WO2003038152A1 - Revetement en alliage re pour barriere de diffusion - Google Patents

Revetement en alliage re pour barriere de diffusion Download PDF

Info

Publication number
WO2003038152A1
WO2003038152A1 PCT/JP2002/009479 JP0209479W WO03038152A1 WO 2003038152 A1 WO2003038152 A1 WO 2003038152A1 JP 0209479 W JP0209479 W JP 0209479W WO 03038152 A1 WO03038152 A1 WO 03038152A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
layer
diffusion
coating
substrate
Prior art date
Application number
PCT/JP2002/009479
Other languages
English (en)
French (fr)
Inventor
Toshio Narita
Shigenari Hayashi
Takayuki Yoshioka
Hiroshi Yakuwa
Original Assignee
Japan Science And Technology Agency
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Ebara Corporation filed Critical Japan Science And Technology Agency
Priority to US10/494,014 priority Critical patent/US7205053B2/en
Priority to EP02765561A priority patent/EP1449937B1/en
Priority to DE60238076T priority patent/DE60238076D1/de
Priority to JP2003540413A priority patent/JP3857690B2/ja
Publication of WO2003038152A1 publication Critical patent/WO2003038152A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Definitions

  • the present invention relates to a technology for extending the life of high-temperature equipment members, such as gas turbine blades, jet engine turbine blades, and boiler heat transfer tubes.
  • high-temperature equipment members such as gas turbine blades, jet engine turbine blades, and boiler heat transfer tubes.
  • TBC Thermal barrier coating
  • TBC thermal barrier coatings
  • Ceramics have a large difference in the coefficient of thermal expansion from the base metal, and easily peel off at the TBC / base metal interface. Therefore, an alloy layer called an undercoat (or bond coat) is usually placed between the ceramic layer and the base metal. Is used to improve the adhesion. However, in an ultra-high temperature environment of about 800 to 1200 ° C, the undercoat reacts with the base material and deteriorates, and the oxide layer grows thickly on the undercoat surface, causing the ceramic layer to peel off. I do. For this reason, a major problem is that the service life of equipment members is as short as several months.
  • A1 (or Cr, Si) diffusion and infiltration treatment In order to improve the corrosion resistance, a diffusion infiltration treatment such as A1 or Cr or Si is applied.
  • a diffusion infiltration treatment such as A1 or Cr or Si is applied.
  • diffusion of elements contributing to corrosion resistance is extremely fast and reactivity is high, so a stable protective film is maintained for a long time.
  • the consumption rate of elements such as Cr and A1 forming the protective film is high, so stable protection is achieved.
  • a major problem is that the functional film cannot be maintained for a long time, and the equipment life is extremely short.
  • Thermal spraying of high Ni-high Cr alloys may be applied to improve corrosion resistance.
  • Japanese Unexamined Patent Publication No. 11-61439 discloses a TBC system in which Re is added to a TBC undercoat in an amount of 12% by weight or less (several% in atomic composition).
  • Japanese Patent Application Laid-Open No. 2000-511236 discloses, as “a structural component having a base made of a superalloy and a layered structure provided thereon and a method of manufacturing the same,” 35 to 60% by weight of Re (atomic composition). Has proposed a TBC undercoat containing about 15% to 30%).
  • Re in this case is not described in detail, and the effect is not clear.
  • U.S. Patent No. 6,299,986 describes Re5.0-7.0 ° /. 4wt on Ni-base superalloy substrate including /. It describes that a barrier film containing the following Re is formed.
  • a Re-containing protective coating containing 22 to 50 wt% of Cr is described.
  • JP-A-9-143667 discloses that pure Re or Mo or W is contained.
  • a method for manufacturing a high temperature member made of a Re alloy is disclosed. This is a method of manufacturing a structural member of Re or Re alloy, and is intended to use thin Re or Re alloy alone. Disclosure of the invention
  • the present inventors have been conducting research and development on a method of using Re or a Re alloy as a diffusion barrier.
  • Re (or Ir, Rh, Pt, ⁇
  • An alloy layer is coated on the surface of the substrate or inserted between the substrate and the TBC layer to provide an excellent diffusion barrier layer.
  • concentration is low (at an atomic composition of less than 30 ° / .Re) or when a stable alloy phase with Re is not formed at high temperatures, such as in the case of Re-Ni binary alloy, the Re-rich phase and other elements Phase separation into the (eg, Ni) rich phase occurs, and the function as a diffusion barrier decreases.
  • the present inventors can form an alloy phase that is stable at high temperatures by specifying the alloy elements in the Re alloy film applied to the base material and increasing the Re concentration in the alloy film. It has been found that a function as an excellent diffusion barrier layer can be obtained. The present invention provides this excellent diffusion barrier layer.
  • the present invention contains Re in an atomic composition of 30% or more and less than 90%, and a total amount of at least one kind selected from Cr, Mo, and W of 5 ° / 0 or more and less than 60%, excluding unavoidable impurities.
  • Re-alloy coating for diffusion barrier applied to a base material with at least one selected from the group consisting of Ni, Fe, and Co, which can impart excellent heat and corrosion resistance to the base material
  • the present invention is the alloy film for a diffusion barrier layer applied to the above-mentioned substrate, wherein the alloy film has a structure in which a stress relaxation layer is inserted between the substrate and the alloy film.
  • This structure suppresses cracking of the coating due to the difference in thermal expansion between the base material and the alloy coating. It is possible to maintain the gold coating as a continuous layer. This makes it possible to further enhance the excellent heat and corrosion resistance of the alloy film.
  • the present invention mainly includes at least one of Al, Si, and Cr in a diffusion barrier alloy film or a diffusion barrier alloy film in which a stress relaxation layer containing Re is inserted between the diffusion barrier alloy film and the substrate.
  • An alloy film for a diffusion barrier layer applied to the above-mentioned base material having a structure in which a diffusion infiltration layer is laminated. This structure allows elements that reduce corrosion resistance (eg, Ti, Nb, Ta, etc.) to diffuse from the base material to the diffusion-penetrating layer, and to reduce the phase stability of the base material (eg, Al, Si, It is possible to suppress the diffusion of Cr) from the diffusion permeation layer to the substrate. This makes it possible to maintain excellent oxidation resistance and substrate strength for a longer time.
  • the present invention is a film having a structure in which a ceramic for heat shielding is laminated on the alloy film for diffusion barrier described above, thereby enabling the use of the material at a higher temperature.
  • FIG. 1 shows the phase diagram of Re-(Cr, Mo, W)-(Ni, Fe, Co) alloy at high temperature and the alloy composition of the Re alloy film for the diffusion barrier of the present invention compared with the previous case.
  • FIG. 2 is a schematic diagram showing a cross-sectional structure of a Ni-based alloy of an example.
  • FIG. 3 is a schematic diagram showing a cross-sectional structure of the Ni-based alloys of Comparative Examples 1 to 4.
  • FIG. 4 is a schematic diagram showing a cross-sectional structure after oxidizing the Ni-based alloy of Example 1 in the air at 1100 ° C. for one month.
  • FIG. 5 is a schematic diagram showing a cross-sectional structure after oxidizing the Ni-based alloys of Comparative Examples 1 to 4 in the air at 1100 ° C. for one month.
  • Fig. 6 shows that the Ni-based alloys of Example 1 and Comparative Examples 1 to 4 were acidified for 1 month at 1100 ° C in air.
  • 5 is a graph showing the thickness of an oxide scale formed on the surface by the conversion.
  • the present invention contains at least 30% or less and less than 90% of Re in atomic composition and at least one of at least one selected from Cr, Mo and W in an amount of 5% or more and less than 60%.
  • This is a Re alloy coating for a diffusion barrier applied to a substrate made of at least one selected from Ni, Fe, and Co.
  • Re must be at least one element selected from Cr, Mo, and W and at least one element selected from Ni, Co, and Fe. It must be alloyed with the element.
  • Re has an atomic composition of 30% or more and less than 90%, the total amount of at least one element selected from Cr, Mo, and W is 5% or more and less than 60%, and the remainder excluding unavoidable impurities. It must be at least one selected from Ni, Fe, and Co.
  • Re is less than 30%, the ratio of the alloy element-rich layer other than Re increases at high temperatures, and the layer does not function sufficiently as a diffusion barrier layer.
  • Re is more than 90%, it becomes Re single phase.
  • the Re single phase unlike the Re alloy phase, is prone to cracks under thermal shock and has low adhesion to the substrate, so it cannot be stably present on the substrate surface as a long-term diffusion barrier layer . Therefore, the Re concentration was limited to 30% or more and less than 90% in atomic composition. More preferably, Re is 40% or more and 70% or less in atomic composition.
  • the ⁇ phase exhibits a function as an excellent diffusion barrier layer. If the total amount of Cr, Mo, and W is less than 5%, Re becomes a single phase and no ⁇ phase is formed. On the other hand, above 60%, Many Cr, Mo or W rich phases are generated, and the function as a diffusion barrier layer is reduced. Therefore, the total amount of Cr, Mo, and W was limited to 5% or more and less than 60 ° / o . More preferably, the total amount of Cr, Mo, and W in the atomic composition is 20% or more and 50% or less.
  • Ni, Fe, and Co When Ni, Fe, and Co are alloyed with Re-Cr (or Mo, W) alloy, they have the effect of expanding the stable region of the ⁇ phase.
  • Re-Cr (or Mo, W) alloy the Re concentration at which the ⁇ phase becomes stable is about 50 to 70 atomic%, whereas when alloyed with Ni, Fe, and Co, the ⁇ phase becomes stable.
  • the area is about 30 to 80 atoms.
  • the alloying element preferably contains Ni if the substrate is a Ni-based alloy, Fe if the substrate is Fe-based, and Co if the substrate is Co-based.
  • the alloy composition range effective as a diffusion barrier layer is shown in FIG. 1 with the phase diagram of the Re- (Cr, Mo, W)-(Ni, Fe, Co) alloy.
  • the alloy composition range of the previous case is also shown.
  • the alloy coating of Japanese Patent Application Laid-Open No. 2000-511236, which is a prior example has a composition range of a Cr-rich phase
  • JP-A-11-61439 has a composition range of a Ni-rich phase, and does not serve as a diffusion barrier layer. .
  • JP-A-9-143667 does not contain Ni, Fe, and Co, cracks are likely to occur due to thermal shock, and adhesion to a substrate is not good.
  • this film is for use alone without coating on a substrate. Therefore, when this film is used in a state of being coated on a substrate, the film is easily broken, and the heat resistance and corrosion resistance of the substrate are impaired.
  • the alloy film of the present invention has an excellent diffusion barrier layer as shown in FIG. It has a composition centered on the ⁇ -phase single-phase region and has a function as an excellent diffusion barrier layer.
  • the alloy film of the present invention contains Ni, Fe, or Co, which is the main component of the heat-resistant alloy used for the base material, it has good adhesion to the base material and can be used for a long time while applied to the base material surface .
  • This Re alloy film can be preferably formed by magnetron sputtering, but a similar alloy film can be formed by physical vapor deposition, chemical vapor deposition, or thermal spraying.
  • the method is not limited to a method of forming a Re alloy film having a desired alloy composition by these film forming methods, and a desired Re alloy film may be formed by diffusion of alloy components of a base material by heat treatment.
  • a Re-Cr alloy film may be formed by any of the coating methods described above, and the Re-Cr-Ni alloy layer may be formed by diffusion of Ni in the base material by heating in the diffusion and infiltration treatment.
  • the stress relaxation layer When a stress relaxation layer is inserted between the base material and the alloy film, the stress relaxation layer has a Re concentration of about 5 to 20 atoms, for example, more than that of the diffusion barrier layer. /. It is desirable to use a Re- (Cr, Mo, W)-(Ni, Fe, Fe) alloy layer which is low and contains about 5 to 20 atomic% of Ni or Fe or Co. With this structure, it is possible to suppress cracking of the coating due to the difference in thermal expansion between the base material and the alloy coating, and to maintain the alloy coating as a continuous layer, thereby improving the excellent heat resistance and corrosion resistance of the alloy coating. It is possible to further draw out.
  • a known method such as a pack method or a CVD method can be appropriately adopted.
  • a metal layer made of at least one of Ni, Fe, Co, etc. is coated on the Re-Cr alloy film as a receiving layer of Al, Si, or Cr to be diffused, and the Al, Si, or An alloy layer of Cr and these metals is formed.
  • ceramic task is, Zr0 2, Ca0, Mg0, Si0 2, AI2O3 Les Shi desirable to contain at least 1 or more. This reduces the temperature of the internal alloy layer, suppresses oxide growth on the surface of the alloy film, suppresses diffusion between the alloy film and the substrate, and stabilizes the structure of the alloy film and the substrate. Can be maintained for a longer time.
  • Ni-based alloy Inconel 718 (Ni-19Cr-19% Fe-5 ° / oNb-3% Mo-0.9 ° /. Ti-0.4 ° / ⁇ 1 (% by weight)) was coated with an 80 atomic% 1 ⁇ -20 atomic% alloy coating, then plated with Ni, and further subjected to aluminum diffusion and penetration treatment.
  • the alloy film has 80 atoms. / a ORe- 20 atomic 0/0 Ni alloy as a target, after coating the substrate surface by magnetron port down sputtering, vacuum was formed by homogenizing heat treatment for 5 hours coating at 1 100 ° C.
  • the aluminum diffusion treatment is performed by immersing the base material coated with Re alloy and Ni plating in a mixed powder of Ni-50 atomic% A1 alloy powder + A1203, and treating at 1000 ° C for 5 hours in vacuum. By doing I went.
  • Fig. 2 shows the cross-sectional structure of the Ni-based alloy after the treatment.
  • Table 1 shows the results of the composition analysis of each point in Fig. 2 using an electron beam micro analyzer (EPA).
  • EPA electron beam micro analyzer
  • the 80 atomic% 1 ⁇ -20 atomic% Ni alloy film is converted to 47.4% Re-24. 6% Cr-15. 2% Fe-4.3% Mo (47.4% Re-28.9% (Cr, Mo) -23.4% (Ni, Fe)) alloy film, that is, ⁇ phase composition (See Fig. 1).
  • FIG. 3 (a) shows a solid Ni-based alloy (Inconel 718).
  • FIG. 3 (b) shows a Ni-based alloy (Inconel 718) treated only by aluminum diffusion and infiltration. )
  • FIG. 3 (c) shows 20 atoms. / oRe-60 atoms o / oNi-20 atoms 0 /.
  • Ni-based alloy (Inconel 718) which was coated with a Cr alloy film and then subjected to Ni plating and aluminum diffusion and infiltration treatment.
  • FIG. 3 (d) shows the 20 atomic% ⁇ - ⁇ atomic% Cr alloy. After coating, Ni plating and Al plating The cross-sectional structures of the Ni-based alloy (Inconel 718) subjected to the diffusion and infiltration treatment are shown.
  • the Re alloy film was 20 atom% 1 ⁇ -
  • Example 4 a Ni-20 atomic% alloy was formed by coating the alloy with 20 atomic% 1 ⁇ -80 atomic% (:; 1: heat treating at 1100 ° C for 5 hours in vacuum after coating the alloy. Ni plating and aluminum The diffusion and penetration conditions were the same as in Example 1.
  • Table 2 is a table showing the results of composition analysis at various points in the cross section of the Ni-based alloy of Comparative Example 1. (1) to (3) in the table correspond to (1) to (3) in FIG. 3 (a).
  • Table 3 is a table showing the composition analysis results at each point of the Ni-base alloy section of Comparative Example 2 (in the table (1) to (5), FIG. 3 (b) in the (1) - ( Corresponds to 5).
  • Table 4 is a table showing the composition analysis results at each point of the Ni-base alloy section of Comparative Example 3 (in the table (1) to (5), FIG. 3 (c) of (1) - ( Corresponds to 5).
  • Table 5 is a table showing the results of composition analysis at various points in the cross section of the Ni-based alloy of Comparative Example 4. (1) to (5) in the table are (1) to (1) in FIG. Corresponds to 5).
  • the A1 concentration near the surface of the coating layer composed of the Re alloy film of Comparative Examples 2 to 4 and the Ni-Al alloy diffusion / penetration layer was about 50 atoms in all cases. /. Which is almost the same as in the first embodiment. I have. However, unlike Example 1, in all of Comparative Examples 2 to 4, it can be seen that A1 diffuses to the substrate side and Ti and Nb diffuse to the coating layer side.
  • the Cr alloy film layer has an atomic composition of 10.3 ° / oRe-41.8 ° / oNi-16.9 ° / by post-treatment.
  • Alloy film located in the Ni-Fe rich phase region in Fig. 1, The composition is close to the composition of the alloy disclosed in Japanese Patent Application Laid-Open No. 11-61439, which is a preceding example.
  • the Cr alloy film layer has an atomic composition of 10.8% Re-9.7 Ni-65.5% Cr-5.3% Fe-l.9% Mo-1.1Nb-4 9% A1- 0.8% Ti (10.8% Re-67.4% (Cr, Mo) -15.0% (Ni, Fe) -4.9% A1-1.9% (Nb, Ti))
  • FIGS. 4 and 5 (a) to (d) Sectional structures after oxidizing the alloys of Example 1 and Comparative Examples 1 to 4 in the air at 1100 ° C. for one month are shown in FIGS. 4 and 5 (a) to (d).
  • FIG. 2 corresponds to FIG. 4
  • FIGS. 3 (to (d) correspond to FIGS. 5 (a) to (d), respectively.
  • Table 6 is a table showing the results of composition analysis of the Ni-based alloy of Example 1 at various points on the cross section of the test piece after oxidation. (1) to (6) in the table correspond to (1) to (6) in FIG. (Table 6)
  • Table 7 is a table showing the results of compositional analysis of the Ni-based alloy of Comparative Example 1 at various points on the cross section of the test piece after oxidation. (1;) to in the table correspond to (1) to (6) in FIG. 5 (a).
  • Table 8 is a table showing the results of composition analysis at various points on the cross section of the test piece after oxidation of the Ni-based alloy of Comparative Example 2. (1) to (6) in the table correspond to (1) to (6) in FIG. 5 (b). (Table 8)
  • Table 9 is a table showing the results of composition analysis of the Ni-based alloy of Comparative Example 3 at various points on the cross section of the test piece after oxidation. (H) to ( 6 ) in the table correspond to (1) to (6) in FIG. 5 (c). (Table 9)
  • Table 10 is a table showing the results of composition analysis of the Ni-based alloy of Comparative Example 4 at various points on the cross section of the test piece after oxidation.
  • (1) to (6) in the table correspond to (1) to (6) in FIG. 5 (d). Further, FIG. 6 shows the thickness of the oxide scale formed on these surfaces. (Table 10)
  • Example 1 to produce a thin, dense oxide scale consisting Al 2 0 3 containing little other elements about 2 ⁇ ⁇ the coating layer surface, peeling of the film was observed.
  • diffusion of other elements for example, Ti, Nb, etc.
  • A1 concentration in the diffusion permeation layer was maintained at about 50%, almost the same as before oxidation, and the composition of the base material did not differ much from that before oxidation.
  • the Re alloy diffusion barrier layer also had the same composition as before oxidation.
  • the oxidation results of Comparative Examples 1 to 3 were as follows.
  • a solid Ni-based alloy ((a), Comparative Example 1) has two layers of oxide scale, an outer layer composed mainly of Ni, Fe, and Cr, and an inner layer composed mainly of Cr, and a substrate. An internal oxide formed.
  • the oxide scale was as thick as ⁇ or more, and many films were peeled off.
  • the Ni-based alloy (b) subjected to only the aluminum diffusion and infiltration treatment in Comparative Example 2 produced an oxide scale of about 15 m containing Ni, Al, and Fe as main components. It was observed.
  • the A1 concentration in the Ni-A1 diffusion / penetration layer which was about 50% before oxidation, decreased to about 20% after oxidation. In other words, because of the high oxidation rate, the consumption rate of A1 is high. It can be seen that the Al concentration decreased due to the diffusion into the base material.
  • Ni-based alloy (c) subjected to the aluminum diffusion and infiltration treatment had a smaller amount of film peeling compared to Comparative Examples 1 and 2, but it had a thickness of about ll im and was mainly composed of Al, Ni, and Fe. An oxide scale containing Nb and Nb was produced.
  • oxide scale thicknesses differ by a factor of 5 over the same period, their lifetimes will be calculated by a factor of 25. Therefore, the difference in oxide scale thickness from Example 1 can be said to be a large difference.
  • the A1 concentration in the Ni-A1 diffusion / penetration layer which was almost 50% before oxidation, decreased to about 23% after oxidation. Furthermore, the A1 concentration near the substrate surface increased to about 9%. From these results, the low Re concentration is 10.3 atomic% Re-19.1 atomic% (Cr, Mo)-56.9 atomic% (Ni, Fe)-10.1 atoms. /. Al-3.6 atoms. /. Even when the (Nb, Ti) alloy film is coated, during oxidation at 1100 ° C, Ti and Nb diffuse from the substrate to the coating layer, and A1 diffuses from the Ni-Al diffusion / penetration layer to the substrate. You can see that.
  • the A1 concentration in the Ni-A1 diffusion and infiltration layer which was close to 50% before oxidation, decreased to about 24% after oxidation. Furthermore, the A1 concentration near the substrate surface increased to about 7%. Based on these results, the low Re concentration is 10.8 atomic% Re-67.4 atoms. /. (Cr, Mo)-15.0 at% (Ni, Fe)-4.9 at% A1-1.9 at% (Nb, Ti) , Ti and Nb Indicates that A1 diffuses from the substrate to the coating layer, and A1 diffuses from the Ni-A1 diffusion and penetration layer to the substrate.
  • Example 1 (47.4 atomic ° /. -28.9 atomic% ((, 3 ⁇ 4 0 ) -23.4 atomic% (, alloy film)) which is an example of the product of the present invention is 1100 ° It has been shown to perform well as a diffusion barrier layer against C / one month oxidation, and to provide excellent oxidation resistance to the base material.
  • the Ni-based alloy treated only, and the Ni-based alloy coated with a low-concentration Re alloy film + aluminum diffusion / penetration layer had almost the same A1 concentration on the coating surface before oxidation as in Example 1.
  • the total amount of at least one element selected from 30% or more and less than 90% in atomic composition, Cr, Mo, and W is 5 ° /. More than less than 60%, excluding unavoidable impurities, the remainder is at least one selected from Ni, Fe and Co. (Or inserted between the base material and the TBC layer), it is possible to provide equipment members with excellent heat resistance and corrosion resistance, and to extend the life of the equipment significantly compared to the conventional example. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

明 細 書 拡散障壁用 Re合金皮膜 技術分野 .
本発明は、 ガスタービン翼やジェットエンジンのタービン翼、 ボイラ伝熱管な ど、 高温装置部材の寿命を延伸するための技術に係わる。 背景技術
( 1 ) 熱遮蔽コーティング(TBC)
産業用ガスタービン翼や、 ボイラ管などの高温装置部材は、 耐熱性および耐食 性を向上させるために、 表面にコーティングを施して使用する場合が多くある。 一般に、 耐熱性を向上させるには、 熱遮蔽コーティング (TBC)と呼ばれるセラミ ックスコ一ティングがなされる。
セラミックスは、 基材金属との熱膨張係数の差が大きく、 TBC/基材界面におい て剥がれやすいため、 通常、 セラミックス層と基材金属の間に、 アンダーコート (あるいはボンドコート)と呼ばれる合金層を揷入し、 密着性を向上させて使用さ れる。 しかし、 800〜1200°C程度の超高温環境下においては、 アンダーコートが 基材と反応して劣化したり、 また、 アンダーコート表面に酸化皮膜が厚く成長す ることによってセラミックス層が剥離したりする。 そのため、 装置部材寿命が数 ヶ月と短いことが大きな問題となっている。
( 2 ) A1 (または Cr, Si)拡散浸透処理 耐食性を向上させるには、 A1あるいは Cr、 Siなどの拡散浸透処理が施されてい る。 し力 し、 使用される環境力 S800〜1200°C程度の超高温であると、 耐食性に寄 与する元素の拡散が著しく速く、 反応性も大きいため、 安定な保護性皮膜を長時 間維持できない。 また、 500〜800°Cの温度域においても、 C1や Sなどを含んだ強 腐食性環境であると、 保護性皮膜を形成する Crや A1などの元素の消耗速度が大き いため、 安定な保護性皮膜を長時間維持できず、 装置寿命が著しく短いことが大 きな問題となっている。
( 3 ) Ni- Cr溶射
耐食性を向上させるために、 高 Ni-高 Cr合金の溶射が施されることがある。 し かし、 上記(2 )と同様の問題点がある。
( 4 ) Reを添加したアンダーコートを兼ね備えた TBCシステム
Reを TBCのアンダーコートに 12重量% (原子組成では数%)以下添加した TBCシス テムが特開平 11- 61439号公報によって開示されている。 また、 特表 2000- 511236 号公報には、 「超合金からなる基体とその上に設けられた層構造とを備えた構造 部品並びにその製造方法」 として、 Reを 35〜60重量% (原子組成では約 15%〜30 %)含んだ TBCのアンダーコートが提案されている。 し力 し、 この際の Reの役割に ついては詳細な説明がなされておらず、 効果も定かでない。 また、 米国特許第 6, 299, 986号明細書には、 Re5. 0〜7. 0 ° /。を含む Ni基超合金基体に 4wt。/。以下の Reを含 むバリャ皮膜を形成することが記載されている。
( 5 ) Reおよび Re基合金皮膜
特開平3- 120327号公報には、 Re l〜20wt°/。, Cr22〜50wtを含有する Re含有保護被 膜が記載されている。 特開平 9- 143667号公報には、 純 Reあるいは Moや Wを含有し た Re合金製高温部材の製造方法が開示されている。 これは、 Reあるいは Re合金の 構造部材を製造する方法であり、 薄板の Reあるいは Re合金を単独で使用するため のものである。 発明の開示
従来の技術では、 上記の問題点が解決できないため、 現状では、 装置の性能を 犠牲にして、 使用温度を下げることで装置部材の寿命の延伸を図っている。
本発明者らは、 これまで、 Reまたは Re合金を拡散バリヤとする方法について研 究開発を続けてきた [ 1 ;庄司、 久松、 林、 成田 : "超高温対応を目指した耐酸化 性付与技術の開発指針 _Ni基超合金へのレニウム基合金皮膜の応用-", 日本学術振 興会耐熱材料第 123委員会報告, vol41, ppl27 (March 2000) N 2 ; T. Narita et al.: "Rhenium coating as a diffusion barrier on a nickel-based super alio y in high temperature oxidation", Proc of HTCP2000, pp351, Science Reviews, Hokkaido (Sep. 2000)、 3 ;吉田、 久松、 林、 成田、 野口、 八鳅、 宫坂:〃メツキに よる拡散障壁層の形成と耐酸化性",第 47回材料と環境討論会予稿集, ppl41, (社) 腐食防食協会,山口(2000年 10月)、 4 ;久松、 吉田、 林、 成田、 村上、 原田 : " Re コーティング膜の拡散バリヤー特性と Ni基超合金の耐酸化性",第 47回材料と環境 討論会予稿集, PP153, (社)腐食防食協会,山口, 2000年 10月、 5 ; T. Narita et al. : Application oi rhenium coating as a diffusion barrier to improve the high temperature oxidation resistance of nickel - based superal loy , Paper No. 01157, CORROSION 2001, NACE Intl, Houston (March 2001) ] 力 拡散バリヤ として安定な性能を発揮できる層構造については見いだされていない。 本発明は、 従来の TBCシステムや A1 (あるいは Cr、 Si)拡散浸透処理、 溶射など の耐食コーティングで問題となっている、 基材とコーティング層との反応による 基材およびコーティング層の劣化を抑制し、 装置部材の寿命を延伸することを目 的とする。
Re (あるいは Ir、 Rh、 Pt、 《 合金層を、 基材表面に被覆、 あるいは基材と TBC層 の間に挿入することによって、 優れた拡散障壁層となる。 しかしながら、 Re合金 皮膜中の Re濃度が低い場合 (原子組成で 30°/。Re未満) や、 例えば、 Re- Ni二元合 金のように、 高温下で Reと安定な合金相を形成しない場合、 Reリッチ相と他元素 (例えば、 Ni)リッチ相への相分離が起こり、 拡散障壁としての機能が低下してし まう。
本発明者らは、 基材に施された Re合金皮膜中の合金元素を特定すること、 およ び合金皮膜中の Re濃度をより高くすることで、 高温において安定な合金相を形成 でき、 優れた拡散障壁層としての機能を引き出すことができることを見出した。 本発明は、 この優れた拡散障壁層を提供するものである。
すなわち、 本発明は、 原子組成で Reを 30%以上 90%未満、 Cr、 Mo、 Wより選ば れる少なくとも 1種以上の総量を 5°/0以上 60%未満含み、 不可避的な不純物を除い て残りを Ni、 Fe、 Coから選ばれる少なくとも 1種以上とする基材に施された拡散 障壁用 Re合金皮膜であり、 これによつて、 基材に優れた耐熱および耐食性を付与 することを可能にする。
また、 本発明は、 該基材と該合金皮膜との間に、 応力緩和層が挿入された構造 を持つことを特徴とする上記の基材に施された拡散障壁層用合金皮膜である。 こ の構造によって、 基材と合金皮膜との熱膨張差による皮膜の割れを抑制し、 該合 金皮膜を連続層として維持することが可能となる。 これによつて、 合金皮膜の優 れた耐熱 ·耐食性をより一層引き出すことが可能となる。
また、 本発明は、 拡散障壁層用合金皮膜または Reを含有する応力緩和層が基材 との間に挿入された拡散障壁用合金皮膜に、 Al、 Si、 Crの少なくとも 1種を主と する拡散浸透層を積層した構造を持つことを特徴とする上記の基材に施された拡 散障壁層用合金皮膜である。 この構造によって、 耐食性を低下させる元素 (例え ば、 Ti, Nb,Taなど) の基材から拡散浸透層への拡散、 および基材の相安定性を低 下させる元素 (例えば、 Al, Si, Cr) の拡散浸透層から基材への拡散を抑制するこ とができる。 これによつて、 優れた耐酸化性および基材の強度をより長時間維持 することが可能となる。
さらに、 本発明は、 上記の拡散障壁用合金皮膜に熱遮蔽用セラミックスを積層 した構造を持つ皮膜であり、 これによつて、 より高温下での材料の使用を可能と する。 図面の簡単な説明
第 1図は、 高温下における Re - (Cr,Mo,W) - (Ni,Fe, Co)合金の状態図と、 本発明の 拡散障壁用 Re合金皮膜の合金組成を先行事例と比較して示す図である。 第 2図は、 実施例の Ni基合金の断面組織を示す模式図である。 第 3図は、 比較例 1〜4の Ni基合 金の断面組織を示す模式図である。 第 4図は、 実施例 1の Ni基合金を 1100°Cの大気 中で 1ヶ月間酸化させた後の断面組織を示す模式図である。 第 5図は、 比較例 1〜4 の Ni基合金を 1100°Cの大気中で 1ヶ月間酸化させた後の断面組織を示す模式図であ る。 第 6図は、 実施例 1および比較例 1〜4の Ni基合金を 1100°Cの大気中で 1ヶ月間酸 化することによつて表面に生成した酸化スケールの厚さを示すグラフである。 発明を実施するための最良の形態
以下に本発明の実施の形態を説明する。
本発明は、 原子組成で Reを 30%以上 90%未満、 Cr、 Mo、 Wより選ばれる少なくと も 1種以上の総量を 5%以上 60%未満含み、 不可避的な不純物を除いて残りを Ni、 Fe、 Coから選ばれる少なくとも 1種以上とする基材に施された拡散障壁用 Re合金皮 膜である。 合金皮膜の拡散障壁層としての十分な機能を引き出すには、 Reが、 Cr、 Mo、 Wより選ばれる少なくとも 1種以上の元素、 および Ni、 Co、 Feから選ばれる少 なくとも 1種以上の元素と合金化する必要がある。 この際、 Reは原子組成で 30%以 上 90%未満、 Cr、 Mo、 Wより選ばれる少なくとも 1種以上の元素の総量は 5%以上 6 0%未満、 不可避的な不純物を除いて残りを Ni、 Fe、 Coから選ばれる少なくとも 1 種以上とする必要がある。
Reが 30%未満では、 高温下で、 Re以外の合金元素リッチ層の割合が多くなり、 拡散障壁層として十分な機能を示さなくなる。 一方、 Reが 90%以上では Re単相と なってしまう。 Re単相は、 Re合金相と異なり、 熱ショック下でクラックが導入さ れやすく、 かつ基材との密着性が低いため、 長時間拡散障壁層として基材表面に 安定に存在することができない。 したがって、 Re濃度は原子組成で 30%以上 90% 未満に限定した。 より好ましくは、 原子組成で Reが 40%以上 70%以下である。
Cr、 Mo、 Wは、 Reと合金化すると、 σ相と呼ばれる安定な相を形成する。 この σ相が優れた拡散障壁層としての機能を発揮する。 Cr、 Mo、 Wの総量が 5%未満で は、 Re単相となってしまい σ相は形成しない。 一方、 60%以上では、 σ層よりも Cr、 Moあるいは Wリッチ相が多く生成してしまい、 拡散障壁層としての機能が低 下する。 したがって、 Cr、 Mo、 Wは、 その総量を 5%以上 60°/o未満に限定した。 よ り好ましくは、 原子組成で Cr、 Mo、 Wの総量が 20%以上 50%以下である。
Ni、 Fe、 Coは、 Re-Cr (あるいは Mo, W)合金と合金化すると、 σ相の安定領域を 広げる効果をもつ。 すなわち、 Re- Cr (あるいは Mo, W)合金では、 σ相が安定にな る Re濃度は約 50〜70原子%であるのに対し、 Ni、 Fe、 Coと合金化すると、 σ相の 安定領域が約 30〜80原子。 /0Reの範囲まで広がる。
また、 耐熱合金の基材には、 Ni、 Fe、 Co基合金が用いられることが多く、 これ らの元素が Re合金皮膜中に含まれていることで、 基材と皮膜の密着性を向上させ ることができる。 したがって、 合金化する元素は、 基材が Ni基合金であれば Niを、 Fe基であれば Feを、 Co基であれば Coを含むことが好ましい。
以上の説明から、 拡散障壁層としャ有効な合金組成範囲を、 Re- (Cr,Mo, W) - (N i, Fe, Co)合金の状態図と重ねて第 1図に示す。 比較のため、 先行事例の合金組成範 囲も併せて示す。 このように、 先行事例である特表 2000- 511236号公報の合金皮 膜は Crリツチ相、 特開平 11- 61439号は Niリツチ相の組成範囲であり、 拡散障壁層 としての役割を果さない。
一方、 特開平 9- 143667号公報は、 Ni、 Fe、 Coを含まないため、 熱ショックによ りクラックが入りやすく、 かつ基材との密着性も良くない。 この皮膜は、 特開平 9 - 143667号公報の明細書にもあるように、 基材に被覆せずに単独で使用するため のものである。 したがって、 この皮膜が基材に被覆された状態で使用されると、 皮膜の破壊が容易に生じ、 基材の耐熱性、 耐食性が損なわれる。
それに対して、 本発明の合金皮膜は、 第 1図に示すとおり、 優れた拡散障壁層と なる σ相単相領域を中心とした組成であり、 優れた拡散障壁層としての機能を有 する。 また、 基材に用いられる耐熱合金の主成分である Ni、 Fe、 または Coを含む ため基材との密着性が良く、 基材表面に施した状態での長時間の使用が可能とな る。
この Re合金皮膜は、 好ましくは、 マグネトロンスパッタリング法により形成で きるが、 物理蒸着法、 化学蒸着法、 溶射法によっても同様の合金皮膜の形成が可 能である。 これらの皮膜形成方法により所望の合金組成の Re合金皮膜を形成する 方法に限らず、 加熱処理により基材の合金成分の拡散により所望の Re合金皮膜が 形成されるようにしてもよい。 例えば、 上記のいずれかの被覆方法により Re- Cr 合金皮膜を形成し、 拡散浸透処理の加熱により基材中の Niの拡散により Re- Cr-Ni 合金層が形成されるようにしてもよい。 いずれの場合も、 基材に被覆した Re層ま たは Re合金層の組成、 組織の均質化をはかるために真空、 不活性雰囲気などの非 酸化性雰囲気中で高温で十分加熱処理することが望ましい。 こうすることにより 、 Al、 Si、 Crの中から少なくとも 1種を含有する拡散浸透層を積層した構造にお いて、 基^からの成分は拡散するものの Al、 Si、 Cr元素を実質的に拡散しないよ うにすることができる。
該基材と該合金皮膜との間に、 応力緩和層を挿入する場合、 応力緩和層は、 拡 散障壁層よりも、 例えば、 Re濃度を約 5〜20原子。 /。低く、 Niあるいは Fe、 Coを約 5 〜20原子%多くした Re- (Cr,Mo,W) - (Ni,Fe, Fe)合金層とすることが望ましい。 こ の構造によって、 基材と合金皮膜との熱膨張差による皮膜の割れを抑制し、 該合 金皮膜を連続層として維持することが可能となり、 合金皮膜の優れた耐熱性、 耐 食性をより一層引き出すことが可能となる。 Al、 Si、 Crの少なくとも 1種を含有する拡散浸透層を積層する方法としては、 パック法や CVD法などの公知の手段を適宜採用することができる。 例えば、 拡散 させる Al、 Si、 または Crの受容層として Ni、 Fe、 Coなどの少なくとも 1種からな る金属層を Re-Cr合金皮膜上にメツキし、 高温で加熱拡散により Al、 Si、 または C rとこれらの金属との合金層を形成する。
上記の拡散障壁用合金皮膜に熱遮蔽用セラミックスを積層する場合、 セラミッ タスは、 Zr02、 Ca0、 Mg0、 Si02、 AI2O3の少なくとも 1種以上を含むことが望まし レ、。 これによつて、 内部の合金層温度を低下させ、 合金皮膜表面の酸化物成長を 抑制すると共に、 合金皮膜と基材との拡散を抑制し、 合金皮膜およぴ基材の組織 の安定性をより長時間保つことが可能となる。
(実施例)
実施例 1
ガスタービンの動翼や静翼材として用いられる Ni基合金 Inconel 718 (Ni-19 C r-19%Fe-5°/oNb-3%Mo-0. 9°/。Ti- 0. 4°/。Α1 (重量%) ) に、 80原子%1^- 20原子% 合金皮 膜を被覆後、 Niめっきを施し、 更にアルミ拡散浸透処理を施した。 合金皮膜は、 80原子。 /oRe- 20原子0 /0Ni合金をターゲットとして、 マグネト口ンスパッタリング 法によって基材表面に被覆した後、 真空中、 1 100°Cで 5時間被覆を均質化熱処理 することで形成した。
Niめっきには、 ワット浴を用いた。 すなわち、 浴組成は、 重量比で NiS04 ' 7H20 NiCl2: H3BO3 = 20 : 3 : 2、 ρΗ= 5とし、 浴温 50°C、 電流密度 50mA/cm2とした。 ァ ルミ拡散処理は、 Ni- 50原子 %A1の合金粉末 +A1203の混合粉末中に、 Re合金被覆お よび Niめっきを施した基材を埋没して、 真空中、 1000°Cで 5時間処理することによ つて行った。
処理後の Ni基合金の断面組織を第 2図に示す。 また、 表 1には、 電子線マイクロ アナライザ (EP A)による第 2図中の各点の組成分析結果を示す。 表中の(1)〜(5)は、 第 2図中の(1)〜(5)に対応する。
(表 1 )
(原子%)
Figure imgf000012_0001
これより、 80原子%1^- 20原子%Ni合金皮膜は、 その後処理によって、 基材の 成分の拡散により原子組成で 47. 4%Re-24. 6 %Cr-15. 2%Ni-8. 2%Fe-4. 3%Mo (47. 4% Re-28. 9% (Cr, Mo) -23. 4% (Ni, Fe) ) 合金皮膜、 すなわち σ相の組成になっている ことが分かる(第 1図参照)。
比較例 1〜4
比較例 1として、 第 3図(a)に、 無垢の Ni基合金(Inconel 718)、 比較例 2として、 第 3図(b)に、 アルミ拡散浸透処理のみを施した Ni基合金(Inconel 718)、 比較例 3 として、 第 3図(c)に、 20原子。/ oRe - 60原子 o/oNi- 20原子0/。 Cr合金皮膜を被覆後に Ni めっきおよびアルミ拡散浸透処理を施した Ni基合金(Incone l 718)、 比較例 4とし て、 第3図(d)に、 20原子%^- δθ原子%Cr合金皮膜を被覆後に Niめっきおよびアル ミ拡散浸透処理を施した Ni基合金(Inconel 718)の断面組織をそれぞれ示す。 Re合金皮膜は、 マグネト口ンスパッタリング法により比較例 3では 20原子%1^-
60原子。 /。Ni- 20原子% 合金を、 比較例 4では 20原子%1^-80原子%(:;1:合金を被覆 後に真空中 1100°Cで 5時間熱処理することによって形成した。 Niめっきおよびァ ルミ拡散浸透条件は、 実施例 1と同じとした。 '
表 2は、 比較例 1の Ni基合金断面の各点における組成分析結果を示す表である。 表中の(1)〜 (3)は、 第 3図(a)中の (1)〜 (3)に対応する。
(¾ 2 ) ^
(原子%)
Figure imgf000013_0001
表 3は、 比較例 2の Ni基合金断面の各点における組成分析結果を示す表である ( 表中の (1 )〜 (5)は、 第 3図 (b)中の(1)〜 (5)に対応する。
(表 3 )
(原子%)
(1 ) (2) (3) (4) (5)
Re 0.0 0.0 0.0 0.0 0.0
Ni 53.5 52.1 48.8 39.8 40.7
Cr 21 .0 18.0 1 6.5 4.6 4.2
Fe 18.7 15.3 13.1 6.2 4.9
o 1 .9 2.0 2.2 0.1 0.0
Nb 2.7 2.9 2.8 0.2 0.2
Al 1 .2 7.9 14.7 48.8 49.8
Ti 1.0 1 .8 1 .9 0.3 0.2 表 4は、 比較例 3の Ni基合金断面の各点における組成分析結果を示す表である ( 表中の(1)〜 (5)は、 第 3図 (c)中の(1)〜 (5)に対応する。
(表 4 )
(原子%)
Figure imgf000014_0001
表 5は、 比較例 4の Ni基合金断面の各点における組成分析結果を示す表である, 表中の(1)〜 (5)は、 第 3図 (d)中の (1)〜 (5)に対応する。
(表 5 )
(原子%)
Figure imgf000014_0002
比較例 2〜4の Re合金皮膜と Ni - Al合金拡散浸透層とからなるコーティング層表 面近傍の A1濃度は、 いずれも約 50原子。/。であり、 実施例 1とほぼ同程度になって いる。 しかし、 実施例 1とは異なり、 比較例 2〜4のいずれも、 A1は基材側に、 Ti 、 Nbはコーティング層側に拡散している様子が分かる。
また、 比較例 3において、 20原子%1^- 60原子% - 20原子。/。 Cr合金皮膜層は、 後処理によって、 原子組成で 10. 3°/oRe-41. 8°/oNi-16. 9°/。Cr- 15. l%Fe-2. 2% o-2. 8Nb- 10. l%Al-0. 8%Ti (10. 3°/oRe-19. l°/o (Cr, Mo) -56. 9% (Ni, Fe) - 10. 1 Α1-3. 6°/o (Nb, Ti) ) 合 金皮膜になっており、 第 1図中の Ni,Feリッチ相の領域に位置し、 先行事例である 特開平 11- 61439号公報に開示された合金の組成に近い。
一方、 比較例 4において、 20原子%Re- 80原子。/。 Cr合金皮膜層は、 後処理によつ て、 原子組成で 10. 8%Re-9. 7 Ni-65. 5%Cr- 5. 3%Fe-l. 9%Mo- 1. lNb-4. 9%A1- 0. 8%Ti (10. 8%Re-67. 4% (Cr, Mo) -15. 0% (Ni, Fe) -4. 9%A1-1. 9% (Nb, Ti) ) 合金皮膜になって おり、 第 1図中の Cr、 Moリッチ相の領域に位置し、 先行事例である特表 2000- 5112 36号公報の組成に近い。
実施例 1および比較例 1〜4の合金を 1100°Cの大気中で 1ヶ月間酸化させた後の 断面組織を、 第 4図および第 5図(a)〜(d)に示す。 第 2図は、 第 4図に、 第 3図( 〜 (d)は、 第 5図(a)〜(d)にそれぞれ対応する。
また、 表 6は、 実施例 1の Ni基合金の酸化後の試験片断面の各点における組成分 析結果を示す表である。 表中の(1)〜(6)は、 第 4図中の(1)〜(6)に対応する。 (表 6 )
(原子%)
Figure imgf000016_0001
表 7は、 比較例 1の Ni基合金の酸化後の試験片断面の各点における組成分析結果 を示す表である。 表中の(1;)〜 は、 第 5図(a)中の(1)〜(6)に対応する。
(表 7 )
(原子 ¾)
Figure imgf000016_0002
8は、 比較例 2の Ni基合金の酸化後の試験片断面の各点における組成分析結果 を示す表である。 表中の(1)〜(6)は、 第 5図(b)中の(1)〜(6)に対応する。 (表 8 )
(原子 %)
Figure imgf000017_0001
表 9は、 比較例 3の Ni基合金の酸化後の試験片断面の各点における組成分析結果 を示す表である。 表中のひ)〜(6)は、 第5図(c)中の(1)〜(6)に対応する。 (表 9 )
(原子 %)
Figure imgf000017_0002
表 10は、 比較例 4の Ni基合金の酸化後の試験片断面の各点における組成分析結 果を示す表である。 表中の(1)〜(6)は、 第 5図(d)中の(1)〜(6)に対応する。 更に 第 6図には、 これらの表面に生成した酸化スケールの厚さを示す。 (表 1 0 )
(原子 %)
Figure imgf000018_0001
実施例 1では、 コーティング層表面に約 2 μ ηιの他の元素をほとんど含まない Al2 03から成る薄く緻密な酸化スケールを生成し、 皮膜の剥離等は見られなかった。 また、 Ni-Al合金拡散浸透層への基材からの他の元素(例えば、 Ti, Nb等)の拡散、 およぴ基材中への A1の拡散はほとんど見られず、 Ni - A1合金拡散浸透層中の A1濃度 は酸化前とほぼ同等の約 50%を保っており、 基材の組成も酸化前と大きな差異は なかった。 更に、 Re合金拡散障壁層も酸化前と同等の組成を示していた。 . それに対して、 比較例 1~3の酸化結果は以下のようであった。 無垢の Ni基合金 ( (a) , 比較例 1) は、 表面に、 Ni、 Fe、 Crを主成分とする外層と Crを主成分とす る内層の二層の酸化スケールと基材中に内部酸化物を形成した。 その酸化スケー ノレは ΙΟΟ μ ηι以上に及ぶ厚いものであり、 かつ多くの皮膜の剥離が見られた。
比較例 2のアルミ拡散浸透処理のみを施した Ni基合金(b)は、 約 15 mの Ni、 Al、 Feを主成分とする酸化スケールを生成したが、 比較例 1と同様、 皮膜の剥離が見ら れた。 また、 酸化前に約 50%あった Ni- A1拡散浸透層の A1濃度は、 酸化後には、 約 20%にまで低下していた。 すなわち、 酸化速度が大きいため A1の消費速度が大き く、 かつ基材中への拡散によって Al濃度が低下したことが分かる。
比較例 3の 10. 3%Re-19. l% (Cr, Mo) -56. 9% (Ni, Fe) -10. 1%A1- 3. 6% (Nb, Ti)合金皮膜 を被覆後にアルミ拡散浸透処理を施した Ni基合金(c)は、 比較例 1、 2と比較すると 皮膜の剥離量は少なかったが、 約 ll i mの厚さの、 Al、 Ni、 Feを主成分として Tiや Nbを含んだ酸化スケールを生成した。
酸化スケールの成長が放物線的であると仮定した場合、 同じ期間での酸化スケ —ル厚さが 5倍異なると、 それらの寿命は 25倍異なる計算になる。 したがって、 実 施例 1との酸化スケール厚さの差異は大きな差異であるといえる。
また、 酸化前に 50%近くあった Ni- A1拡散浸透層の A1濃度は、 酸化後には約 23 %にまで低下していた。 更に、 基材表面近傍の A1濃度は約 9%に上昇していた。 これらの結果から、 Re濃度が低い 10. 3原子%Re - 19. 1原子%(Cr, Mo) - 56. 9原子%(Ni, Fe) - 10. 1原子。/。 Al- 3. 6原子。/。 (Nb, Ti)合金皮膜を被覆しても、 1100°Cでの酸化中に、 Tiや Nbは基材からコーティング層へ、 A1は Ni-Al拡散浸透層から基材へ拡散してし まうことが分かる。
比較例 4の 10. 8原子%Re- 67. 4原子。/。(Cr, Mo) -15. 0原子。/。(Ni, Fe) _4. 9原子%A1- 1. 9原 子% (Nb, Ti)合金皮膜を被覆後にアルミ拡散浸透処理を施した Ni基合金 (d)は、 比較 例 3と類似の挙動を示し、 約 の厚さの、 Al、 Ni、 Fe、 Crを主成分として Tiや N bを含んだ酸化スケールを生成した。
酸化前に 50%近くあった Ni- A1拡散浸透層の A1濃度は、 酸化後には約 24%にま で低下していた。 更に、 基材表面近傍の A1濃度は約 7%に上昇していた。 これら の結果から、 Re濃度が低い 10. 8原子%Re- 67. 4原子。/。(Cr, Mo) - 15. 0原子% (Ni, Fe) - 4. 9原子 %A1- 1. 9原子%(Nb, Ti)合金皮膜を被覆しても、 1100°Cでの酸化中に、 Tiや Nb は基材からコーティング層へ、 A1は Ni - A1拡散浸透層から基材へ拡散してしまうこ とが分かる。
以上の結果から、 本発明品の一例である実施例 1 (47. 4原子°/。 -28. 9原子%(( , ¾0) -23. 4原子%( , 合金皮膜) は、 1100°C/1ヶ月の酸化に対して、 拡散障壁層 として十分な機能を果たし、 基材に優れた耐酸化性を付与することが示された。 一方、 無垢の Ni基合金だけでなく、 アルミ拡散処理のみを施した Ni基合金、 お よび低濃度の Re合金皮膜 +アルミ拡散浸透層をコーティングした Ni基合金は、 酸 化前のコーティング表面の A1濃度が実施例 1とほぼ同程度であるにもかかわらず 、 厚い酸化スケールを生成した。 これは、 1100°C/1ヶ月間の酸化中に、 基材 /コ 一ティング層間で元素の拡散が活発に起こったため、 A1合金層の A1が基材へ拡散 して A1濃度が低下したこと、 および Tiや Nbなどが基材から酸化スケール中へ拡散 して A1203の純度が低下したことに起因する。 産業上の利用可能性
原子組成で Reを 30%以上 90%未満、 Cr、 Mo、 Wより選ばれる少なくとも 1種以上 の総量を 5°/。以上 60%未満含み、 不可避的な不純物を除いて残りを Ni、 Fe、 Coか ら選ばれる少なくとも 1種以上とする基材に施された拡散障壁用 Re合金皮膜を高 温装置部材表面に被覆(あるいは基材と TBC層の間に挿入)することで、 耐熱性、 耐食性に優れた装置部材を提供することができると共に、 従来例と比較して著し く装置の寿命を延伸することができる。

Claims

.求 の 範 囲
1 . 原子組成で Reを 30%以上 90%未満、 Cr、 Mo、 Wより選ばれる少なくとも 1種以 上の総量を 5%以上 60%未満含み、 不可避的な不純物を除いて残りを Ni、 Fe、 Coか ら選ばれる少なくとも 1種以上とする基材に施された拡散障壁用 Re合金皮膜。
2 . 原子組成で Reを 40%以上 70%以下、 Cr、 Mo、 Wより選ばれる少なくとも 1種以 上の総量を 20。/。以上 50%未満含み、 不可避的な不純物を除いて残りを Ni、 Fe、 Co から選ばれる少なくとも 1種以上とする基材に施された拡散障壁用 Re合金基材皮膜。
3 . 均質化熱処理した後、 Al、 Si、 Crの中から少なくとも 1種を含有する拡散浸透 層を積層した構造においてこれらの元素を実質的に含有しないことを特徴とする 請求の範囲第 1項または 2に記載の拡散障壁層用 Re合金皮膜。
4 . 基材が Ni基合金であることを特徴とする請求の範囲第 1項に記載の拡散障壁用 Re合金皮膜。
5 . 合金組織が連続層であることを特徴とする請求の範囲第 1項に記載の Re合金皮 膜。
6 . 請求の範囲第 5項に記載の皮膜と基材の間に、 Reを含有する合金からなる応 力緩和層が挿入された構造を持つことを特徴とする請求の範囲第 1項に記載の拡散 障壁層用 Re合金皮膜。
7 . 請求の範囲第 5項または 6に記載の皮膜に Al、 Si、 Crの中から少なくとも 1種 を含有する拡散浸透層を積層した構造を持つことを特徴とする請求の範囲第 1項に 記載の拡散障壁層用 Re合金皮膜。
8 . 請求の範囲第 7項に記載の皮膜に熱遮蔽用セラミックスを積層した構造を持 つことを特徴とする請求の範囲第 1項に記載の拡散障壁層用 Re合金皮膜。
PCT/JP2002/009479 2001-10-31 2002-09-13 Revetement en alliage re pour barriere de diffusion WO2003038152A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/494,014 US7205053B2 (en) 2001-10-31 2002-09-13 Re alloy coating for diffusion barrier
EP02765561A EP1449937B1 (en) 2001-10-31 2002-09-13 Re ALLOY COATING FOR DIFFUSION BARRIER
DE60238076T DE60238076D1 (de) 2001-10-31 2002-09-13 ÜBERZUG AUS Re-LEGIERUNG FÜR DIFFUSIONSBARRIERE
JP2003540413A JP3857690B2 (ja) 2001-10-31 2002-09-13 拡散障壁用Re合金皮膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-335914 2001-10-31
JP2001335914 2001-10-31

Publications (1)

Publication Number Publication Date
WO2003038152A1 true WO2003038152A1 (fr) 2003-05-08

Family

ID=19150837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009479 WO2003038152A1 (fr) 2001-10-31 2002-09-13 Revetement en alliage re pour barriere de diffusion

Country Status (5)

Country Link
US (1) US7205053B2 (ja)
EP (1) EP1449937B1 (ja)
JP (1) JP3857690B2 (ja)
DE (1) DE60238076D1 (ja)
WO (1) WO2003038152A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068685A1 (ja) * 2004-01-15 2005-07-28 Ebara Corporation 拡散バリヤ用合金皮膜及びその製造方法、並びに高温装置部材
US7150924B2 (en) * 2002-07-01 2006-12-19 Agency Of Industrial Science And Technology Metal based resistance heating element and method for preparation therefor
WO2008059971A1 (fr) * 2006-11-16 2008-05-22 National University Corporation Hokkaido University Film de revêtement en alliage multicouche, élément métallique résistant à la chaleur muni de ce film de revêtement et procédé de fabrication d'un film de revêtement en alliage multicouche
CN117265531A (zh) * 2023-09-13 2023-12-22 烟台大学 包含梯度结构镍-铼内层的耐熔盐腐蚀涂层及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9719353B2 (en) 2011-04-13 2017-08-01 Rolls-Royce Corporation Interfacial diffusion barrier layer including iridium on a metallic substrate
US10266958B2 (en) * 2013-12-24 2019-04-23 United Technologies Corporation Hot corrosion-protected articles and manufacture methods
EP2918705B1 (en) 2014-03-12 2017-05-03 Rolls-Royce Corporation Coating including diffusion barrier layer including iridium and oxide layer and method of coating
GB201610768D0 (en) 2016-06-21 2016-08-03 Rolls Royce Plc Gas turbine engine component with protective coating
WO2022208861A1 (ja) * 2021-04-02 2022-10-06 株式会社ディ・ビー・シー・システム研究所 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993980A (en) * 1994-10-14 1999-11-30 Siemens Aktiengesellschaft Protective coating for protecting a component from corrosion, oxidation and excessive thermal stress, process for producing the coating and gas turbine component

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
JPH09143667A (ja) * 1995-11-21 1997-06-03 Mitsubishi Heavy Ind Ltd Re製高温部材の製造方法
DE19621763A1 (de) 1996-05-30 1997-12-04 Siemens Ag Erzeugnis mit einem Grundkörper aus einer Superlegierung und einem darauf befindlichen Schichtsystem sowie Verfahren zu seiner Herstellung
JP3281842B2 (ja) * 1997-08-15 2002-05-13 三菱重工業株式会社 ガスタービン翼への耐食性表面処理方法及びその動・静翼
GB9724844D0 (en) * 1997-11-26 1998-01-21 Rolls Royce Plc A coated superalloy article and a method of coating a superalloy article
US6306524B1 (en) * 1999-03-24 2001-10-23 General Electric Company Diffusion barrier layer
US6746782B2 (en) * 2001-06-11 2004-06-08 General Electric Company Diffusion barrier coatings, and related articles and processes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993980A (en) * 1994-10-14 1999-11-30 Siemens Aktiengesellschaft Protective coating for protecting a component from corrosion, oxidation and excessive thermal stress, process for producing the coating and gas turbine component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1449937A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150924B2 (en) * 2002-07-01 2006-12-19 Agency Of Industrial Science And Technology Metal based resistance heating element and method for preparation therefor
WO2005068685A1 (ja) * 2004-01-15 2005-07-28 Ebara Corporation 拡散バリヤ用合金皮膜及びその製造方法、並びに高温装置部材
JPWO2005068685A1 (ja) * 2004-01-15 2007-09-06 株式会社荏原製作所 拡散バリヤ用合金皮膜及びその製造方法、並びに高温装置部材
US7851070B2 (en) 2004-01-15 2010-12-14 National University Corporation Hokkaido University Diffusion barrier alloy film and high-temperature apparatus member
JP4753720B2 (ja) * 2004-01-15 2011-08-24 株式会社荏原製作所 拡散バリヤ用合金皮膜及びその製造方法、並びに高温装置部材
WO2008059971A1 (fr) * 2006-11-16 2008-05-22 National University Corporation Hokkaido University Film de revêtement en alliage multicouche, élément métallique résistant à la chaleur muni de ce film de revêtement et procédé de fabrication d'un film de revêtement en alliage multicouche
US8133595B2 (en) 2006-11-16 2012-03-13 National University Corporation Hokkaido University Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film
JP5182669B2 (ja) * 2006-11-16 2013-04-17 国立大学法人北海道大学 多層合金皮膜、それを有する耐熱性金属部材および多層合金皮膜の製造方法
CN117265531A (zh) * 2023-09-13 2023-12-22 烟台大学 包含梯度结构镍-铼内层的耐熔盐腐蚀涂层及其制备方法

Also Published As

Publication number Publication date
EP1449937B1 (en) 2010-10-20
JP3857690B2 (ja) 2006-12-13
JPWO2003038152A1 (ja) 2005-02-24
US7205053B2 (en) 2007-04-17
DE60238076D1 (de) 2010-12-02
EP1449937A1 (en) 2004-08-25
US20050064227A1 (en) 2005-03-24
EP1449937A4 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
JP5182669B2 (ja) 多層合金皮膜、それを有する耐熱性金属部材および多層合金皮膜の製造方法
US5238752A (en) Thermal barrier coating system with intermetallic overlay bond coat
JP4896702B2 (ja) 合金皮膜、合金皮膜の製造方法および耐熱性金属部材
JP5166797B2 (ja) 拡散制御変性された白金族ボンドコート
JPS6014823B2 (ja) ニツケル基材表面上張り被覆用合金
EP2697408B1 (en) Interfacial diffusion barrier layer including iridium on a metallic substrate
WO2009119345A1 (ja) 耐高温腐食合金材、遮熱コーティング材、タービン部材、及びガスタービン
US8247085B2 (en) Oxide-forming protective coatings for niobium-based materials
EP2690197B1 (en) Turbine blade for industrial gas turbine and industrial gas turbine
US7138189B2 (en) Heat-resistant Ti alloy material excellent in resistance to corrosion at high temperature and to oxidation
WO2003038152A1 (fr) Revetement en alliage re pour barriere de diffusion
JP3857689B2 (ja) 拡散障壁用ReCrNi合金皮膜
JP3910588B2 (ja) 拡散障壁用ReCr合金皮膜
JP5295474B2 (ja) ニオブ基合金耐熱部材
JP2004250788A (ja) 皮膜形成方法
JPH10251869A (ja) 耐熱部材およびその製造方法
JPH09104987A (ja) 耐熱部材およびその製造方法
JP2011080133A (ja) ニオブ基材料用の酸化物形成型保護皮膜

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003540413

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002765561

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002765561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10494014

Country of ref document: US