WO2003038150A1 - Revetement d'alliage recr pour barriere de diffusion - Google Patents

Revetement d'alliage recr pour barriere de diffusion Download PDF

Info

Publication number
WO2003038150A1
WO2003038150A1 PCT/JP2002/009477 JP0209477W WO03038150A1 WO 2003038150 A1 WO2003038150 A1 WO 2003038150A1 JP 0209477 W JP0209477 W JP 0209477W WO 03038150 A1 WO03038150 A1 WO 03038150A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
layer
coating
substrate
diffusion
Prior art date
Application number
PCT/JP2002/009477
Other languages
English (en)
French (fr)
Inventor
Toshio Narita
Shigenari Hayashi
Takayuki Yoshioka
Hiroshi Yakuwa
Original Assignee
Japan Science And Technology Agency
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Ebara Corporation filed Critical Japan Science And Technology Agency
Priority to US10/494,015 priority Critical patent/US7060368B2/en
Priority to EP02770199A priority patent/EP1449938A4/en
Priority to JP2003540411A priority patent/JP3910588B2/ja
Publication of WO2003038150A1 publication Critical patent/WO2003038150A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • Y10T428/12854Next to Co-, Fe-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Definitions

  • the present invention relates to a technology for extending the life of high-temperature equipment members, such as gas turbine blades, jet engine turbine blades, and boiler heat transfer tubes.
  • high-temperature equipment members such as gas turbine blades, jet engine turbine blades, and boiler heat transfer tubes.
  • TBC Thermal barrier coating
  • TBC thermal barrier coating
  • Ceramics have a large difference in thermal expansion coefficient from the base metal and are easily peeled off at the TBC / base metal interface. Is used to improve adhesion. Under an ultra-high temperature environment of about 800 to 1200 ° C, the undercoat reacts with the base material and deteriorates, and the oxide layer grows thickly on the undercoat surface, causing the ceramic layer to grow. Or peel off. For this reason, a major problem is that the service life of equipment members is as short as several months.
  • A1 (or Cr, Si) diffusion and infiltration treatment In order to improve the corrosion resistance, a diffusion infiltration treatment such as A1 or Cr or Si is applied.
  • the environment used is an ultra-high temperature of about 800 to 1200 ° C, diffusion of elements contributing to corrosion resistance is extremely rapid and reactivity is high, so a stable protective film can be formed for a long time. I can't keep it.
  • the consumption rate of elements such as Cr and A1 forming the protective film is high, so stable protection is achieved.
  • a major problem is that the functional film cannot be maintained for a long time, and the equipment life is extremely short.
  • Thermal spraying of high Ni-high Cr alloys may be applied to improve corrosion resistance.
  • Japanese Patent Application Laid-Open No. 11-61439 discloses a TBC system in which Re is added to a TBC undercoat in an amount of 1 to 12% by weight (several% in atomic composition).
  • Japanese Patent Application Laid-Open No. 2000-511236 discloses, as “a structural component having a base made of a superalloy and a layered structure provided thereon and a method for producing the same”, 35% to 60% by weight of Re (atomic An undercoat of TBC containing about 15% to 30% by composition) has been proposed.
  • Re in this case has not been described in detail, and the effect is uncertain.
  • U.S. Pat. No. 6,299,986 describes Re5.0-7.0 ° /. It is described that a barrier coating containing less than 4 wt% of Re is formed on a Ni-based superalloy substrate containing.
  • Japanese Patent Application Laid-Open No. 9-143667 includes pure Re or Mo or W.
  • a method for producing a high temperature member made of a Re alloy is disclosed. This is a method of manufacturing a Re or Re alloyed structural member, and is intended to use thin Re or Re alloy alone. Disclosure of the invention
  • the present inventors have been conducting research and development on a method of using Re or a Re alloy as a diffusion barrier.
  • Shoji, Hisamatsu, Hayashi, Narita (1) Oxidation resistance imparting technology for ultra-high temperature use Development Guidelines-Application of Rhenium-based Alloy Coatings to Ni-base Superalloys-", Report of the 123rd Committee on Heat-resistant Materials of the Japan Society for the Promotion of Science, vol41, pp 127 (March 2000), 2; T. Narita et al .: Rhenium coating as a diffusion barrier on a nickel-based super alloy in high temperature oxidation ", Proc of HTCP2000, pp351, Science Reviews, Hokkaido (Sep.
  • the present invention suppresses the deterioration of the base material and the coating layer due to the reaction between the base material and the coating layer, which is a problem in the conventional TBC system, A1 (or Cr, Si) diffusion and infiltration processing, and corrosion-resistant coating such as thermal spraying
  • the purpose is to extend the life of equipment members.
  • An excellent diffusion barrier layer can be obtained by coating a Re (or Ir, Rh, Pt, W) alloy layer on the substrate surface or inserting it between the substrate and the TBC layer.
  • a Re or Ir, Rh, Pt, W
  • the Re concentration in the Re alloy film is low (atomic composition less than 30% Re)
  • a Re-Ni binary alloy when forming a stable alloy phase with Re at high temperatures, for example, a Re-Ni binary alloy Otherwise, phase separation into the Re-rich phase and the Li-rich phase of other elements (eg, Ni) will occur, and the function as a diffusion barrier will be reduced.
  • the present inventors have conducted a diffusion experiment by melting various Re alloys.
  • a Re-Cr alloy containing 50 to 90 atomic% of Re is a Re-Cr alloy having a Re concentration of less than 30 atomic%.
  • the diffusion coefficient is one to two orders of magnitude smaller than that of Re-Ni alloys.
  • the Re-Cr alloy coating containing 50 atomic% or more of Re among the Re alloy coatings applied to the base material is particularly excellent. It has a diffusion barrier function.
  • the present invention provides this excellent diffusion barrier layer.
  • the present invention relates to a diffusion barrier Re applied to a substrate, characterized in that Re has an atomic composition of 50% or more and less than 90%, and essentially excludes Cr except for inevitable impurities.
  • -A Cr alloy film which can impart excellent heat and corrosion resistance to the substrate.
  • the present invention is the alloy film for a diffusion barrier layer applied to the above-mentioned substrate, wherein the alloy film has a structure in which a stress relaxation layer is inserted between the substrate and the alloy film.
  • the alloy film has a structure in which a stress relaxation layer is inserted between the substrate and the alloy film.
  • the present invention provides a diffusion barrier alloy film or a diffusion barrier alloy film in which a stress relaxation layer made of an alloy containing Re is inserted between a base material and a diffusion barrier alloy film.
  • An alloy film for a diffusion barrier layer applied to the above-mentioned base material having a structure in which one type of diffusion-penetration layer is mainly laminated. This structure allows elements that reduce corrosion resistance (such as Ti, Nb, and Ta) to diffuse from the base material to the diffusion-penetrating layer, and that reduce the phase stability of the base material (such as Al, Si, and Cr). ) Can be suppressed from diffusing into the base material. This makes it possible to maintain excellent oxidation resistance and substrate strength for a longer time.
  • the present invention is a film having a structure in which a ceramic for heat shielding is laminated on the alloy film for diffusion barrier described above, thereby enabling the use of the material at a higher temperature.
  • FIG. 1 is a schematic diagram showing a cross-sectional structure of a Ni-based alloy of Example 1.
  • FIG. 2 is a schematic diagram showing a cross-sectional structure of the Ni-based alloy of Example 2.
  • FIG. 3 is a schematic diagram showing a cross-sectional structure of the Ni-based alloys of Comparative Examples 1 to 4.
  • FIG. 4 is a schematic diagram showing a cross-sectional structure after oxidizing the Ni-based alloy of Example 1 in the air at 1100 ° C. for one month.
  • FIG. 5 is a schematic diagram showing a cross-sectional structure after oxidizing the Ni-base alloy of Example 2 in the air at 1100 ° C. for one month.
  • FIG. 6 is a schematic diagram showing a cross-sectional structure after oxidizing the Ni-based alloys of Comparative Examples 1 to 4 in the air at 1100 ° C. for one month.
  • Fig. 7 shows the thickness of the oxidized scanole formed on the surface by oxidizing the Ni-based alloys of Examples 1 and 2 and Comparative Examples 1 to 4 in air at 1100 ° C for 1 month. This is a graph. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention is applied to a substrate characterized by having an atomic composition of Re of 50% or more and less than 90% except for inevitable impurities, and essentially excluding Cr except for inevitable impurities.
  • Re-Cr alloy coating for diffusion barrier The present inventors have found that the Re alloy film can be used as a diffusion barrier layer because the diffusion ability of the metal element is smaller than that of the Ni-based alloy film and the Fe-based alloy film. It has been found that the ⁇ phase formed by the Re-Cr alloy has a particularly excellent diffusion barrier function.
  • the Re concentration was limited to 50% or more and less than 90% in atomic composition. More preferably, Re is 55% or more and 75% or less in atomic composition.
  • This Re-Cr alloy film can be preferably formed by a magnet sputtering method, but a similar alloy film can also be formed by a physical vapor deposition method, a chemical vapor deposition method, or a thermal spraying method.
  • the method is not limited to the method of forming a Re alloy film having a desired alloy composition by these film forming methods, and a desired Re alloy film may be formed by diffusion of alloy components of a base material by heat treatment.
  • the Re layer coated on the substrate or it is desirable to perform sufficient heat treatment at a high temperature in a non-oxidizing atmosphere such as a vacuum or an inert atmosphere.
  • the stress relaxation layer When a stress relaxation layer is inserted between the base material and the alloy film, the stress relaxation layer has, for example, a Re concentration of about 20 to 30 atomic% lower than that of the diffusion barrier layer. It is desirable to use a Re-Cr- (Ni, Fe, Co) alloy layer in which Ni is increased by about 20 to 30 at.% If the alloy is Ni-based alloy, Ni is Fe-based alloy, and Co is Co-based alloy. With this structure, it is possible to suppress cracking of the film due to the difference in thermal expansion between the base material and the alloy film, and to maintain the alloy film as a continuous layer, thereby further extracting the excellent heat and corrosion resistance of the alloy film. Becomes possible.
  • a known method such as a pack method or a CVD method can be appropriately employed.
  • an Al, Si, Cr receiving layer to be diffused A metal layer made of at least one of Ni, Fe, Co, etc. is plated on the Re-Cr alloy film, and Al, Si, or Cr is formed by heat diffusion at a high temperature. To form an alloy layer with the metal.
  • Seramitsu task is Zr0 2, Ca0, M g 0 , Si (3 ⁇ 4, Les Shi desirable to contain at least one or more of AI2O3,. Thereto Therefore, the temperature of the internal alloy layer is lowered, the oxide growth on the alloy film surface is suppressed, and the diffusion between the alloy film and the base material is suppressed. It is possible to keep. (Example)
  • Ni-based alloy Inconel 738LC Ni-16% Cr-8.5% Co-0.9Nb-l.7% Mo-2.6% W-3.4 % Ti-3.4 4% A1 (wt%)
  • 55 atoms. / 0 Re-45 Harako. / After coating with the Cr alloy film, Ni plating was performed, and further, aluminum diffusion and infiltration treatment was performed.
  • the alloy film is 55 atomic% Re-45 atomic. / A 0 Cr alloy as a target, after coating the substrate surface by magnetron sputtering method, a vacuum was formed by homogenizing heat treatment for 5 hours coating at 1100 ° C.
  • Fig. 1 shows the cross-sectional structure of the Ni-based alloy after the treatment.
  • Table 1 shows the results of the composition analysis of each point in Fig. 1 using an electron beam micro analyzer (EPMA).
  • EMA electron beam micro analyzer
  • Ni-based alloy Incon el 738LC Ni-16 Cr-8.5% Co-0.9% Nb-l.7% Mo-2. 6% W-3.4% Ti-3.4% A1 (wt%) is coated with 75at% 1 ⁇ -25at% ⁇ alloy film, then plated with Ni, and further treated with aluminum diffusion and infiltration. gave.
  • the alloy film has 75 atoms. / 0 -25 atomic% (): After coating the substrate surface by magnetron sputtering using an alloy as a target, the coating was formed by performing a homogenizing heat treatment at 1100 ° C. for 5 hours in a vacuum.
  • the treatment is to immerse the Re-alloy-coated and Ni-plated base material in a mixed powder of Ni-50 atomic% A1 alloy powder + AI2O3, and process in vacuum at 1000 ° C for 5 hours. Made by.
  • Fig. 2 shows the cross-sectional structure of the Ni-based alloy after the treatment.
  • Table 2 shows the results of composition analysis of each point in Fig. 2 by EPMA. (1) to (5) in the table correspond to (1) to (5) in FIG. (Table 2)
  • the Cr alloy film is a 71.5% Re-22. 9% Cr alloy film in atomic composition by subsequent processing. Also in Example 2, the elements other than Re and Cr in the alloy film are each 2% or less in atomic composition, and it can be said that this alloy film is essentially a Re-Cr alloy film.
  • FIG. 3 (a) shows a solid Ni-based alloy (Inconel 738LC).
  • FIG. 3 (b) shows a Ni-based alloy (Inconel 738LC) subjected to only aluminum diffusion and infiltration treatment. )
  • 20 atoms in FIG. 3 (c). / ORe- 60 atoms 0/0 Ni- 20 atoms 0/0 Cr Ni based alloy of the alloy film was subjected to Ni plating and aluminum diffusion treatment after coating (Inconel 738LC), as Comparative Example 4, FIG.
  • Table 3 is a table showing the results of composition analysis by EPMA at each point of the cross section of the Ni-based alloy of Comparative Example 1. (1) to (3) in the table correspond to (1) to (3) in FIG. 3 (a).
  • Table 4 is a table showing the results of composition analysis by EPMA at each point of the cross section of the Ni-based alloy of Comparative Example 2. (1) to (5) in the table correspond to (1) to (5) in FIG. 3 (b).
  • Table 5 is a table showing the results of composition analysis by EPMA at each point of the cross section of the Ni-based alloy of Comparative Example 3. (1) to (5) in the table correspond to (1) to (5) in FIG. 3 (c). (Table 5)
  • Table 6 is a table showing the results of composition analysis by EPMA at each point of the cross section of the Ni-based alloy of Comparative Example 4. (1) to (5) in the table correspond to (1) to (5) in FIG. 3 (d).
  • A1 concentration of the coating layer table the vicinity consisting of Comparative Example Re alloy film 2-4 and Ni-Al alloy cementation layer are both 40 atomic 0/0, A1 2 0 3 as a dense protective coating A1 amount is sufficient to form
  • A1 diffuses to the substrate side, and Ti and Nb diffuse to the coating layer side.
  • 20 atoms. /. Re-60 atomic% Ni-20 atomic% alloy coating layer 9.2% Re-47.9 ° / in atomic composition by post-treatment. Ni-19.4% Cr-4.3% Co-16.5% A1-1. 4% Ti alloy film.
  • the 20 at.% Re-80 at.% Cr alloy film layer had an atomic composition of 8.9% Re-7.9% Ni-56. 2% Cr- 3. 9 ° /. Co-19.2% A1- 2, 0 ° /. It is a Ti alloy film.
  • FIG. 4 Sectional structures after oxidizing the alloys of Examples 1 and 2 and Comparative Examples 1 to 4 in the air at 1100 ° C. for one month are shown in FIG. 4, FIG. 5, and FIG. Fig. 2 corresponds to Fig. 4, Fig. 3 corresponds to Fig. 5, and Figs. 4 (a;) to (d) correspond to Figs.
  • Table 7 is a table showing the results of a composition analysis of the Ni-based alloy of Example 1 at various points on the cross section of the test piece after oxidation.
  • (1) to (6) in the table correspond to (1) to (6) in FIG.
  • Table 8 is a table showing the results of a composition analysis at various points on the cross section of the test piece after oxidation of the Ni-based alloy of Example 2.
  • (1) to (6) in the table correspond to (1) to (6) in FIG. (Table 8)
  • Table 9 is a table showing the results of composition analysis at various points on the cross section of the test piece after oxidation of the Ni-based alloy of Comparative Example 1. (1) to (6) in the table correspond to (1) to (6) in FIG. 6 (a).
  • Table 10 is a table showing the results of composition analysis at various points on the cross section of the test piece after oxidation of the Ni-based alloy of Comparative Example 2.
  • (1) to (6) in the table correspond to (1) to (6) in FIG. 6 (b). (Table 10)
  • Table 11 is a table showing the results of composition analysis at various points on the cross section of the test piece after oxidation of the Ni-based alloy of Comparative Example 3 .
  • (1) to (6) in the table correspond to (1) to (6) in FIG. 6 (c).
  • Table 12 is a table showing the results of composition analysis at various points on the cross section of the test piece after oxidation of the Ni-based alloy of Comparative Example 4.
  • (1) to (6) in the table correspond to (1) to (6) in FIG. 6 (d). Further, FIG. 7 shows the thickness of the oxide scale formed on these surfaces. (Table 12)
  • Comparative Examples 1 to 4 were as follows.
  • a solid Ni-based alloy ((a), Comparative Example 1) has two surfaces, an outer layer mainly composed of Ni, Co, and Cr, and an inner layer mainly composed of Cr, Al, and a scale of oxide. An internal oxide was formed in the material. The oxide scale was as thick as 100 ⁇ um or more, and many exfoliation of the film was observed.
  • the Ni-based alloy (b) subjected to only the aluminum diffusion and infiltration treatment of Comparative Example 2 produced an oxide scale mainly containing Ni, Cr, Al, and Co at about 15 / im. Peeling of the film was seen.
  • the A1 concentration in the Ni-A1 diffusion / penetration layer which was about 50% before oxidation, decreased to about 25% after oxidation. In other words, it can be seen that the consumption rate of A1 is high because the oxidation rate is high, and that the A1 concentration has decreased due to diffusion into the substrate.
  • Ni-based alloy (c) which was coated with a Ti alloy film and then subjected to aluminum diffusion and infiltration treatment, had a smaller amount of film peeling compared to Comparative Examples 1 and 2, but had a thickness of about 12 Oxide scale ⁇ containing Ti and Nb mainly composed of Ni and Co was generated.
  • oxide scale growth is parabolic, if oxide scale thicknesses differ by 6 times over the same period, their lifetimes will be 36 times different. Therefore, it can be said that the difference in the oxide scale thickness from Example 1 is a large difference.
  • the A1 concentration in the Ni-A1 diffusion / penetration layer which was almost 50% before oxidation, decreased to about 27% after oxidation. Furthermore, the A1 concentration near the substrate surface increased to about 15%. From these results, it can be seen that the Re concentration is low 9.2% Re-47.lining-19.4% Cr-4.3% Co_16.5% A1-1. It can be seen that during oxidation in C, Ti and Nb diffuse from the substrate to the coating layer, and A1 diffuses from the Ni-A1 diffusion and penetration layer to the substrate.
  • A1 diffuses from the Ni-A1 diffusion / penetration layer to the substrate.
  • Example 1 (55 atoms./oRe-45 atom% Cr alloy film) and Example 2 (75 atoms./. Re-25 atom./. Cr alloy film), which are the products of the present invention, 1100 ° C against 8 months oxidation
  • the metal oxide can sufficiently function as a diffusion barrier layer and impart excellent oxidation resistance to the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

明 細 書 拡散障壁用 ReCr合金皮膜 技術分野
本発明は、 ガスタービン翼やジェットエンジンのタービン翼、 ボイラ伝熱管な ど、 高温装置部材の寿命を延伸するための技術に係わる。 背景技術
( 1 ) 熱遮蔽コーティング(TBC)
産業用ガスタービン翼や、 ボイラ管などの高温装置部材は、 耐熱性および耐食 性を向上させるために、 表面にコーティングを施して使用する場合が多くある。 一般に、 耐熱性を向上させるには、 熱遮蔽コーティング(TBC)と呼ばれるセラミ ックスコ一ティングがなされる。
セラミックスは、 基材金属との熱膨張係数の差が大きく、 TBC/基材界面におい て剥がれやすいため、 通常、 セラミックス層と基材金属の間に、 アンダーコート (あるいはボンドコート)と呼ばれる合金層を挿入し、 密着性を向上させて使用さ れる。 し力、し、 800〜1200°C程度の超高温環境下においては、 アンダーコートが 基材と反応して劣化したり、 また、 アンダーコート表面に酸化皮膜が厚く成長す ることによってセラミックス層が剥離したりする。 そのため、 装置部材寿命が数 ヶ月と短いことが大きな問題となっている。
( 2 ) A1 (または Cr, Si)拡散浸透処理 耐食性を向上させるには、 A1あるいは Cr、 Siなどの拡散浸透処理が施されてい る。 しカゝし、 使用される環境が 800〜1200°C程度の超高温であると、 耐食性に寄 与する元素の拡散が著しく速く、 反応性も大きいため、 安定な保護性皮膜を長時 間維持できない。 また、 500〜800°Cの温度域においても、 C1や Sなどを含んだ強 腐食性環境であると、 保護性皮膜を形成する Crや A1などの元素の消耗速度が大き いため、 安定な保護性皮膜を長時間維持できず、 装置寿命が著しく短いことが大 きな問題となっている。
( 3 ) Ni- Cr溶射
耐食性を向上させるために、 高 Ni-高 Cr合金の溶射が施されることがある。 し かし、 上記(2 )と同様の問題点がある。
( 4 ) Reを添カ卩したアンダーコートを兼ね備えた TBCシステム
Reを TBCのアンダーコートに 1〜12重量% (原子組成で数% )添加した TBCシステ ムが特開平 11- 61439号公報によって開示されている。 また、 特表 2000- 511236号 公報には、 「超合金からなる基体とその上に設けられた層構造とを備えた構造部 品並びにその製造方法」 として、 Reを 35〜60重量% (原子組成で約 15%〜30%)含 んだ TBCのアンダーコートが提案されている。 し力 し、 この際の Reの役割につい ては詳細な説明がなされておらず、 効果も定かでない。 また、 米国特許第 6, 299, 986号明細書には、 Re5. 0〜7. 0 ° /。を含む Ni基超合金基体に 4wt%以下の Reを含むバ リャ被膜を形成することが記載されている。
( 5 ) Reおよび Re基合金皮膜
特開平3- 120327号公報には、 Rel〜20wt%、 Cr22〜50wt%を含有する Re含有保 護被覆が記載されている。 特開平 9- 143667号公報には、 純 Reあるいは Moや Wを含 有した Re合金製高温部材の製造方法が開示されている。 これは、 Reあるいは Re合 金の構造部材を製造する方法であり、 薄板の Reあるいは Re合金を単独で使用する ためのものである。 発明の開示
従来の技術では、 上記の問題点が解決できないため、 現状では、 装置の性能を 犠牲にして、 使用温度を下げることで装置部材の寿命の延伸を図っている。
本発明者らは、 これまで、 Reまたは Re合金を拡散バリヤとする方法について研 究開発を続けてきた [ 1 ;庄司、 久松、 林、 成田 :〃超高温対応を目指した耐酸化 性付与技術の開発指針- Ni基超合金へのレニウム基合金皮膜の応用-", 日本学術 振興会耐熱材料第 123委員会報告, vol41, pp 127 (March 2000)、 2 ; T. Narita et al.: Rhenium coating as a diffusion barrier on a nickel-based super al l oy in high temperature oxidation", Proc of HTCP2000, pp351, Science Reviews, Hokkaido (Sep. 2000)、 3 ;吉田、 久松、 林、 成田、 野口、 八鍬、 宫坂:〃メツキ による拡散障壁層の形成と耐酸化性",第 47回材料と環境討論会予稿集, ppl41,
(社)腐食防食協会,山口(2000年 10月)、 4 ;久松、 吉田、 林、 成田、 村上、 原田 : "Reコーティング膜の拡散バリヤ一特性と Ni基超合金の耐酸化性", 第 47回材料と 環境討論会予稿集, PP153, (社)腐食防食協会, 山口, 2000年 10月、 5 ; T. Narita et al.: Application oi rneniura coating as a diffusion barrier to improv e the high temperature oxidation resistance of nickel-based superal loy", Paper No. 01157, CORROSION 2001, NACE Intl, Houston (March 2001) ] 力 拡散 バリヤとして安定な性能を発揮できる層構造については見いだされていない。 本発明は、 従来の TBCシステムや A1 (あるいは Cr、 Si)拡散浸透処理、 溶射など の耐食コーティングで問題となっている、 基材とコーティング層との反応による 基材およびコーティング層の劣化を抑制し、 装置部材の寿命を延伸することを目 的とする。
Re (あるいは Ir, Rh, Pt, W)合金層を、 基材表面に被覆、 あるいは基材と TBC層の間 に挿入することによって、 優れた拡散障壁層となる。 しカゝしながら、 Re合金皮膜 中の Re濃度が低い場合 (原子組成で 30%Re未満) や、 例えば、 Re- Ni二元合金のよ うに、 高温下で Reと安定な合金相を形成しない場合、 Reリッチ相と他元素(例えば, Ni)リツチ相への相分離が起こり、 拡散障壁としての機能が低下してしまう。
本発明者らは、 種々の Re合金を溶製して拡散実験を行った結果、 Reを 50〜90原 子%含んだ Re- Cr合金は、 Re濃度が 30原子%未満の Re- Cr合金、 Re- Ni合金と比較 して、 拡散係数が 1〜2桁小さいこと、 つまり、 基材に施された Re合金皮膜のうち 50原子%以上の Reを含む Re- Cr合金皮膜は、 特に優れた拡散障壁機能を有するこ とを見出した。 本発明は、 この優れた拡散障壁層を提供するものである。
すなわち、 本発明は、 原子組成で Reが 50%以上 90%未満で、 不可避的な不純物 を除いて、 本質的に残りを Crとすることを特徴とする基材に施された拡散障壁用 Re - Cr合金皮膜であり、 これによつて、 基材に優れた耐熱および耐食性を付与す ることができる。
また、 本発明は、 該基材と該合金皮膜との間に、 応力緩和層が挿入された構造 を持つことを特徴とする上記の基材に施された拡散障壁層用合金皮膜である。 こ の構造によって、 基材と合金皮膜との熱膨張差による皮膜の割れを抑制し、 該合 金皮膜を連続層として維持することが可能となる。 これによつて、 合金皮膜の優 れた耐熱性、 耐食性をより一層引き出すことが可能となる。
また、 本発明は、 拡散障壁層用合金皮膜または Reを含有する合金からなる応力 緩和層が基材との間に挿入された拡散障壁用合金皮膜に、 Al、 Si、 Crの少なく.と も 1種を主とする拡散浸透層を積層した構造を持つことを特徴とする上記の基材 に施された拡散障壁層用合金皮膜である。 この構造によって、 耐食性を低下させ る元素 (例えば、 Ti,Nb, Taなど) の基材から拡散浸透層への拡散、 および基材の 相安定性を低下させる元素 (例えば、 Al,Si,Cr) の拡散浸透層から基材への拡散 を抑制することができる。 これによつて、 優れた耐酸化性および基材の強度をよ り長時間維持することが可能となる。
さらに、 本発明は、 上記の拡散障壁用合金皮膜に熱遮蔽用セラミックスを積層 した構造を持つ皮膜であり、 これによつて、 より高温下での材料の使用を可能と する。 図面の簡単な説明
第 1図は、 実施例 1の Ni基合金の断面組織を示す模式図である。 第 2図は、 実施例 2の Ni基合金の断面組織を示す模式図である。 第 3図は、 比較例 1〜4の Ni基合金の 断面組織を示す模式図である。 第 4図は、 実施例 1の Ni基合金を 1100°Cの大気中で 1ヶ月間酸化させた後の断面組織を示す模式図である。 第 5図は、 実施例 2の Ni基合 金を 1100°Cの大気中で 1ヶ月間酸化させた後の断面組織を示す模式図である。 第 6 図は、 比較例 1〜4の Ni基合金を 1100°Cの大気中で 1ヶ月間酸化させた後の断面組織 を示す模式図である。 第 7図は、 実施例 1、 2および比較例 1〜4の Ni基合金を 1100°C の大気中で 1ヶ月間酸化することによつて表面に生成した酸化スケーノレの厚さを示 すグラフである。 発明を実施するための最良の形態
以下に本発明の実施の形態を説明する。
本発明は、 不可避的な不純物を除いて、 原子組成で Reが 50%以上 90%未満で、 不可避的な不純物を除いて、 本質的に残りを Crとすることを特徴とする基材に施 された拡散障壁用 Re - Cr合金皮膜である。 本発明者らは、 Re合金皮膜は、 Ni基合 金皮膜や Fe基合金皮膜と比較して金属元素の拡散能が小さいため、 拡散障壁層と して利用でき、 更に、 Re合金皮膜の中でも Re- Cr合金が形成する σ相が特に優れ た拡散障壁機能を有していることを見出した。
Reが 50%未満では、 高温下で、 σ相よりも Crリツチ層の割合が多くなり、 拡散 障壁層として +分な機能を示さなくなる。 一方、 Reが 90%より多くなると Re単相 の割合が多くなり、 やはり拡散障壁層としての機能がやや低下する。 また、 Re単 相は、 Re合金相と異なり、 熱ショック下でクラックが導入されやすく、 かつ基材 との密着性が低いため、 長時間連続層として基材表面に安定に存在することがで きない。 したがって、 Re濃度は原子組成で 50%以上 90%未満に限定した。 より好 ましくは、 原子組成で Reが 55%以上 75%以下である。
この Re- Cr合金皮膜は、 好ましくは、 マグネト口ンスパッタリング法により形 成できるが、 物理蒸着法、 化学蒸着法、 溶射法によっても同様の合金皮膜の形成 が可能である。 これらの皮膜形成方法により所望の合金組成の Re合金皮膜を形成 する方法に限らず、 加熱処理により基材の合金成分の拡散により所望の Re合金皮 膜が形成されるようにしてもよい。 いずれの場合も、 基材に被覆した Re層または Re合金層の組成、 組織の均質化をはかるために真空、 不活性雰囲気などの非酸化 性雰囲気中で高温で十分加熱処理することが望ましい。 こうすることにより、 A1 、 Si、 Crの中から少なくとも 1種を含有する拡散浸透層を積層した構造において 、 基材からの成分は拡散するものの Al、 Si、 Cr元素を実質的に拡散しないように することができる。
該基材と該合金皮膜との間に、 応力緩和層を挿入する場合、 応力緩和層は、 拡 散障壁層よりも、 例えば、 Re濃度を約 20〜30原子%低く、 その分、 基材が Ni基合 金なら Niを、 Fe基合金なら Feを、 Co基合金なら Coを、 約 20〜30原子%多くした Re - Cr- (Ni, Fe, Co)合金層とすることが望ましい。 この構造によって、 基材と合金皮 膜との熱膨張差による皮膜の割れを抑制し、 該合金皮膜を連続層として維持する ことが可能となり、 合金皮膜の優れた耐熱 ·耐食性をより一層引き出すことが可 能となる。
Al、 Si、 Crの少なくとも 1種を主とする拡散浸透層を積層する方法としては、 パック法や CVD法などの公知の手段を適宜採用することができる。 例えば、 拡散 させる Al、 Si、 Crの受容層 Ni、 Fe、 Coなどの少なくとも 1種からなる金属層を Re - Cr合金皮膜上にメツキし、 高温で加熱拡散により Al、 Si、 または Crとこれらの 金属との合金層を形成する。
上記の拡散障壁用合金皮膜に熱遮蔽用セラミックスを積層する場合、 セラミツ タスは Zr02、 Ca0、 Mg0、 Si(¾、 AI2O3の少なくとも 1種以上を含むことが望まし レ、。 これによつて、 内部の合金層温度を低下させ、 合金皮膜表面の酸化物成長を 抑制すると共に、 合金皮膜と基材との拡散を抑制し、 合金皮膜および基材の組織 の安定性をより長時間保つことが可能となる。 (実施例)
実施例 1
ガスタービンの動翼や静翼材として用いられる Ni基合金 Inconel 738LC (Ni-16 %Cr-8. 5%Co-0. 9 Nb-l. 7%Mo-2. 6%W-3. 4%Ti-3. 4%A1 (重量%) ) に、 55原子。 /0Re- 45原 子。 /。Cr合金皮膜を被覆後、 Niめっきを施し、 更にアルミ拡散浸透処理を施した。 合金皮膜は、 55原子%Re- 45原子。 /0Cr合金をターゲットとして、 マグネトロンス パッタリング法によって基材表面に被覆した後、 真空中、 1100°Cで 5時間被覆を 均質化熱処理することで形成した。
Niめっきには、 ワット浴を用いた。 すなわち、 浴組成は、 重量比で NiS04 ' 7¾0 : iCl2: H3BO3 = 20 : 3 : 2、 ρΗ=5とし、 浴温 50°C、 電流密度 50mAん m2とした。
アルミ拡散処理は、 Ni- 50原子 %A1の合金粉末 +Αΐ2θ3の混合粉末中に、 Re合金被 覆および Niめっきを施した基材を埋没して、 真空中、 1000°Cで 5時間処理するこ とによって行った。
処理後の Ni基合金の断面組織を第 1図に示す。 また、 表 1には、 電子線マイクロ アナライザ (EPMA)による第 1図中の各点の組成分析結果を示す。 表中の(1)〜(5)は、 第 1図中のひ)〜(5)に対応する。
(表 1 )
(原子%
Figure imgf000010_0001
7
9 これより、 55原子。/。 Re- 45原子% 合金皮膜は、 その後処理によって、 原子組 成で 52. 70/0Re-41, 9%Cr合金皮膜となっている。 合金皮膜中の Re、 Cr以外の合金 元素は、 いずれも原子組成で 2%未満であり、 本質的に、 この合金皮膜は Re- Cr合 金皮膜である。
実施例 2
実施例 1と同様、 ガスタービンの動翼や静翼材として用いられる Ni基合金 Incon el 738LC (Ni-16 Cr-8. 5%Co- 0. 9%Nb-l. 7%Mo-2. 6%W-3. 4%Ti- 3. 4%A1 (重量%) ) に、 75原子%1^- 25原子%^合金皮膜を被覆後、 Niめっきを施し、 更にアルミ拡散浸 透処理を施した。 合金皮膜は、 75原子。/ 0 _25原子%( ]:合金をターゲットとして 、 マグネトロンスパッタリング法によって基材表面に被覆した後、 真空中、 1100 °Cで 5時間被覆を均質化熱処理することで形成した。
Niめっきには、 ワット浴を用いた。 すなわち、 浴組成は、 重量比で NiS04 ' 7H20 : NiCh:画 3 = 20 : 3 : 2、 pH=5とし、 浴温 50° (:、 電流密度 50raA/cm2とした。 アルミ拡散処理は、 Ni- 50原子%A1の合金粉末 +AI2O3の混合粉末中に、 Re合金被 覆および Niめっきを施した基材を埋没して、 真空中、 1000°Cで 5時間処理するこ とによって行った。
処理後の Ni基合金の断面組織を第 2図に示す。 また、 表 2には、 EPMAによる第 2図 中の各点の組成分析結果を示す。 表中の(1)〜(5)は、 第 2図中の(1)〜(5)に対応す る。 (表 2 )
(原子%)
Figure imgf000012_0001
これより、 75原子%Re- 25原子。/。 Cr合金皮膜は、 その後処理によって、 原子組 成で 71. 5%Re-22. 9%Cr合金皮膜となっていることが分かる。 実施例 2においても 、 合金皮膜中の Re、 Cr以外の元素はいずれも原子組成で 2%以下であり、 この合 金皮膜は、 本質的に Re- Cr合金皮膜であるといえる。
比較例 1〜4
比較例 1として、 第 3図(a)に、 無垢の Ni基合金(Inconel 738LC)、 比較例 2として 、 第 3図(b)に、 アルミ拡散浸透処理のみを施した Ni基合金(Inconel 738LC)、 比較 例 3として、 第 3図(c)に、 20原子。/ oRe- 60原子0/ 0Ni- 20原子0 /0Cr合金皮膜を被覆後に Niめっきおよびアルミ拡散浸透処理を施した Ni基合金(Inconel 738LC)、 比較例 4 として、 第 3図( に、 20原子0/ oRe- 80原子0 /0Cr合金皮膜を被覆後に Niめっきおよび アルミ拡散浸透処理を施した Ni基合金(Inconel 738LC)の断面組織をそれぞれ示 す。
Re合金皮膜は、 マグネト口ンスパッタリング法により、比較例 3では 20原子0/ 0Re -60原子% - 20原子%Cr合金を、 比較例 4では 20原子0/。 Re- 80原子%Cr合金を被覆 後に真空中 1100°Cで 5時間熱処理することによって形成した。 Niめっきおよびァ 02 09477
11 ルミ拡散浸透条件は、 実施例 1と同一とした。
表 3は、 比較例 1の Ni基合金断面の各点における EPMAによる組成分析結果を示す 表である。 表中の(1)〜(3)は、 第 3図(a)中の(1)〜(3)に対応する。
(表 3 )
(原子%)
Figure imgf000013_0001
表 4は、 比較例 2の Ni基合金断面の各点における EPMAによる組成分析結果を示す 表である。 表中の(1)〜(5)は、 第 3図(b)中の(1)〜(5)に対応する。
(表 4 )
(原子%)
Figure imgf000013_0002
表 5は、 比較例 3の Ni基合金断面の各点における EPMAによる組成分析結果を示す 表である。 表中の(1)〜(5)は、 第 3図(c)中の(1)〜(5)に対応する。 〔表 5 )
(原子%)
Figure imgf000014_0001
表 6は、 比較例 4の Ni基合金断面の各点における EPMAによる組成分析結果を示す 表である。 表中の(1)〜(5)は、 第 3図(d)中の(1)〜(5)に対応する。
(表 6 )
(原子%)
Figure imgf000014_0002
比較例24の Re合金皮膜と Ni-Al合金拡散浸透層とからなるコーティング層表 面近傍の A1濃度は、 いずれも 40原子0 /0であり、 緻密な保護皮膜としての A1203を形 成するに十分の A1量である。 し力 し、 実施例 1、 2とは異なり、 比較例 2〜4のいず れも、 A1は基材側に、 Ti、 Nbはコーティング層側に拡散している様子が分かる。 また、 比較例 3において、 20原子。/。 Re- 60原子%Ni- 20原子% 合金皮膜層は、 後処理によって原子組成で 9. 2%Re-47. 9°/。Ni- 19. 4%Cr- 4. 3%Co-16. 5%A1-1. 4%Ti合 金皮膜になっている。
一方、 比較例 4において、 20原子%Re- 80原子%Cr合金皮膜層は、 後処理によつ て原子組成で 8. 9%Re-7. 9%Ni-56. 2%Cr- 3. 9°/。Co- 19. 2%A1- 2, 0°/。Ti合金皮膜になって いる。
実施例 1、 2および比較例 1〜4の合金を 1100°Cの大気中で 1ヶ月間酸化させた後 の断面組織を、 第 4図、 第 5図および第 6図(a)〜( に示す。 第 2図は、 第 4図に、 第 3図は、 第 5図に、 第 4図(a;)〜(d)は、 第 6図(a)〜( にそれぞれ対応する。
また、 表 7は、 実施例 1の Ni基合金の酸化後の試験片断面の各点における組成分 析結果を示す表である。 表中の(1)〜(6)は、 第 4図中の(1)〜(6)に対応する。
(表 7 )
(原子
Figure imgf000015_0001
表 8は、 実施例 2の Ni基合金の酸化後の試験片断面の各点における組成分析結果 を示す表である。 表中の(1)〜(6)は、 第 5図中の(1)〜(6)に対応する。 (表 8 )
(原子%)
Figure imgf000016_0001
表 9は、 比較例 1の Ni基合金の酸化後の試験片断面の各点における組成分析結果 を示す表である。 表中の(1)〜(6)は、 第 6図(a)中の(1)〜(6)に対応する。
(表 9 )
(原子 %)
Figure imgf000016_0002
表 10は、 比較例 2の Ni基合金の酸化後の試験片断面の各点における組成分析結 果を示す表である。 表中の(1)〜(6)は、 第 6図(b)中の(1)〜(6)に対応する。 (表 1 0 )
(原子 %)
Figure imgf000017_0001
表 11は、 比較例3の Ni基合金の酸化後の試験片断面の各点における組成分析結 果を示す表である。 表中の(1)〜(6)は、 第 6図(c)中の(1)〜(6)に対応する。
(表 1 1 )
(原子 %)
Figure imgf000017_0002
表 12は、 比較例 4の Ni基合金の酸化後の試験片断面の各点における組成分析結 果を示す表である。 表中の(1)〜(6)は、 第 6図(d)中の(1)〜(6)に対応する。 更に、 第 7図には、 これらの表面に生成した酸化スケールの厚さ^示す。 (表 1 2 )
(原子%)
Figure imgf000018_0001
実施例 1、 2ともに、 コーティング層,表面に約 l i mの他の元素をほとんど含まな い AkCbから成る薄く、 緻密な酸化スケールを生成し、 皮膜の剥離等は見られな かった。 また、 Ni-Al合金拡散浸透層への基材からの他の元素(例えば、 Ti、 Nb等 )の拡散、 および基材中への A1の拡散はほとんど見られず、 Ni-Al合金拡散浸透層 中の A1濃度は酸化前とほぼ同等の約 50 %を保っており、 基材の組成も酸化前と大 きな差異はなかった。 更に、 Re合金拡散障壁層も酸化前と同等の組成を示してい た。
それに対して、 比較例 1〜4の試験片の酸化結果は以下のようであった。 無垢の Ni基合金 ((a) , 比較例 1 ) は、 表面に、 Ni、 Co、 Crを主成分とする外層と Cr、 A l を主成分とする内層の二層の酸化スケール、 および基材中に内部酸化物を形成し た。 その酸化スケールは 100 ^u m以上に及ぶ厚いものであり、 かつ多くの皮膜の剥 離が見られた。
比較例 2のアルミ拡散浸透処理のみを施した Ni基合金(b)は、 約 15 /i mの Ni、 Cr、 Al、 Coを主成分とする酸化スケールを生成したが、 比較例 1と同様、 皮膜の剥離が 見られた。 また、 酸化前に約 50%あった Ni- A1拡散浸透層の A1濃度は、 酸化後に は、 約 25%にまで低下していた。 すなわち、 酸化速度が大きいため A1の消費速度 が大きく、 かつ基材中への拡散によって A1濃度が低下したことが分かる。
比較例 3の 9. 2%Re-47. 9%Ni-19. 4°/。Cr- 4. 3%Co- 16. 5%A1-1. 4°/。Ti合金皮膜を被覆後 にアルミ拡散浸透処理を施した Ni基合金 (c)は、 比較例 1、 2と比較すると皮膜の 剥離量は少なかったが、 約 12 ^ mの厚さの、 Al、 Ni、 Coを主成分として Tiや Nbを含 んだ酸化スケー^^を生成した。
酸化スケールの成長が放物線的であると仮定した場合、 同じ期間での酸化スケ ールの厚さが 6倍異なると、 それらの寿命は 36倍異なる計算になる。 したがって、 実施例 1との酸化スケール厚さの差異は大きな差異であるといえる。
また、 酸化前に 50%近くあった Ni- A1拡散浸透層の A1濃度は、 酸化後には約 27 %にまで低下していた。 更に、 基材表面近傍の A1濃度は約 15%に上昇していた。 これらの結果から、 Re濃度が低い 9. 2%Re-47.裹- 19. 4%Cr- 4. 3%Co_16. 5%A1-1. 4 %Ti合金皮膜を被覆しても、 1100°Cでの酸化中に、 Tiや Nbは基材からコーティン グ層へ、 A1は Ni - A1拡散浸透層から基材へ拡散してしまうことが分かる。
比較例 4の 8. 9%Re-7. 9%Ni-56. 2°/oCr-3. 9%Co-19. 2 Al-2. 0%Ti合金皮膜を被覆後 にアルミ拡散浸透処理を施した Ni基合金(d)は、 比較例 3と類似の挙動を示し、 約 10 / mの厚さの、 Al、 Ni、 Co、 Crを主成分として Tiや Nbを含んだ酸化スケールを生 成した。
酸化前に50%近くあった Ni- A1拡散浸透層の A1濃度は、 酸化後には約 27%にま で低下していた。 更に、 基材表面近傍の A1濃度は約 16%に上昇していた。 これら の結果から、 Re濃度が低い 8. 9%Re-7. 9°/。Ni - 56. 2%Cr-3. 9%Co-19. 2 Al-2. 0%Ti合金 j 皮膜を被覆しても、 1100°Cでの酸化中に、 Tiや Nbは基材からコ一
A1は Ni- A1拡散浸透層から基材へ拡散してしまうことが分かる。
以上の結果から、 本発明品である実施例 1 (55原子。/ oRe- 45原子%Cr合金皮膜) および実施例 2 (75原子。/。 Re- 25原子。/。 Cr合金皮膜) は、 1100°C八ヶ月の酸化に対
5 して、 拡散障壁層として十分な機能を果たし、 基材に優れた耐酸化性を付与する ことが示された。
一方、 無垢の Ni基合金だけでなく、 アルミ拡散処理のみを施した Ni基合金、 お よび低濃度の Re合金皮膜 +アルミ拡散浸透層をコーティングした Ni基合金は、 酸 化前のコーティング表面の A1濃度が実施例 1、 2とほぼ同程度であるにもかかわら j 0 ず、 厚い酸化スケールを生成した。 これは、 1100°C/1ヶ月間の酸化中に、 基材 / コーティング層間で元素の拡散が活発に起こったため、 A1合金層の A1が基材へ拡 散して A1濃度が低下したこと、 および Tiや Nbなどが基材から酸化スケール中へ拡 散して A1203の純度が低下したことに起因する。
; 5 産業上の利用可能性
原子組成で Reが 50%以上 90%未満で、 不可避的な不純物を除いて、 本質的に残 りを Crとすることを特徴とする基材に施された拡散障壁用 Re-Cr合金皮膜を高温 装置部材表面に被覆(あるいは基材と TBC層の間に挿入)することで、 耐熱性、 耐 食性に優れた装置部材を提供することができると共に、 従来例と比較して著しく 0 装置の寿命を延伸することができる。

Claims

; 請 求 の 範 囲
1 . 原子組成で Reが 50%以上 90%未満で、 不可避的な不純物を除いて、 本質的に 残りを Crとすることを特徴とする基材に施された拡散障壁用 Re_Cr合金皮膜。 5
2 . 均質化熱処理した後、 Al、 Si、 Crの中から少なくとも 1種を含有する拡散浸透 層を積層した構造においてこれらの元素を実質的に含有しないことを特徴とする 請求の範囲第 1項に記載の拡散障壁層用 Re合金皮膜。
3 . 基材が Ni基合金であることを特徴とする請求の範囲第 1項に記載の拡散障壁用 ReCrNi合金皮膜。
1。
4 . 合金組織が連続層であることを特徴とする請求の範囲第 1項に記載の Re - Cr合 金皮膜。
5 . 請求の範囲第 4項に記載の皮膜と基材の間に、 Reを含有する合金からなる応 力緩和層が挿入された構造を持つことを特徴とする請求の範囲第 1項に記載の拡散 障壁層用 Re- Cr合金皮膜。
1 5 6 . 請求の範囲第 4項または 5に記載の皮膜に Al、 Si、 Crの中から少なくとも 1種 を含有する拡散浸透層を積層した構造を持つことを特徴とする請求の範囲第 1項に 記載の拡散障壁層用 Re- Cr合金皮膜。
7 . 請求の範囲第 6項に記載の皮膜に熱遮蔽用セラミックスを積層した構造を持 つことを特徴とする請求の範囲第 1項に記載の'拡散障壁層用 Re - Cr合金皮膜。
0
PCT/JP2002/009477 2001-10-31 2002-09-13 Revetement d'alliage recr pour barriere de diffusion WO2003038150A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/494,015 US7060368B2 (en) 2001-10-31 2002-09-13 ReCr alloy coating for diffusion barrier
EP02770199A EP1449938A4 (en) 2001-10-31 2002-09-13 ReCr ALLOY COVER FOR DIFFUSION BARRIER
JP2003540411A JP3910588B2 (ja) 2001-10-31 2002-09-13 拡散障壁用ReCr合金皮膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-335916 2001-10-31
JP2001335916 2001-10-31

Publications (1)

Publication Number Publication Date
WO2003038150A1 true WO2003038150A1 (fr) 2003-05-08

Family

ID=19150839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009477 WO2003038150A1 (fr) 2001-10-31 2002-09-13 Revetement d'alliage recr pour barriere de diffusion

Country Status (4)

Country Link
US (1) US7060368B2 (ja)
EP (1) EP1449938A4 (ja)
JP (1) JP3910588B2 (ja)
WO (1) WO2003038150A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059971A1 (fr) * 2006-11-16 2008-05-22 National University Corporation Hokkaido University Film de revêtement en alliage multicouche, élément métallique résistant à la chaleur muni de ce film de revêtement et procédé de fabrication d'un film de revêtement en alliage multicouche
JP2008266788A (ja) * 2007-03-29 2008-11-06 Ebara Corp 無電解めっき浴およびそれを用いた高温装置部材の製造方法
JP2013234378A (ja) * 2012-05-11 2013-11-21 Dbc System Kenkyusho:Kk 耐熱合金部材およびその製造方法ならびに合金皮膜およびその製造方法
JP5737682B1 (ja) * 2014-04-28 2015-06-17 国立研究開発法人宇宙航空研究開発機構 耐熱性金属部材、耐熱性金属部材の製造方法、合金皮膜、合金皮膜の製造方法、ロケットエンジン、人工衛星および発電用ガスタービン

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753720B2 (ja) * 2004-01-15 2011-08-24 株式会社荏原製作所 拡散バリヤ用合金皮膜及びその製造方法、並びに高温装置部材
JP4896702B2 (ja) * 2006-12-22 2012-03-14 株式会社ディ・ビー・シー・システム研究所 合金皮膜、合金皮膜の製造方法および耐熱性金属部材
JP6528926B2 (ja) 2014-05-21 2019-06-12 株式会社Ihi 原子力施設の回転機器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993980A (en) * 1994-10-14 1999-11-30 Siemens Aktiengesellschaft Protective coating for protecting a component from corrosion, oxidation and excessive thermal stress, process for producing the coating and gas turbine component

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209987A (en) * 1983-07-08 1993-05-11 Raychem Limited Wire and cable
JPS60243242A (ja) * 1984-05-16 1985-12-03 Pilot Pen Co Ltd:The 耐摩耗性Re合金の焼結体およびその製造方法
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
JPH09143667A (ja) 1995-11-21 1997-06-03 Mitsubishi Heavy Ind Ltd Re製高温部材の製造方法
DE19621763A1 (de) 1996-05-30 1997-12-04 Siemens Ag Erzeugnis mit einem Grundkörper aus einer Superlegierung und einem darauf befindlichen Schichtsystem sowie Verfahren zu seiner Herstellung
JP3281842B2 (ja) * 1997-08-15 2002-05-13 三菱重工業株式会社 ガスタービン翼への耐食性表面処理方法及びその動・静翼
GB9724844D0 (en) 1997-11-26 1998-01-21 Rolls Royce Plc A coated superalloy article and a method of coating a superalloy article
US6306524B1 (en) * 1999-03-24 2001-10-23 General Electric Company Diffusion barrier layer
US6746782B2 (en) * 2001-06-11 2004-06-08 General Electric Company Diffusion barrier coatings, and related articles and processes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993980A (en) * 1994-10-14 1999-11-30 Siemens Aktiengesellschaft Protective coating for protecting a component from corrosion, oxidation and excessive thermal stress, process for producing the coating and gas turbine component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1449938A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059971A1 (fr) * 2006-11-16 2008-05-22 National University Corporation Hokkaido University Film de revêtement en alliage multicouche, élément métallique résistant à la chaleur muni de ce film de revêtement et procédé de fabrication d'un film de revêtement en alliage multicouche
US8133595B2 (en) 2006-11-16 2012-03-13 National University Corporation Hokkaido University Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film
JP5182669B2 (ja) * 2006-11-16 2013-04-17 国立大学法人北海道大学 多層合金皮膜、それを有する耐熱性金属部材および多層合金皮膜の製造方法
JP2008266788A (ja) * 2007-03-29 2008-11-06 Ebara Corp 無電解めっき浴およびそれを用いた高温装置部材の製造方法
JP2013234378A (ja) * 2012-05-11 2013-11-21 Dbc System Kenkyusho:Kk 耐熱合金部材およびその製造方法ならびに合金皮膜およびその製造方法
JP5737682B1 (ja) * 2014-04-28 2015-06-17 国立研究開発法人宇宙航空研究開発機構 耐熱性金属部材、耐熱性金属部材の製造方法、合金皮膜、合金皮膜の製造方法、ロケットエンジン、人工衛星および発電用ガスタービン

Also Published As

Publication number Publication date
JPWO2003038150A1 (ja) 2005-02-24
EP1449938A4 (en) 2004-11-24
US20050031893A1 (en) 2005-02-10
US7060368B2 (en) 2006-06-13
JP3910588B2 (ja) 2007-04-25
EP1449938A1 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
US8133595B2 (en) Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film
US5238752A (en) Thermal barrier coating system with intermetallic overlay bond coat
JP4896702B2 (ja) 合金皮膜、合金皮膜の製造方法および耐熱性金属部材
US9719353B2 (en) Interfacial diffusion barrier layer including iridium on a metallic substrate
US20100330295A1 (en) Method for providing ductile environmental coating having fatigue and corrosion resistance
EP2690197B1 (en) Turbine blade for industrial gas turbine and industrial gas turbine
US7138189B2 (en) Heat-resistant Ti alloy material excellent in resistance to corrosion at high temperature and to oxidation
JP3708909B2 (ja) レニウム含有合金皮膜を被着してなる耐高温酸化性耐熱合金部材の製造方法
CN110396623B (zh) 一种适用于单晶镍基高温合金叶片的高温防护涂层材料
EP2110457A2 (en) Platinum-modified cathodic arc coating
WO2003038150A1 (fr) Revetement d'alliage recr pour barriere de diffusion
JP3857690B2 (ja) 拡散障壁用Re合金皮膜
JP3857689B2 (ja) 拡散障壁用ReCrNi合金皮膜
JP3315246B2 (ja) 金属コーティング材料
KR101156135B1 (ko) 우수한 내산화막을 갖춘 내열 초합금 및 그 제조방법
JP2011080133A (ja) ニオブ基材料用の酸化物形成型保護皮膜

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003540411

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002770199

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002770199

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10494015

Country of ref document: US