WO2003033716A1 - Procede de production d'acrylamide et/ou de methacrylamide au moyen d'un catalyseur de micro-organismes - Google Patents
Procede de production d'acrylamide et/ou de methacrylamide au moyen d'un catalyseur de micro-organismes Download PDFInfo
- Publication number
- WO2003033716A1 WO2003033716A1 PCT/JP2002/010163 JP0210163W WO03033716A1 WO 2003033716 A1 WO2003033716 A1 WO 2003033716A1 JP 0210163 W JP0210163 W JP 0210163W WO 03033716 A1 WO03033716 A1 WO 03033716A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acrylamide
- mass
- producing
- methacrylamide
- polymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/02—Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
Definitions
- the present invention relates to a method for producing a corresponding amide compound such as acrylamide from a nitrile compound such as acrylonitrile by the action of the enzyme nitrile hydratase. More specifically, a method for producing acrylamide or the like using a nitrile hydratase-producing microbial catalyst having a specific compound content of a certain concentration or less, and a method for producing an acrylamide / methacrylamide polymer by polymerizing the acrylamide or the like. Construction method. Background art
- Acrylamide has conventionally been produced industrially by hydrating the corresponding acrylonitrile using reduced copper as a catalyst.
- methods have been developed that use microbial catalysts instead of copper catalysts. Some of them have been put to practical use.
- the biocatalyst method is considered to be an industrial production method because its reaction conditions are mild, there are almost no by-products, and an extremely simple process can be set up.
- the catalyst that converts acrylonitrile into acrylamide by hydration has been used up to now. Many microorganisms have been found that produce functional enzymes.
- Methods for producing acrylamide using these microorganisms include, for example, JP-A-11-123098, JP-A-7-265091, and JP-A-11-89575.
- Acrylamide-based polymers are used in many fields such as polymer flocculants, papermaking agents, soil conditioners, oil recovery agents, drilling mud thickeners, and polymer absorbers.
- a polymer flocculant when used as a polymer flocculant, a sufficient flocculant can be expressed. Therefore, it is required that the polymer has a high molecular weight and that the amount of water-insoluble matters is small when the polymer is dissolved in water.
- a chain transfer agent for preventing the formation of an abnormally high molecular weight polymer and a substance having an effect of preventing crosslinking during drying are used.
- Various methods have been proposed, such as the method used, but it is said that the quality depends on the quality of acrylamide.
- various methods for removing impurities such as oxazole diacrolein in acrylonitrile as a raw material can be inferred from various proposals such as JP-A-2001-131135 and JP-A-8-157439. .
- the decrease in solubility of the acrylamide polymer can be improved to some extent by prolonging the dissolution time during use.However, in severe cases, many particles that only swell even if stirred for a long time in water and do not dissolve remain. When a solution is provided and applied to wastewater or the like as a coagulant, there are problems such as low coagulation performance. Disclosure of the invention
- An object of the present invention is to provide a method for producing acrylamide or the like which can produce a high molecular weight and highly soluble acrylamide polymer in the production of acrylamide or the like using a microbial catalyst that produces the enzyme nitrile hydratase.
- the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and have found that when a nitrile compound such as acrylonitrile is used to produce a corresponding amide compound such as acrylamide from a nitrile compound such as acrylonitrile using a nitrile hydratase-producing microorganism catalyst.
- the microbial catalyst in which the residual amount of the monosaccharides derived from the culture solution of the nitrile hydrazine-producing microorganism contained in the microbial catalyst is set to a certain concentration or less, a high solubility exhibiting good solubility is obtained. It was found that acrylamide compounds, etc., from which high molecular weight acrylamide polymers could be obtained. Is the present invention has been completed.
- the present invention includes the following inventions.
- a method for producing acrylamide which comprises treating acrylonitrile and Z or methacrylonitrile with a nitrile hydrazine-producing microorganism catalyst having a monosaccharide content of 5% by mass or less.
- a method for producing an acrylamide / methacrylamide polymer characterized by polymerizing a monomer containing methacrylamide.
- the microorganism that can be used in the present invention is not particularly limited as long as it is a microorganism having a catalytic activity of converting nitrile compounds such as acrylonitrile and methacrylonitrile into the corresponding amide compounds.
- Preferable microorganisms include, for example, Bacillus, Bacter idium, Micrococcus, and Brevipacterium.
- Microorganisms belonging to the genus (Nocardia), the genus Pseudomonas, the genus Microbacterium, the genus Rhodococcus, the genus Achromobacter, or the genus Pseudonocardia. . These microorganisms can be used alone or in combination.
- nitrile hydratase a nitrile hydratase gene derived from the microorganism was obtained, and was directly or artificially improved, and the gene was introduced into an arbitrary host. Transformants are also mentioned, and these can be used in the present invention as well.
- Examples of the transformants include Escherichia coli MT10770 (FERM P-14756) transformed with nitrile hydratase of the genus Achromobacter (Japanese Patent Laid-Open Publication No. 8-266277), and genus Pseudonocardia.
- E. coli MT10822 (FERM BP-5785) (Japanese Unexamined Patent Application Publication No. 9-275978) transformed with nitrile hydrase of Escherichia coli or nitrile hydratase of Rhodococcus rhodochrous species
- a microorganism transformed according to (JP-A-4-21139) is preferable.
- the nitrile hydrase enzyme-producing microbial catalyst referred to in the present specification refers to microbial cells obtained by culturing the microorganism, crushed microorganisms, processed bacterial cells such as microbial cell extract, and nitrile hydra It is meant to include crude nitrile hydrase and purified nitrile hydrase obtained from a protease-producing microorganism, and also a solution or a suspension of at least one of them, such as an aqueous solution or a buffer.
- the microbial catalyst May be immobilized on polyacrylamide gel, alginate, carrageenan, etc., if necessary. The use form of the microbial catalyst is appropriately selected depending on the stability of the enzyme, production scale, and the like.
- the above-mentioned nitrile hydratase-producing microorganism catalyst is used, but the one in which the residual amount of the monosaccharide used at the time of culturing the nitrile hydratase producing microorganism is not more than a certain concentration is used. More specifically, a nitrile hydrazine enzyme-producing microbial catalyst having a monosaccharide content of 5% by mass or less, preferably 3% by mass or less is used.
- R represents one OH, —H, one CH 2 OH or —OCH 3
- Examples of the monosaccharide represented by the formula (I) include fructose, D-(-)-arabinose, D-(+)-darcono-1,5-lactone and the like. These monosaccharides include those having a five-membered ring structure, keto-type and chain-like structures.
- a corresponding amide compound can be obtained by treating a raw material nitrile compound by a conventional method using a microbial catalyst having a monosaccharide content of 5% by mass or less.
- the method for reducing the content of monosaccharides in the used microbial catalyst to 5% by mass or less is not particularly limited.
- a culture solution containing the microorganism after completion of the culture of the microorganism may be treated with physiological saline, phosphate buffer, or the like. Examples include a method of washing and centrifuging microorganisms, and a method of filtering a culture solution containing the microorganisms using a filtration membrane such as a hollow fiber membrane.
- the concentration of the monosaccharide in the microorganism-containing solution can be measured by a known method. For example, a method of measuring the centrifuged supernatant or filtrate from which microbial cells have been removed by centrifugation or membrane separation using high performance liquid chromatography, or a method of measuring the centrifuged supernatant or filtrate by enzymatic method And the like.
- fructose / glucose can be easily measured using a commercially available kit (for example, F-kit manufactured by Roche).
- the nitrile hydrase-producing microorganism catalyst having “monosaccharide content of 5% by mass or less” refers to the monosaccharide contained in the entire nitrile hydrase-producing microbial catalyst used. 5% by mass or less.
- a nitrile hydrazine enzyme-producing microorganism catalyst is used in the form of a solution containing the microorganism, the content of monosaccharides contained in the entire microorganism-containing solution Is 5% by mass or less.
- the production of acrylamide can be carried out by a conventional method.
- a nitrile hydratase-producing microbial catalyst having a monosaccharide content of 5% by mass or less is added to an aqueous solution of acrylonitrile.
- the concentration of the nitrile hydratase-producing microorganism catalyst in the reaction solution is 0.005 to 5% by mass, preferably 0.01 to 2% by mass in terms of the dry cell mass.
- the concentration of acrylonitrile in the reaction solution is preferably 0.01 to 10% by mass.
- the reaction is preferably carried out by adjusting the pH of the reaction solution to 3 to 11 and the temperature to 0 to 70 ° C.
- Generated factory Lylamide may be purified, for example, by a method such as concentration, ion exchange, or crystallization.
- the nitrile hydrase-producing microbial catalyst having a monosaccharide content of 5% by mass or less is used for the above-mentioned method.
- An acrylamide product having a monosaccharide content of 500 ppm or less, preferably 300 ppm or less can be obtained.
- methacrylonitrile is used as a raw material
- methacrylamide having a monosaccharide content of 500 ppm or less, preferably 300 ppm or less can be obtained in the same manner as described above.
- acrylamide and Z or methacrylamide products having a monosaccharide content of 500% or less obtained as described above as monomers By using the acrylamide and Z or methacrylamide products having a monosaccharide content of 500% or less obtained as described above as monomers, a high molecular weight and high solubility acrylamide Z methacrylamide system A polymer can be produced.
- the use of acrylamide and / or methacrylamide having a monoclass content of 300 ppm or less as a monomer makes it possible to produce acrylamide Z methacrylamide polymers having better quality, higher molecular weight and higher solubility. It is preferable from the viewpoint that it can be performed.
- the acrylamide-based polymer referred to in the present specification refers to a polymer containing acrylamide as a main component (preferably, 30 mol% or more of all monomer components).
- a monomer copolymerizable with acrylamide is used. It may be a copolymer comprising a monomer.
- methacrylamide polymer in the present specification is the same as the above definition, and refers to a polymer containing methacrylamide as a main component (preferably, 30 mol% or more of all monomer components).
- a copolymer composed of a monomer copolymerizable with methyl acrylamide as described above may be used.
- the method for producing an acrylamide / methacrylamide polymer using acrylamide and / or methacrylamide obtained according to the present invention is not particularly limited, but is usually aqueous solution polymerization using a radical polymerization initiator, To 70% by mass, preferably 5 to 50% by mass of an aqueous solution of a monomer mainly composed of acrylamide and / or methacrylamide, an inorganic peroxide (persulfate, hydrogen peroxide, etc.), an organic peroxide ( Benzoyl peroxide, cumene hydroperoxide, etc.), or a redox initiator obtained by combining these with a reducing agent such as a tertiary amine, sulfite, or ferrous salt, or azobisisobutyronitrile, 2 Azo initiators such as 2,2'-azobis- (2-amidinopropane) dihydrochloride, 4,4'-azobis_ (4-cyanovaleric acid), or redox initiators
- a gel-like hydropolymer it is usually dried at 50 to 150 ° C., but in the case of this method, it may be dried in the same manner.
- a high molecular weight acrylamide / methacrylamide polymer having a molecular weight of 1,000,000 to 50,000,000, preferably 5,000,000 to 30,000,000 can be obtained. Further, the obtained polymer was obtained by adding an insoluble matter in 1.0 g of a polymer (a polymer powder of 0.2% by mass to water was added, stirred at room temperature for 4 hours, and then filtered through an 80-mesh wire mesh.
- a polymer a polymer powder of 0.2% by mass to water was added, stirred at room temperature for 4 hours, and then filtered through an 80-mesh wire mesh.
- Residue is as small as 15 g (hydrous substance) or less, preferably 10 g or less, and is characterized by being rapidly dissolved in water.
- Rhodococcus rhodochrous Jl strain having nitrile hydratase activity [Rhodo coccus rhodochrous Jl (FERM BP-1478)] (described in Japanese Patent Publication No. 6-55148)
- a medium pH 7.0
- urea 1% by mass, peptone 0.5% by mass, yeast extract 0.3% by mass, and cobalt chloride 0.05% by mass Aerobic culture was performed while continuously adding fructose so that the added amount of fructose was 8% by mass.
- washing is only required to be able to perform liquid replacement, but is not limited to the following method.
- Washing is performed by circulating and filtering the bacterial solution cultured in (1) through a cross-flow type hollow fiber membrane module, and continuously supplying an amount of washing solution corresponding to the amount of filtrate to the bacterial solution for washing. I got it.
- the cells were prepared by culturing the cells as described in (1) above, and after completion of the culturing, the culture termination solution was washed by the method described in (2) to obtain a microbial catalyst. Then, 5 g of the catalyst (fructose content: 5% by mass) was charged into a 2% by mass aqueous solution of acrylonitrile, the pH was adjusted to 7.0 and the temperature was adjusted to 20 ° C, and the concentration of acrylamide was reduced to 50% by mass. The reaction was continued until When acrylamide was separated, the content of fructose in the obtained acrylamide was 500 ppm based on acrylamide. Using the acrylamide, a polymer was obtained by the method shown below.
- An acrylamide polymer powder was obtained in the same manner as in Example 1 except that the content of fructose in the wet bacteria after washing was changed to 3% by mass.
- Example 3 An acrylamide polymer powder was obtained in the same manner as in Example 1, except that the content of fructose in the wet bacteria after washing was changed to 1% by mass.
- An acrylamide polymer powder was obtained in the same manner as in Example 1 except that the content of fructose in the wet bacteria after washing was set to 0.1% by mass.
- An acrylamide polymer powder was obtained in the same manner as in Example 1 except that the content of fructose in the wet bacteria after washing was changed to 7% by mass.
- D-(-)-arabinose was used in place of fructose in the preparation of cells, 8% by mass, and the content of D-(-)-arabinose in the wet bacteria after washing was changed to 7% by mass.
- An acrylamide-based polymer powder was obtained in the same manner as in Example 1.
- the polymer powders obtained in the above Examples and Comparative Examples were added to 500 g of water so as to have a concentration of 0.2% by mass, stirred at room temperature for 4 hours and dissolved.
- generated in the manufacturing process of acrylamide / methacrylamide polymer is low, without deteriorating the quality of acrylamide and methacrylamide.
- Acrylamide of high molecular weight Can produce methacrylamide polymer
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
明 細 書 微生物触媒によるアクリルアミド及び 又はメ夕クリルアミドの製造方法 技術分野
本発明は酵素二トリルヒドラターゼの作用により、 アクリロニトリル等のニト リル化合物からアクリルアミド等の対応するアミド化合物を製造する方法に関す る。 更に詳しくは特定の化合物の含有量を一定の濃度以下とした二トリルヒドラ ターゼ産生微生物触媒を用いるアクリルアミド等の製造方法、 並びに該アクリル アミド等を重合することによるァクリルアミド/メ夕クリルアミド系重合体の製 造方法に関する。 背景技術
アクリルアミドは、 従来、 還元状態の銅を触媒として対応するァクリロ二トリ ルを水和することにより工業的に製造されているが、 近年、 銅触媒に代えて微生 物触媒を用いる方法が開発され、 その一部は実用化されている。 生体触媒法は、 その反応条件が温和で副生成物も殆ど無く、 極めてシンプルなプロセスが組める ことから工業的製法として有力視されており、 これまでにァクリロニトリルを水 和してァクリルアミドに変換する触媒能を有する酵素を産生する多くの微生物が 見出されている。
これらの微生物を用いたアクリルアミドの製造方法として、 特開平 11- 123098 、 特開平 7- 265091、 特開平 11-89575等があげられる。
一方、 微生物触媒の洗浄に関しては、 酵素活性低下を抑制するために生理食塩 水、 リン酸ゃトリス塩酸の水溶液などの緩衝液を用いて洗浄することが一般に知 られている。 しかし、 洗浄液成分が及ぼすアクリルアミド系重合体物性への影響 まで考慮した微生物触媒の洗浄に関するものはこれまで報告されていない。
アクリルアミド系重合体は高分子凝集剤、 製紙用薬剤、 土壌改良剤、 石油回収 用薬剤、 掘削泥水用増粘剤, 高分子吸収体等多くの分野において使用されている 。 特に高分子凝集剤として使用される場合には、 充分な凝集作用を発現させるた
めに高分子量で、 且つ重合体を水に溶解した場合に水不溶物が少ないことが求め られる。
このような高分子量且つ溶解性の良好なアクリルアミド系重合体を得る方法と して、 異常な高分子量の重合体の生成を防止する連鎖移動剤や乾燥時の架橋を防 ぐ効果を有する物質を使用する方法等、 種々提案されているが、 アクリルアミド の品質によるところも大きいとされる。 例えば、 アクリルアミドの製造において 、 原料であるァクリロニトリル中のォキサゾールゃァクロレイン等の不純物を除 去する方法が特開 2001- 131 135ゃ特開平 8- 157439等、 種々提案されていることか らも推測できる。 アクリルアミド系重合体の溶解性の低下は、 使用時の溶解時間 の延長により、 ある程度は改善されうるが、 甚しいときは水中で長時間攪拌して も膨潤するのみで溶解しない粒子を多く残した溶液を与え、 凝集剤として廃水等 に適用する場合は低い凝集性能を示す等の問題を有する。 発明の開示
本発明は、 酵素二トリルヒドラターゼを産生する微生物触媒を用いるアクリル アミド等の製造において、 高分子量且つ高溶解性のアクリルアミド系重合体等を 製造することのできるアクリルアミド等の製造方法を提供することを目的とする 本発明者らは上記課題を解決するために鋭意検討した結果、 二トリルヒドラタ 一ゼ産生微生物触媒を用いてァクリロニトリル等の二トリル化合物からアクリル アミド等の対応するアミド化合物を製造する際に、 該微生物触媒に含まれる、 二 トリルヒドラ夕一ゼ産生微生物の培養液に由来する単糖類の残留量をある一定の 濃度以下とした該微生物触媒を用いることにより、 良好な溶解性を示す高分子量 のァクリルアミド系重合体を得ることのできるアクリルアミド化合物等が得られ ることを見出し、 本発明に到達したものである。
即ち、 本発明は以下の発明を包含する。
( 1 ) 単糖類の含有量が 5質量%以下である二トリルヒドラ夕一ゼ産生微生物触 媒を用いてァクリロニトリル及び Z又はメタクリロニトリルを処理することを特 徵とするァクリルアミド メタクリルアミドの製造方法。
( 2 ) 単糖類の含有量が 5質量%以下である二トリルヒドラ夕一ゼ産生微生物触 媒を用いてァクリロニトリル及び Z又はメタクリロニ卜リルを処理して対応する アミド化合物を得て、 次いで該アミド化合物を含むモノマーを重合することを特 徴とするアクリルアミド /メタクリルアミド系重合体の製造方法。
本発明で使用できる微生物とは、 ァクリロニトリル及びメタクリロニトリル等 の二トリル化合物を対応するアミド化合物に変換する触媒活性を持つ微生物であ れば特に限定されないが、 酵素二卜リルヒドラ夕一ゼを産生する微生物が好まし く、 そのような微生物として、 例えば、 バチルス (Bac i l l us)属、 バクテリジュ ーム (Bacter idium)属、 ミクロコッカス (Micrococcus)属、 ブレビパクテリゥム
(Brevibac t erium)属、 コリネノ クテリウム (Corynebacterimn)属、 ノカ Jレジァ
(Nocardia)属、 シユードモナス (Pseudomonas)属、 ミクロバクテリゥム (Micro bacterium) 属、 ロドコッカス (Rhodococcus)属、 ァクロモバクタ一(Achromobac ter)属又はシュ一ドノカルディァ(Pseudonocardia)属に属する微生物等が挙げら れる。 これらの微生物は単独又は組み合わせて使用することができる。
また、 この他に、 二トリルヒドラ夕一ゼを産生する微生物としては、 前記微生 物由来の二トリルヒドラターゼ遺伝子を取得し、 そのまま又は人為的に改良し、 任意の宿主に該遺伝子を導入した形質転換体も挙げられ、 これらも同様に本発明 で用いることができる。
前記形質転換体としては、 ァクロモパクター (Achromobac ter)属のニトリルヒ ドラターゼで形質転換した大腸菌 MT10770 (FERM P-14756) (特開平 8- 266277号公 報).、 シユードノカルディァ(Pseudonocard i a)属のニトリルヒドラ夕ーゼで形質 転換した大腸菌 MT10822 (FERM BP- 5785) (特開平 9-275978号公報)、 又はロドコ ッカス ·ロドクロウス (Rhodococcus rhodochrous) 種の二トリルヒドラターゼ
(特開平 4- 211379号公報) で形質転換した微生物が好ましい。
本明細書でいう二トリルヒドラ夕一ゼ産生微生物触媒とは、 前記微生物を培養 することにより得られた微生物菌体、 微生物破砕物、 微生物菌体抽出液等の菌体 処理物、 並びに二トリルヒドラターゼ産生微生物から得られる粗二トリルヒドラ 夕ーゼ及び精製二トリルヒドラ夕ーゼ、 さらにこれらのうちの少なくともひとつ を含む水溶液、 緩衝液等の溶液又は懸濁液をも含む意味である。 前記微生物触媒
は、 必要に応じ、 ポリアクリルアミドゲル、 アルギン酸塩、 カラギーナン等で固 定化してもよい。 微生物触媒の使用形態は、 酵素の安定性、 生産規模等により適 宜選択される。
本発明の製造方法においては、 上記の二トリルヒドラターゼ産生微生物触媒を 用いるが、 二トリルヒドラ夕一ゼ産生微生物の培養時に用いた単糖類の残留量が 一定の濃度以下のものを用いる。 より詳細には、 微生物培養液に由来する単糖類 の含有量が 5質量%以下、 好ましくは 3質量%以下の二トリルヒドラ夕一ゼ産生微 生物触媒を用いる。
上記単糖類としては、 例えば下記式 (I) :
(式中、 Rは一 OH、 — H、 一 CH2OH又は— OCH3を示し、 X及び Yはそ れぞれ独立に、 一 OH、 — H、 一 CH。OH、 — OCH3又は共同して =0を示す
。 ) で表される単糖類が挙げられる。
前記式 (I ) で表される単糖類としては、 例えば、 果糖、 D- (-) -ァラビノース 、 D- (+) -ダルコノ- 1, 5-ラクトン等が挙げられる。 これらの単糖類には、 5員環 構造、 ケト型及び鎖状構造となっている物をも含まれる。
上記単糖類の含有量が 5質量%以下である微生物触媒を用いて、 常法により原 料の二トリル化合物を処理することにより対応するアミド化合物が得られる。 用 いる微生物触媒中の単糖類の含有量を 5質量%以下とする方法としては特に限定 されないが、 例えば、 前記微生物の培養終了後に微生物を含む培養液を生理食塩 水、 リン酸緩衝液等で洗浄して微生物を遠心分離する方法や、 該微生物を含む培 養液を中空糸膜等の濾過膜を用いてろ過する方法等が挙げられる。
微生物含有溶液中の単糖類の濃度の測定は、 公知の方法により行うことができ る。 例えば、 微生物菌体を遠心分離や膜分離等により除去した遠心上清液又はろ 液を高速液体クロマトグラフィーを用いて測定する方法や、 あるいは遠心上清液 又はろ液を酵素法により測定する方法等が挙げられる。 また、 果糖ゃブドウ糖で あれば市販のキット (例えば、 ロッシュ社製の F-キット) により容易に測定する ことができる。
なお、 本明細書において 「単糖類の含有量が 5質量%以下」 である二トリルヒ ドラ夕一ゼ産生微生物触媒とは、 用いる二トリルヒドラ夕一ゼ産生微生物触媒全 体に含まれる単糖類の含有量が 5質量%以下であるものをいい、 例えば、 二トリ ルヒドラ夕一ゼ産生微生物触媒が該微生物を含む溶液の形態として用いられる場 合、 該微生物含有溶液全体に含まれる単糖類の含有量が 5質量%以下である微生 物触媒をいう。
アクリルアミドの製造は常法により行うことができるが、 例えば、 次のように して実施することができる。 単糖類の含有量が 5質量%以下であるニトリルヒド ラターゼ産生微生物触媒をアクリロニトリルの水溶液に添加する。 このとき、 反 応溶液中の二トリルヒドラターゼ産生微生物触媒の濃度は乾燥菌体質量換算で 0. 005〜5質量%、 好ましくは 0. 01〜2質量%である。 また、 反応溶液中のァクリロ 二トリルの濃度は 0. 01〜10質量%とすることが好ましい。 反応溶液の pHは 3〜11 に、 そして温度は 0〜70°Cに調節して反応を行うことが好ましい。 生成したァク
リルアミドを、 例えば、 濃縮、 イオン交換、 晶析等の方法により精製してもよい 本発明では単糖類の含有量が 5質量%以下である二トリルヒドラ夕ーゼ産生微 生物触媒を用いて、 前記単糖類の含有量が 500ppm以下、 好ましくは 300ppin以下で あるアクリルアミド生成物を得ることができる。 原料としてメタクリロニトリル を用いる場合も、 上記と同様にして前記単糖類の含有量が 500ppm以下、 好ましく は 300ppm以下であるメタクリルアミドを得ることができる。
上記のようにして得られる、 単糖類の含有量が 500 ΠΙ以下であるアクリルアミ ド及び Z又はメタクリルアミド生成物をモノマーとして用いることにより、 高分 子量且つ高溶解性のアクリルアミド Zメタクリルアミド系重合体を製造すること ができる。 単等類の含有量が 300ppm以下であるアクリルアミド及び/又はメタク リルアミドをモノマ一として用いることが、 その品質が良く、 より高分子量且つ 高溶解性のアクリルアミド Zメタクリルアミド系重合体を製造することができる という観点から好ましい。
本明細書でいうアクリルアミド系重合体とは、 アクリルアミドを主成分 (好ま しくは、 全モノマー成分中 30mo l %以上) とする重合体をいい、 アクリルアミド 単独重合体以外にァクリルアミドと共重合可能な単量体からなる共重合体であつ てもよい。 アクリルアミドと共重合可能な単量体としては、 メタクリルアミド、 CH2=CR'-C0- (CH2) n-NR2R3 (式中、 R1は水素又はメチル基であり、 及び R3はそれぞ れ水素又は炭素数 1〜6のアルキル基であり、 nは 1〜6の整数である。 ) およびこ れらの塩、 2—アクリルアミドー 2—メチルプロパンスルホン酸等のアクリルァ ミドアルカンスルホン酸塩等、 アクリル酸、 メタクリル酸およびこれらの塩、 N- ビニルピロリドン、 アクリロニトリル、 メタクリロニトリル等が挙げられる。 本 明細書でいうメ夕クリルアミド系重合体についても上記の定義と同様であり、 メ タクリルアミドを主成分 (好ましくは、 全モノマー成分中 30mol %以上) とする 重合体をいい、 メ夕クリルアミド単独重合体以外に上述のようなメ夕クリルアミ ドと共重合可能な単量体からなる共重合体であってもよい。
また、 アクリルアミド又はメタクリルアミドの単独重合の際、 又は単独重合後 にその重合体の一部を加水分解したり、 メチロール化、 或いはマンニッヒ反応等
により変性するものであっても良い。
本発明により得られるアクリルアミド及び/又はメタクリルアミドを用いたァ クリルアミド /メタクリルアミド系重合体の製造法は特に限定されるものではな いが、 通常ラジカル重合開始剤を用いた水溶液重合であり、 5〜70質量%、 好ま しくは 5〜50質量%の主としてアクリルアミド及び/又はメ夕クリルアミドより なる単量体の水溶液に無機過酸化物 (過硫酸塩、 過酸化水素等) 、 有機過酸化物 (過酸化べンゾィル、 クメンヒドロパーオキサイド等) 、 又はこれらと 3級アミ ン、 亜硫酸塩、 もしくは第一鉄塩などの還元剤を組み合わせたレドックス系開始 剤、 或いはァゾビスイソブチロニトリル、 2, 2'—ァゾビス-(2-アミジノプロパン ) 2塩酸塩、 4, 4'ーァゾビス _ (4-シァノ吉草酸) 等のァゾ系開始剤、 或いはレドッ クス系開始剤とァゾ系開始剤との併用開始剤を単量体に対し、 0. 0001〜0. 4質量 %程度添加し、 - 10°C〜100°Cで重合すればよい。
更にゲル状の含水重合体の場合は通常 50〜150°Cで乾燥するが、 本方法の場合 も同様に乾燥すればよい。
本発明により、 分子量 100万〜 5000万、 好ましくは 500万〜 3000万の高分子量の アクリルアミド/メタクリルアミド系重合体を得ることができる。 さらに、 得ら れる該重合体は重合体 1. 0g中の不溶物量 (水に対して 0. 2質量%の重合体粉末を 加えて室温で 4時間攪拌後、 80メッシュの金網で濾過したときの残留物) が 15g ( 含水物) 以下、 好ましくは 10g以下と少なく、 水にすばやく溶解するという特徴 を有する。
本明細書は本願の優先権の基礎である特願 2 0 0 1 - 3 1 5 4 9 5号の明細書 に記載される内容を包含する。 発明を実施するための最良の形態'
以下、 実施例および比較例により本発明を更に詳細に説明するが、 その要旨を 超えない限り、 これに限定されるものではない。
( 1 ) 菌体の調製
二トリルヒドラターゼ活性を有するロドコッカス ロドクロス J-1株 〔Rhodo coccus rhodochrous J-l (FERM BP-1478) 〕 (特公平 6-55148 号公報記載) を、
グルコース 2質量%、 尿素 1質量%、 ペプトン 0. 5質量%、 酵母エキス 0. 3質量%、 塩化コバルト 0. 05質量%を含む培地 (pH7. 0) に、 培養 10時間目より、 最終的な 果糖添加量が 8質量%となるように連続的に果糖を添加しつつ、 好気的に培養し た。
( 2 ) 微生物触媒洗浄方法
洗浄方法を以下に示す。 洗浄は液置換を行うことが出来れば良いが、 以下に示 す方法に限定されるものではない。
洗浄は (1 ) にて培養した菌液をクロスフロー型中空糸膜モジュール通して循 環、 ろ過し、 ろ液の量に対応する量の洗浄液を連続的に菌液に供給して洗浄を行 つた。
(実施例 1 )
菌体を上記 (1 ) のようにして培養して調製し、 培養終了後に上記 (2 ) に示 す方法で培養終了液を洗浄し、 微生物触媒を得た。 その後、 該触媒 5g (果糖の含 有量は 5質量%) をアクリロニトリルの 2質量%水溶液中に仕込み、 pHを 7. 0及び 温度を 20°Cに調節して、 アクリルアミドの濃度が 50質量%になるまで反応させた 。 アクリルアミドを分離したところ、 得られたアクリルアミド中に含まれる果糖 の含有量はアクリルアミドに対し 500ppmであった。 そのアクリルアミドを用いて 、 下記に示した方法により重合体を得た。
ァクリルアミド系重合体の製造方法および重合体の物性測定法
水 80質量%にアクリルアミド 20質量%を溶解し、 pHを 8. 0に調整後、 ジュヮ一 瓶に移し、 系内を窒素で置換した。 その後、 過硫酸アンモニゥム 0. 0004質量%、 硫酸鉄 0. 0004質量%、 4, 4 'ーァゾビス一 (4ーシァノ吉草酸) 0. 01質量%を加え て重合を行った。 得られた含水ゲル状の重合体を肉挽き機で直径数匪の粒子に解 砕し、 80°Cで 10時間乾燥を行って、 ウィレー粉碎機で 2mm以下の粒径に粉砕し、 アクリルアミド系重合体粉末を得た。
(実施例 2 )
洗浄後の湿菌中の果糖の含有量を 3質量%とした以外は実施例 1と同様にして アクリルアミド系重合体粉末を得た。
(実施例 3 )
洗浄後の湿菌中の果糖の含有量を 1質量%とした以外は実施例 1と同様にして アクリルアミド系重合体粉末を得た。
(実施例 4 )
洗浄後の湿菌中の果糖の含有量を 0. 1質量%とした以外は実施例 1と同様にし てアクリルアミド系重合体粉末を得た。
(実施例 5 )
菌体の調製の際に果糖の代わりに])- (-) -ァラビノースを 8質量%用い、 洗浄後 の湿菌中の D- (-) -ァラビノースの含有量を 1質量%とした以外は実施例 1と同様 にしてアクリルアミド系重合体粉末を得た。
(実施例 6 )
菌体の調製の際に果糖の代わりに D- (+) _ダルコノ- 1, 5-ラクトンを 8質量%用 い、 洗浄後の湿菌中の D_ (+) -ダルコノ -1, 5 -ラクトンの含有量を 1質量%とした 以外は実施例 1と同様にしてアクリルアミド系重合体粉末を得た。
(比較例 1 )
洗浄後の湿菌中の果糖の含有量を 7質量%とした以外は実施例 1と同様にして アクリルアミド系重合体粉末を得た。
(比較例 2 )
菌体の調製の際に果糖の代わりに D- (-) -ァラビノースを 8質量%用い、 洗浄後 の湿菌中の D- (-) -ァラビノースの含有量を 7質量%とした以外は実施例 1と同様 にしてァクリルアミド系重合体粉末を得た。
(比較例 3 )
菌体の調製の際に果糖の代わりに D- (+) -ダルコノ- 1, 5-ラクトンを 8質量%用 い、 洗浄後の湿菌中の D- (+) -ダルコノ- 1, 5-ラクトンの含有量を 7質量%とした 以外は実施例 1と同様にしてアクリルアミド系重合体粉末を得た。 .
上記の実施例及び比較例で得られた重合体粉末を 500gの水に 0. 2質量%濃度と なるように添加し、 室温で 4時間攪拌、 溶解した後に、 ブルックフィールド粘度
(B型粘度計、 ローター回転数 30rpm、 ローター No. 1) を測定した。 その後、 80 メッシュの金網で濾過し、 水洗後金網上に残った不溶物の重量を測定した。 その 結果を表 1に示す。
表 1
本発明のァクリルアミド及びメタクリルアミドの製造方法によれば、 アクリル アミド及びメタクリルアミドの品質を低下させることなく、 また、 アクリルアミ ド /メタクリルアミドの重合体の製造工程において生成する水不溶物量の少ない 高分子量のァクリルアミド メタクリルアミド系重合体を製造することができる
Claims
1 . 単糖類の含有量が 5質量%以下であるニトリルヒドラターゼ産生微生物触媒 を用いてアクリロニトリル及び/又はメタクリロニトリルを処理する'ことを特徴 とするァクリルアミド メタクリルアミドの製造方法。
2 . 単糖類の含有量が 5質量%以下である二トリルヒドラ夕一ゼ産生微生物触媒 を用いてァクリロニトリル及び/又はメタクリロニトリルを処理して対応するァ ミド化合物を得て、 次いで該アミド化合物を含むモノマーを重合することを特徴 とするアクリルアミド Zメタクリルアミド系重合体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003536441A JPWO2003033716A1 (ja) | 2001-10-12 | 2002-09-30 | 微生物触媒によるアクリルアミド及び/又はメタクリルアミドの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-315495 | 2001-10-12 | ||
JP2001315495 | 2001-10-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003033716A1 true WO2003033716A1 (fr) | 2003-04-24 |
Family
ID=19133651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/010163 WO2003033716A1 (fr) | 2001-10-12 | 2002-09-30 | Procede de production d'acrylamide et/ou de methacrylamide au moyen d'un catalyseur de micro-organismes |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2003033716A1 (ja) |
WO (1) | WO2003033716A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1498431A1 (en) * | 2002-03-22 | 2005-01-19 | Dia-Nitrix Co., Ltd. | Aqueous acrylamide solution containing saccharide |
WO2005054488A2 (en) | 2003-12-02 | 2005-06-16 | Ciba Specialty Chemicals Water Treatments Limited | Process for producing polymers |
WO2007132601A1 (ja) | 2006-05-15 | 2007-11-22 | Mitsui Chemicals, Inc. | (メタ)アクリルアミドの製造方法 |
JP2008138089A (ja) * | 2006-12-01 | 2008-06-19 | Mitsui Chemicals Inc | 高品質の(メタ)アクリルアミド系重合体の製造方法 |
WO2009113617A1 (ja) * | 2008-03-14 | 2009-09-17 | ダイヤニトリックス株式会社 | アクリルアミド水溶液の安定化方法 |
WO2012157777A1 (ja) * | 2011-05-19 | 2012-11-22 | ダイヤニトリックス株式会社 | アクリルアミド水溶液の製造方法 |
US9057084B2 (en) | 2011-05-19 | 2015-06-16 | Mitsubishi Rayon Co., Ltd. | Method for producing aqueous acrylamide solution |
WO2016050817A1 (en) * | 2014-09-30 | 2016-04-07 | Basf Se | Method for producing acrylamide from acrylonitrile in an aqueous solution |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0307926A2 (en) * | 1987-09-18 | 1989-03-22 | YAMADA, Hideaki | Process for biological production of amides |
JPH01171479A (ja) * | 1987-12-26 | 1989-07-06 | Res Assoc Util Of Light Oil | ロドコッカス属細菌の培養方法 |
US6043061A (en) * | 1997-10-23 | 2000-03-28 | Mitsubishi Rayon Co., Ltd. | Process for producing amide compound |
-
2002
- 2002-09-30 JP JP2003536441A patent/JPWO2003033716A1/ja active Pending
- 2002-09-30 WO PCT/JP2002/010163 patent/WO2003033716A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0307926A2 (en) * | 1987-09-18 | 1989-03-22 | YAMADA, Hideaki | Process for biological production of amides |
JPH01171479A (ja) * | 1987-12-26 | 1989-07-06 | Res Assoc Util Of Light Oil | ロドコッカス属細菌の培養方法 |
US6043061A (en) * | 1997-10-23 | 2000-03-28 | Mitsubishi Rayon Co., Ltd. | Process for producing amide compound |
Non-Patent Citations (1)
Title |
---|
NAGASAWA T. ET AL.: "Optimum culture conditions for the production of cobalt-containing nitrile hydratase by rhodococcus rhodochrous J1", APPL. MICROBIOL. BIOTECHNOL., vol. 34, no. 6, 1991, pages 783 - 788, XP002941747 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1498431A4 (en) * | 2002-03-22 | 2005-11-16 | Dia Nitrix Co Ltd | AQUEOUS ACRYLAMIDE SOLUTION CONTAINING SACCHARIDE |
US7129217B2 (en) | 2002-03-22 | 2006-10-31 | Dia-Nitrix Co., Ltd. | Aqueous acrylamide solution containing saccharide |
EP1498431A1 (en) * | 2002-03-22 | 2005-01-19 | Dia-Nitrix Co., Ltd. | Aqueous acrylamide solution containing saccharide |
US8067215B2 (en) | 2003-12-02 | 2011-11-29 | Ciba Specialty Chemicals Water Treatments Ltd. | Process of producing polymers |
WO2005054488A2 (en) | 2003-12-02 | 2005-06-16 | Ciba Specialty Chemicals Water Treatments Limited | Process for producing polymers |
WO2005054488A3 (en) * | 2003-12-02 | 2005-08-04 | Ciba Spec Chem Water Treat Ltd | Process for producing polymers |
EP2796475A1 (en) * | 2003-12-02 | 2014-10-29 | Ciba Specialty Chemicals Water Treatments Limited | Process for producing polymers |
AU2004295407B2 (en) * | 2003-12-02 | 2010-02-18 | Ciba Specialty Chemicals Water Treatments Limited | Process for producing polymers |
WO2007132601A1 (ja) | 2006-05-15 | 2007-11-22 | Mitsui Chemicals, Inc. | (メタ)アクリルアミドの製造方法 |
US8143033B2 (en) | 2006-05-15 | 2012-03-27 | Mitsui Chemicals, Inc. | Process for producing (meth)acrylamide |
JP2008138089A (ja) * | 2006-12-01 | 2008-06-19 | Mitsui Chemicals Inc | 高品質の(メタ)アクリルアミド系重合体の製造方法 |
JPWO2009113617A1 (ja) * | 2008-03-14 | 2011-07-21 | ダイヤニトリックス株式会社 | アクリルアミド水溶液の安定化方法 |
WO2009113617A1 (ja) * | 2008-03-14 | 2009-09-17 | ダイヤニトリックス株式会社 | アクリルアミド水溶液の安定化方法 |
US8569012B2 (en) | 2008-03-14 | 2013-10-29 | Mitsubishi Rayon Co., Ltd. | Method for stabilization of aqueous acrylamide solution |
JP5659489B2 (ja) * | 2008-03-14 | 2015-01-28 | 三菱レイヨン株式会社 | アクリルアミド水溶液の安定化方法 |
WO2012157777A1 (ja) * | 2011-05-19 | 2012-11-22 | ダイヤニトリックス株式会社 | アクリルアミド水溶液の製造方法 |
CN103687844A (zh) * | 2011-05-19 | 2014-03-26 | 三菱丽阳株式会社 | 丙烯酰胺水溶液的制造方法 |
KR20140024002A (ko) * | 2011-05-19 | 2014-02-27 | 미쯔비시 레이온 가부시끼가이샤 | 아크릴아미드 수용액의 제조 방법 |
US9057084B2 (en) | 2011-05-19 | 2015-06-16 | Mitsubishi Rayon Co., Ltd. | Method for producing aqueous acrylamide solution |
US9102590B2 (en) | 2011-05-19 | 2015-08-11 | Mitsubishi Rayon Co., Ltd. | Method for producing acrylamide aqueous solution |
AU2012256709B2 (en) * | 2011-05-19 | 2016-07-07 | Mitsubishi Chemical Corporation | Method for producing acrylamide aqueous solution |
JP6098510B2 (ja) * | 2011-05-19 | 2017-03-22 | 三菱レイヨン株式会社 | アクリルアミド水溶液の製造方法 |
KR101894617B1 (ko) | 2011-05-19 | 2018-09-03 | 미쯔비시 케미컬 주식회사 | 아크릴아미드 수용액의 제조 방법 |
WO2016050817A1 (en) * | 2014-09-30 | 2016-04-07 | Basf Se | Method for producing acrylamide from acrylonitrile in an aqueous solution |
Also Published As
Publication number | Publication date |
---|---|
JPWO2003033716A1 (ja) | 2005-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101227202B1 (ko) | 아미드 화합물의 제조 방법 및 아크릴아미드계 중합체 | |
KR100566024B1 (ko) | 아크릴산 수용액으로 세정한 미생물 촉매에 의한아크릴아미드의 제조 방법 | |
WO2003033716A1 (fr) | Procede de production d'acrylamide et/ou de methacrylamide au moyen d'un catalyseur de micro-organismes | |
EP1498431B1 (en) | Aqueous acrylamide solution containing saccharide | |
KR101116976B1 (ko) | 효소를 이용한 고품질 아크릴아미드계 중합체의 제조 방법 | |
JPWO2004113405A1 (ja) | 高品質なカチオン性アクリルアミドポリマーの製造方法 | |
WO2011007725A1 (ja) | 菌体処理物の製造方法 | |
JP4975735B2 (ja) | アクリルアミドの製造方法 | |
JP4959683B2 (ja) | アクリルアミドの製造方法 | |
JP4375986B2 (ja) | 生体触媒を用いた高品質(メタ)アクリルアミド系ポリマーの製造法 | |
JP2008138089A (ja) | 高品質の(メタ)アクリルアミド系重合体の製造方法 | |
JP2007277563A (ja) | ポリアクリルアミド及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2003536441 Country of ref document: JP |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CN IN JP KR RU |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |