WO2003038340A1 - Elektrisch beheizbare glühkerze und verfahren zur herstellung einer elektrisch beheizbaren glühkerze - Google Patents

Elektrisch beheizbare glühkerze und verfahren zur herstellung einer elektrisch beheizbaren glühkerze Download PDF

Info

Publication number
WO2003038340A1
WO2003038340A1 PCT/DE2002/002596 DE0202596W WO03038340A1 WO 2003038340 A1 WO2003038340 A1 WO 2003038340A1 DE 0202596 W DE0202596 W DE 0202596W WO 03038340 A1 WO03038340 A1 WO 03038340A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating coil
glow
glow plug
oxygen
glow tube
Prior art date
Application number
PCT/DE2002/002596
Other languages
English (en)
French (fr)
Inventor
Andreas Reissner
Armin Kussmaul
Steffen Carbon
Christoph Kern
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10157466A external-priority patent/DE10157466A1/de
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP02758098A priority Critical patent/EP1440280B1/de
Priority to DE50211415T priority patent/DE50211415D1/de
Priority to US10/451,772 priority patent/US6930283B2/en
Priority to JP2003540572A priority patent/JP4076162B2/ja
Priority to KR1020047005891A priority patent/KR100876848B1/ko
Priority to HU0302081A priority patent/HUP0302081A3/hu
Publication of WO2003038340A1 publication Critical patent/WO2003038340A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • F23Q2007/004Manufacturing or assembling methods

Definitions

  • the invention is based on an electrically heatable glow plug and a method for producing an electrically heatable glow plug.
  • an electrically heatable glow plug for internal combustion engines which comprises an end-closed, corrosion-resistant glow tube, which receives a filling of an electrically non-conductive, compressed powder, in which an electrically conductive coil is embedded.
  • the coil includes a heating coil. This is made from an iron chrome
  • the surface of the electrically conductive filament is hardened in the area of the heating filament. As a result, the helix can withstand the mechanical stress during the compression process without pre-damage.
  • an electrically heated glow plug for internal combustion engines which comprises a glow plug made of a corrosion-resistant metal jacket.
  • a compressed powder filling in the glow plug contain.
  • An electrically conductive filament is embedded in the filling.
  • a getter material is provided in the glow plug for binding the oxygen contained in the compressed powder filling.
  • the getter material can be distributed in the form of electrically non-conductive particles in the compressed powder filling. These can consist of silicon or metalloids of such metals which oxidize in several oxidation states and have a higher affinity and oxygen than the spiral material, the getter material in the initial state containing the metal oxides in their first oxidation state.
  • a heating element in which a coil is arranged in a sleeve and is embedded in an electrically insulating powder.
  • the powder comprises 0.1 to 10 percent by weight of an oxide and thereby prevents the oxidation of the metallic part of the coil.
  • the electrically heatable glow plug and the method for producing an electrically heatable glow plug with the features of the independent claims have the advantage that oxygen donors are provided in the glow tube to form an aluminum oxide layer on the surface of the heating coil before or during heating of the coil , In this way, in the event of air penetration, the glow tube prevents the formation of nitrides in the outer layers of the heating coil and thus prevents a local increase in electrical resistance and premature failure of the heating coil. Another advantage is that the evaporation of aluminum from the alloy can be largely suppressed.
  • the supply of oxygen donors is less complex if the heating coil is embedded in the glow tube in a first insulating powder, the first insulating powder comprising a material acting as an oxygen donor.
  • the oxygen donor is designed as a metal oxide that can oxidize in several oxidation stages and is present in its highest oxidation stage. In this way, the release of oxygen from the metal oxide is considerably improved.
  • the oxidic ceramic powder comprises a metal oxide which, under reducing conditions, can give off oxygen by forming defects.
  • the oxygen donors are introduced into the glow tube in the form of oxygen molecules under pressure.
  • the pressure of the oxygen concentration in the glow tube can be increased and the oxygen molecules can oxidize the surface of the heating coil to form aluminum oxide without heating the heating coil by means of a heating current.
  • the heating coil can be switched on before the first operation the first heating by means of a heating current is protected against nitridation by an oxide layer.
  • Insulating powder is embedded, which is as free as possible from oxygen donors and / or includes getter material for binding oxygen.
  • a material can be used for the control coil that does not form a protective oxide layer under the influence of oxygen donors, as is the case, for example, with cobalt-iron alloys. Corrosion of the control coil can thus be prevented or at least significantly delayed by using the second insulating powder, which is as free as possible from oxygen donors.
  • FIG. 1 shows a first exemplary embodiment of an electrically heatable glow plug according to the invention
  • FIG. 2 shows a second exemplary embodiment of an electrically heatable glow plug.
  • FIG. 1, 1 denotes a glow plug designed as a glow plug for an internal combustion engine.
  • the glow plug 1 comprises a candle housing 40 with a thread 45 for screwing into a cylinder head of the internal combustion engine.
  • the candle case 40 further includes a hexagon 50, by means of which the glow plug or the candle housing 40 can be screwed into the cylinder head or unscrewed from the cylinder head by means of a twisting tool, for example a hexagon wrench.
  • a glow tube 5 is pressed into the candle housing 40, which is tubular, and protrudes from the combustion chamber, ie at the end of the candle housing 40 opposite the hexagon 50, from the candle housing 40.
  • the glow tube 5 is closed at the end of the combustion chamber.
  • the cross section of the glow tube 5 can be reduced, as in this example. A reduction of this cross section is not absolutely necessary.
  • the glow pencil candle 1 only projects into the combustion chamber with the region 20 of reduced cross section.
  • the glow tube 5 comprises a heating coil 10, which is welded to the tip 55 of the glow tube 5 on the combustion chamber side.
  • the heating coil 10 is followed by a control coil 60, which is arranged in the area of the glow tube 5, the
  • the control coil 60 contacts a connecting bolt 65 which can be connected to the positive pole of a vehicle battery. This is in the direction of the opening of the candle housing 40 remote from the combustion chamber
  • Glow tube 5 still sealed within the candle housing 40 against environmental influences by a Viton ring 70.
  • Another sealing ring 75 seals the connection bolt 65 protruding from the combustion chamber 40 away from the combustion chamber against the candle housing 40.
  • An insulating disk 80 adjoining the sealing ring 75 away from the combustion chamber serves for the electrical insulation of the connecting pin 65 from the candle housing 40 and thus electrically isolates the connecting pin 65 from the candle housing 40, the electrical potential of which lies on vehicle ground.
  • a ring nut 85 prints the insulating washer 80 on the candle housing 40 and the sealing ring 75 in the candle housing 40.
  • the glow tube 5 is metallic and, due to the pressing into the candle housing 40, also lies with its electrical potential on the vehicle mass.
  • the heating coil 10 is welded to the control coil 60 at a connection point 90.
  • the heating coil 10 consists, for example, of a ferritic steel with an aluminum content, for example of an iron-chromium-aluminum alloy.
  • the R.egelharil can for example be made of pure nickel or a cobalt-iron alloy with a proportion of 6-18 percent by weight of cobalt and has the function of
  • an electrically insulating powder filling 25, 30, which is compressed after hammering the glow tube 5, is provided in the glow tube 5, which ensures that the heating coil 10 and the control coil 60 are accommodated and fixed in the interior of the glow tube 5 and against the glow tube 5 outside the tip 55 of the glow tube 5 are electrically insulated.
  • Magnesium oxide is generally used as powder filling.
  • the powder filling ensures Thermal connection between the glow tube 5 and the heating coil 10 or the control coil 60
  • the alloy of the heating coil 10 normally protects itself with sufficient oxygen supply in a short time by the formation of a thin Al 2 O 3 layer against further corrosion.
  • this requirement is not met with glow plug 1 due to an initial lack of oxygen in the rule.
  • air can penetrate into the glow tube 5 despite the sealing ring 75 and Viton ring 70.
  • This leads to a simultaneous reaction of the material of the heating coil 10 with oxygen and nitrogen.
  • nitrogen leads to an internal nitridation, i. h to the formation of aluminum nitride in the material of the heating coil 10.
  • the result is a local increase in the electrical resistance of the heating coil 10, which results in a higher voltage drop and thus greater heating at the heating coil 10 and can lead to premature failure of the heating coil 10 ,
  • the insulating powder filling is considered a
  • the aluminum oxide layer is at least partially realized when the heating coil 10 is first heated by a heating current at which temperatures of over 1000 degrees Celsius are reached. If the material of the control coil 60 has no aluminum portion and also no silicon portion as in the example described here, then it does not form a protective oxide layer but corrodes with the oxygen released by the oxygen donors. This should be prevented. Therefore, in this case, the material of the insulating powder filling acting as an oxygen donor should only be added in the area 20 at the tip 55 of the glow tube 5 in which the heating coil 10 is located. That as
  • Material acting as an oxygen donor should therefore only be present in the area of the heating coil 10 and not in the area of the control coil 60.
  • the insulating powder with the material acting as an oxygen donor is first filled into the glow tube 5 until the heating coil 10 is embedded as completely as possible therein and the control coil 60, even after hammering the glow tube 5, does not use the as Oxygen donor acting material n comes into contact.
  • the insulating powder filling enriched with the material acting as an oxygen donor is identified in FIG. 1 by the reference symbol 25 and is referred to below as the first insulating powder.
  • the insulating powder subsequently filled into the glow tube 5, in which the control coil 60 is embedded should not contain any material acting as an oxygen donor in this example and should be formed, for example, from pure magnesium oxide. In this way, the oxidation is only supported in the area of the heating coil 10, so that both nitriding of the heating coil 10 and corrosion of the control coil 60 can be prevented.
  • the insulating powder, which is free of materials acting as an oxygen donor, is shown in FIG Reference numeral 30 denotes and represents a second insulating powder.
  • the second insulating powder 30 can be a getter material for binding of oxygen such as Si, Ti, Al or reduced metal / ide, such as FeO, Ti; 0 : include
  • the second insulating powder 30 must contain electrically insulating material such as MgO in a considerably greater concentration than the getter material.
  • the material acting as an oxygen donor can be designed, for example, as an oxidic ceramic powder.
  • the ceramic powder can be a metal oxide
  • this metal oxide can be present in its initial state in its highest oxidation state.
  • T ⁇ 0 2 can be used as an oxygen donor.
  • an oxidic ceramic powder or metal oxide as an oxygen donor, which emits oxygen under reducing conditions, such as are given in the area 20 at the tip 55 of the glow tube 5 by the aluminum portion of the heating coil 10, so that in the Crystal lattice of the metal oxide in question results in a defect due to the lack of oxygen atoms.
  • an oxygen donor for example, ZrO; to get voted .
  • a content of the material acting as an oxygen donor in the first insulating powder 25 in a range of already about 0.1 has proved to be sufficient for the initiation of the oxidation on the heating coil 10
  • FIG. 2 shows a second exemplary embodiment of a glow plug according to the invention, the same reference numerals denoting the same elements as in FIG. 1.
  • the glow tube 5 in the second embodiment according to FIG. 2 does not include a control coil but an electronic control element that is protected against oxidation 95, which can include, for example, a temperature sensor and a sensing of the current supplied to the heating coil 10 as a function of the determined temperature and which is not to be described in more detail here.
  • a control coil or a control element can also be dispensed with entirely.
  • a third insulating powder 15 is provided in the entire area of the glow tube 5, which is formed from an electrically insulating material, for example magnesium oxide, and is free of oxygen donors.
  • the heating coil 10 is connected to the connecting bolt 65 via the control element 95, the control element 95 also being able to be arranged as far away from the combustion chamber as possible so as not to be heated too strongly an opening 35 is drilled, the opening 35 should lie outside the area 20 at the tip 55 of the glow tube 5 with the heating coil 10, since this area could be too sensitive for a bore due to its reduction in cross-section, but if in the area 20 at the tip 55 of the glow tube 5 there are no stability problems, it is also conceivable to make the bore 35 there, that is to say directly in the area of the heating coil 10.
  • the opening 35 is only made after the heating coil 10 and possibly the control element 95 m have the area 20 at the tip 55 of the glow tube 5 was introduced and the glow tube 5 was filled with the third insulating powder 15 opening 35 n the glow tube 5 drilled.
  • Oxygen molecules are then introduced into the glow tube 5 through the opening 35 under a gas atmosphere with a controlled partial pressure. This process can last, for example, between approximately one hour and approximately 20 hours, the limits of this time range also being shifted up or down. Then the opening 35 formed by the bore is closed again. The sealing can take place, for example, by welding.
  • the controlled partial pressure increases the oxygen concentration in the glow tube 5. The higher the partial pressure, the higher the concentration of oxygen in the glow tube 5.
  • Exercises a protective function and prevents the formation of nitrides on the heating coil 10 when small amounts of air penetrate during the operation of the glow plug. In this way, the life of the glow plug 1 can be increased. In this case, this is done by pre-oxidation of the heating coil 10 before the glow pencil candle 1 is put into operation for the first time.
  • a protective layer defined in its composition, in this example formed as an aluminum oxide layer is generated on the heating coil 10.
  • the use of a control coil which is susceptible to oxidation and corrosion is not recommended in the second exemplary embodiment, and the use of a control element which is resistant to oxidation and corrosion, such as this has been described using the control element 95 as an example, or to prefer not using a control coil or a control element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Es wird eine elektrisch beheizbare Glühkerze (1) und ein Verfahren zur Herstellung einer elektrisch beheizbaren Glühkerze (1) vorgeschlagen, die einen Schutz einer Heizwendel (10) der Glühkerze (1) vor Nitridation und Aluminium-Ausdampfung aus der Heizleiterlegierung ermöglicht. Die Glühkerze (1) umfasst ein endseitig geschlossenenes Glührohr (5), in das die elektrisch leitfähige Heizwendel (10) eingebracht ist, wobei die Heizwendel (10) zumindest teilweise aus Aluminium, insbesondere aus einer Aluminium-Eisen-Chrom-Legierung, gebildet ist. Im Glührohr (5) sind Sauerstoffdonatoren vorgesehen, um vor oder bei der Beheizung der Heizwendel (10) eine Aluminiumoxydschicht an der Oberfläche der Heizwendel (10) zu bilden.

Description

Elektrisch beheizbare Glühkerze und Verfahren zur Herstellung einer elektrisch beheizbaren Glühkerze
Stand der Technik
Die Erfindung geht von einer elektrisch beheizbaren Glühkerze und einem Verfahren zur Herstellung einer elektrisch beheizbaren Glühkerze aus.
Aus der DE 19928037 Cl ist bereits eine elektrisch beheizbare Glühkerze für Verbrennungsmotoren bekannt, die ein endseitig geschlossenes, korrosionsbeständiges Glührohr umfaßt, das eine Füllung aus einem elektrisch nicht leitenden verdichteten Pulver aufnimmt, in die eine elektrisch leitende Wendel eingebettet ist. Die Wendel umfaßt eine Heizwendel. Diese ist aus einer Eisen-Chrom-
Aluminium-Legierung gebildet. Im Bereich der Heizwendel wird die elektrisch leitende Wendel an ihrer Oberfläche gehärtet. Dadurch kann die Wendel die mechanische Beanspruchung während des Verdichtungsvorgangs ohne Vorschädigung überstehen.
Aus der DE 19756988 Cl ist eine elektrisch beheizbare Glühkerze für Verbrennungsmotoren bekannt, die einen Glühstift aus einem korrosionsbeständigen Metallmantel umf ßt. Im Glühstift ist eine verdichtete Pulverfüllung enthalten. In die Füllung ist eine elektrisch leitende Wendel eingebettet Zur Erhöhung der Lebensdauer der Wendel ist in dem Gluhst ft ein Gettermaterial zum Binden des m der verdichteten Pulverfullung enthaltenen Sauerstoffs vorgesehen. Das Gettermaterial kann m Form elektrisch nicht leitender Partikel in der verdichteten Pulverfullung verteilt sein. Diese können aus Silizium oder Metallo lden solcher Metalle bestehen, die in mehreren Oxidationsstufen oκidieren und eine höhere Affinität ;u Sauerstoff haben als der Wendelwerkstoff, wobei das Gettermaterial im Ausgangszustand die Metalloxide m ihrer ersten Oxidationsstufe enthalten.
Aus der EP 0079385 AI ist ein Heizelement bekannt, bei dem eine Wendel m einer Hülse angeordnet und in ein elektrisch isolierendes Pulver eingebettet ist. Das Pulver umfaßt 0,1 bis 10 Gewichtsprozent eines Oxides und verhindert dadurch die Oxidation des metallischen Anteils der Wendel.
Vorteile der Erfindung
Die elektrisch beheizbare Gluhkerze und das Verfahren zur Herstellung einer elektrisch beheizbaren Gluhkerze mit den Merkmalen der unabhängigen Ansprüche haben dem gegenüber den Vorteil, daß im Gluhrohr Sauerstoffdonatoren vorgesehen sind, um vor oder bei der Beheizung der He zwendel eine Alummiumoxidschicht an der Oberflache der Heizwendel zu bilden. Auf diese Weise wird im Falle eines Eindringens von Luft m das Gluhrohr die Bildung von Nitriden m den Randschichten der Heizwendel und damit ein lokaler Anstieg des elektrischen Widerstands und ein frühzeitiges Versagen der Heizwendel verhindert. Ein weiterer Vorteil besteht darin, dass ein Ausdampfen von Aluminium aus der Legierung weitgehend unterdruckt werden kann .
Durch die in den Unteranspruchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der elektrisch beheizbaren Gluhkerze und des Verfahrens zur Herstellung einer elektrisch beheizbaren Gluhkerze gemäß den unabhängigen Ansprüchen möglich.
Eine wenig aufwendige Realisierung der Zufuhr von Sauerstoffdonatoren ergibt sich, wenn die Heizwendel im Gluhrohr in ein erstes Isolierpulver eingebettet ist, wobei das erste Isolierpulver ein als Sauerstoffdonator wirkendes Material umfaßt.
Besonders vorteilhaft ist es, wenn der Sauerstoffdonator als Metalloxyd ausgebildet ist, daß in mehreren Oxydationsstufen oxydieren kann und m seiner höchsten Oxydationsstufe vorliegt. Auf diese Weise wird die Sauerstoffabgäbe des Metalloxyds erheblich beg nstigt.
Entsprechendes gilt, wenn das oxydische Keramikpuler ein Metalloxyd umfaßt, das unter reduzierenden Bedingungen Sauerstoff durch Defektbildung abgeben kann.
Vorteilhaft ist es auch, wenn die Sauerstoffdonatoren m Form von Sauerstoffmolekulen unter Druck m das Gluhrohr eingebracht sind. Auf diese Weise kann durch den Druck d e Sauerstoffkonzentration im Gluhrohr erhöht werden und durch die Sauerstoffmolekule eine Oxydation an der Heizwendeloberflache zur Bildung von -Aluminiumoxyd realisiert werden, ohne das dazu eine Erwärmung der Heizwendel durch einen Heizstrom erforderlich ist. Somit kann die Heizwendel bereits vor dem ersten Betrieb, also vor dem ersten Beheizen durch einen Heizstrom durch eine Oyxdschicht vor Nitridation geschützt werden.
Ein weiterer Vorteil besteht darin, daß eine sich an die Heizwendel anschließende Regelwendel in ein zweites
Isolierpulver eingebettet wird, das möglichst frei von Sauerstoffdonatoren ist und/oder Gettermaterial zum Binden von Sauerstoff umfasst. Somit kann für die Regelwendel ein Material verwendet werden, das keine schutzende Oxydschicht unter dem Einfluß von Sauerstoffdonatoren bildet, wie dies beispielsweise bei Kobalt-Eisen-Legierungen der Fall ist. Eine Korrosion der Regelwendel kann somit durch Verwendung des zweiten Isolierpulvers, das möglichst frei von Sauerstoffdonatoren ist, verhindert oder zumindest wesentlich verzögert werden.
Bei der Verwendung von Gettermaterial im zweiten Isolierpulver können störende Sauerstoffmolekule im Bereich der Regelwendel gebunden werden.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung naher erläutert. Es zeigen Figur 1 ein erstes Ausfuhrungsbeispiel einer erfmdungsgemaßen elektrisch behεizbaren Glühkerze und Figur 2 ein zweites Ausfuhrungsbeispiel einer erfindungsgemaßen elektrisch beheizbaren Gluhkerze.
Beschreibung der Ausfuhrungsbeispiele
In Figur 1 kennzeichnet 1 eine als Gluhstiftkerze ausgebildete Gluhkerze für einen Verbrennungsmotor. Die Glühstiftkerze 1 umfaßt ein Kerzengehause 40 mit einem Gewinde 45 zum Einschrauben in einen Zylinderkopf des Verbrennungsmotors. Das Kerzengehause 40 umfaßt weiterhin einen Sechskant 50, über den die Gluhstiftkerze bzw. das Kerzengehause 40 mittels eines Verdrehwerkzeugs, beispielsweise eines Sechskantschlussels, in den Zylinderkopf eingeschraubt oder aus dem Zylinderkopf ausgeschraubt werden kann. In das Kerzengehausε 40, das rohrformig ausgebildet ist, ist ein Gluhrohr 5 eingepreßt und ragt brennraumseitig, d.h an dem dem Sechskant 50 gegenüberliegenden Ende des Kerzengehauses 40 aus dem Kerzengehause 40 heraus. Das Gluhrohr 5 ist brennraumseitig an seinem Ende geschlossen. In einem Bereich 20 bei der so gebildeten brennraumseitigen Spitze 55 des Gluhrohrs 5 kann der Querschnitt des Gluhrohrs 5 wie in diesem Beispiel reduziert sein. Eine Reduzierung dieses Querschnitts ist aber nicht unbedingt erforderlich. Die Gluhstiftkerze 1 ragt lediglich mit dem Bereich 20 reduzierten Querschnitts in den Brennraum hinein. Im Bereich 20 reduzierten Querschnitts umfaßt das Gluhrohr 5 eine Heizwendel 10, die mit der brennraumseitigen Spitze 55 des Gluhrohrs 5 verschweißt ist. An die Heizwendel 10 schließt sich eine Regelwendel 60 an, die m dem Bereich des Gluhrohrs 5 angeordnet ist, dessen
Querschnitt nicht reduziert ist. Am brennraumfernen Ende des Gluhrohrs 5 kontaktiert die Regelwendel 60 einen Anschlußbolzen 65, der mit dem Pluspol einer Fahrzeugbatterie verbindbar ist. In Richtung zur brennraumfernen Öffnung des Kerzengehauses 40 ist das
Gluhrohr 5 noch innerhalb des Kerzengehauses 40 durch einen Vitonring 70 gegen Umwelteinflüsse abgedichtet. Ein weiterer Dichtring 75 dichtet den brennraumfernen aus dem Kεrzengehause 40 herausragenden Anschlußbolzen 65 gegen das Kerzengehause 40 ab. Eine sich an den Dichtring 75 brennraumfern anschließende Isolierscheibe 80 dient der elektrischen Isolierung des Anschlußbolzens 65 vom Kerzengehausε 40 und isoliert somit den Anschlußbolzen 65 elektrisch vom Kerzengehause 40, dessen elektrisches Potential auf Fahrzeugmasse liegt. Eine Ringmutter 85 druckt die Isolierscheibe 80 auf das Kerzengehause 40 und den Dichtring 75 in das Kerzengehause 40.
Das Gluhrohr 5 ist metallisch ausgebildet und liegt aufgrund des Einprεssens in das Kerzengehauses 40 ebenfalls mit seinem elektrischen Potential auf der Fahrzeugmasse. Die Heizwendel 10 ist mit der Regelwendel 60 an einem Verbindungspunkt 90 verschweißt.
Die Funktion des Vitonrings 70 ist von erheblicher
Bedeutung, da er aus einem weichen, isolierenden Material besteht und somit den Anschlußbolzen 65 an seinem in das Gluhrohr 5 zur Kontaktierung der Regelwendel 60 hineinragenden Ende nicht nur elektrisch isolierend gegen das Kerzengehause 40 abdichtet, sondern auch das Eindringen von Luft in das brennraumfern geöffnete Glührohr 5 verhindert. Diese Abdichtung sollte möglichst zuverlässig sein.
Die Heizwendel 10 besteht beispielsweise aus einem ferritischen Stahl mit Aluminiumanteil, beispielsweise aus einer Eisen-Chrom-Alummium-Legierung. Die R.egelwendel kann beispielsweise aus reinem Nickel oder einer Kobalt-Eisen- Legierung mit einem Anteil von 6-18 Gewichtsprozent Kobalt gebildet sein und besitzt die Funktion eines
Regelwiderstandes mit positivem Temperaturkoeffizienten.
Weiterhin ist im Gluhrohr 5 eine elektrisch isolierende und nach Hammern des Gluhrohrs 5 verdichtete Pulverfullung 25,30 vorgesehen, die dafür sorgt, dass die Heizwendel 10 und die Regelwendel 60 im Innern des Gluhrohrs 5 ortsfest untergebracht und fixiert sowie gegen das Gluhrohr 5 ausserhalb der Spitze 55 des Glührohrs 5 elektrisch isoliert sind. Als Pulverfullung wird im Allgemeinem Magnesiumoxid verwendet. Außerdem sorgt die Pulverfullung für eine thermische Verbindung zwischen dem Gluhrohr 5 und der Heizwendel 10 bzw der Regelwendel 60
Die Legierung der Heizwendel 10 schützt sich normalerweise bei ausreichendem Sauerstoffangebot m kurzer Zeit durch die Ausbildung einer dünnen Al2 03-Schιcht gegen weitere Korrosion. Diese Voraussetzung ist jedoch bei der Gluhstiftkerze 1 aufgrund eines m der Regel auftretenden anfanglichen Sauerstoffmangels nicht gegeben Wahrend der zyklischen thermischen Beanspruchung der Gluhstiftkerze beim Einsatz im Zylinderkopf kann es trotz Dichtring 75 und Vitonring 70 zum Eindringen von Luft in das Gluhrohr 5 kommen. Dies fuhrt zu einer gleichzeitigen Reaktion des Materials der Heizwendel 10 mit Sauerstoff und Stickstoff. Stickstoff fuhrt im Gegensatz zu Sauerstoff, der in der Oberflache der Heizwendel 10 eine schutzende Aluminiumoxidschicht bildet, zu einer inneren Nitridation, d. h zur Bildung von Aluminiumnitrid im Material der Heizwendel 10. Die Folge ist ein lokaler Anstieg des elektrischen Widerstandes der Heizwendel 10, der einen höheren Spannungsabfall und damit eine größere Erwärmung an der Heizwendel 10 zur Folge hat und zu einem frühzeitigen Versagen der Heizwendel 10 fuhren kann.
Aus diesem Grunde wird der Isolierpulverfullung ein als
Sauerstoffdonator wirkendes Material hinzugegeben, das bei hohen Temperaturen Sauerstoff abgibt und so die Bildung einer schützenden Aluminiumoxydschicht auf der Heizwendel 10 fordert. Dadurch wird im Falle eines Emdnngends von Luft in das Gluhrohr 5 die Bildung von Nitriden in den Randschichten der Heizwendel 10 verhindert. Die Aluminiumoxidschicht wird dabei zumindest teilweise schon beim ersten Beheizen der Heizwendel 10 durch einen Heizstrom realisiert, bei dem Temperaturen von über 1000 Grad Celsius erreicht werden. Wenn das Material der Regelwendel 60 keinen Aluminiumanteil und auch keinen Siliziumanteil wie m dem hier beschriebenen Beispiel aufweist, so bildet es mit dem von den Sauerstoffdonatoren abgegebenen Sauerstoff keine schutzende Oxydschicht sondern korrodiert. Dies soll verhindert werden. Deshalb soll m diesem Fall das als Sauerstoffdonator wirkende Material der Isolierpulverfullung nur im Bereich 20 bei der Spitze 55 des Gluhrohrs 5 hinzugegeben werden, in dem sich die Heizwendel 10 befindet. Das als
Sauerstoffdonator wirkende Material sollte also nur im Bereich der Heizwendel 10 und nicht im Bereich der Regelwendel 60 vorliegen. Zu diesem Zweck wird bei der Montage der Gluhstiftkerze 1 zunächst das Isolierpulver mit dem als Sauerstoffdonator wirkenden Material in das Gluhrohr 5 solange eingefüllt, bis die Heizwendel 10 möglichst vollständig darin eingebettet ist und die Regelwendel 60 auch nach einem Hammern des Gluhrohrs 5 nicht mit dem als Sauerstoffdonator wirkenden Material n Berührung kommt. Die mit dem als Sauerstoffdonator wirkenden Material angereicherte Isolierpulverfullung ist in Figur 1 mit dein Bezugszeichen 25 gekennzeichnet und wird im Folgenden als erstes Isolierpulver bezeichnet. Das anschließend m das Gluhrohr 5 eingefüllte Isolierpulver, in das die Regelwendel 60 eingebettet ist, sollte in diesem Beispiel kein als Sauerstoffdonator wirkendes Material enthalten und beispielsweise aus reinem Magnesiumoxyd gebildet sein. Auf diese Weise wird die Oxydation nur im Bereich der Heizwendel 10 unterstutzt, so dass sowohl eine Nitridation der Heizwendel 10 als auch eine Korrosion der Regεlwendel 60 verhindert werden kann Das Isolierpulver, das frei von als Sauerstoffdonator wirkenden Materialien ist, ist in Figur 1 mit dem Bezugszeichen 30 gekennzeichnet und stellt ein zweites Isolierpulver dar Alternativ oder zusätzlich kann das zweite Isolierpulver 30 ein Gettermaterial zum Binden von Sauerstoff wie z.B. Si, Ti, AI oder reduzierte Mεtallo/ide, wie z B. FeO, Ti; 0: umfassen Bei elektrisch leitfahigem Gettermaterial wie z.B. Si, Ti, AI muß das zweite Isolierpulver 30 elektrisch isolierendes Material wie z.B MgO, in erheblich größerer Konzentration als das Gettermaterial enthalten.
Das als Sauerstoffdonator wirkende Material kann beispielsweise als oxidisches Keramikpulver ausgebildet sein. Dabei kann das Keramikpulver ein Metalloxyd eines
Metalls sein, dass in mehreren Oxydationsstufen oxydieren kann. Um die Abgabe von Sauerstoff zu begünstigen, kann dieses Metalloxyd m einem Ausgangszustand in seiner höchsten Oxydationsstufe vorliegen. Dabei kann beispielsweise Tι02 als Sauerstoffdonator Verwendung finden.
Eine weitere Möglichkeit besteht darin, als Sauerstoffdonator ein oxydisches Keramikpulver bzw. Metalloxyd zu verwenden, das unter reduzierenden Bedingungen, wie sie im Bereich 20 bei der Spitze 55 des Gluhrohrs 5 durch den Alummiumanteil der Hεizwendel 10 gegeben sind, Sauerstoff abgeben, so dass sich im Kristallgitter des betreffenden Metalloxyds ein Defekt durch fehlende Sauerstoffato e ergibt. Für einen solchen Sauerstoffdonator kann beispielsweise ZrO; gewählt werden .
Als ausreichend für die Einleitung der Oxydation an der Heizwendel 10 bei Erwärmung hat sich ein Gehalt des als Sauerstoffdonator wirkenden Materials im ersten Isolierpulver 25 in einem Bereich von bereits etwa 0,1
Gewichtsprozent bis etwa 20 Gewichtsprozent ergeben, der restliche Anteil des ersten Isolierpulvers 25 kann beispielsweise durch Magnesiumoxyd gebildet sein. In Figur 2 ist ein zweites Ausfuhrungsbeispiel einer erfmdungsgemaßen Gluhkerze dargestellt, wobei gleiche Bezugszeichen gleiche Elemente kennzeichnen wie in Figur 1 Im Unterschied zur ersten Ausfuhrungsform nach Figur 1 urnfasst das Gluhrohr 5 bei der zweiten Ausfuhrungsform nach Figur 2 keine Regelwendel sondern ein vor Oxidation geschütztes elektronisches Regelelement 95, das beispielsweise einen Temperatursensor und eine von der ermittelten Temperatur abhangige Tastung des der Heizwendel 10 zugefuhrten Stromes umfassen kann und hier nicht naher beschrieben werden soll. Auch kann auf eine Regelwendel oder ein Regelelement ganz verzichtet werden Ausserdem ist an Stelle des ersten Isolierpulvers 25 und des zweiten Isolierpulvers 30 ein drittes Isolierpulver 15 im gesamten Bereich des Gluhrohrs 5 vorgesehen, dass aus einem elektrisch isolierenden Material, beispielsweise aus Magnesiumoxyd gebildet ist und frei von Sauerstoffdonatoren ist. Die Heizwendel 10 ist über das Regelelement 95 mit dem Anschlußbolzen 65 verbunden, wobei das Regelelement 95 auch möglichst brennraumfern angeordnet sein kann, um nicht zu stark erhitzt zu werden Es kann nun vorgesehen sein, dass vor dem ersten Betrieb der Gluhstiftkerze 1 m das Gluhrohr 5 eine Öffnung 35 gebohrt wird, wobei die Öffnung 35 ausserhalb des Bereichs 20 bei der Spitze 55 des Gluhrohrs 5 mit der Heizwendel 10 liegen sollte, da dieser Bereich aufgrund semer Querschnittsreduzierung für eine Bohrung zu empfindlich sein konnte Wenn jedoch im Bereich 20 bei der Spitze 55 des Gluhrohrs 5 keine Stabilitatsprobleme bestehen, so ist auch denkbar, die Bohrung 35 dort anzubringen, also direkt im Bereich der Heizwendel 10 Die Öffnung 35 wird dabei erst angebracht, nachdem die Heizwendel 10 und gegebenenfalls das Regelelement 95 m den Bereich 20 bei der Spitze 55 des Gluhrohrs 5 eingebracht und das Gluhrohr 5 mit dem dritten Isolierpulver 15 gefüllt wurde Erst dann wird die Öffnung 35 n das Gluhrohr 5 gebohrt. Durch die Öffnung 35 werden dann Sauerstoffmolekule unter Gasatmosphare mit kontrolliertem Partialdruck in das Gluhrohr 5 eingebracht. Dieser Vorgang kann beispielsweise zwischen etwa einer Stunde und etwa 20 Stunden, wobei die Grenzen dieses Zeitbereichs auch jeweils nach oben oder unten verschoben sein können, andauern. Anschließend wird die durch die Bohrung gebildete Öffnung 35 wieder verschlossen. Das Verschließen kann beispielsweise durch Verschweissen erfolgen. Durch den kontrollierten Partialdruck wird die Sauerstoffkonzentration im Gluhrohr 5 erhöht. Je hoher der Partialdruck ist, um so hoher wird die Konzentration des Sauerstoffs im Gluhrohr 5. Durch die hohe Konzentration von Sauerstoff und vor allem durch das Vorliegen von reinen Sauerstoffmolekulen laßt sicn eine Oxydation an der Oberflache der Heizwendel 10 beschleunigen, so dass sich bereits vor oder bei dem ersten Betrieb der Gluhstiftkerze 1 im Verbrennungsmotor eine Passivierung der Heizwendel 10 durch Bildung einer dünnen AI; Oj-Schicht an der Oberflache der Heizwendel 10 in kurzer Zeit realisieren laßt, wobei die Al2 03-Schιcht eine
Schutzfunktion ausübt und beim Fall eines Eindringens von geringen Mengen an Luft wahrend des Betriebs der Gluhstiftkerze die Bildung von Nitriden an der Heizwendel 10 verhindert. Auf diese Weise kann die Lebensdauer der Gluhstiftkerze 1 erhöht werden. In diesem Fall geschieht dies durch Voroxydation der Heizwendel 10 vor der ersten Inbetriebnahme der Gluhstiftkerze 1. Durch entsprechende Vorgabe des Partialdrucks zum Einbringen von Sauerstoff m das Gluhrohr 5 und bei entsprechender Vorgabe der Zeit, m der der Sauerstoff m das Gluhrohr 5 eingebracht wird, laßt sich eine in ihrer Zusammensetzung definierte Schutzschicht, in diesem Beispiel als Aluminiumoxydschicht ausgebildet, auf der Heizwendel 10 erzeugen. Wenn sich der in das Glührohr 5 auf diese Weise eingebrachte Sauerstoff auch außerhalb des Bereichs mit der Heizwendel 10 im Glührohr 5 verteilt, ist die Verwendung einer oxydations- und korrosionsanfälligen Regelwendel beim zweiten Ausführungsbeispiel nicht empfehlenswert und die Verwendung eines oxydations- und korrosionsfesten Regelelementes, wie dies anhand des Regelelementes 95 beispielhaft beschrieben wurde, oder der Verzicht auf eine Regelwendel oder ein Regelelement vorzuziehen.

Claims

Ansprüche
1. Elektrisch beheizbare Glühkerze (1) für Verbrennungsmotoren, mit einem endseitig geschlossenεn Glührohr (5) , in das einε elektrisch leitfähige Heizwendel (10) eingebracht ist, wobei die Heizwεndεl (10) zumindest teilweise aus Aluminium, insbesondere aus einer Aluminium-Eisen-Chrom Legierung, gebildet ist, dadurch gekennzeichnet, dass im Glührohr (5) Sauerstoffdonatoren vorgesehen sind, um vor oder bei der Beheizung der Heizwendel (10) eine Aluminiumoxidschieh.t an der Oberfläche der Heizwendel (10) zu bilden.
2. Glühkerze (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Heizwendel (10) im Glührohr (5) in ein erstes Isolierpulver (25) eingebettet ist und dass das erste Isolierpulver (25) ein als Sauerstoffdonator wirkendes
Material umfaßt .
3. Glühkerze (1) nach Anspruch 2, dadurch gekennzeichnet, dass das Material ein oxidisches Keramikpulver ist.
4. Glühkerze (1) nach Anspruch 3, dadurch gekennzeichnet, dass das Keramikpulver ein Mεtalloxid eines Metalls, das in mehreren Oxidationsstufen oxidieren kann, insbesondere TiO,, umfaßt.
5. Glühkerze (1) nach Anspruch 4, dadurch gekennzeichnet, dass das Metalloxid in einem Ausgangszustand in seiner höchsten Oxidationsstufe vorliegt.
6. Glühkerze (1) nach Anspruch 3, 4 oder 5, dadurch gekennzeichnεt , dass das oxidische Keramikpulver ein Metalloxid, insbesondere Zr02, umf ßt, das unter reduzierenden Bedingungen Sauerstoff durch Defektbildung abgebεn kann .
7. Glühkerze (1) nach einem der Ansprüche 2 bis 6, dadurch gekennzεichnεt, dass der Gehalt des als Sauerstoffdonator wirkenden Materials im Bereich von etwa 0,lGew.% bis etwa 20Gew.% des ersten Isolierpulvers (25) liegt.
8. Glühkerzε (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Sauerstoffdonatoren in Form von
Sauerstoffmolekülen unter Druck in das Glührohr (5) eingebracht sind.
9. Verfahren zur Herstellung einer elektrisch beheizbaren Glühkerze (1) für Verbrεnnungsmotorεn, bei dem eine elektrisch leitfähige Heizwendel (10) , die zumindest teilweise aus Aluminium, insbesondere aus einer Aluminium-Eisen-Chrom-Legierung, gebildet ist, in ein endseitig geschlossenes Glührohr (5) eingebracht wird, dadurch gekennzeichnet, dass vor dem Betrieb der Glühkerze (1) Sauerstoffdonatoren in das Glührohr (5) eingebracht werdεn, um vor oder bei der Beheizung der Heizwendel (10) einε Aluminiumoxidschicht an der
Oberfläche der Heizwendεl (10) zu bilden.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass nach dem Einbringen der Heizwendel (10) in den Bereich (20) der Spitze des Glührohrs (5) ein erstes Isolierpulver (25) in das Glührohr (5) eingefüllt wird, das ein als Sauerstoffdonator wirkendes Material umfaßt, so dass die Heizwendel (10) möglichst vollständig in dieses erste Isolierpulver (25) eingebettεt ist. 5
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass anschließend ein zweites Isolierpulver (30) , insbesondere auf der Basis von MgO, in das Glührohr (5) eingefüllt wird, das möglichst frei von Sauerstoffdonatoren ist
L0 und/oder Gettermaterial zum Binden von Sauerstoff umfasst und in das eine sich an die Heizwendel (10) anschließende Regelwendel (60) , die insbesondere aus einer Kobalt- Eisen-Legiεrung gebildet ist, auf diese Wεisε εingεbεttεt wird.
15
12. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass nach dem Einbringen der Heizwendel (10) in den Bereich. (20) der Spitze des Glührohrs (5) und nach dem Befüllen des Glührohrs (5) mit einεm dritten Isolierpulver (15) in 0 das Glührohr (5) eine Öffnung (35) gebohrt wird, dass durch die Öffnung (35) des Glührohrs (5) Sauerstoffmoleküle untεr Druck in das Glührohr (5) eingebracht werden und dass die durch die Bohrung gebildete Öffnung (35) anschließend wieder verschlossen 5 wird, vorzugsweise durch Verschweißen.
13.Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Sauεrstoffmolεküle für εine vorgegebene Zeit in das Glührohr (5) eingebracht werden, vorzugsweisε zwischεn 0 etwa 1h und etwa 20h.
PCT/DE2002/002596 2001-10-23 2002-07-16 Elektrisch beheizbare glühkerze und verfahren zur herstellung einer elektrisch beheizbaren glühkerze WO2003038340A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP02758098A EP1440280B1 (de) 2001-10-23 2002-07-16 Elektrisch beheizbare glühkerze und verfahren zur herstellung einer elektrisch beheizbaren glühkerze
DE50211415T DE50211415D1 (de) 2001-10-23 2002-07-16 Elektrisch beheizbare glühkerze und verfahren zur herstellung einer elektrisch beheizbaren glühkerze
US10/451,772 US6930283B2 (en) 2001-10-23 2002-07-16 Electrically heatable glow plug and method for producing said electrically heatable glow plug
JP2003540572A JP4076162B2 (ja) 2001-10-23 2002-07-16 電気的に加熱可能なグロープラグおよび該電気的に加熱可能なグロープラグを製作する方法
KR1020047005891A KR100876848B1 (ko) 2001-10-23 2002-07-16 전기적으로 가열될 수 있는 글로우 플러그 및 전기적으로 가열될 수 있는 글로우 플러그 제조 방법
HU0302081A HUP0302081A3 (en) 2001-10-23 2002-07-16 Electrically heatable glow plug and method for producing said electrically heatable glow plug

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10152175 2001-10-23
DE10152175.8 2001-10-23
DE10157466A DE10157466A1 (de) 2001-10-23 2001-11-23 Elektrisch beheizbare Glühkerze und Verfahren zur Herstellung einer elektrisch beheizbaren Glühkerze
DE10157466.5 2001-11-23

Publications (1)

Publication Number Publication Date
WO2003038340A1 true WO2003038340A1 (de) 2003-05-08

Family

ID=26010431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002596 WO2003038340A1 (de) 2001-10-23 2002-07-16 Elektrisch beheizbare glühkerze und verfahren zur herstellung einer elektrisch beheizbaren glühkerze

Country Status (9)

Country Link
US (1) US6930283B2 (de)
EP (1) EP1440280B1 (de)
JP (1) JP4076162B2 (de)
AT (1) ATE381701T1 (de)
DE (1) DE50211415D1 (de)
HU (1) HUP0302081A3 (de)
PL (1) PL361797A1 (de)
TW (1) TW539805B (de)
WO (1) WO2003038340A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1944551A1 (de) 2007-01-11 2008-07-16 Robert Bosch Gmbh Glühstiftkerze
WO2017076657A1 (de) * 2015-11-05 2017-05-11 Robert Bosch Gmbh Heizeinsatz zum einsatz in einem glührohr einer elektrisch beheizbaren glühstiftkerze
EP2662623A3 (de) * 2012-05-07 2017-10-04 NGK Spark Plug Co., Ltd. Glühstift und Herstellungsverfahren dafür

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248802A1 (de) * 2002-10-19 2004-04-29 Robert Bosch Gmbh Glühstiftkerze mit stark verkürzter Regelwendel
US20090184101A1 (en) * 2007-12-17 2009-07-23 John Hoffman Sheathed glow plug
US8158909B2 (en) * 2008-06-12 2012-04-17 Delphi Technologies, Inc. Hot zone igniter
JP5276425B2 (ja) * 2008-12-15 2013-08-28 日本特殊陶業株式会社 シースヒータ及びグロープラグ
ITPR20090014A1 (it) * 2009-03-17 2010-09-18 Etecno 1 S R L Filamento resistivo per candelette di motori a combustione interna e riscaldatori per sistemi di scarico e candeletta o riscaldatore comprendente detto filamento
JP5509017B2 (ja) * 2009-10-15 2014-06-04 日本特殊陶業株式会社 グロープラグ
US20130216862A1 (en) * 2012-02-22 2013-08-22 c/o Chevron Corporation Coating Compositions, Applications Thereof, and Methods of Forming
EP2840314B1 (de) * 2012-04-16 2020-01-15 NGK Sparkplug Co., Ltd. Glühkerze
FR3033389B1 (fr) * 2015-03-02 2018-11-16 Robert Bosch Gmbh Bougie de prechauffage ou de post-chauffage
US11248799B2 (en) 2019-01-25 2022-02-15 Weber-Stephen Products Llc Pellet grills
US11624505B2 (en) 2020-03-17 2023-04-11 Weber-Stephen Products Llc Ignition-based protocols for pellet grills

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0079385A1 (de) 1981-05-18 1983-05-25 Matsushita Electric Industrial Co., Ltd. Abgeschirmtes heizelement und dessen herstellungsverfahren
US4639712A (en) * 1984-10-25 1987-01-27 Nippondenso Co., Ltd. Sheathed heater
DE19756988C1 (de) 1997-12-20 1999-09-02 Daimler Benz Ag Elektrisch beheizbare Glühkerze oder Glühstab für Verbrennungsmotoren
DE19928037C1 (de) 1999-06-18 2000-05-25 Daimler Chrysler Ag Elektrisch beheizbare Glühkerze oder Glühstab für Verbrennungsmotoren

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2690491A (en) * 1953-05-01 1954-09-28 Gresham H Calvert Therapeutic heater unit
US3596057A (en) * 1969-05-08 1971-07-27 Dominion Electric Corp Electric heating device
JPS5848030B2 (ja) * 1976-03-09 1983-10-26 株式会社リケン Fe−Cr−Al系発熱体の表面処理方法
DE2625752A1 (de) * 1976-06-09 1977-12-15 Bulten Kanthal Gmbh Elektrisches widerstand-heizelement und verfahren zu seiner herstellung
JPS5461340A (en) * 1977-10-25 1979-05-17 Toshiba Corp Electric heater
JPH02155186A (ja) * 1988-12-06 1990-06-14 Fujikura Ltd 遠赤外線放射体
JPH04123785A (ja) * 1990-09-14 1992-04-23 Matsushita Electric Ind Co Ltd 発熱体
JPH05283149A (ja) * 1992-03-31 1993-10-29 Nisshin Steel Co Ltd 表面絶縁性に優れたヒーター材料とその製造方法
CN1287634C (zh) * 2001-08-13 2006-11-29 三洋热工业株式会社 加热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0079385A1 (de) 1981-05-18 1983-05-25 Matsushita Electric Industrial Co., Ltd. Abgeschirmtes heizelement und dessen herstellungsverfahren
US4639712A (en) * 1984-10-25 1987-01-27 Nippondenso Co., Ltd. Sheathed heater
DE19756988C1 (de) 1997-12-20 1999-09-02 Daimler Benz Ag Elektrisch beheizbare Glühkerze oder Glühstab für Verbrennungsmotoren
US6043459A (en) * 1997-12-20 2000-03-28 Daimlerchrysler Ag And Beru Ag Electrically heatable glow plug with oxygen getter material
DE19928037C1 (de) 1999-06-18 2000-05-25 Daimler Chrysler Ag Elektrisch beheizbare Glühkerze oder Glühstab für Verbrennungsmotoren

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1944551A1 (de) 2007-01-11 2008-07-16 Robert Bosch Gmbh Glühstiftkerze
EP2662623A3 (de) * 2012-05-07 2017-10-04 NGK Spark Plug Co., Ltd. Glühstift und Herstellungsverfahren dafür
WO2017076657A1 (de) * 2015-11-05 2017-05-11 Robert Bosch Gmbh Heizeinsatz zum einsatz in einem glührohr einer elektrisch beheizbaren glühstiftkerze

Also Published As

Publication number Publication date
EP1440280A1 (de) 2004-07-28
PL361797A1 (en) 2004-10-04
US20040084436A1 (en) 2004-05-06
ATE381701T1 (de) 2008-01-15
EP1440280B1 (de) 2007-12-19
US6930283B2 (en) 2005-08-16
HUP0302081A2 (hu) 2003-09-29
JP2005507068A (ja) 2005-03-10
JP4076162B2 (ja) 2008-04-16
TW539805B (en) 2003-07-01
DE50211415D1 (de) 2008-01-31
HUP0302081A3 (en) 2005-10-28

Similar Documents

Publication Publication Date Title
WO2003038340A1 (de) Elektrisch beheizbare glühkerze und verfahren zur herstellung einer elektrisch beheizbaren glühkerze
EP0701693B1 (de) Gassensor
EP1517086A1 (de) Druckmessglühkerze für einen Dieselmotor
DE1558662A1 (de) Keramik-Verbund-Werkstoff
DE102004063077B4 (de) Zündeinrichtung
EP0810425A1 (de) Elektrischer Widerstands-Temperaturfühler
EP3014184A1 (de) Glührohr für eine regelbare glühstiftkerze
DE10029004C2 (de) Keramikheizungs-Glühkerze
DE10157466A1 (de) Elektrisch beheizbare Glühkerze und Verfahren zur Herstellung einer elektrisch beheizbaren Glühkerze
DE10205751B4 (de) Zündeinrichtung, insbesondere Zündkerze für Brennkraftmaschinen
EP1047932A1 (de) Dichtung für ein sensorelement eines gassensors und verfahren zur herstellung der dichtung
DE19852785A1 (de) Keramische Glühstiftkerze
DE102014217084A1 (de) Zündkerze mit Dichtung aus einer mindestens ternären Legierung
EP1944551B1 (de) Herstellungsverfahren für eine Glühstiftkerze
DE19928037C1 (de) Elektrisch beheizbare Glühkerze oder Glühstab für Verbrennungsmotoren
WO2003040625A1 (de) Elektrisch beheizbare glühkerze und verfahren zur herstellung einer elektrisch beheizbaren glühkerze
EP1939527B1 (de) Glühstiftkerze
DE10222262A1 (de) Legierung
DE2350253C3 (de) Elektrochemischer Meßfühler
DE102013226667B4 (de) Zündkerze mit Dichtung aus einem nichtleitenden Material
DE102015105015A1 (de) Zündkerze
DE112018003606T5 (de) Gassensor
DE2154617B2 (de) Dichtung fuer zuendkerzen
DE102007019898A1 (de) Zündeinrichtung
EP3695473B1 (de) Zündkerzen-widerstandselement mit erhöhtem zrsio4-phasenanteil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2002758098

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): HU IN JP KR PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

WWE Wipo information: entry into national phase

Ref document number: 984/CHENP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003540572

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10451772

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047005891

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002758098

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002758098

Country of ref document: EP