WO2003044845A1 - Tranche epitaxiale en silicium et procede de production de cette derniere - Google Patents

Tranche epitaxiale en silicium et procede de production de cette derniere Download PDF

Info

Publication number
WO2003044845A1
WO2003044845A1 PCT/JP2002/011550 JP0211550W WO03044845A1 WO 2003044845 A1 WO2003044845 A1 WO 2003044845A1 JP 0211550 W JP0211550 W JP 0211550W WO 03044845 A1 WO03044845 A1 WO 03044845A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
type silicon
heat treatment
resistivity
oxygen
Prior art date
Application number
PCT/JP2002/011550
Other languages
English (en)
French (fr)
Inventor
Hiroshi Takeno
Original Assignee
Shin-Etsu Handotai Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co.,Ltd. filed Critical Shin-Etsu Handotai Co.,Ltd.
Publication of WO2003044845A1 publication Critical patent/WO2003044845A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering

Definitions

  • the present invention relates to a silicon epitaxy having excellent gettering ability (hereinafter sometimes simply referred to as epi-wafer) and a method for producing the same.
  • epi-wafer silicon epitaxy having excellent gettering ability
  • CZ Czochralski
  • the silicon single crystal grown by the CZ method contains interstitial oxygen as an impurity at a concentration of about 10 18 atoms / cm 3 .
  • This interstitial oxygen is used in the heat history (hereinafter sometimes abbreviated as crystal heat history) from solidification during the crystal growth process to cooling to room temperature, and heat treatment in the semiconductor device manufacturing process.
  • crystal heat history a precipitate of silicon oxide (hereinafter sometimes referred to as an oxygen precipitate or simply a precipitate) is formed.
  • the oxygen precipitate effectively works as a site for capturing heavy metal impurities mixed in the device process (Internal Gettering : IG), and improves device characteristics and yield. For this reason, IG capability is considered important as one of the silicon wafer quality.
  • the process of oxygen precipitation consists of precipitation nucleation and its growth. Normally, nucleation proceeds in the thermal history of crystallization, and the nucleus grows greatly by subsequent heat treatment such as device processing, and is detected as oxygen precipitate. For this reason, those formed by the heat of crystallization are called Grown-in precipitation nuclei. And Of course, oxygen precipitation nuclei may be formed even in the subsequent heat treatment.
  • the oxygen precipitation nuclei existing before the device process are extremely small and do not have IG capability. However, through the device process, they grow into large oxygen precipitates and have IG capability.
  • an epi wafer in which a silicon single crystal is deposited on the wafer by vapor phase growth may be used. Also in this epi wafer, it is important to add IG capability to the substrate.
  • a method for solving this problem there is a method in which heat treatment is performed before an epitaxial process to form an oxygen precipitate in a substrate and then epitaxial growth is performed to add IG capability to the epitaxial wafer.
  • Typical heat treatments include a heat treatment for outward diffusion of oxygen near the surface at about 110 ° C. or more, a heat treatment for forming oxygen precipitation nuclei inside at about 65 ° C., and a heat treatment for about 100 ° C.
  • There is a three-step heat treatment (hereinafter sometimes referred to as DZ-IG treatment) that combines heat treatment to grow oxygen precipitates greatly at ° C.
  • the reason why oxygen is diffused outward in the first heat treatment is to prevent the formation of oxygen precipitates near the surface of the substrate and to form a defect-free layer (DZ layer).
  • This DZ-IG treatment has an ideal structure in which a DZ layer is formed near the surface and large-sized oxide precipitates with IG capability are formed inside, but the heat treatment time is prolonged. .
  • a wide DZ layer is not required or if it is not necessary to grow large internal oxygen precipitates, about 800 ° C before the epi process
  • a precipitation nucleus is reformed by performing a heat treatment at about 450 to 75 ° C. after the epi-step. In these cases, oxygen precipitates will grow significantly in the device process.
  • nZn + epitaxial wafers using n + substrates with high concentration of n-type dopants are effective as CCD (Charge Coupled Device) materials because of the structural advantage of low substrate resistivity. It is.
  • antimony (Sb) which is used as a dopant for the n + substrate, is added at a high concentration, the precipitation of oxygen is suppressed, so that the heat treatment time for adding IG capability becomes longer. As a result, there is a major problem that the productivity of the epi wafer is reduced.
  • the phosphorous-doped silicon single crystal was easier to control the oxygen concentration during crystal growth than the Sb or As-doped single crystal.
  • Phosphorus is used as the n-type dopant for producing an n-type substrate having a normal resistivity (1 to 100 ⁇ , cm), and is used for epitaxy wafers that do not require very accurate oxygen concentration control.
  • Sb or As is used as the n-type dopant for fabricating an n + substrate with low resistivity (less than 0.02 ⁇ ⁇ cm).
  • the type of dopant used was limited depending on the level of the dopant.
  • n-type substrates with a resistivity in the meantime (0.02 to lQ * cm) are rarely manufactured because there is no need from the device manufacturing side.
  • a phosphorus-doped substrate that can easily control the oxygen concentration was used.
  • an n-type substrate (approximately 10 ⁇ ⁇ cm) to which phosphorus is added at a low concentration is used as the substrate for the CCD, and the substrate is 40 to 50 ⁇ ⁇ .
  • An n-Zn epitaxial wafer having an n epitaxial layer having a high resistivity of m is widely used (for example, see Japanese Patent Application Laid-Open No. 9-321266), and in order to add IG capability, However, the DZ-IG processing was performed as described above. Disclosure of the invention
  • the present invention has been made in view of the above problems, and reduces the productivity of an epitaxy wafer that has an IG capability and is suitable for various devices such as a CCD, and the epitaxy wafer. It is an object of the present invention to provide a method that can be manufactured without causing the production.
  • a silicon epitaxial wafer of the present invention has an n-type silicon substrate on which antimony is added as a dopant and the resistivity is 0.04 Q'cm or more. It is characterized by having an ri-type silicon epitaxial layer having a higher resistivity than that of the silicon substrate.
  • the present inventors have found that the degree to which oxygen precipitation is suppressed depends on the Sb concentration, and have reached the present invention. That is, as is clear from the experimental results described below, even if the resistivity of the Sb-doped substrate is reduced, the oxygen precipitation is suppressed if the resistivity is at least 0.4 Q * cm. I discovered for the first time that there was little.
  • the present invention has been completed based on the idea that sufficient IG capability can be added to the Sb-added substrate without prolonging the heat treatment time for forming the product (without reducing the productivity).
  • the density of oxygen precipitate detected during silicon substrate is preferably at 1 X 1 0 9 Z cm 3 or more.
  • oxygen precipitates that are detected experimentally immediately after the epi process, or are detected experimentally after performing an additional heat treatment to grow oxygen precipitates in the substrate after the epi process if oxygen precipitates if it formed in 1 X 1 0 9 / cm 3 or more high density, can exhibit an excellent IG capability from the initial stage of the device process.
  • oxygen precipitates density oxygen precipitates are detected by performing an additional heat treatment thereafter not be observed 1 X 1 0 9 Z cm 3 or more at a high density immediately after enough Epie
  • small oxygen precipitates are latently present at high density after the epie. Therefore, even if the potential oxygen precipitates are not large enough to have sufficient IG capability immediately after the epi process, they will grow to have IG capability through the device process.
  • the size of oxygen precipitates with IG capability can be detected experimentally
  • the size of the oxygen precipitate (about 30 to 40 nm in diameter) is used as a guide. In general, it is considered that even an oxygen precipitate having a size that cannot be detected experimentally has IG capability. Therefore, it can be determined that the IG capability is sufficient if the size is detectable experimentally.
  • a general DZ-IG treatment can be performed before the Epie process.
  • the temperature is raised from a temperature of about 700 ° C. or less to a temperature of about 100 ° C. or more at a rate of about 5 ° C./min or less for about 0.5 hours or more.
  • a holding heat treatment can be performed. That is, excellent IG capability can be added to the epi-wafer using the Sb-doped substrate of the present invention without lengthening the heat treatment time.
  • a heat treatment at about 800 ° C. for about 4 hours can be performed before the epi process.
  • heat treatment can be performed at 450-750 ° C. for several hours after the epi-step. In these cases, the oxygen precipitate grows greatly through the device process and has IG capability.
  • the oxygen concentration of the substrate is not less than about 16 ppm (JEIDA scale). If the oxygen concentration is high, the heat treatment in a short time can increase the density and size of the oxygen precipitate.
  • JEIDA is an abbreviation of the Japan Electronics Industry Promotion Association (currently JEITA: Japan Electronics and Information Technology Industries Association).
  • the resistivity of the substrate is higher than that of a general n + substrate (0.01 to 0.02 Q.cm)
  • the heat treatment time is increased.
  • the IG capability can be added without the need
  • the silicon epitaxial wafer of the present invention is a silicon epitaxial wafer using an S-doped substrate to which excellent IG capability is added.
  • the method for producing a silicon epitaxial wafer according to the present invention comprises the steps of: preparing an n-type silicon substrate having antimony added as a dopant and having a resistivity of at least 0.04 ⁇ cm; and oxygen in the n-type silicon substrate. A step of performing a heat treatment for growing a precipitate; and a step of growing an n-type silicon epitaxial layer having a higher resistivity than the n-type silicon substrate on the surface of the n-type silicon substrate. I do.
  • a step of performing a heat treatment for growing an oxygen precipitate in the n-type silicon substrate As described later, the order of the steps for growing the n-type silicon epitaxial layer having the specific resistance may be performed first.
  • the ⁇ -type silicon substrate having a higher resistivity than the ⁇ -type silicon substrate is formed on the surface of the n-type silicon substrate.
  • a step of growing a epitaxial layer can be performed, and a step of growing an ⁇ -type silicon epitaxial layer having a higher resistivity than the ⁇ -type silicon substrate on the surface of the ⁇ -type silicon substrate can be performed.
  • a heat treatment for growing an oxygen precipitate in the ⁇ -type silicon substrate can be performed. Regardless of the order of the steps, the effect of the present invention is Achieved well.
  • the oxygen concentration of the n-type silicon substrate is preferably 16 ppma or more, and the manufactured silicon epitaxial wafer is suitably used as a substrate for manufacturing various devices including CCDs.
  • FIG. 1 is a sectional explanatory view showing an embodiment of a silicon epitaxial wafer according to the present invention.
  • FIG. 2 is a flowchart showing an example of a process sequence of a method for manufacturing a silicon epitaxial wafer of the present invention.
  • FIG. 3 is a flowchart showing another example of the process sequence of the method for manufacturing a silicon epitaxial wafer of the present invention.
  • FIG. 4 is a graph showing the relationship between the substrate resistivity and the oxygen precipitate density in Experimental Example 1.
  • FIG. 5 is a graph showing the relationship between the substrate resistivity and the oxygen precipitate density in Experimental Example 2.
  • FIG. 1 is a sectional explanatory view showing one embodiment of a silicon epitaxial wafer of the present invention.
  • reference numeral 10 denotes a silicon epitaxy nozzle according to the present invention.
  • This silicon epitaxial wafer 10 has a resistivity of 0.04 to which antimony is added as a dopant.
  • An n-type silicon epitaxial layer 14 having a higher resistivity than the n-type silicon substrate 12 is grown on an n-type silicon substrate 12 of ⁇ ⁇ cm or more.
  • the epi-wafer of the present invention uses an Sb-added substrate having a resistivity of 0.04 Q * cm or more. The resistivity is 0.
  • the upper limit of the resistivity is not particularly limited from the viewpoint of the IG capability due to oxygen precipitates, it is usually set to 100 ⁇ ⁇ cm or less in consideration of application to general devices.
  • the oxygen concentration of the Sb-added substrate is more than about 16 ppma. 0 Preferred. If the oxygen concentration is high, the heat treatment in a short time can increase the density of the oxygen precipitate and increase the size.
  • FIG. 2 is a flowchart showing an example of the order of the method of manufacturing the silicon epitaxial wafer of the present invention.
  • an Sb-doped silicon wafer having a resistivity of 0.04 ⁇ ⁇ cm or more to be a substrate of an epitaxial wafer is prepared (step 100).
  • This substrate can be obtained by processing a silicon single crystal to which an appropriate amount of Sb has been added in a crystal growth step by the CZ method.
  • the substrate is subjected to a heat treatment for growing oxygen precipitates before the epi step (Step 102).
  • the density of oxygen precipitates which are detected in the bulk immediately after enough Epie To a 1 XI 0 9 / cm 3 or more, a and the heat treatment in Step 1 0 2 eg general DZ- IG processing Can be applied.
  • the condition of 0 ⁇ —10 processing is, for example, 110 ° C./2 hours + 650 ° C./6 hours + 100 ° C./6 hours.
  • a heat treatment in which the temperature is raised from 700 ° C. to 100 ° C. at a rate of 3 ° C.Z and held for 2 hours can be performed.
  • large-sized oxygen precipitates having IG capability can be formed in the Sb-added substrate at a high density.
  • a heat treatment in step 102 for example, 800 ° C / Can be heat treated for 4 hours. If it is desired to obtain a higher density oxygen precipitate, for example, a heat treatment of raising the temperature from 700 ° C to 850 ° C at a rate of 3 ° CZ and holding for 1 hour is performed. 1 can In those cases, the oxygen precipitate grows greatly through the device process and becomes IG-capable.
  • step 104 An epitaxial growth for forming an epitaxial layer of ⁇ cm is performed (step 104).
  • FIG. 3 is a flowchart showing another example of the order of the method of manufacturing a silicon epitaxial wafer of the present invention.
  • an Sb-doped silicon wafer having a resistivity of 0.04 ⁇ ⁇ cm or more to be a substrate of the epi-wafer is prepared (step 106).
  • epitaxial growth is performed without performing heat treatment before the epi step (step 108).
  • the heat treatment for growing the oxygen precipitate is performed on the epi wafer (step 110).
  • the density, and the oxygen precipitate detected during Butler 1 X 1 0 9 / cm 3 or more for example, of 6 5 0 ° C / 6 hours + 1 0 0 0 ° CZ 6 hours Netsusho Can be applied.
  • heat treatment such as a device process is performed to 1 ⁇ 10 cm 3 or more
  • heat treatment at 65 ° C. for 6 hours can be performed.
  • the conditions of the heat treatment before the epi process shown in FIG. 2 and the conditions of the heat treatment after the epi process shown in FIG. 3 are not limited to the above example, and if the object is achieved. However, any conditions are acceptable.
  • LST infrared scattering tomography
  • Figure 4 shows the relationship between substrate resistivity and precipitate density.
  • the substrate resistivity is lower than about 0.04 ⁇ ⁇ cm
  • the precipitate density decreases as the substrate resistivity decreases. That is, oxygen precipitation is suppressed by the addition of Sb.
  • the substrate resistivity is 0.04 ⁇ cm or more
  • the precipitate density is almost constant without depending on the substrate resistivity. . From this result, it can be seen that if the substrate resistivity is 0.04 ⁇ ⁇ cm or more, oxygen precipitation is not suppressed even with the Sb added substrate.
  • the substrate resistivity is 0.08 to 0.5 ⁇ cm or more
  • the effect of suppressing oxygen precipitation by adding Sb does not work, so that it is 0.04 to 0.08 ⁇ cm.
  • the same level of oxygen precipitate density as in cm can be obtained.
  • Figure 5 shows the relationship between substrate resistivity and precipitate density. If the substrate resistivity is lower than about 0.04 ⁇ ⁇ cm, the precipitate density decreases as the substrate resistivity decreases. However, if the substrate resistivity is at least 0.0 4 Q * cm is precipitate density from c results that is substantially constant without depending on the substrate resistivity, the substrate resistivity is 0.0 4 It can be seen that oxygen precipitation is not suppressed even if the substrate is an Sb-added substrate, if it is ⁇ ⁇ cm or more.
  • a mirror surface wafer prepared from a phosphorus-doped silicon single crystal grown by a ⁇ 2 method with a diameter of 8 inches, a crystal orientation of 100> and a resistivity of about 100.01111 was prepared. ⁇ The oxygen concentration of ewa is about 18 ppma.
  • Other experimental conditions were exactly the same as in Experimental Example 1. That is, the wafer was subjected to a heat treatment before the epi process. The heat treatment conditions are as follows: 1100 ° CZ2 hours + 650 ° C / 6 hours + 10000 ° C / 6 hours. Next, after cleaning the wafer after the heat treatment, a silicon single crystal layer having a thickness of about 5 ⁇ m was deposited by epitaxy at about 110 ° C. to obtain an epitaxial wafer. That The density of oxygen precipitates was measured by LST without any heat treatment in the pi wafer.
  • precipitate density is 5 X 1 0 9 / cm 3
  • the ivy is divided is approximately the same as if the resistivity with S b added substrate above 0. 0 4 ⁇ ⁇ cm.
  • a mirror surface wafer similar to that of Comparative Example 1 was prepared.
  • Other experimental conditions were exactly the same as in Experimental Example 2. That is, a silicon single crystal layer having a thickness of about 5 m was deposited by epitaxy at about 110 ° C. without performing a heat treatment before the epi step, thereby forming an epi wafer.
  • the epi wafer was subjected to a heat treatment at 65 ° C. for 6 hours. After that, in order to grow latent small oxygen precipitates largely, a heat treatment at 100 ° C. for 6 hours was performed to simulate the deposition process, and then the density of the oxygen precipitates was measured by LST.
  • the precipitate density was 4 ⁇ 10 9 Z cm 3 , which was almost the same as when the S-doped substrate having a resistivity of 0.04 ⁇ ⁇ cm or more was used.
  • IG capability can be added without lowering productivity. It is possible to provide an epi wafer using the Sb-doped substrate thus obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

明 細 書 シリ コンェピタキシャルゥヱーハ及ぴその製造方法 技術分野
本発明は、 優れたゲッタリング能力を有するシリコンェピタキシャル ゥ - ーハ (以下、 単にェピウヱーハと呼ぶことがある。 ) 及びその製造 方法に関する。 背景技術
半導体素子の基板として広く用いられているシリコンゥエ ーハの大半 は、 Czochralski ( C Z ) 法により育成されている。 C Z法により育成 されたシリ コン単結晶中には、 およそ 1 0 18 a t o m s / c m 3 の濃度 で格子間酸素が不純物として含まれる。 この格子間酸素は、 結晶育成ェ 程中の固化してから室温まで冷却されるまでの熱履歴 (以下、 結晶熱履 歴と略すことがある。 ) や半導体素子の作製工程における熱処理工程に おいて過飽和状態となるために析出して、 シリコン酸化物の析出物 (以 下、 酸素析出物又は単に析出物と呼ぶことがある。 ) が形成される。 その酸素析出物は、 デバイスプロセスにおいて混入する重金属不純物 を捕獲するサイ トとして有効に働き (Internal Gettering : I G ) 、 デ バイス特性や歩留まりを向上させる。 このことから、 シリ コンゥヱーハ の品質の 1つとして、 I G能力が重要視されている。
酸素析出の過程は、 析出核形成とその成長の過程から成る。 通常は、 結晶熱履歴において核形成が進行し、 その後のデバイスプロセス等の熱 処理により大きく成長し、 酸素析出物として検出されるようになる。 こ のことから、 結晶熱履歴で形成されたものを Grown-in析出核と呼ぶこ とにする。 もちろん、 その後の熱処理においても酸素析出核が形成され る場合がある。
通常の as-grown ゥヱーハの場合、 デバイスプロセス前の段階で存在 している酸素析出核は極めて小さく、 I G能力を持たない。 しかし、 デ バイスプロセスを経ることにより、 大きな酸素析出物に成長して I G能 力を有するようになる。 ゥエーハ表面近傍のデバイス作製領域を無欠陥 化するために、 ゥヱーハ上に気相成長によってシリ コン単結晶を堆積さ せたェピウエーハが使用される場合がある。 このェピウエーハにおいて も、 基板に I G能力を付加させることが重要である。
しかし、 ェピタキシャル工程 (以下、 ェピ工程と略すことがある。 ) が約 1 1 0 0 °c以上の高温であるために結晶熱履歴で形成された Grown-in 析出核のほとんどが消滅してしまい、 その後のデバイスプロ セスにおいて酸素析出物が形成されなくなってしまう。 そのために、 ェ ピゥエーハでは I G能力が低下するという問題がある。
この問題を解決する方法として、 ェピウエーハに I G能力を付加する ため、 ェピエ程前に熱処理を施して基板中に酸素析出物を形成した後に. ェピタキシャル成長を行う方法がある。 一般的な熱処理としては、 約 1 1 0 0 °C以上で表面近傍の酸素を外方拡散させる熱処理、 約 6 5 0 °Cで 内部に酸素析出核を形成する熱処理、 及び約 1 0 0 0 °Cで酸素析出物を 大きく成長させる熱処理を組み合わせた 3段熱処理 (以下、 D Z— I G 処理と呼ぶことがある。 ) がある。 初段の熱処理で酸素を外方拡散させ るのは、 基板の表面近傍に酸素析出物が形成されないようにして、 無欠 陥層 (D Z層) を形成するためである。 この D Z— I G処理では、 表面 近傍に D Z層が形成され、 内部には I G能力を有する大きいサイズの酸 素析出物が形成される理想的な構造となるが、 熱処理時間が長くなつて しま う。 ェピウエーハに I G能力を付加する簡便な方法として、 広い幅の D Z 層が必要ない場合や内部の酸素析出物を大きく成長させなくても良い場 合は、 ェピ工程前に 8 0 0 °C程度の熱処理を施すことにより、 結晶熱履 歴で形成された Grown-in析出核を高温のェピ工程でも消滅しないよう なサイズまで成長させる方法がある。 あるいは、 ェピ工程後に 4 5 0 〜 7 5 0 °C程度の熱処理を施すことにより析出核を再形成させる方法があ る。 これらの場合は、 デバイスプロセスにおいて酸素析出物が大きく成 長することになる。
n型ドーパントが高濃度に添加された n +基板を用いた n Z n +ェピ ゥエーハは、 基板の抵抗率が低いという構造上のメ リ ッ トから C C D ( Charge Coupled Device) 用材料として有効である。 しかし、 n +基 板用のドーパントとして用いられているアンチモン ( S b ) が高濃度に 添加されると、 酸素析出が抑制されることにより、 I G能力を付加する ために施す熱処理の時間が長くなり、 ェピウエーハの生産性が低下して しまう という大きな問題点がある。
一方、 燐を n型ドーパントとした n +基板を作製するための n +シリ コン単結晶を引き上げよう としても、 燐はシリ コン原料を溶融する際の 昇温過程で昇華しやすいため、 低抵抗率の結晶を引き上げることは困難 であった。
その一方で、 燐ドープシリ コン単結晶は S bや A s ドープ単結晶に比 ベて結晶育成時の酸素濃度制御が容易であったことから、 デバイス作製 用基板としてある程度正確な酸素濃度制御が必要な通常抵抗率 ( 1 〜 1 0 0 Ω , c m ) の n型基板を作製するための n型ドーパントとしては燐 を用い、 あまり正確な酸素濃度制御を必要としないェピタキシャルゥェ ーハ用の低抵抗率 ( 0 . 0 2 Ω · c m以下) の n +基板を作製するため の n型ドーパン トとしては S b又は A sを用いるというように、 抵抗率 の高低により使用される ドーパントの種類は限定されていた。
また、 その間の抵抗率 (0. 0 2〜 l Q * c m) の n型基板について は、 デバイスを作製する側からのニーズがないためほとんど作製される ことはなく、 わずかにニーズがあったとしても酸素濃度制御が容易な燐 ドープ基板が用いられていた。
これらのことから、 C CD用の基板としては燐が低濃度に添加された n型基板 ( 1 0 Ω · c m程度) を用い、 4 0〜 5 0 Ω · 。 mの高抵抗率 の n ェピタキシャル層を形成した n— Z nェピウヱーハが広く用いら れ (例えば、 特開平 9 - 3 2 1 2 6 6号参照) 、 I G能力を付加しよう とするためには、 前述のような D Z— I G処理が施されていた。 発明の開示
本発明は上記問題点に鑑みなされたものであり、 I G能力が付加され C C Dをはじめとする様々なデバイス用に好適なェピタキシャルゥエー ハ、 及びそのェピタキシャルゥヱーハを生産性を低下させることなく製 造することのできる方法を提供することを目的とする。
上記課題を解決するために、 本発明のシリ コンェピタキシャルゥエー ハは、 ドーパントと してアンチモンが添加され抵抗率が 0. 0 4 Q ' c m以上の n型シリ コン基板上に、 該 n型シリ コン基板よりも高抵抗率の ri型シリコンェピタキシャル層を有することを特徴とする。
本発明者は、 酸素析出が抑制される度合は S b濃度に依存することを 見出し、 本発明に到達した。 すなわち、 後述の実験結果から明らかな様 に、 S b ドープ基板の抵抗率を低下させても抵抗率が 0. 0 4 Q * c m 以上となる S b濃度であれば、 酸素析出が抑制されることがほとんどな いことを初めて発見した。
そこで、 これ以上の抵抗率を有する S b ドープ基板であれば、 酸素析 出物を形成する熱処理時間を長くすることなく (生産性を低下させるこ となく) S b添加基板に十分な I G能力を付加することができることを 発想し本発明を完成させた。
従来のェピタキシャル成長用の S b ドープ基板は、 前述の通り 0 . 0 2 Ω c m以下の低抵抗率に限られており、 それより高い抵抗率における ェピタキシャル成長用の基板としての用途はなかった。 従って、 このよ うな 0 . 0 4 Ω · c m以上の S b ドープ基板をェピタキシャル用基板と して用いるという発想は当業者といえども全くなかったものである。 本発明のェピウエーハは特に C C D用材料として好適に用いられるが. その場合基板抵抗率を 0 . 5 Ω · c m以下とすればデバイス特性に対す るェピゥエーハの構造面でのメ リ ッ トを得ることができる。
.また、 本発明のェピウエーハにおいては、 そのシリ コン基板中に検出 される酸素析出物の密度が 1 X 1 0 9Z c m 3以上であるのが好ましい。 このよ うに、 ェピ工程直後に実験的に検出される酸素析出物、 あるい は、 ェピ工程後に基板中の酸素析出物を成長させる付加的な熱処理を行 つた後に実験的に検出される酸素析出物が 1 X 1 0 9/ c m 3以上の高密 度に形成されていれば、 デバイスプロセスの初期の段階から優れた I G 能力を発揮できる。
また、 ェピエ程直後には酸素析出物が 1 X 1 0 9Z c m 3以上の高密度 に観察されなくてもその後に付加的な熱処理を施すことにより高密度の 酸素析出物が検出される場合には、 ェピエ程後に小さい酸素析出物が高 密度に潜在している場合である。 従って、 ェピ工程直後にその潜在して いる酸素析出物が十分な I G能力を有するほど大きくなくても、 デバイ スプロセスを経ることにより大きく成長して I G能力を有するようにな る。
ここで、 I G能力を有する酸素析出物のサイズは、 実験的に検出可能 な酸素析出物のサイズ (直径 3 0〜 4 0 n m程度) を目安にしている。 一般的には、 実験的に検出できないサイズの酸素析出物でも I G能力を 有すると考えられているので、 実験的に検出可能なサイズであれば十分 な I G能力を有すると判断できる。
ェピエ程後にバルク中に検出される酸素析出物の密度を, 1 X 1 0 c m3以上とするには、 例えばェピエ程前に一般的な D Z― I G処理を 施すことができる。 また、 より簡便な熱処理として、 例えば約 7 0 0 °C 以下の温度から約 1 0 0 0 °C以上の温度まで約 5 °C /分以下の速度で昇 温し、 約 0. 5時間以上保持する熱処理を施すことができる。 すなわち、 本発明の S b添加基板を用いたェピウエーハに対して、 熱処理時間を長 くすることなく優れた I G能力を付加できる。
ェピエ程後に熱処理を施した場合に検出される酸素析出物の密度を 1 X I 09/ c m3以上とするには、 ェピ工程後の段階で小さいサイズの酸 素析出物が潜在していれば良いので、 例えばェピ工程前に 8 0 0 °C程度 で 4時間程度の熱処理を施すことができる。 また、 ェピ工程後に 4 5 0 〜 7 5 0°C程度で数時間の熱処理を施すことができる。 これらの場合は, デバイスプロセスを経ることにより酸素析出物が大きく成長して、 I G 能力を有するようになる。
本発明のェピウエーハに対してより効率的に優れた I G能力を付加す るには、 基板の酸素濃度が約 1 6 p p m a ( J E I DAスケール) 以上 であることが好ましい。 酸素濃度が高ければ、 短時間の熱処理で酸素析 出物の密度を高く し、 サイズを大きくすることができる。 尚、 J E I D Aは日本電子工業振興協会 (現在は、 J E I TA : 日本電子情報技術産 業協会に改称された。 ) の略称である。
本発明のェピウエーハでは、 基板の抵抗率が一般的な n +基板の値 ( 0. 0 1〜 0. 0 2 Q . c m) よりも高いので、 熱処理時間を長くす ることなく I G能力を付加できる効果に加えて、 ォート ドープによるェ ピ層の抵抗率変化を防ぐために用いられるゥエーハ裏面の酸化膜を形成 する必要がなくなるという付加的な効果が得られる。 従って、 C C D用 ゥエーハと してだけでなく、 ディスクリートデバイスなどの他の用途と しても好適に用いることができる。
上述のように、 本発明のシリ コンェピタキシャルゥエーハは、 優れた I G能力が付加された S 添加基板を用いたシリコンェピタキシャルゥ エーノヽである。
本発明のシリコンェピタキシャルゥエーハの製造方法は、 ドーパント としてアンチモンが添加され抵抗率が 0 . 0 4 Ω · c m以上の n型シリ コン基板を準備する工程と、 前記 n型シリコン基板中の酸素析出物を成 長させる熱処理を行う工程と、 前記 n型シリコン基板表面上に該 n型シ リコン基板よりも高抵抗率の n型シリコンェピタキシャル層を成長させ る工程とを有することを特徴とする。
本発明のシリ コンェピタキシャルゥエーハの製造方法においては、 n 型シリ コン基板中の酸素析出物を成長させる熱処理を行う工程と、 n型 シリ コン基板表面上に該 n型シリコン基板よりも高抵抗率の n形シリ コ ンェピタキシャル層を成長させる工程との工程順は後述するようにいず れを先に行ってもよいものである。
すなわち、 前記 n型シリ コン基板中の酸素析出物を成長させる熱処理 を行う工程を行った後、 該 n型シリ コン基板表面上に該 η型シリ コン基 板より も高抵抗率の η型シリ コンェピタキシャル層を成長させる工程を 行うことができる'し、 また前記 η型シリコン基板表面上に該 η型シリ コ ン基板より も高抵抗率の η型シリコンェピタキシャル層を成長させるェ 程を行った後、 該 η型シリ コン基板中の酸素析出物を成長させる熱処理 を行うことも可能である。 いずれの工程順を採用しても本発明の効果は 充分に達成される。
本発明方法においても、 上記 n型シリコン基板の酸素濃度は 1 6 p p m a以上が好ましく、 製造されたシリ コンェピタキシャルゥエーハは C C Dをはじめとする種々のデバイスを製造する基板として好適に用いら れる。 図面の簡単な説明
図 1は、 本発明のシリ コンェピタキシャルゥエーハの一つの実施の形 態を示す断面的説明図である。
図 2は、 本発明のシリ コンェピタキシャルゥヱーハの製造方法の工程 順の一例を示すフローチヤ一トである。
図 3は、 本発明のシリコンェピタキシャルゥエーハの製造方法の工程 順の他の例を示すフローチヤ一トである。
図 4は、 実験例 1における基板抵抗率と酸素析出物密度との関係を示 すグラフである。
' 図 5は、 実験例 2における基板抵抗率と酸素析出物密度との関係を示 すグラフである。 発明を実施するための最良の形態
以下に本発明の実施の形態を添付図面に基づいて説明するが、 図示例 は例示的に示されるもので、 本発明の技術思想から逸脱しない限り種々 の変形が可能なことはいうまでもない。
図 1は本発明のシリコンェピタキシャルゥエーハの一つの実施の形態 を示す断面的説明図である。 図 1において、 1 0は本発明に係るシリ コ ンェピタキシャノレゥエーハである。 このシリコンェピタキシャノレゥエー ハ 1 0は、 ドーパントとしてアンチモンが添加された抵抗率が 0 . 0 4 Ω · c m以上の n型シリ コン基板 1 2上に、 該 n型シリ コン基板 1 2よ りも高抵抗率の n型シリコンェピタキシャル層 1 4を成長させた構成を 有している。
本発明は、 一般的な S bを高濃度に添加した基板を用いたェピウエ ー ハでは、 酸素析出が抑制されることから、 I G能力を付加するために施 す熱処理の時間が長くなり、 生産性が低下してしまう という問題点に鑑 みなされたものである。 すなわち、 本発明のェピウヱーハは、 抵抗率が 0 . 0 4 Q * c m以上の S b添加基板を用いたものである。 抵抗率が 0 .
0 4 Ω · c m以上の S b添加基板であれば、 酸素析出が抑制されること がほとんどないので、 熱処理時間を長くすることなく S b添加基板に I
G能力を付加することができる。 従って、 生産性を低下させることなく
1 G能力が付加された S b添加基板を用いたェピウヱーハを提供するこ とができる。 酸素析出物による I G能力という観点からは抵抗率の上限 は特に限定されないが、 一般的なデバイスへの適用を考慮すると 1 0 0 Ω · c m以下とすることが通常である。
また、 本発明のェピウエ ーハにおいては、 ェピタキシャル工程後、 あ るいはェピタキシャル工程後に熱処理を施した場合に、 バルタ中に検出 される酸素析出物の密度が 1 X 1 0 9/ c m 3以上であるようにすること ができる。 ェピエ程後に実験的に検出されるような大きいサイズの酸素 析出物が高密度に形成されていれば、 デバイスプロセスの初期の段階か ら優れた I G能力を発揮できる。 また、 ェピ工程後に熱処理を施した後 に高密度の酸素析出物が検出される場合は、 ェピエ程後に小さい酸素析 出物が潜在している場合であり、 その潜在している酸素析出物は十分な I G能力を有するほど大きくないが、 デバイスプロセスを経ることによ り大きく成長して、 I G能力を有するようになる。
前記 S b添加基板の酸素濃度は約 1 6 p p m a以上であることがより 0 好ましい。 酸素濃度が高ければ、 短時間の熱処理で酸素析出物の密度を 高く し、 サイズを大きくすることができる。
次に、 本発明のシリ コンェピタキシャルゥヱーハを製造する方法を、 図 2及び図 3に基づいて詳細に説明する。
図 2は本発明のシリコンェピタキシャルゥエーハを製造する方法のェ 程順の一例を示すフローチヤ一トである。
図 2に示したように、 まずェピウヱーハの基板となる抵抗率が 0 . 0 4 Ω · c m以上の S b添加シリ コンゥエーハを準備する (ステップ 1 0 0 ) 。 この基板は、 C Z法による結晶育成工程において適量の S bを添 加したシリ コン単結晶を加工することにより得ることができる。 その基 板に対してェピ工程前の酸素析出物を成長させる熱処理を施す (ステツ プ 1 0 2 ) 。
ここで、 ェピエ程直後にバルク中に検出される酸素析出物の密度を 1 X I 0 9/ c m 3以上とするには、 ステップ 1 0 2における熱処理と して 例えば一般的な D Z— I G処理を施すことができる。 0∑— 1 0処理の 条件は、 例えば 1 1 0 0 °C / 2時間 + 6 5 0 °C / 6時間 + 1 0 0 0 °C / 6時間である。 また、 より簡便な熱処理として、 例えば 7 0 0 °Cから 1 0 0 0 °Cまで 3 °C Z分の速度で昇温し、 2時間保持する熱処理を施すこ とができる。 そのようなェピ工程前の熱処理により、 S b添加基板中に I G能力を有する大きいサイズの酸素析出物を高密度に形成することが できる。
ェピエ程後に熱処理を施すことにより実験的に検出される酸素析出物 の密度を 1 X 1 O 9/ c m 3以上とするには、 ステップ 1 0 2における熱 処理として、 例えば、 8 0 0 °C / 4時間の熱処理を施すことができる。 また、 より高密度の酸素析出物を得たい場合には、 例えば、 7 0 0 °Cか ら 8 5 0 °Cまで 3 °C Z分の速度で昇温し、 1時間保持する熱処理を施す 1 ことができる。 それらの場合、 デバイスプロセスを経ることにより酸素 析出物が大きく成長して、 I G能力を有するようになる。
次に、 必要に応じてゥエーハを洗浄、 酸化膜除去等を行ったのち、 例 えば、 原料ガスである トリク ロルシランにホスフィ ンを混合し、 1 1 0 0 °C程度の温度で n型 1 0 Ω c mのェピタキシャル層を形成するェピタ キシャル成長を行う (ステップ 1 0 4 ) 。
図 3は本発明のシリ コンェピタキシャルゥヱーハを製造する方法のェ 程順の他の一例を示すフローチャートである。 図 2の場合と同様に、 ェ ピウエーハの基板となる抵抗率が 0 . 0 4 Ω · c m以上の S b添加シリ コンゥエーハを準備する (ステップ 1 0 6 ) 。 次に、 ェピ工程前の熱処 理を施すことなく、 ェピタキシャル成長を行う (ステップ 1 0 8 ) 。 そ のェピウエーハに対して酸素析出物を成長させる熱処理を施す (ステツ プ 1 1 0 ) 。
ここで、 バルタ中に検出される酸素析出物の密度を 1 X 1 0 9/ c m 3 以上とするには、 例えば 6 5 0 °C / 6時間 + 1 0 0 0 °C Z 6時間の熱処 理を施すことができる。 また、 デバイスプロセス等の熱処理が施された 場合に検出される酸素析出物の密度を 1 X 1 0 c m 3以上とするには、 例えば 6 5 0 °C Z 6時間の熱処理を施すことができる。 上記の図 2に示 したェピ工程前の熱処理の条件、 及び図 3に示したェピ工程後の熱処理 の条件は、 上記した例に限定されるものではなく、 その目的が達成され れば、 如何なる条件でも構わない。
以上に述べたように、 本発明によれば、 熱処理時間を長くすることな く、 すなわち生産性を低下させることなく、 優れた I G能力が付加され た S b添加基板を用いたェピウエーハを提供することができる。
実施例
以下に本発明について具体的な実験例を挙げて説明するが、 本発明は 2 これらに限定されるものではない。
(実験例 1 )
直径 8イ ンチ、 結晶方位く 1 0 0 >、 抵抗率約 0. 0 1 5〜 0. 1 Ω · c mの C Z法で育成された S b添加シリ コン単結晶から作製された 鏡面ゥエーハを準備した。 ゥエーハの酸素濃度は約 1 8 p p m a ( J E I DA) である。 それらのゥエーハに対してェピ工程前の熱処理を施し た。 熱処理条件は、 1 1 0 0 °C/ 2時間 + 6 5 0。C/ 6時間 + 1 0 0 0°Cノ 6時間である。 次に、 熱処理後のゥエーハを洗浄した後、 約 1 1 0 0 °Cのェピタキシャル成長により約 5 μ mの厚みのシリコン単結晶層 を堆積させてェピウヱーハとした。
そのェピウユーハについて、 如何なる熱処理も施さずに、 酸素析出物 の密度を光散乱法の 1つである赤外散乱トモグラフ法 (以下、 L S Tと 呼ぶことがある。 ) により測定した。 L S Tによれば、 直径 4 0 nm程 度以上のサイズの酸素析出物を検出することができる。
図 4は、 基板抵抗率と析出物密度との関係を示す。 基板抵抗率が約 0. 0 4 Ω · c mより低い場合には、 基板抵抗率の低下に伴い析出物密度が 低くなつている。 すなわち、 S b添加により酸素析出が抑制されている しかし、 基板抵抗率が 0. 0 4 Ω · c m以上の場合には、 析出物密度が 基板抵抗率に依存することなくほぼ一定となっている。 この結果から、 基板抵抗率が 0. 04 Ω · c m以上であれば、 S b添加基板であっても 酸素析出が抑制されないことがわかる。 尚、 基板抵抗率が 0. 0 8〜 0. 5 Ω · c m、 あるいはそれ以上の場合に S b添加による酸素析出抑制効 果ははたらかないので、 0. 0 4〜 0. 0 8 Ω · c mの場合と同等レべ ルの酸素析出物密度が得られる。
(実験例 2 )
上記実験例 1で準備したゥエーハにおいて、 ェピ工程前の熱処理を施 3 さずに約 1 1 0 0 °Cのェピタキシャル成長により約 5 μ mの厚みのシリ コン単結晶層を堆積させてェピゥエーハとした。 そのェピウエーハに 6 5 0 °CZ 6時間の熱処理を施した。 その後、 潜在している小さい酸素析 出物を大きく成長させるために、 デバイスプロセスを模擬した 1 0 0 0°C/ 6時間の熱処理を施した後に、 酸素析出物の密度を L S Tにより 測定した。
図 5は、 基板抵抗率と析出物密度との関係を示す。 基板抵抗率が約 0. 04 Ω · c mより低い場合には、 基板抵抗率の低下に伴い析出物密度が 低くなつている。 しかし、 基板抵抗率が 0. 0 4 Q * c m以上の場合に は、 析出物密度が基板抵抗率に依存することなくほぼ一定となっている c この結果から、 基板抵抗率が 0. 0 4 Ω · c m以上であれば、 S b添加 基板であっても酸素析出が抑制されないことがわかる。
以上のように、 抵抗率が 0. 04 Ω · c m以上の S b添加基板を用い れば、 S b添加により酸素析出が抑制されることがほとんどないことか ら、 熱処理時間を長くすることなく、 優れた I G能力を付加できること がわかった。 つまり、 優れた I G能力が付加された S b添加基板を用い たェピウエーハを生産性を低下させることなく得ることができる。
(比較例 1 )
直径 8ィンチ、 結晶方位く 1 0 0 >、 抵抗率約 1 00 . 0 111の〇 2法 で育成された燐添加シリコン単結晶から作製された鏡面ゥ ーハを準備 した。 ゥエーハの酸素濃度は約 1 8 p p m aである。 その他の実験条件 は、 実験例 1とまったく同じ条件とした。 すなわち、 そのゥエーハに対 してェピ工程前の熱処理を施した。 熱処理条件は、 1 1 00°CZ2時間 + 6 5 0 °C/ 6時間 + 1 0 0 0 °C/ 6時間である。 次に、 熱処理後のゥ エーハを洗浄した後、 約 1 1 0 0 °Cのェピタキシャル成長により約 5 μ mの厚みのシリ コン単結晶層を堆積させてェピウエーハとした。 そのェ ピウエーハにおいて、 如何なる熱処理も施さずに、 酸素析出物の密度を L S Tにより測定した。
その結果、 析出物密度は 5 X 1 09/ c m3 となり、 抵抗率が 0. 0 4 Ω · c m以上の S b添加基板を用いた場合とほぼ同じであることがわか つた。
(比較例 2 )
比較例 1 と同様な鏡面ゥエーハを準備した。 その他の実験条件は、 実 験例 2とまったく同じ条件と した。 すなわち、 ェピ工程前の熱処理を施 さずに約 1 1 0 0 °Cのェピタキシャル成長により約 5 mの厚みのシリ コン単結晶層を堆積させてェピウヱーハとした。 そのェピウエーハに 6 5 0 °C/ 6時間の熱処理を施した。 その後、 潜在している小さい酸素析 出物を大きく成長させるために、 デパイスプロセスを模擬した 1 0 0 0 °C/ 6時間の熱処理を施した後に、 酸素析出物の密度を L S Tにより 測定した。
その結果、 析出物密度は 4 X 1 09Z c m3 となり、 抵抗率が 0. 0 4 Ω · c m以上の S 添加基板を用いた場合とほぼ同じであることがわか つた。 産業上の利用可能性
以上述べたごとく、 本発明によれば、 抵抗率が 0. 0 4 Ω · c m以上 の S bが添加されたシリコンゥエーハを基板として用いることにより、 生産性を低下させることなく I G能力が付加された S b添加基板を用い たェピウエーハを提供することができる。

Claims

請 求 の 範 囲
1 . ドーパントとしてアンチモンが添加され抵抗率が 0 . 0 4 Ω · c m 以上の n型シリ コン基板上に、 該 n型シリコン基板より も高抵抗率の n 型シリコンェピタキシャル層を有することを特徴とするシリ コンェピタ キシャルゥエ ーノヽ。
2 . 前記シリ コンェピタキシャルゥエ ーハの n型シリ コン基板中に検出 される酸素析出物の密度が 1 X 1 0 9/ c m 3以上であることを特徴とす る請求項 1に記載されたシリコンェピタキシャルゥエーハ。
3 . 前記 n型シリ コン基板の酸素濃度が 1 6 p p m a以上であることを 特徴とする請求項 1又は 2に記載されたシリ コンェピタキシャルゥエ ー ノヽ。
4 . C C Dを製造する基板として用いられることを特徵とする請求項 1 〜 3のいずれか 1項に記載されたシリコンェピタキシャルゥエ ーハ。
5 . ドーパントとしてアンチモンが添加され抵抗率が 0 . 0 4 Ω · c m 以上の n型シリ コン基板を準備する工程と、 前記 n型シリコン基板中の 酸素析出物を成長させる熱処理を行う工程と、 前記 n型シリコン基板表 面上に該 n型シリ コン基板よりも高抵抗率の n型シリコンェピタキシャ ル層を成長させる工程とを有することを特徴とするシリ コンェピタキシ ャルゥ: —ハの製造方法。
6 . 前記 n型シリコン基板中の酸素析出物を成長させる熱処理を行うェ 程を行った後、 該 n型シリコン基板表面上に該 n型シリ コン基板よりも 高抵抗率の n型シリ コンェピタキシャル層を成長させる工程を行うこと を特徴とする請求項 5に記載のシリコンェピタキシャルゥヱーハの製造 方法。
7 . 前記 n型シリコン基板表面上に該 n型シリコン基板よりも高抵抗率 の n型シリ コンェピタキシャル層を成長させる工程を行った後、 該 n型 シリ コン基板中の酸素析出物を成長させる熱処理を行う工程を行うこと を特徴とする請求項 5に記載のシリコンェピタキシャルゥヱーハの製造 方法。
8 . 前記 n型シリ コン基板の酸素濃度が 1 6 p p m a以上であることを 特徴とする請求項 5 〜 7のいずれか 1項に記載されたシリ 'コンェピタキ シャルゥ: —ハの製造方法。
9 . 前記シリコンェピタキシャルゥエーハが C C Dを製造する基板とし て用いられるものであることを特徴とする請求項 5 〜 8のいずれか 1項 に記載されたシリ コンェピタキシャルゥヱーハの製造方法。
PCT/JP2002/011550 2001-11-19 2002-11-06 Tranche epitaxiale en silicium et procede de production de cette derniere WO2003044845A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001352687A JP4656788B2 (ja) 2001-11-19 2001-11-19 シリコンエピタキシャルウェーハの製造方法
JP2001-352687 2001-11-19

Publications (1)

Publication Number Publication Date
WO2003044845A1 true WO2003044845A1 (fr) 2003-05-30

Family

ID=19164827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011550 WO2003044845A1 (fr) 2001-11-19 2002-11-06 Tranche epitaxiale en silicium et procede de production de cette derniere

Country Status (2)

Country Link
JP (1) JP4656788B2 (ja)
WO (1) WO2003044845A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579261B2 (en) 2005-09-22 2009-08-25 Siltronic Ag Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafers
US7659207B2 (en) 2005-09-22 2010-02-09 Siltronic Ag Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafer
US7922813B2 (en) 2005-09-22 2011-04-12 Siltronic Ag Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073580A (ja) * 2004-08-31 2006-03-16 Sumco Corp シリコンエピタキシャルウェーハ及びその製造方法
JP2006179592A (ja) * 2004-12-21 2006-07-06 Fuji Film Microdevices Co Ltd 固体撮像素子形成用基板、これを用いた固体撮像素子およびその製造方法
JP2006190896A (ja) * 2005-01-07 2006-07-20 Renesas Technology Corp エピタキシャルシリコンウエハとその製造方法および半導体装置とその製造方法
JP2007080958A (ja) * 2005-09-12 2007-03-29 Shin Etsu Handotai Co Ltd エピタキシャルウエーハの製造方法及びそれにより製造されたエピタキシャルウエーハ
JP2007273959A (ja) * 2006-03-06 2007-10-18 Matsushita Electric Ind Co Ltd 光検出素子及びその製造方法
TW200936825A (en) * 2007-12-11 2009-09-01 Sumco Corp Silicon substrate and manufacturing method thereof
CN102064182B (zh) * 2010-12-07 2012-02-01 中国电子科技集团公司第四十四研究所 降低传感器暗电流的ccd制作方法
JP5772491B2 (ja) 2011-10-20 2015-09-02 信越半導体株式会社 エピタキシャルウエーハ及びその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975637A (ja) * 1982-10-25 1984-04-28 Nec Corp シリコン基板のイントリンシツク・ゲツタリング方法
JPS60245235A (ja) * 1984-05-21 1985-12-05 Matsushita Electronics Corp 半導体装置の製造方法
JPH0369584A (ja) * 1989-08-08 1991-03-25 Mitsubishi Materials Corp アンチモン被覆ケイ素粒子とその製造方法
US5066359A (en) * 1990-09-04 1991-11-19 Motorola, Inc. Method for producing semiconductor devices having bulk defects therein
JPH05238883A (ja) * 1992-02-28 1993-09-17 Shin Etsu Handotai Co Ltd 単結晶シリコン棒の製造方法及び製造装置
JPH11243093A (ja) * 1998-02-25 1999-09-07 Sumitomo Metal Ind Ltd シリコンエピタキシャルウェーハの製造方法
EP0964435A1 (en) * 1998-06-11 1999-12-15 Shin-Etsu Handotai Company Limited Pre-epitaxial heat treatment method for a silicon epitaxial wafer
EP1035236A1 (en) * 1998-08-31 2000-09-13 Shin-Etsu Handotai Co., Ltd Silicon single crystal wafer, epitaxial silicon wafer, and method for producing them

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433678B2 (ja) * 1998-08-31 2003-08-04 信越半導体株式会社 アンチモンドープシリコン単結晶ウエーハ及びエピタキシャルシリコンウエーハ並びにこれらの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975637A (ja) * 1982-10-25 1984-04-28 Nec Corp シリコン基板のイントリンシツク・ゲツタリング方法
JPS60245235A (ja) * 1984-05-21 1985-12-05 Matsushita Electronics Corp 半導体装置の製造方法
JPH0369584A (ja) * 1989-08-08 1991-03-25 Mitsubishi Materials Corp アンチモン被覆ケイ素粒子とその製造方法
US5066359A (en) * 1990-09-04 1991-11-19 Motorola, Inc. Method for producing semiconductor devices having bulk defects therein
JPH05238883A (ja) * 1992-02-28 1993-09-17 Shin Etsu Handotai Co Ltd 単結晶シリコン棒の製造方法及び製造装置
JPH11243093A (ja) * 1998-02-25 1999-09-07 Sumitomo Metal Ind Ltd シリコンエピタキシャルウェーハの製造方法
EP0964435A1 (en) * 1998-06-11 1999-12-15 Shin-Etsu Handotai Company Limited Pre-epitaxial heat treatment method for a silicon epitaxial wafer
EP1035236A1 (en) * 1998-08-31 2000-09-13 Shin-Etsu Handotai Co., Ltd Silicon single crystal wafer, epitaxial silicon wafer, and method for producing them

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579261B2 (en) 2005-09-22 2009-08-25 Siltronic Ag Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafers
US7659207B2 (en) 2005-09-22 2010-02-09 Siltronic Ag Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafer
US7922813B2 (en) 2005-09-22 2011-04-12 Siltronic Ag Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafers
US7935614B2 (en) 2005-09-22 2011-05-03 Siltronic Ag Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafers

Also Published As

Publication number Publication date
JP2003151984A (ja) 2003-05-23
JP4656788B2 (ja) 2011-03-23

Similar Documents

Publication Publication Date Title
KR100588098B1 (ko) 실리콘 단결정 웨이퍼, 에피택셜 실리콘 웨이퍼와 그제조방법
US9634098B2 (en) Oxygen precipitation in heavily doped silicon wafers sliced from ingots grown by the Czochralski method
WO2002025716A1 (fr) Tranche de silicium et son procede de fabrication
JP2000044389A (ja) エピタキシャルシリコン単結晶ウエ―ハの製造方法及びエピタキシャルシリコン単結晶ウエ―ハ
JP2003124219A (ja) シリコンウエーハおよびエピタキシャルシリコンウエーハ
US6666915B2 (en) Method for the preparation of an epitaxial silicon wafer with intrinsic gettering
WO2003044845A1 (fr) Tranche epitaxiale en silicium et procede de production de cette derniere
KR100753169B1 (ko) 에피택셜 실리콘 웨이퍼
JPH11314997A (ja) 半導体シリコン単結晶ウェーハの製造方法
KR20000006046A (ko) 실리콘에피택셜웨이퍼의제조방법
JP2007070131A (ja) エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
US7229501B2 (en) Silicon epitaxial wafer and process for manufacturing the same
WO2001056071A1 (fr) Procede de production d'une tranche epitaxiale de silicium
JP4270713B2 (ja) シリコンエピタキシャルウェーハの製造方法
JPH10223641A (ja) 半導体シリコンエピタキシャルウェーハ及び半導体デバイスの製造方法
JP2001210650A (ja) エピタキシャルシリコンウェーハの製造方法
JPH10270455A (ja) 半導体基板の製造方法
JPH06295913A (ja) シリコンウエハの製造方法及びシリコンウエハ
JP2003188107A (ja) 半導体エピタキシャルウエーハの製造方法および半導体エピタキシャルウエーハ
JP3171308B2 (ja) シリコンウエーハ及びその製造方法
JPH0897221A (ja) シリコンウェーハの製造方法及びシリコンウェーハ
JP2000306915A (ja) シリコンウエハの製造方法
JPH0897220A (ja) シリコンエピタキシャルウェーハの製造方法及びシリコンエピタキシャルウェーハ
JP2005089246A (ja) 砒素ドープシリコンウェーハの製造方法
JP2004087665A (ja) 高抵抗シリコンウエーハ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase