US20060222524A1 - Bracket for pump and motor assembly - Google Patents

Bracket for pump and motor assembly Download PDF

Info

Publication number
US20060222524A1
US20060222524A1 US11/162,201 US16220105A US2006222524A1 US 20060222524 A1 US20060222524 A1 US 20060222524A1 US 16220105 A US16220105 A US 16220105A US 2006222524 A1 US2006222524 A1 US 2006222524A1
Authority
US
United States
Prior art keywords
pump
motor
bracket
output shaft
input shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/162,201
Inventor
James Cook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arimitsu of North America Inc
Original Assignee
Arimitsu of North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/907,430 external-priority patent/US7614855B2/en
Application filed by Arimitsu of North America Inc filed Critical Arimitsu of North America Inc
Priority to US11/162,201 priority Critical patent/US20060222524A1/en
Assigned to ARIMITSU OF NORTH AMERICA reassignment ARIMITSU OF NORTH AMERICA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COOK, II, JAMES E., COOK, JAMES E.
Publication of US20060222524A1 publication Critical patent/US20060222524A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors

Definitions

  • the present invention generally relates to the field of pumps, and more particularly, to pumps that are driven by a motor such as an internal combustion engine, a hydraulic motor or an electric motor.
  • a motor such as an internal combustion engine, a hydraulic motor or an electric motor.
  • Fluid pumping systems are currently used in a wide variety of applications.
  • the fluid pumping systems include a pump head that is driven by a rotary motor, such as an internal combustion engine, a hydraulic motor or an electric motor.
  • a rotary motor such as an internal combustion engine, a hydraulic motor or an electric motor.
  • the pump head When driven by the motor, the pump head often produces a pressurized fluid stream that can be used in any number of applications.
  • One illustrative application is that of a high pressure washing device.
  • High pressure washing devices typically deliver a fluid such as water under relatively high pressure to a surface to be cleaned, stripped or prepared for other treatment.
  • Such pressure washers are produced in a variety of designs and can be used to perform numerous functions in industrial, commercial and home applications.
  • Fluid pumping systems can be either stationary or portable. Stationary fluid pumping systems are generally used in industrial or commercial applications such as in car washes, manufacturing facilities, or the like.
  • Portable fluid pumping systems may include a motor/pump unit that can be carried or wheeled from place to place.
  • fluid pumping systems use a piston pump having one or more reciprocating pistons for delivering liquid under pressure to the pump outlet.
  • piston pumps often have two or more pistons to provide a generally more continuous pressure, higher flow rate, and greater efficiency.
  • Multiple piston pumps often use articulated pistons, or may use a swash plate and linear pistons for pumping the liquid. Other pump designs may also exist.
  • power from the motor is transferred to the rotating input shaft of the pump via one or more belts, gears, or the like.
  • belts, gears or the like can consume significant energy, thereby reducing the power that is actually delivered and available to the pump.
  • the motor may have to be driven harder, or a larger motor may have to be provided. This can increase the cost of operating the fluid pumping system.
  • the use of belts, gears or the like can require significant maintenance, which may also increase the cost of operating the fluid pumping system.
  • the present invention provides a fluid pumping system or assembly that includes a motor and a pump.
  • An output shaft of the motor is directly coupled to an input shaft of the pump.
  • the output shaft of the motor is directly coupled to the input shaft of the pump in such a way that prevents the pump and the motor from moving away from each other during operation, and in some cases, is the primary mechanism for coupling the pump to the motor.
  • Such a configuration may be called a “floating pump mount”, because the pump is primarily coupled to the motor via the shaft connection.
  • the output shaft of the motor may be naturally “aligned” with the input shaft of the pump. There may be some relative movement between the pump and motor housings caused by shaft irregularities, but this relatively movement does not produce the same detrimental effects as a shaft misalignment.
  • a rotational stop mechanism may be provided.
  • the rotational stop mechanism may provide at least one resilient member for absorbing or substantially absorbing at least some of the relative movement between the pump and the motor.
  • the rotational stop mechanism may include a bracket that is coupled between the pump and the motor housings. The at least one resilient member may be situated between the bracket and the motor and/or the bracket and the pump. In some embodiments, the bracket may be adapted to not significantly prevent the pump and motor from moving away from each other during operation.
  • the coupling between the pump input shaft and the motor output shaft may provide the primary mechanism for preventing the pump and motor from moving away from each other during operation.
  • Such a configuration may help keep the output shaft of the motor naturally “aligned” with the input shaft of the pump, while allowing some movement between the motor and pump housings while at the same time preventing the pump from freely rotating with the output shaft of the motor during operation.
  • the motor may have a rotating output shaft with an output shaft bearing
  • the pump may have a rotating input shaft with an input shaft bearing.
  • the input shaft of the pump may be directly coupled to the output shaft of the motor so that the input shaft of the pump and the output shaft of the motor are fixed relatively to one another to prevent the pump and the motor from moving away from each other during operation.
  • the spacing between the output shaft bearing of the motor and the input shaft bearing of the pump may be, for example, less than 2.0 inches, less than 1.0 inches, or less than 0.5 inches.
  • some embodiments may include a set screw in the space between the bearings.
  • the set screw may be used to loosen and/or tighten the coupling between the input shaft of the pump and the output shaft of the motor.
  • the set screw may be loosened to loosen the coupling between the output shaft of the motor and the input shaft of the pump.
  • the pump may then be pulled away from the motor until the input shaft of the pump is disengaged from the output shaft of the motor.
  • a bracket is provided, the pump may be pulled sufficiently far away from the motor so that the bracket also no longer provides any anti-rotational coupling between the pump and the motor.
  • a safety pin may be provided, which once removed, may allow the pump to be pulled sufficiently far away so that the bracket no longer provides any coupling between the pump and the motor.
  • FIG. 1 is a schematic perspective view of a pump assembly in accordance with an illustrative embodiment of the present invention
  • FIG. 2 is a side view of the illustrative pump assembly of FIG. 1 ;
  • FIG. 3 is a front view of an illustrative rotational stop mechanism that may be used to help prevent the pump from freely rotating with the output shaft of the motor during operation;
  • FIG. 4 is a side view of the illustrative rotational stop mechanism of FIG. 3 ;
  • FIG. 5 includes a side view and front view of an illustrative resilient member that may be used to absorb or substantially absorb at least some of the relative movement between the pump and the motor;
  • FIG. 6 is an assembly view of an illustrative piston pump that is suitable for use with the present invention.
  • FIG. 7 is a partial cross-sectional side view of an illustrative connection between the motor output shaft and pump input shaft of FIG. 1 ;
  • FIG. 8 is a partial cross-sectional side view of another illustrative connection between the motor output shaft and pump input shaft of FIG. 1 ;
  • FIG. 9 is a schematic side view of a pump assembly in accordance with another illustrative embodiment of the present invention.
  • FIG. 10 is a schematic side view of a pump assembly in accordance with yet another illustrative embodiment of the present invention.
  • FIG. 11 is a schematic partial-cut away side view of a pump assembly in accordance with yet another illustrative embodiment of the present invention.
  • FIG. 12 is an assembly view of an illustrative piston pump that includes an input shaft that has a hollow shaft end and a solid shaft end extending out of the pump housing;
  • FIG. 13 is a perspective front view of an illustrative bracket in accordance with the present invention.
  • FIG. 14 is a perspective back view of the illustrative bracket of FIG. 13 ;
  • FIG. 15 is a perspective front view of another illustrative bracket in accordance with the present invention.
  • FIGS. 1 is a schematic perspective view of a pump assembly in accordance with an illustrative embodiment of the present invention.
  • FIG. 2 is a side view of the illustrative pump assembly of FIG. 1 .
  • the illustrative pump assembly is generally shown at 10 , and includes a motor 12 and a pump 14 .
  • the motor 12 may be any type of motor that includes a rotating output shaft 20 including, for example, an internal combustion engine, a hydraulic motor or an electric motor.
  • the pump 14 may be any type of pump that includes a rotating input shaft 22 .
  • the illustrative pump 14 has a pump inlet 16 and a pump output 18 .
  • the output shaft 20 of the motor 12 is directly coupled to the input shaft 22 of the pump 14 .
  • the input shaft 22 of the pump 14 may have a hollow shaft end portion that has an output shaft receiving lumen for receiving the output shaft 20 of the motor 12 .
  • the input shaft 22 of the pump 14 may also have a key slot (not shown) that extends along at least part of the output shaft receiving lumen, and the output shaft 20 of the motor 12 may have a mating key member (not shown).
  • the input shaft 22 of the pump 14 may have a key member (not shown) along at least part of the output shaft receiving lumen, and the output shaft 20 of the motor 12 may have a mating key slot.
  • a set screw 24 may extend through a side wall of the input shaft 22 and into the output shaft receiving lumen.
  • the set screw 24 may engage the output shaft 20 of the motor 12 , and when tightened, may secure the connection so that pump 14 is prevented from moving away from the motor 12 , and visa-versa, during operation.
  • Such a configuration may be called a “floating pump mount”, because the pump 14 is primarily coupled to the motor 12 via the shaft connection.
  • the output shaft 20 of the motor 12 may be naturally “aligned” with the input shaft 22 of the pump 14 .
  • a rotational stop mechanism may be provided.
  • One illustrative rotational stop mechanism is generally shown at 28 , and includes a bracket 30 that is coupled between the pump 14 and the motor 12 housings.
  • the bracket 30 is shown bolted or otherwise secured to the housing of the pump 14 , such as by bolt 32 .
  • the motor 12 includes a number of shafts or studs 34 a - 34 b extending out from the motor face 38 , and the bracket 30 includes a number of corresponding holes 36 (see FIG. 3 ) for receiving the studs 34 a - 34 b .
  • the holes 36 may be sized sufficiently large so that a grommet 38 or other resilient member may be placed in the hole and between the studs 34 a - 34 b and the bracket 30 .
  • the bracket 30 and accompanying holes and grommets 38 may absorb or substantially absorb at least some of the relative movement between the pump 14 and the motor 12 .
  • the bracket 30 and grommets 38 merely slide over the studs 34 a - 34 b , and therefore do not significantly prevent the pump 14 and motor 12 from moving away from each other during operation.
  • connection between the pump input shaft 22 and the motor output shaft 20 may provide the primary mechanism for preventing the pump 14 and motor 12 from moving away from each other during operation. It is believed that such a configuration may help keep the output shaft 20 of the motor 12 naturally “aligned” with the input shaft 22 of the pump 14 , while allowing some movement between the motor 12 and pump 14 housings while at the same time preventing the pump 14 from freely rotating with the output shaft 20 of the motor during operation.
  • the pump 14 may present a lateral torque on the bracket 30 because more of the weight of the pump may be laterally offset to one side relative to the input shaft 22 of the pump 14 . Because the grommets 38 may tend to deform slightly under such a lateral torque, even when the pump 14 is not operating, the holes 36 in the bracket 30 may be positioned to compensate for this grommet deformity so that the pump is level at rest. In the illustrative embodiment shown in FIG. 3 , the holes 36 are offset about 1.2 degrees in a clockwise direction about the axis of the input shaft 22 of the pump 14 to compensate for the expected deformity in the grommets 38 .
  • one or more of the studs 34 a - 34 b may include a hole or slot extending in a transverse direction across the stud 34 a - 34 b .
  • a safety pin 40 or other removable mechanical stop may extend through the hole or along the slot. This may help prevent the pump 14 from flying away from the motor 12 in the event that the input shaft 22 of the pump, the output shaft 20 of the motor 12 or the shaft connection should break or otherwise come loose during operation.
  • the set screw 24 may be used to loosen and/or tighten the coupling between the input shaft 22 of the pump 14 and the output shaft 20 of the motor 12 .
  • the pump 14 may be easily removed from the motor 12 by simply loosening the set screw 24 , which loosens the coupling between the output shaft 20 of the motor 12 and the input shaft 22 of the pump 14 .
  • the pump 14 may then be pulled away from the motor 12 until the input shaft 22 of the pump 14 is disengaged from the output shaft 20 of the motor 12 .
  • a bracket 30 is provided, such as shown in FIGS.
  • the pump 14 may be pulled sufficiently far away from the motor 12 so that the bracket 30 slides off the end of the studs 34 a - 34 b and no longer provides any anti-rotational coupling between the pump 14 and the motor 12 .
  • the safety pin 40 may first be removed, which may allow the bracket 30 to be slid off the end of the studs 34 a - 34 b.
  • the resulting pump assembly may produce relative low noise levels when operating.
  • FIG. 3 is a front view of an illustrative rotational stop mechanism that may be used to help prevent the pump from freely rotating with the output shaft of the motor during operation.
  • FIG. 4 is a side view of the illustrative rotational stop mechanism of FIG. 3 .
  • the rotation stop mechanism shown in FIGS. 3-4 includes a bracket 30 that extends between the pump 14 and the motor 12 .
  • the illustrative bracket 30 may be bolted or otherwise secured to the housing of the pump 14 , such as by bolt 32 (see FIG. 2 ).
  • Bolt holes 50 a and 50 b may be provided in a first flange 52 of the bracket 30 to accept two such bolts 32 .
  • a second flange 54 may extend substantially parallel to the first flange 52 , and may be connected to the first flange 52 by an intermediate leg portion 63 , as best shown in FIG. 4 .
  • the second flange 52 may include a number of stud receiving holes 36 (four are shown), each for accepting a corresponding stud 34 a - 34 b .
  • the stud receiving holes 36 may be sized sufficiently large so that a grommet 38 or other resilient member may be placed in the hole and between the studs 34 a - 34 b and the bracket 30 .
  • the bracket 30 may also include a shaft receiving hole 58 for allowing the shaft of the pump 14 and/or the shaft of the motor 12 to pass through the bracket 30 .
  • the bracket 30 may also include one or more accessory mounting holes, such as accessory mounting holes 60 and 62 .
  • Accessory mounting holes 60 and 62 may be adapted to accept and mount one or more accessories to the bracket 30 , such as a pressure gauge, a valve or any other suitable accessory, as desired.
  • FIG. 5 includes a side view and front view of an illustrative resilient member that may be used to absorb or substantially absorb at least some of the relative movement between the pump and the motor.
  • the resilient member is shown as a rubber grommet 38 a .
  • any suitable resilient member may be used, and may be formed from any suitable material, as desired.
  • the illustrative grommet 38 a includes a first side member 70 joined to second side member 72 by a reduced diameter central member 74 .
  • the reduced diameter central member 74 may be situated in one of the holes 36 of the bracket 30 (see, for example, FIG. 2 ), with the first side member 70 overlapping one side of the bracket 30 and the second side member 72 overlapping the opposite side of the bracket 30 .
  • the first side member 70 and the second side member 72 may tend to hold the grommet 38 a in place.
  • the illustrative grommet 38 a includes a central hole or bore 80 that is adapted to receive a corresponding one of the studs 34 b .
  • the grommet 38 a may absorb or substantially absorb at least some of the relative movement between the pump and the motor. It is contemplated that, in some embodiments, a grommet similar to that shown in FIG. 5 may be installed in each of the holes 36 of the bracket of FIG. 3 .
  • FIG. 6 is an assembly view of an illustrative piston pump 14 that is suitable for use with the present invention.
  • the pump shown in FIG. 6 is similar to a pump that is commercially available from Arimitsu of North America, located in Ramsey, Minn.
  • the input drive shaft 92 shown in FIG. 6 has been modified to include a hollow shaft portion 93 that is adapted to receive an output shaft of a motor, as further described herein.
  • the illustrative piston pump includes a pump housing 90 that receives the input shaft 92 .
  • a first side bearing 94 and a second side bearing 96 are provided to support the input shaft 92 in the pump housing 90 , and allow the input shaft 92 can freely rotate in the pump housing 90 .
  • a seal 97 and cover 98 provide protection and support to bearing 94 .
  • a seal 99 and cover 100 provide protection and support to bearing 94 .
  • the particular pump 14 shown in FIG. 6 includes three pistons, including a piston 102 .
  • the pistons are driven in a reciprocating fashion as the input shaft 92 is rotated, which produces a pumping action between the input port 16 and the output port 18 .
  • the housing 90 may be at least partially filled with oil or other lubricant during operation to help lubricate the various components therein. In some cases, it is desirable to keep the pump housing 90 fairly level during operation so that the oil or other lubricant can properly lubricate all of the desired components in the pump.
  • FIG. 7 is a partial cross-sectional side view of an illustrative connection between the motor output shaft 20 and the pump input shaft 22 of FIG. 1 .
  • the pump input shaft 22 includes a hollow shaft portion 93 that extends from the end of the input shaft 22 for a distance.
  • the hollow shaft portion 93 has an output shaft receiving lumen for receiving the output shaft 20 of the motor 12 .
  • the input shaft 22 of the pump 14 may have a key slot (not shown) that extends along at least part of the output shaft receiving lumen, and the output shaft 20 of the motor 12 may have a mating key member (not shown).
  • the input shaft 22 of the pump 14 may have a key member (not shown) along at least part of the output shaft receiving lumen, and the output shaft 20 of the motor 12 may have a mating key slot.
  • a set screw 24 may extend through a side wall of the input shaft 22 and into the output shaft receiving lumen.
  • the set screw 24 may engage the output shaft 20 of the motor 12 , and when tightened, may secure the connection so that pump 14 is prevented from moving away from the motor 12 , and visa-versa, during operation.
  • Such a configuration may be called a “floating pump mount”, because the pump 14 is primarily coupled to the motor 12 via the shaft connection.
  • the output shaft 20 of the motor 12 may be naturally “aligned” with the input shaft 22 of the pump 14 .
  • the output shaft 20 of the motor 12 may be supported by an output shaft bearing 110
  • the input shaft 22 of the pump 14 may be supported by an input shaft bearing 96 .
  • the direct connection between the output shaft 20 of the motor 12 and the input shaft 22 of the pump 14 may allow the spacing between the output shaft bearing 110 of the motor 12 and the input shaft bearing 96 of the pump 14 to be, for example, less than 2.0 inches, less than 1.0 inches, or less than 0.5 inches.
  • the set screw 24 may be positioned in the space between the bearings 110 and 96 , which in some cases, may allow the set screw 24 to be accessed and manipulated by the user of the pump assembly. As noted above, the set screw 24 may be used to loosen and/or tighten the coupling between the input shaft 22 of the pump 14 and the output shaft 20 of the motor 12 .
  • FIG. 8 is a partial cross-sectional side view of another illustrative connection between the motor output shaft and pump input shaft of FIG. 1 .
  • This illustrative embodiment is similar that shown in FIG. 7 , except that the hollow shaft portion 93 of the input shaft 22 of the pump 14 has a tapered diameter along its length. That is, the output shaft receiving lumen of the input shaft 22 of the pump 14 may have an inner dimension that decreases away from the end of the input shaft 22 . In some cases, this may make it easier to remove the output shaft 20 of the motor 12 from the output shaft receiving lumen after securing mechanism therebetween is loosened.
  • the securing mechanism between the output shaft 20 of the motor 12 and the input shaft 22 of the pump 14 includes a bolt 112 .
  • the bolt 112 extends down the center of the input shaft 22 of the pump 14 and is threaded into the distal end of the output shaft 20 of the motor 12 . This may help secure the input shaft 22 of the pump 14 to the output shaft 22 of the motor 12 . While a bolt 112 is shown in FIG. 8 , it is contemplated that the input shaft 22 of the pump 14 may be selectively secured to the output shaft 22 of the motor 12 by any suitable securing mechanism, including the use of a set screw, as desired.
  • the output shaft 20 of the motor 12 may include a step 115 to a reduced diameter, which is spaced slightly from the end of the input shaft 22 of the pump 14 when the input shaft 22 of the pump 14 is fully engaged with the output shaft 22 of the motor 12 .
  • the space may be, for example, in the 1/16 to 1 ⁇ 4 inch range, but other spacing may also be used.
  • a screw driver or the like may be inserted into the space between the step 115 and the end of the input shaft 22 of the pump 14 , and pivoted or struck with a hammer to help release the output shaft 20 of the motor 12 from the output shaft receiving lumen of the input shaft 22 of the pump.
  • the configuration of the input shaft of the pump and the output shaft of the motor as described above may be reversed. That is, and in some embodiments, the motor may include a tapered hollow shaft end, and the pump may include a tapered input shaft end along with a step that is spaced slightly from the end of the motor shaft when the pump shaft is fully engaged with the motor shaft, if desired.
  • FIG. 9 is a schematic side view of a pump assembly 140 in accordance with another illustrative embodiment of the present invention.
  • This illustrative embodiment is similar to that described above, except that the bracket 30 is replaced with a different bracket 150 configuration.
  • a first flange 160 of bracket 150 is shown bolted to motor housing 12 by bolt 162 .
  • the first flange 162 may be bolted or otherwise attached to the mounting feet of the motor 12 , or any other suitable location. It is contemplated that rather than rigidly attaching the first flange 162 to the motor housing 12 , a resilient member may be interposed between the first flange and the motor housing, if desired.
  • a second flange 156 of bracket 150 may be coupled to the pump 14 .
  • a post or stud 152 may extend from the pump housing 14 .
  • a hole may be provided in the second flange 156 that receives the post or stud 152 .
  • a resilient member, such as a grommet 158 may be positioned in the hole to absorb or substantially absorb at least some of the relative movement between the pump 14 and the motor 12 .
  • FIG. 10 is a schematic side view of a pump assembly 178 in accordance with yet another illustrative embodiment of the present invention.
  • a pump 180 includes a pump housing that has a bracket like portion 182 .
  • the bracket like portion 182 may be molded with the reminder of the pump housing, or may be separately formed and attached to the pump housing.
  • the bracket like portion 182 includes one or more holes.
  • the one or more holes may be adapted to receive one or more studs from the motor housing 12 , as well as a grommet or the like similar to that discussed above.
  • a threaded rubber grommet 192 may be used.
  • the threaded rubber grommet 192 may include, for example, two metal threaded mounting holes, one on each side. A rubber plug, bobbin or other resilient member may be interposed therebetween.
  • One of the threaded mounting holes may be threaded or otherwise attached to the end of a stud, such as stud 188 , that extends from the motor 12 .
  • the other threaded mounting hole may be threaded or otherwise attached to a bolt 194 or the like that extends through one of the holes in bracket like portion 182 .
  • a nut 193 may then be tightened onto the bolt 194 to secure the connection.
  • the threaded rubber grommet 192 may provide a resilient connection between each of the studs 188 and the pump housing.
  • FIG. 11 is a schematic partial-cut away side view of a pump assembly 200 in accordance with yet another illustrative embodiment of the present invention.
  • the pump 180 is similar to that shown and described above with respect to FIG. 10 , and includes a pump housing with a bracket like portion 182 .
  • the bracket like portion 182 includes one or more holes.
  • one or more resilient members such as resilient members 204 a and 204 b , are secured to the bracket like portion 182 and extend away from the pump housing and toward the motor 202 .
  • the motor housing of the motor 202 has a front face 206 with depressions or recesses 208 a and 208 b that may match the shape and are adapted to receive the resilient members 204 a and 204 b .
  • a space is provided between the motor housing and the bracket like portion 182 so that there is no direct contact therebetween (other than through the resilient members 204 a and 204 b ).
  • the resilient members 204 a and 204 b may provide a resilient connection between the motor 202 and the pump 180 .
  • FIG. 12 is an assembly view of an illustrative piston pump 228 that includes an input shaft 230 that has a hollow shaft end 231 and a solid shaft end 232 , each extending out of a respective end of the pump housing 234 .
  • the input shaft 230 may have a hollow shaft end and both ends, if desired.
  • the hollow shaft end 231 is adapted to receive an output shaft of a motor, as further described herein, and the solid shaft end 232 is not adapted to receive an output shaft of a motor, but rather is adapted to be selectively connected to a pulley, gear or other accessory.
  • a cover 236 may be provided to cover either the solid shaft end 232 or the hollow shaft end 231 , when either is not currently in use.
  • Such a configuration may allow the pump to be more easily adapted to different pump assembly configurations.
  • a motor that includes a solid shaft is used to directly drive the pump 228
  • the output shaft of the motor may be received by a shaft receiving lumen 233 of the hollow shaft end 231 , as described above.
  • a pulley, gear or other accessory may be mounted to the solid shaft end 232 .
  • the solid shaft end 232 may have one or more threaded holes or the like to aid in securing a pulley, gear or other accessory, but in the illustrative embodiment, it is not a “hollow” shaft in the sense that it is adapted to receive an output shaft of a motor.
  • the cover 236 may be provided over whichever shaft end is currently not in use.
  • a shaft cover such as shaft cover 237
  • the shaft cover 237 may include a hole 239 through the housing to allow the shaft end 231 to extend therethrough.
  • the shaft cover 237 may provide additional safety by helping to prevent a user from coming into contact with at least part of the spinning shaft end 231 .
  • the shaft 230 may be removed from the pump housing 234 and reversed in position, so that the hollow shaft end 231 extends out of the pump housing 234 in a leftward direction in FIG. 12 , and the solid shaft end 232 extends out in a rightward direction. This may further increase the flexibility in mounting the pump 228 in different pump assembly configurations.
  • FIG. 13 is a perspective front view of another illustrative bracket 300 in accordance with the present invention.
  • the illustrative bracket 300 shown in FIG. 13 may help prevent a pump from freely rotating with the output shaft of the motor, similar to that described above with respect to brackets 30 and 182 , discussed above.
  • the bracket 300 may also provide an increased level protection for users of the pump and motor from being injured by the rotating motor shaft.
  • the illustrative bracket 300 includes a body 302 situated around the output shaft of the motor and the input shaft of the pump. Additionally, the illustrative bracket 300 may be resiliently mounted between the pump and the motor, similar to that described above with respect to brackets 30 and 182 . In some cases, the bracket 300 may be made from a rigid material such as hard plastic or steel, and resiliently mounted by including at least one resilient member, such as a resilient grommet 314 , between the bracket 300 and a motor bolt or pin, and/or between the bracket 300 and a pump bolt or pin.
  • a resilient grommet 314 between the bracket 300 and a motor bolt or pin, and/or between the bracket 300 and a pump bolt or pin.
  • the bracket 300 itself may be made from or include a material or material section that absorbs or substantially absorbs at least some of the relative movement between the pump and the motor caused by, for example, slight misalignments between the motor drive shaft and the pump input shaft.
  • the bracket 300 may include a material such as rubber or any other suitable resilient material.
  • the entire bracket 300 may be made from rubber, or certain sections such as portion 302 may be made from a rubber.
  • the illustrative bracket 300 may include a first face 304 situated adjacent to the motor housing and a second face 306 situated adjacent the pump housing.
  • the first face 304 may be affixed to the motor housing via one or more bolts or pins, as described above.
  • the second face 306 may be affixed to the pump housing via one or more bolts or pins.
  • at least one resilient member such as a resilient grommet 314 , may be provided between the bracket 300 and a motor bolt or pin, and/or between the bracket 300 and a pump bolt or pin, to help absorb at least some of the relative movement between the pump and the motor caused by, for example, slight misalignments between the motor drive shaft and the pump input shaft.
  • a resilient member may be provided in each of holes 308 in the first face 304 , and/or in each of the holes 310 of the second face 306 .
  • a body portion 302 is shown extending between the first face 304 and the second face 306 .
  • the body portion 302 may be cone shaped as shown, tubular shaped (see FIG. 15 ), or any other suitable shape, as desired.
  • the bracket 300 When the bracket 300 is installed, the body portion 302 is adapted to be situated around the output shaft of the motor and the input shaft of the pump.
  • the illustrative first face 304 of the bracket 300 adjacent the motor include a radially outward extending flange.
  • the flange may help facilitate the mounting of the bracket 300 to the motor housing.
  • the illustrative first face 304 may also have at least one hole sized to receive one or more bolts, studs or pins extending from the motor housing face.
  • the illustrative at least one hole may have at least one resilient member, such as for example a resilient grommet 314 , wherein the resilient member may be sized to receive the bolts, studs or pins extending from the motor housing face.
  • the second face 306 of the bracket 300 is shown situated adjacent the pump housing, and may have a radially inward extending flange. In some cases, this flange may help facilitate the mounting of the bracket 300 to the pump housing. Additionally, the illustrative second face 306 may have at least one hole sized to receive bolts, pins or shafts extending from the pump housing face. In some cases, the illustrative at least one hole may include at least one resilient member, such as for example, a resilient grommet 314 , wherein the resilient member is sized to receive the bolts, pins or shafts extending from the pump housing face.
  • the illustrative body portion 302 may include one or more access holes 312 .
  • the one or more access holes 312 may provide an opening in the body 302 to access the output shaft of the motor and/or the input shaft of the pump from outside the body 302 .
  • a set screw may be provided to help couple and decouple the output shaft of the motor and the input shaft of the pump.
  • the one or more access holes 312 may provide access to this set screw.
  • the illustrative opening 312 may be a rectangular opening. However, it is contemplated that the opening may be square, circular, triangular or any other suitable shape as desired. In one illustrative embodiment, the opening may be 1 / 2 inch by 5 / 8 inch, but other sizes may also be used.
  • FIG. 14 is a perspective back view of the illustrative bracket 300 of FIG. 13 .
  • the illustrative bracket 300 may include first face 304 with holes 308 that are adapted for mounting the bracket 300 to the motor.
  • the second face 306 may also include one or more holes 310 that are adapted for mounting the bracket to the pump.
  • Central body portion 302 may extend therebetween.
  • the illustrative central body 302 may be tapered from the motor flange to the pump flange, if desired.
  • first face 304 may have four holes 308 sized to receive four bolts, pins, or shafts that extend from the motor housing face.
  • second face 306 may have four holes 310 sized to receive four bolts, pins or shafts that extend from the pump housing face.
  • the illustrative central body portion 302 may include four openings 312 , for providing access to a set screw or the like that may be used to couple the motor output shaft to the pump input shaft.
  • FIG. 15 is a perspective front view of another illustrative bracket 400 in accordance with the present invention.
  • the illustrative bracket 400 includes a first face 404 with holes 408 that are adapted for mounting the bracket 400 to a motor.
  • a second face 406 which in the illustrative embodiment, also includes one or more holes 410 that are adapted for mounting the bracket to a pump.
  • Central body portion 402 may extend therebetween. This illustrative embodiment is similar to that shown and described with reference to FIGS. 13-14 , except the central body portion 402 is not tapered. Instead, the central body portion 402 extends substantially perpendicularly from the first face 404 and the second face 406 , as shown.
  • the first face 404 may have four holes 408 sized to receive four bolts, pins, or shafts that extend from the motor housing face.
  • the illustrative second face 406 may have four holes 410 sized to receive four bolts, pins or shafts that extend from the pump housing face.
  • the illustrative central body portion 402 may include four openings 412 , for providing access to a set screw or the like that may be used to couple the motor output shaft to the pump input shaft.
  • the number and size of the holes 408 , 412 and 412 are only illustrative, and it is contemplated that these may be adapted to any particular application, as desired.
  • At least one resilient member such as a resilient grommet 414 may be provided between the bracket 400 and a motor bolt or pin, and/or between the bracket 400 and a pump bolt or pin, to help absorb at least some of the relative movement between the pump and the motor caused by, for example, slight misalignments between the motor drive shaft and the pump input shaft.
  • a resilient member may be provided in each of holes 408 in the first face 404 , and/or in each of the holes 410 of the second face 406 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

A fluid pumping system that includes a motor and a pump, wherein an output shaft of the motor is directly coupled to an input shaft of the pump. This coupling between the output shaft of the motor and the input shaft of the pump may be the primary mechanism for coupling the motor to the pump. Such a configuration may be called a “floating pump mount”, because the pump is primarily coupled to the motor via the shaft connection. As a result of this connection, the output shaft of the motor may be naturally “aligned” with the input shaft of the pump. To help prevent the pump from freely rotating with the output shaft of the motor during operation, a rotational stop mechanism may be provided. The rotational stop mechanism may include a bracket that extends between the motor housing and the pump housing. The bracket may be adapted to absorb at least some of any relative movement between the pump and the motor caused by, for example, shaft or coupling irregularities.

Description

  • This application is a continuation-in-part application of co-pending U.S. patent application Ser. No. 10/907,430, filed Mar. 31, 2005, and entitled “PUMP AND MOTOR ASSEMBLY”.
  • FIELD
  • The present invention generally relates to the field of pumps, and more particularly, to pumps that are driven by a motor such as an internal combustion engine, a hydraulic motor or an electric motor.
  • BACKGROUND
  • Fluid pumping systems are currently used in a wide variety of applications. In some cases, the fluid pumping systems include a pump head that is driven by a rotary motor, such as an internal combustion engine, a hydraulic motor or an electric motor. When driven by the motor, the pump head often produces a pressurized fluid stream that can be used in any number of applications. One illustrative application is that of a high pressure washing device. High pressure washing devices typically deliver a fluid such as water under relatively high pressure to a surface to be cleaned, stripped or prepared for other treatment. Such pressure washers are produced in a variety of designs and can be used to perform numerous functions in industrial, commercial and home applications.
  • Fluid pumping systems can be either stationary or portable. Stationary fluid pumping systems are generally used in industrial or commercial applications such as in car washes, manufacturing facilities, or the like. Portable fluid pumping systems may include a motor/pump unit that can be carried or wheeled from place to place.
  • In some cases, fluid pumping systems use a piston pump having one or more reciprocating pistons for delivering liquid under pressure to the pump outlet. Such piston pumps often have two or more pistons to provide a generally more continuous pressure, higher flow rate, and greater efficiency. Multiple piston pumps often use articulated pistons, or may use a swash plate and linear pistons for pumping the liquid. Other pump designs may also exist.
  • In many cases, power from the motor is transferred to the rotating input shaft of the pump via one or more belts, gears, or the like. However, the use of belts, gears or the like can consume significant energy, thereby reducing the power that is actually delivered and available to the pump. Thus, to achieve a desired pumping capacity, the motor may have to be driven harder, or a larger motor may have to be provided. This can increase the cost of operating the fluid pumping system. In addition, the use of belts, gears or the like can require significant maintenance, which may also increase the cost of operating the fluid pumping system.
  • One approach to overcome some of these limitations is to drive the rotating input shaft of the pump directly from the rotating drive shaft of the motor. In some cases, both the motor and the pump are attached to a common substrate with the rotating drive shaft of the motor connected directly to the rotating input shaft of the pump. However, in such systems, the mechanical alignment of the shafts, and the ease with which such alignment may be obtained, are of particular concern. The driving and driven shafts may be said to be perfectly aligned when their axes of rotation are coincident with one another at all times. Such perfect alignment would be ideal, but it is often difficult to achieve. In addition, such shaft misalignments can be static and/or transient. As a practical matter, it is not very economical to hold machining tolerances so closely that shaft misalignments are not of a concern. Shaft misalignment can increase vibration, consume energy, degrade motor and/or pump performance, increase operating noise, accelerate wear and tear as well as have other detrimental effects.
  • SUMMARY
  • The present invention provides a fluid pumping system or assembly that includes a motor and a pump. An output shaft of the motor is directly coupled to an input shaft of the pump. In one illustrative embodiment, the output shaft of the motor is directly coupled to the input shaft of the pump in such a way that prevents the pump and the motor from moving away from each other during operation, and in some cases, is the primary mechanism for coupling the pump to the motor. Such a configuration may be called a “floating pump mount”, because the pump is primarily coupled to the motor via the shaft connection. As a result of this connection, the output shaft of the motor may be naturally “aligned” with the input shaft of the pump. There may be some relative movement between the pump and motor housings caused by shaft irregularities, but this relatively movement does not produce the same detrimental effects as a shaft misalignment.
  • To help prevent the pump from freely rotating with the output shaft of the motor during operation, a rotational stop mechanism may be provided. In addition to preventing the pump from freely rotating with the output shaft of the motor, the rotational stop mechanism may provide at least one resilient member for absorbing or substantially absorbing at least some of the relative movement between the pump and the motor. In some illustrative embodiments, the rotational stop mechanism may include a bracket that is coupled between the pump and the motor housings. The at least one resilient member may be situated between the bracket and the motor and/or the bracket and the pump. In some embodiments, the bracket may be adapted to not significantly prevent the pump and motor from moving away from each other during operation. Instead, and as noted above, the coupling between the pump input shaft and the motor output shaft may provide the primary mechanism for preventing the pump and motor from moving away from each other during operation. Such a configuration may help keep the output shaft of the motor naturally “aligned” with the input shaft of the pump, while allowing some movement between the motor and pump housings while at the same time preventing the pump from freely rotating with the output shaft of the motor during operation.
  • To help reduce the downward torque on the drive shaft of the motor caused by the weight of the pump, it may be beneficial to reduce the distance that the pump is spaced from the motor. In some embodiments, the motor may have a rotating output shaft with an output shaft bearing, and the pump may have a rotating input shaft with an input shaft bearing. As noted above, the input shaft of the pump may be directly coupled to the output shaft of the motor so that the input shaft of the pump and the output shaft of the motor are fixed relatively to one another to prevent the pump and the motor from moving away from each other during operation. To reduce the downward torque on the motor drive shaft, the spacing between the output shaft bearing of the motor and the input shaft bearing of the pump may be, for example, less than 2.0 inches, less than 1.0 inches, or less than 0.5 inches.
  • To help set or release the coupling, some embodiments may include a set screw in the space between the bearings. The set screw may be used to loosen and/or tighten the coupling between the input shaft of the pump and the output shaft of the motor. For example, to remove the pump from the motor, the set screw may be loosened to loosen the coupling between the output shaft of the motor and the input shaft of the pump. The pump may then be pulled away from the motor until the input shaft of the pump is disengaged from the output shaft of the motor. When a bracket is provided, the pump may be pulled sufficiently far away from the motor so that the bracket also no longer provides any anti-rotational coupling between the pump and the motor. In some cases, a safety pin may be provided, which once removed, may allow the pump to be pulled sufficiently far away so that the bracket no longer provides any coupling between the pump and the motor.
  • The above summary is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures and the detailed description which follow more particularly exemplify illustrative embodiments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic perspective view of a pump assembly in accordance with an illustrative embodiment of the present invention;
  • FIG. 2 is a side view of the illustrative pump assembly of FIG. 1;
  • FIG. 3 is a front view of an illustrative rotational stop mechanism that may be used to help prevent the pump from freely rotating with the output shaft of the motor during operation;
  • FIG. 4 is a side view of the illustrative rotational stop mechanism of FIG. 3;
  • FIG. 5 includes a side view and front view of an illustrative resilient member that may be used to absorb or substantially absorb at least some of the relative movement between the pump and the motor;
  • FIG. 6 is an assembly view of an illustrative piston pump that is suitable for use with the present invention;
  • FIG. 7 is a partial cross-sectional side view of an illustrative connection between the motor output shaft and pump input shaft of FIG. 1;
  • FIG. 8 is a partial cross-sectional side view of another illustrative connection between the motor output shaft and pump input shaft of FIG. 1;
  • FIG. 9 is a schematic side view of a pump assembly in accordance with another illustrative embodiment of the present invention;
  • FIG. 10 is a schematic side view of a pump assembly in accordance with yet another illustrative embodiment of the present invention;
  • FIG. 11 is a schematic partial-cut away side view of a pump assembly in accordance with yet another illustrative embodiment of the present invention;
  • FIG. 12 is an assembly view of an illustrative piston pump that includes an input shaft that has a hollow shaft end and a solid shaft end extending out of the pump housing;
  • FIG. 13 is a perspective front view of an illustrative bracket in accordance with the present invention;
  • FIG. 14 is a perspective back view of the illustrative bracket of FIG. 13; and
  • FIG. 15 is a perspective front view of another illustrative bracket in accordance with the present invention.
  • DETAILED DESCRIPTION
  • The following detailed description should be read with reference to the drawings. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
  • FIGS. 1 is a schematic perspective view of a pump assembly in accordance with an illustrative embodiment of the present invention. FIG. 2 is a side view of the illustrative pump assembly of FIG. 1. The illustrative pump assembly is generally shown at 10, and includes a motor 12 and a pump 14. The motor 12 may be any type of motor that includes a rotating output shaft 20 including, for example, an internal combustion engine, a hydraulic motor or an electric motor. The pump 14 may be any type of pump that includes a rotating input shaft 22. The illustrative pump 14 has a pump inlet 16 and a pump output 18.
  • As best shown in FIG. 2, the output shaft 20 of the motor 12 is directly coupled to the input shaft 22 of the pump 14. In some illustrative embodiments, the input shaft 22 of the pump 14 may have a hollow shaft end portion that has an output shaft receiving lumen for receiving the output shaft 20 of the motor 12. The input shaft 22 of the pump 14 may also have a key slot (not shown) that extends along at least part of the output shaft receiving lumen, and the output shaft 20 of the motor 12 may have a mating key member (not shown). Alternatively, or in addition, the input shaft 22 of the pump 14 may have a key member (not shown) along at least part of the output shaft receiving lumen, and the output shaft 20 of the motor 12 may have a mating key slot.
  • To help set or release the coupling between the input shaft 22 of the pump 14 and the output shaft 20 of the motor 12, and in some embodiments, a set screw 24 may extend through a side wall of the input shaft 22 and into the output shaft receiving lumen. The set screw 24 may engage the output shaft 20 of the motor 12, and when tightened, may secure the connection so that pump 14 is prevented from moving away from the motor 12, and visa-versa, during operation. Such a configuration may be called a “floating pump mount”, because the pump 14 is primarily coupled to the motor 12 via the shaft connection. As a result of this connection, the output shaft 20 of the motor 12 may be naturally “aligned” with the input shaft 22 of the pump 14. There may be some relative movement between the pump 14 and motor 12 housings caused by shaft irregularities, but this relatively movement does not produce the same detrimental effects as a shaft misalignment.
  • To help prevent the pump 14 from freely rotating with the output shaft 20 of the motor 12 during operation, a rotational stop mechanism may be provided. One illustrative rotational stop mechanism is generally shown at 28, and includes a bracket 30 that is coupled between the pump 14 and the motor 12 housings. The bracket 30 is shown bolted or otherwise secured to the housing of the pump 14, such as by bolt 32. The motor 12 includes a number of shafts or studs 34 a-34 b extending out from the motor face 38, and the bracket 30 includes a number of corresponding holes 36 (see FIG. 3) for receiving the studs 34 a-34 b. The holes 36 may be sized sufficiently large so that a grommet 38 or other resilient member may be placed in the hole and between the studs 34 a-34 b and the bracket 30. Thus, in addition to preventing the pump 14 from freely rotating with the output shaft 20 of the motor 12, the bracket 30 and accompanying holes and grommets 38, may absorb or substantially absorb at least some of the relative movement between the pump 14 and the motor 12. In this illustrative embodiment, the bracket 30 and grommets 38 merely slide over the studs 34 a-34 b, and therefore do not significantly prevent the pump 14 and motor 12 from moving away from each other during operation. Instead, and as noted above, the connection between the pump input shaft 22 and the motor output shaft 20 may provide the primary mechanism for preventing the pump 14 and motor 12 from moving away from each other during operation. It is believed that such a configuration may help keep the output shaft 20 of the motor 12 naturally “aligned” with the input shaft 22 of the pump 14, while allowing some movement between the motor 12 and pump 14 housings while at the same time preventing the pump 14 from freely rotating with the output shaft 20 of the motor during operation.
  • In some cases, the pump 14 may present a lateral torque on the bracket 30 because more of the weight of the pump may be laterally offset to one side relative to the input shaft 22 of the pump 14. Because the grommets 38 may tend to deform slightly under such a lateral torque, even when the pump 14 is not operating, the holes 36 in the bracket 30 may be positioned to compensate for this grommet deformity so that the pump is level at rest. In the illustrative embodiment shown in FIG. 3, the holes 36 are offset about 1.2 degrees in a clockwise direction about the axis of the input shaft 22 of the pump 14 to compensate for the expected deformity in the grommets 38.
  • In some cases, one or more of the studs 34 a-34 b may include a hole or slot extending in a transverse direction across the stud 34 a-34 b. A safety pin 40 or other removable mechanical stop may extend through the hole or along the slot. This may help prevent the pump 14 from flying away from the motor 12 in the event that the input shaft 22 of the pump, the output shaft 20 of the motor 12 or the shaft connection should break or otherwise come loose during operation.
  • As detailed above, the set screw 24 may be used to loosen and/or tighten the coupling between the input shaft 22 of the pump 14 and the output shaft 20 of the motor 12. Thus, and in some illustrative embodiments, the pump 14 may be easily removed from the motor 12 by simply loosening the set screw 24, which loosens the coupling between the output shaft 20 of the motor 12 and the input shaft 22 of the pump 14. The pump 14 may then be pulled away from the motor 12 until the input shaft 22 of the pump 14 is disengaged from the output shaft 20 of the motor 12. When a bracket 30 is provided, such as shown in FIGS. 1-2, the pump 14 may be pulled sufficiently far away from the motor 12 so that the bracket 30 slides off the end of the studs 34 a-34 b and no longer provides any anti-rotational coupling between the pump 14 and the motor 12. When a safety pin 40 is provided, the safety pin 40 may first be removed, which may allow the bracket 30 to be slid off the end of the studs 34 a-34 b.
  • It has been found that by providing a direct coupling between the input shaft 22 of the pump 14 and the output shaft 20 of the motor 12, as well as a rotational stop mechanism with one or more resilient members interposed between the rotational stop mechanism and the pump and/or motor, the resulting pump assembly may produce relative low noise levels when operating.
  • FIG. 3 is a front view of an illustrative rotational stop mechanism that may be used to help prevent the pump from freely rotating with the output shaft of the motor during operation. FIG. 4 is a side view of the illustrative rotational stop mechanism of FIG. 3. The rotation stop mechanism shown in FIGS. 3-4 includes a bracket 30 that extends between the pump 14 and the motor 12. The illustrative bracket 30 may be bolted or otherwise secured to the housing of the pump 14, such as by bolt 32 (see FIG. 2). Bolt holes 50 a and 50 b may be provided in a first flange 52 of the bracket 30 to accept two such bolts 32. A second flange 54 may extend substantially parallel to the first flange 52, and may be connected to the first flange 52 by an intermediate leg portion 63, as best shown in FIG. 4. The second flange 52 may include a number of stud receiving holes 36 (four are shown), each for accepting a corresponding stud 34 a-34 b. The stud receiving holes 36 may be sized sufficiently large so that a grommet 38 or other resilient member may be placed in the hole and between the studs 34 a-34 b and the bracket 30.
  • The bracket 30 may also include a shaft receiving hole 58 for allowing the shaft of the pump 14 and/or the shaft of the motor 12 to pass through the bracket 30. In some embodiments, the bracket 30 may also include one or more accessory mounting holes, such as accessory mounting holes 60 and 62. Accessory mounting holes 60 and 62 may be adapted to accept and mount one or more accessories to the bracket 30, such as a pressure gauge, a valve or any other suitable accessory, as desired.
  • FIG. 5 includes a side view and front view of an illustrative resilient member that may be used to absorb or substantially absorb at least some of the relative movement between the pump and the motor. In the illustrative embodiment, the resilient member is shown as a rubber grommet 38 a. However, it is contemplated that any suitable resilient member may be used, and may be formed from any suitable material, as desired.
  • The illustrative grommet 38 a includes a first side member 70 joined to second side member 72 by a reduced diameter central member 74. When installed, the reduced diameter central member 74 may be situated in one of the holes 36 of the bracket 30 (see, for example, FIG. 2), with the first side member 70 overlapping one side of the bracket 30 and the second side member 72 overlapping the opposite side of the bracket 30. The first side member 70 and the second side member 72 may tend to hold the grommet 38 a in place. The illustrative grommet 38 a includes a central hole or bore 80 that is adapted to receive a corresponding one of the studs 34 b. The grommet 38 a may absorb or substantially absorb at least some of the relative movement between the pump and the motor. It is contemplated that, in some embodiments, a grommet similar to that shown in FIG. 5 may be installed in each of the holes 36 of the bracket of FIG. 3.
  • FIG. 6 is an assembly view of an illustrative piston pump 14 that is suitable for use with the present invention. The pump shown in FIG. 6 is similar to a pump that is commercially available from Arimitsu of North America, located in Ramsey, Minn. However, the input drive shaft 92 shown in FIG. 6 has been modified to include a hollow shaft portion 93 that is adapted to receive an output shaft of a motor, as further described herein.
  • The illustrative piston pump includes a pump housing 90 that receives the input shaft 92. A first side bearing 94 and a second side bearing 96 are provided to support the input shaft 92 in the pump housing 90, and allow the input shaft 92 can freely rotate in the pump housing 90. A seal 97 and cover 98 provide protection and support to bearing 94. Likewise, a seal 99 and cover 100 provide protection and support to bearing 94.
  • The particular pump 14 shown in FIG. 6 includes three pistons, including a piston 102. The pistons are driven in a reciprocating fashion as the input shaft 92 is rotated, which produces a pumping action between the input port 16 and the output port 18. The housing 90 may be at least partially filled with oil or other lubricant during operation to help lubricate the various components therein. In some cases, it is desirable to keep the pump housing 90 fairly level during operation so that the oil or other lubricant can properly lubricate all of the desired components in the pump.
  • FIG. 7 is a partial cross-sectional side view of an illustrative connection between the motor output shaft 20 and the pump input shaft 22 of FIG. 1. As can be seen, and in the illustrative embodiment, the pump input shaft 22 includes a hollow shaft portion 93 that extends from the end of the input shaft 22 for a distance. The hollow shaft portion 93 has an output shaft receiving lumen for receiving the output shaft 20 of the motor 12. The input shaft 22 of the pump 14 may have a key slot (not shown) that extends along at least part of the output shaft receiving lumen, and the output shaft 20 of the motor 12 may have a mating key member (not shown). Alternatively, or in addition, the input shaft 22 of the pump 14 may have a key member (not shown) along at least part of the output shaft receiving lumen, and the output shaft 20 of the motor 12 may have a mating key slot.
  • To help set or release the coupling between the input shaft 22 of the pump 14 and the output shaft 20 of the motor 12, and in some embodiments, a set screw 24 may extend through a side wall of the input shaft 22 and into the output shaft receiving lumen. The set screw 24 may engage the output shaft 20 of the motor 12, and when tightened, may secure the connection so that pump 14 is prevented from moving away from the motor 12, and visa-versa, during operation. Such a configuration may be called a “floating pump mount”, because the pump 14 is primarily coupled to the motor 12 via the shaft connection. As a result of this connection, the output shaft 20 of the motor 12 may be naturally “aligned” with the input shaft 22 of the pump 14. There may be some relative movement between the pump 14 and motor 12 housings caused by shaft irregularities, but this relatively movement does not produce the same detrimental effects as a shaft misalignment.
  • To help reduce the downward torque on the drive shaft 20 of the motor 12 caused by the weight of the pump 14 in such a “floating mount configuration”, it may be beneficial to reduce the distance “D” 108 between the pump 14 and the motor 12. In some embodiments, the output shaft 20 of the motor 12 may be supported by an output shaft bearing 110, and the input shaft 22 of the pump 14 may be supported by an input shaft bearing 96. In some embodiments, the direct connection between the output shaft 20 of the motor 12 and the input shaft 22 of the pump 14 may allow the spacing between the output shaft bearing 110 of the motor 12 and the input shaft bearing 96 of the pump 14 to be, for example, less than 2.0 inches, less than 1.0 inches, or less than 0.5 inches. By reducing the downward torque, the wear and tear on the output shaft bearing 110 of the motor 12 may be reduced.
  • When a set screw 24 is provided, the set screw 24 may be positioned in the space between the bearings 110 and 96, which in some cases, may allow the set screw 24 to be accessed and manipulated by the user of the pump assembly. As noted above, the set screw 24 may be used to loosen and/or tighten the coupling between the input shaft 22 of the pump 14 and the output shaft 20 of the motor 12.
  • FIG. 8 is a partial cross-sectional side view of another illustrative connection between the motor output shaft and pump input shaft of FIG. 1. This illustrative embodiment is similar that shown in FIG. 7, except that the hollow shaft portion 93 of the input shaft 22 of the pump 14 has a tapered diameter along its length. That is, the output shaft receiving lumen of the input shaft 22 of the pump 14 may have an inner dimension that decreases away from the end of the input shaft 22. In some cases, this may make it easier to remove the output shaft 20 of the motor 12 from the output shaft receiving lumen after securing mechanism therebetween is loosened.
  • In the illustrative embodiment, the securing mechanism between the output shaft 20 of the motor 12 and the input shaft 22 of the pump 14 includes a bolt 112. The bolt 112 extends down the center of the input shaft 22 of the pump 14 and is threaded into the distal end of the output shaft 20 of the motor 12. This may help secure the input shaft 22 of the pump 14 to the output shaft 22 of the motor 12. While a bolt 112 is shown in FIG. 8, it is contemplated that the input shaft 22 of the pump 14 may be selectively secured to the output shaft 22 of the motor 12 by any suitable securing mechanism, including the use of a set screw, as desired.
  • In some embodiments, and to further aid in the separation between the output shaft 20 of the motor 12 and the input shaft 22 of the pump 14, the output shaft 20 of the motor 12 may include a step 115 to a reduced diameter, which is spaced slightly from the end of the input shaft 22 of the pump 14 when the input shaft 22 of the pump 14 is fully engaged with the output shaft 22 of the motor 12. The space may be, for example, in the 1/16 to ¼ inch range, but other spacing may also be used. Once the bolt 115 is removed, a screw driver or the like may be inserted into the space between the step 115 and the end of the input shaft 22 of the pump 14, and pivoted or struck with a hammer to help release the output shaft 20 of the motor 12 from the output shaft receiving lumen of the input shaft 22 of the pump. It is contemplated that the configuration of the input shaft of the pump and the output shaft of the motor as described above may be reversed. That is, and in some embodiments, the motor may include a tapered hollow shaft end, and the pump may include a tapered input shaft end along with a step that is spaced slightly from the end of the motor shaft when the pump shaft is fully engaged with the motor shaft, if desired.
  • FIG. 9 is a schematic side view of a pump assembly 140 in accordance with another illustrative embodiment of the present invention. This illustrative embodiment is similar to that described above, except that the bracket 30 is replaced with a different bracket 150 configuration. A first flange 160 of bracket 150 is shown bolted to motor housing 12 by bolt 162. In some embodiments, the first flange 162 may be bolted or otherwise attached to the mounting feet of the motor 12, or any other suitable location. It is contemplated that rather than rigidly attaching the first flange 162 to the motor housing 12, a resilient member may be interposed between the first flange and the motor housing, if desired.
  • To help prevent the pump 14 from freely rotating with the output shaft 20 of the motor 12 during operation, a second flange 156 of bracket 150 may be coupled to the pump 14. In the illustrative embodiment, a post or stud 152 may extend from the pump housing 14. A hole may be provided in the second flange 156 that receives the post or stud 152. A resilient member, such as a grommet 158, may be positioned in the hole to absorb or substantially absorb at least some of the relative movement between the pump 14 and the motor 12.
  • FIG. 10 is a schematic side view of a pump assembly 178 in accordance with yet another illustrative embodiment of the present invention. In this illustrative embodiment, a pump 180 includes a pump housing that has a bracket like portion 182. The bracket like portion 182 may be molded with the reminder of the pump housing, or may be separately formed and attached to the pump housing. In the illustrative embodiment, the bracket like portion 182 includes one or more holes. The one or more holes may be adapted to receive one or more studs from the motor housing 12, as well as a grommet or the like similar to that discussed above. For example, and as shown in FIG. 10, a threaded rubber grommet 192 may be used. The threaded rubber grommet 192 may include, for example, two metal threaded mounting holes, one on each side. A rubber plug, bobbin or other resilient member may be interposed therebetween. One of the threaded mounting holes may be threaded or otherwise attached to the end of a stud, such as stud 188, that extends from the motor 12. The other threaded mounting hole may be threaded or otherwise attached to a bolt 194 or the like that extends through one of the holes in bracket like portion 182. A nut 193 may then be tightened onto the bolt 194 to secure the connection. The threaded rubber grommet 192 may provide a resilient connection between each of the studs 188 and the pump housing.
  • FIG. 11 is a schematic partial-cut away side view of a pump assembly 200 in accordance with yet another illustrative embodiment of the present invention. The pump 180 is similar to that shown and described above with respect to FIG. 10, and includes a pump housing with a bracket like portion 182. The bracket like portion 182 includes one or more holes. In this illustrative embodiment, one or more resilient members, such as resilient members 204 a and 204 b, are secured to the bracket like portion 182 and extend away from the pump housing and toward the motor 202. The motor housing of the motor 202 has a front face 206 with depressions or recesses 208 a and 208 b that may match the shape and are adapted to receive the resilient members 204 a and 204 b. A space is provided between the motor housing and the bracket like portion 182 so that there is no direct contact therebetween (other than through the resilient members 204 a and 204 b). The resilient members 204 a and 204 b may provide a resilient connection between the motor 202 and the pump 180.
  • FIG. 12 is an assembly view of an illustrative piston pump 228 that includes an input shaft 230 that has a hollow shaft end 231 and a solid shaft end 232, each extending out of a respective end of the pump housing 234. In some cases, the input shaft 230 may have a hollow shaft end and both ends, if desired. In the illustrative embodiment of FIG. 12, the hollow shaft end 231 is adapted to receive an output shaft of a motor, as further described herein, and the solid shaft end 232 is not adapted to receive an output shaft of a motor, but rather is adapted to be selectively connected to a pulley, gear or other accessory. A cover 236 may be provided to cover either the solid shaft end 232 or the hollow shaft end 231, when either is not currently in use.
  • Such a configuration may allow the pump to be more easily adapted to different pump assembly configurations. For example, when a motor that includes a solid shaft is used to directly drive the pump 228, the output shaft of the motor may be received by a shaft receiving lumen 233 of the hollow shaft end 231, as described above. In those applications where the pump is to be driven by a pulley, gear or other accessory, a pulley, gear or other accessory may be mounted to the solid shaft end 232. The solid shaft end 232 may have one or more threaded holes or the like to aid in securing a pulley, gear or other accessory, but in the illustrative embodiment, it is not a “hollow” shaft in the sense that it is adapted to receive an output shaft of a motor. The cover 236 may be provided over whichever shaft end is currently not in use.
  • In some cases, a shaft cover such as shaft cover 237, may be provided over the shaft end that is currently in use. The shaft cover 237 may include a hole 239 through the housing to allow the shaft end 231 to extend therethrough. The shaft cover 237 may provide additional safety by helping to prevent a user from coming into contact with at least part of the spinning shaft end 231.
  • In some cases, the shaft 230 may be removed from the pump housing 234 and reversed in position, so that the hollow shaft end 231 extends out of the pump housing 234 in a leftward direction in FIG. 12, and the solid shaft end 232 extends out in a rightward direction. This may further increase the flexibility in mounting the pump 228 in different pump assembly configurations.
  • FIG. 13 is a perspective front view of another illustrative bracket 300 in accordance with the present invention. The illustrative bracket 300 shown in FIG. 13 may help prevent a pump from freely rotating with the output shaft of the motor, similar to that described above with respect to brackets 30 and 182, discussed above. However, the bracket 300 may also provide an increased level protection for users of the pump and motor from being injured by the rotating motor shaft.
  • The illustrative bracket 300 includes a body 302 situated around the output shaft of the motor and the input shaft of the pump. Additionally, the illustrative bracket 300 may be resiliently mounted between the pump and the motor, similar to that described above with respect to brackets 30 and 182. In some cases, the bracket 300 may be made from a rigid material such as hard plastic or steel, and resiliently mounted by including at least one resilient member, such as a resilient grommet 314, between the bracket 300 and a motor bolt or pin, and/or between the bracket 300 and a pump bolt or pin. In other cases, the bracket 300 itself may be made from or include a material or material section that absorbs or substantially absorbs at least some of the relative movement between the pump and the motor caused by, for example, slight misalignments between the motor drive shaft and the pump input shaft. In this embodiment, the bracket 300 may include a material such as rubber or any other suitable resilient material. In some cases, the entire bracket 300 may be made from rubber, or certain sections such as portion 302 may be made from a rubber.
  • The illustrative bracket 300 may include a first face 304 situated adjacent to the motor housing and a second face 306 situated adjacent the pump housing. The first face 304 may be affixed to the motor housing via one or more bolts or pins, as described above. Likewise, the second face 306 may be affixed to the pump housing via one or more bolts or pins. In some embodiments, at least one resilient member, such as a resilient grommet 314, may be provided between the bracket 300 and a motor bolt or pin, and/or between the bracket 300 and a pump bolt or pin, to help absorb at least some of the relative movement between the pump and the motor caused by, for example, slight misalignments between the motor drive shaft and the pump input shaft. In some embodiments, a resilient member may be provided in each of holes 308 in the first face 304, and/or in each of the holes 310 of the second face 306.
  • A body portion 302 is shown extending between the first face 304 and the second face 306. In some cases, the body portion 302 may be cone shaped as shown, tubular shaped (see FIG. 15), or any other suitable shape, as desired. When the bracket 300 is installed, the body portion 302 is adapted to be situated around the output shaft of the motor and the input shaft of the pump.
  • The illustrative first face 304 of the bracket 300 adjacent the motor include a radially outward extending flange. In some cases, the flange may help facilitate the mounting of the bracket 300 to the motor housing. The illustrative first face 304 may also have at least one hole sized to receive one or more bolts, studs or pins extending from the motor housing face. In some cases, the illustrative at least one hole may have at least one resilient member, such as for example a resilient grommet 314, wherein the resilient member may be sized to receive the bolts, studs or pins extending from the motor housing face.
  • The second face 306 of the bracket 300 is shown situated adjacent the pump housing, and may have a radially inward extending flange. In some cases, this flange may help facilitate the mounting of the bracket 300 to the pump housing. Additionally, the illustrative second face 306 may have at least one hole sized to receive bolts, pins or shafts extending from the pump housing face. In some cases, the illustrative at least one hole may include at least one resilient member, such as for example, a resilient grommet 314, wherein the resilient member is sized to receive the bolts, pins or shafts extending from the pump housing face.
  • In some embodiments, the illustrative body portion 302 may include one or more access holes 312. The one or more access holes 312 may provide an opening in the body 302 to access the output shaft of the motor and/or the input shaft of the pump from outside the body 302. As noted above, a set screw may be provided to help couple and decouple the output shaft of the motor and the input shaft of the pump. In some cases, the one or more access holes 312 may provide access to this set screw.
  • As depicted, the illustrative opening 312 may be a rectangular opening. However, it is contemplated that the opening may be square, circular, triangular or any other suitable shape as desired. In one illustrative embodiment, the opening may be 1/2 inch by 5/8 inch, but other sizes may also be used.
  • FIG. 14 is a perspective back view of the illustrative bracket 300 of FIG. 13. As noted above, the illustrative bracket 300 may include first face 304 with holes 308 that are adapted for mounting the bracket 300 to the motor. The second face 306 may also include one or more holes 310 that are adapted for mounting the bracket to the pump. Central body portion 302 may extend therebetween. The illustrative central body 302 may be tapered from the motor flange to the pump flange, if desired.
  • As illustrated the first face 304 may have four holes 308 sized to receive four bolts, pins, or shafts that extend from the motor housing face. Likewise, the illustrative second face 306 may have four holes 310 sized to receive four bolts, pins or shafts that extend from the pump housing face. Additionally, the illustrative central body portion 302 may include four openings 312, for providing access to a set screw or the like that may be used to couple the motor output shaft to the pump input shaft.
  • FIG. 15 is a perspective front view of another illustrative bracket 400 in accordance with the present invention. The illustrative bracket 400 includes a first face 404 with holes 408 that are adapted for mounting the bracket 400 to a motor. A second face 406, which in the illustrative embodiment, also includes one or more holes 410 that are adapted for mounting the bracket to a pump. Central body portion 402 may extend therebetween. This illustrative embodiment is similar to that shown and described with reference to FIGS. 13-14, except the central body portion 402 is not tapered. Instead, the central body portion 402 extends substantially perpendicularly from the first face 404 and the second face 406, as shown.
  • As illustrated the first face 404 may have four holes 408 sized to receive four bolts, pins, or shafts that extend from the motor housing face. Likewise, the illustrative second face 406 may have four holes 410 sized to receive four bolts, pins or shafts that extend from the pump housing face. Additionally, the illustrative central body portion 402 may include four openings 412, for providing access to a set screw or the like that may be used to couple the motor output shaft to the pump input shaft. The number and size of the holes 408, 412 and 412 are only illustrative, and it is contemplated that these may be adapted to any particular application, as desired.
  • Like above, it is contemplated that at least one resilient member, such as a resilient grommet 414, may be provided between the bracket 400 and a motor bolt or pin, and/or between the bracket 400 and a pump bolt or pin, to help absorb at least some of the relative movement between the pump and the motor caused by, for example, slight misalignments between the motor drive shaft and the pump input shaft. In some embodiments, a resilient member may be provided in each of holes 408 in the first face 404, and/or in each of the holes 410 of the second face 406.
  • Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departures in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.

Claims (22)

1. A pump assembly, comprising:
a motor having a rotating output shaft;
a pump having a rotating input shaft;
the input shaft of the pump being directly coupled to the output shaft of the motor, the coupling between the input shaft of the pump and the output shaft of the motor preventing the pump and the motor from moving away from each other during operation; and
a bracket adapted to be resiliently mounted between the motor and the pump, the bracket having a body extending between the motor and the pump and situated around at least a majority of the coupling between the output shaft of the motor and the input shaft of the pump, wherein the bracket prevents the pump from freely rotating with the output shaft of the motor and the resilient mount absorbs at least some of the relative movement between the pump and the motor.
2. The pump assembly of claim 1 wherein the bracket has a first face adjacent the motor, a second face adjacent the pump, and the body extending therebetween.
3. The pump assembly of claim 2 wherein the body is a tubular body that is tapered from the first face toward the second face.
4. The pump assembly of claim 3 wherein the motor includes at least one rod, bolt or pin extending out in a parallel or substantially parallel relation to the output shaft of the motor, and the first face of the bracket including at least one hole to receive the at least one rod, bolt or pin.
5. The pump assembly of claim 4 wherein at least one rod, bolt or pin includes a transverse hole extending therethrough for receiving a locking pin.
6. The pump assembly of claim 3 wherein the pump includes at least one rod, bolt or pin extending out in a parallel or substantially parallel relation to the input shaft of the pump, the second face of the bracket including at least one hole to receive the at least one rod, bolt or pin.
7. The pump assembly of claim 3 wherein the tubular body has one or more openings to facilitate access to at least a portion of the motor output shaft and/or the pump input shaft.
8. The pump assembly of claim 1 wherein at least a portion of the bracket comprising a rubber that absorbs at least some of the relative movement between the motor and the pump.
9. The pump assembly of claim 1 wherein the bracket is adapted to be resiliently mounted by including at least one resilient member situated between the bracket and the motor and/or the bracket and the pump.
10. The pump assembly of claim 9 wherein the at least one resilient member is situated between the motor and the first face of the bracket.
11. The pump assembly of claim 9 wherein the at least one resilient member is situated between the pump and the second face of the bracket.
12. The pump assembly of claim 9 wherein the at least one resilient member is a resilient grommet.
13. A pump assembly comprising:
a motor having a rotating output shaft;
a pump having an input shaft that is directly coupled to the output shaft of the motor, the coupling between the input shaft of the pump and the output shaft of the motor being the primary mechanism for preventing the pump and the motor from moving away from each other during operation; and;
a bracket coupled between the pump and the motor for preventing the pump from freely rotating with the output shaft of the motor, the bracket having a body extending therebetween, the body being situated around at least a major portion of the coupling between the output shaft of the motor and the input shaft of the pump; and at least one resilient member situated between the bracket and the motor and/or the bracket and the pump.
14. The pump assembly of claim 13 wherein the tubular body is tapered from the motor to the pump.
15. The pump assembly of claim 13 wherein the at least one resilient member is situated between the bracket and the motor.
16. The pump assembly of claim 15 wherein the motor includes at least one protruding member and the bracket includes at least one hole or opening for receiving the at least one protruding member, and the at least one resilient member including a grommet positioned in the hole or opening of the bracket and around at least part of the at least one protruding member of the motor.
17. The pump assembly of claim 13 wherein the at least one resilient member is situated between the bracket and the pump.
18. The pump assembly of claim 17 wherein the pump includes at least one protruding member and the bracket includes at least one hole or opening for receiving the at least one protruding member, and the at least one resilient member including a grommet positioned in the hole or opening of the bracket and around at least part of the at least one protruding member of the pump.
19. A bracket for coupling a motor and a pump, wherein an output shaft of the motor is directly and rigidly coupled to an input shaft of the pump, the bracket comprising a body extending between the motor and the pump situated around at least a portion of the output shaft of the motor and/or at least a portion of the input shaft of the pump, wherein the bracket is adapted to prevent the pump from freely rotating with the output shaft of the motor, and the bracket includes a resilient mount that absorbs at least some of the relative movement between the pump and the motor.
20. The bracket of claim 19 wherein, wherein the bracket is mounted to the motor and the pump, the bracket is adapted to cover substantially all of the exposed output shaft of the motor and the exposed input shaft of the pump.
21. The bracket of claim 20 wherein the bracket includes one or more holes for providing limited access to the exposed output shaft of the motor and/or the exposed input shaft of the pump.
22. The bracket of claim 19 wherein the body includes a cone shaped portion.
US11/162,201 2005-03-31 2005-08-31 Bracket for pump and motor assembly Abandoned US20060222524A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/162,201 US20060222524A1 (en) 2005-03-31 2005-08-31 Bracket for pump and motor assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/907,430 US7614855B2 (en) 2005-03-31 2005-03-31 Pump and motor assembly
US11/162,201 US20060222524A1 (en) 2005-03-31 2005-08-31 Bracket for pump and motor assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/907,430 Continuation-In-Part US7614855B2 (en) 2005-03-31 2005-03-31 Pump and motor assembly

Publications (1)

Publication Number Publication Date
US20060222524A1 true US20060222524A1 (en) 2006-10-05

Family

ID=46322559

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/162,201 Abandoned US20060222524A1 (en) 2005-03-31 2005-08-31 Bracket for pump and motor assembly

Country Status (1)

Country Link
US (1) US20060222524A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10167863B1 (en) 2012-03-28 2019-01-01 Pumptec, Inc. Proportioning pump, control systems and applicator apparatus
US10760557B1 (en) 2016-05-06 2020-09-01 Pumptec, Inc. High efficiency, high pressure pump suitable for remote installations and solar power sources
US10823160B1 (en) 2017-01-12 2020-11-03 Pumptec Inc. Compact pump with reduced vibration and reduced thermal degradation

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200426A (en) * 1978-10-26 1980-04-29 The Trane Company Hermetic compressor assembly including torque reaction leaf spring means
US4762281A (en) * 1983-04-19 1988-08-09 Hale Fire Pump Company Drive arrangements for comminutor-pump assembly
US4850812A (en) * 1987-09-18 1989-07-25 Versatron Corporation Integrated motor pump combination
US5184941A (en) * 1991-04-10 1993-02-09 A. O. Smith Corporation Mounting support for motor-pump unit
US5221192A (en) * 1992-07-16 1993-06-22 Carrier Corporation Elastomeric compressor stud mount
US5344291A (en) * 1993-07-15 1994-09-06 A. W. Chesterton Company Motor pump power end interconnect
US5354182A (en) * 1993-05-17 1994-10-11 Vickers, Incorporated Unitary electric-motor/hydraulic-pump assembly with noise reduction features
US5823752A (en) * 1997-02-28 1998-10-20 Generac Portable Products, Llc Adapter for mechanically coupling a pump and a prime mover
US5975863A (en) * 1995-12-20 1999-11-02 Officine Meccaniche Faip S.R.L. High pressure water pump system
US6034465A (en) * 1997-08-06 2000-03-07 Shurfle Pump Manufacturing Co. Pump driven by brushless motor
US6336794B1 (en) * 2000-09-05 2002-01-08 Samsung Electronics Co., Ltd. Rotary compressor assembly with improved vibration suppression
US6378832B1 (en) * 1999-10-01 2002-04-30 Carrier Corporation Isolation mounting for a cantilevered load
US6491494B1 (en) * 2000-11-02 2002-12-10 Clyde D. Beckenbach Direct drive water pump
US20030103850A1 (en) * 2001-11-30 2003-06-05 Eaton Corporation Axial piston pump/motor with clutch and through shaft
US20030160525A1 (en) * 2002-02-28 2003-08-28 Kimberlin Robert R. Motor pump with balanced motor rotor
US20040033144A1 (en) * 2002-06-18 2004-02-19 Allan Rush Decoupling mechanism for hydraulic pump/motor assembly
US20040175278A1 (en) * 2000-08-14 2004-09-09 Shane Dexter Pressure washer having oilless high pressure pump

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200426A (en) * 1978-10-26 1980-04-29 The Trane Company Hermetic compressor assembly including torque reaction leaf spring means
US4762281A (en) * 1983-04-19 1988-08-09 Hale Fire Pump Company Drive arrangements for comminutor-pump assembly
US4850812A (en) * 1987-09-18 1989-07-25 Versatron Corporation Integrated motor pump combination
US5184941A (en) * 1991-04-10 1993-02-09 A. O. Smith Corporation Mounting support for motor-pump unit
US5221192A (en) * 1992-07-16 1993-06-22 Carrier Corporation Elastomeric compressor stud mount
US5354182A (en) * 1993-05-17 1994-10-11 Vickers, Incorporated Unitary electric-motor/hydraulic-pump assembly with noise reduction features
US5344291A (en) * 1993-07-15 1994-09-06 A. W. Chesterton Company Motor pump power end interconnect
US5975863A (en) * 1995-12-20 1999-11-02 Officine Meccaniche Faip S.R.L. High pressure water pump system
US5823752A (en) * 1997-02-28 1998-10-20 Generac Portable Products, Llc Adapter for mechanically coupling a pump and a prime mover
US6034465A (en) * 1997-08-06 2000-03-07 Shurfle Pump Manufacturing Co. Pump driven by brushless motor
US6378832B1 (en) * 1999-10-01 2002-04-30 Carrier Corporation Isolation mounting for a cantilevered load
US20040175278A1 (en) * 2000-08-14 2004-09-09 Shane Dexter Pressure washer having oilless high pressure pump
US6336794B1 (en) * 2000-09-05 2002-01-08 Samsung Electronics Co., Ltd. Rotary compressor assembly with improved vibration suppression
US6491494B1 (en) * 2000-11-02 2002-12-10 Clyde D. Beckenbach Direct drive water pump
US20030103850A1 (en) * 2001-11-30 2003-06-05 Eaton Corporation Axial piston pump/motor with clutch and through shaft
US20030160525A1 (en) * 2002-02-28 2003-08-28 Kimberlin Robert R. Motor pump with balanced motor rotor
US20040033144A1 (en) * 2002-06-18 2004-02-19 Allan Rush Decoupling mechanism for hydraulic pump/motor assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10167863B1 (en) 2012-03-28 2019-01-01 Pumptec, Inc. Proportioning pump, control systems and applicator apparatus
US10760557B1 (en) 2016-05-06 2020-09-01 Pumptec, Inc. High efficiency, high pressure pump suitable for remote installations and solar power sources
US10823160B1 (en) 2017-01-12 2020-11-03 Pumptec Inc. Compact pump with reduced vibration and reduced thermal degradation

Similar Documents

Publication Publication Date Title
US7614855B2 (en) Pump and motor assembly
US20060228233A1 (en) Pump and motor assembly
US5975863A (en) High pressure water pump system
US5653584A (en) Motor/pump mounting arrangement for a vertically mounting high pressure water pump
MX2012010606A (en) Propeller assembly comprising one hub and at least two blades.
US20060222524A1 (en) Bracket for pump and motor assembly
EP0577064B1 (en) Rotary pump
CA2498594A1 (en) Assembly including an electric motor and a load
US1663253A (en) of milwaukee
WO2008038894A1 (en) A waterproof-type motor pump for self-cooling
US5980220A (en) Vertically mounted high pressure water pump
US11577810B1 (en) Modular drive apparatus
KR100626278B1 (en) A mountable fluid coupling structure
US20160076635A1 (en) Assembly for adjustably mounting a gear of a pump to a gear of a driver equipment
US6328547B1 (en) Rotary pump
JPH06185438A (en) Innumerable position mounting flange
US11162415B2 (en) Drive mechanism and accessory system
WO2018189094A1 (en) Pump and method of inserting or removing an endless flexible mechanical element from a pump
JP2006521526A (en) Modular gear system for pumps
CN113819219B (en) Easily assemble and prevent leaking formula reduction gear
KR20110120565A (en) Coupling
KR101224284B1 (en) Balance Shaft Module
CN221372333U (en) Water supply device
KR100518027B1 (en) Casing of pump motor
US11981201B2 (en) Accessory rotary drive system and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARIMITSU OF NORTH AMERICA, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COOK, JAMES E.;COOK, II, JAMES E.;REEL/FRAME:016479/0076

Effective date: 20050831

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION