouvant fonctionner comme pompe ou comme moteur |
WO2009057082A3 (fr) * | 2007-11-01 | 2009-09-11 | Ducere Holdings (Pty) Limited | Dispositif d'entraînement à mécanisme hydraulique à boucle ouverte pouvant fonctionner comme pompe ou comme moteur |
US8342995B2 (en) | 2007-11-01 | 2013-01-01 | Ducere Holdings (Pty) Limited | Drive arrangement with open loop hydraulic mechanism operable as a pump or a motor |
EP2666657A1 (fr) | 2012-05-24 | 2013-11-27 | Poclain Hydraulics Industrie | Appareil hydraulique comprenant un assemblage amélioré d'une machine hydraulique et d'un embrayage |
FR2990899A1 (fr) * | 2012-05-24 | 2013-11-29 | Poclain Hydraulics Ind | Appareil hydraulique comprenant un assemblage amélioré d'une machine hydraulique et d'un embrayage. |
US9505303B2 (en) | 2012-05-24 | 2016-11-29 | Poclain Hydraulics Industrie | Hydraulic apparatus comprising an improved assembly of a hydraulic machine and a clutch |
WO2014117787A1 (fr) * | 2013-01-30 | 2014-08-07 | Baroud Billal | Pompe hydraulique a pistons axiaux et l'axe a rainure glisseur et distributeur |
EP2848806A1 (fr) * | 2013-08-05 | 2015-03-18 | Linde Hydraulics GmbH & Co. KG | Machine à piston axial hydrostatique dans une construction à axe oblique dotée d'un joint homocinétique destiné à l'entraînement d'un tambour cylindrique |
EP2848807A1 (fr) * | 2013-08-05 | 2015-03-18 | Linde Hydraulics GmbH & Co. KG | Machine à piston axial hydrostatique dans une construction à axe oblique |
US9909575B2 (en) | 2013-08-05 | 2018-03-06 | Linde Hydraulics Gmbh & Co. Kg | Hydrostatic axial piston machine employing a bent-axis construction with a constant velocity joint for driving the cylinder drum |
Also Published As
Publication number | Publication date |
---|---|
US20030103850A1 (en) | 2003-06-05 |
AU2002343170A1 (en) | 2003-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030103850A1 (en) | Axial piston pump/motor with clutch and through shaft | |
EP1628028B1 (fr) | Système d'entrainement hydraulique | |
US5224906A (en) | Hydraulic actuator for clutch assemblies | |
US3770085A (en) | Vehicle clutch and brake | |
US6595338B2 (en) | Torque transfer clutch with linear piston hydraulic clutch actuator | |
US4895236A (en) | Actuator for the frictional engaging device | |
US7204170B2 (en) | Device for transmitting torque between two rotatable, coaxial shaft members | |
US5358455A (en) | Device for transmitting torque between two rotatable shafts | |
JP2010531760A (ja) | アイドル可能な動力伝達ユニット | |
JPH07269592A (ja) | ボールランプ機構及びこれを備えた駆動系クラッチ | |
GB2264758A (en) | Shiftable planetary transmission | |
JP2015533199A (ja) | 試運転のための改良構造を有する油圧装置 | |
US6814686B2 (en) | Dual engine crankshaft coupling arrangement | |
US8132638B2 (en) | Rear drive module wheel disconnect | |
US6508734B2 (en) | Differential lock actuator | |
US7588119B2 (en) | Hydrostatic retarder pump and motor | |
US4852701A (en) | Rear wheel braking system for motorcycle | |
JPS6319748B2 (fr) | ||
US4997071A (en) | Automatic control system for a clutch coupling two rotating shafts | |
US20030096670A1 (en) | Differential transmission apparatus | |
JP2001304298A (ja) | クラッチアセンブリ及びボールランプ機構 | |
US5794751A (en) | Piston for torque transmitting systems | |
US3638772A (en) | Means for prventing reverse drive through a hydrostatic transmission | |
JPH01240351A (ja) | リターダ | |
JP3448336B2 (ja) | 油圧式無段変速機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: JP |