WO2003031132A1 - Granulierlochplatte - Google Patents

Granulierlochplatte Download PDF

Info

Publication number
WO2003031132A1
WO2003031132A1 PCT/AT2002/000286 AT0200286W WO03031132A1 WO 2003031132 A1 WO2003031132 A1 WO 2003031132A1 AT 0200286 W AT0200286 W AT 0200286W WO 03031132 A1 WO03031132 A1 WO 03031132A1
Authority
WO
WIPO (PCT)
Prior art keywords
pelletizing
head
plate body
plate
granulating
Prior art date
Application number
PCT/AT2002/000286
Other languages
English (en)
French (fr)
Inventor
Georg Korb
Gerhard Johann Hehenberger
Andreas Teuber
Johannes Remili
Original Assignee
Econ Maschinenbau Und Steuerungstechnik Gmbh
Arc Seibersdorf Research Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Econ Maschinenbau Und Steuerungstechnik Gmbh, Arc Seibersdorf Research Gmbh filed Critical Econ Maschinenbau Und Steuerungstechnik Gmbh
Publication of WO2003031132A1 publication Critical patent/WO2003031132A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/20Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by expressing the material, e.g. through sieves and fragmenting the extruded length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/582Component parts, details or accessories; Auxiliary operations for discharging, e.g. doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/3001Extrusion nozzles or dies characterised by the material or their manufacturing process
    • B29C48/3003Materials, coating or lining therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising

Definitions

  • the invention relates to a perforated pelletizing plate for arrangement on the end face of a pelletizing head of an extruder for granulating plastics, which is designed as a one-piece ceramic plate body for heat insulation and wear protection.
  • the invention relates to a structural unit with a pelletizing head and a pelletizing die.
  • a pelletizing plate which has a layered structure, wherein a ceramic layer is alternately provided with a metal layer. This is intended to provide improved thermal insulation; however, the mechanical connection of the metal and ceramic layers results in an elaborate, costly granulating perforated plate.
  • EP 739 700 AI shows an underwater pelletizing plate in which an insulating layer is arranged between the actual pelletizing plate and a wear protection layer; the wear protection layer is mounted with radial play and only a small axial pressure compared to the insulating layer.
  • the ceramic insulating layer consists of zirconium oxide and is intended to perform the function of thermal insulation between the outside of the pelletizing head and the inner part thereof, with the heated plastic channels, whereas the metallic wear layer is considered necessary in view of the pelletizing knives moved over it, i.e. the wear protection layer is intended to protect the insulating layer from damage by the granulating knives.
  • a device for granulating a cleaning agent with a granulating perforated plate which preferably consists of any unspecified ceramic material and can also be designed as a one-piece ceramic plate body.
  • the cleaning agent is only heated to 25 ° C to 75 ° C and solidified with cooling air, so that in comparison to the production of plastic granules, there are no special requirements for the thermal shock resistance of the ceramic material. Due to the high temperature differences of approx.
  • the aim of the present invention is therefore to provide a structurally simple and inexpensive to manufacture pelletizing die and a structural unit with such a pelletizing die, the pelletizing die being able to be used even with comparatively large temperature differences between the pelletizing head and a cutting chamber adjoining the pelletizing die.
  • the plate body consists at least partially of aluminum oxide, chromium oxide, silicon carbide, silicon nitride, quartz porcelain or the same temperature-resistant ceramic material.
  • the plate body can be designed in a variety of ways due to the choice of material.
  • the granulating perforated plate according to the invention for the production of plastic granules contrary to the earlier view that separate wear-resistant or metallic layers are to be provided to increase the wear resistance of the granulating perforated plate - consists only of a one-piece ceramic plate. body, which results in a simple and inexpensive manufacture of the granulating perforated plate. Reliable thermal insulation is achieved with the ceramic plate body and - contrary to the previous assumptions with comparable granulating perforated plates for the production of plastic granulate - adequate wear protection can also be achieved.
  • the ceramic materials mentioned essentially have a coefficient of thermal expansion which corresponds to that of the pelletizing head, which is usually made of metal, for example steel.
  • a pelletizing perforated plate designed as a one-piece plate body can thus be created for the first time, which reliably fulfills the above-mentioned criteria with regard to thermal shock resistance, thermal insulation, wear protection, and thermal expansion coefficient.
  • the plate body can also have several layers of different ceramic materials.
  • the outermost layer facing away from the pelletizing head in the assembled state has the greatest hardness.
  • the structural unit of the type mentioned at the outset is characterized in that the plate body is fixedly arranged on the pelletizing head.
  • the plate body is fixedly arranged on the pelletizing head.
  • the plate body is sprayed onto the pelletizing head, this fixation being particularly advantageous if a multilayer plate body is provided, since the various ceramic layers are thus applied in succession by plasma spraying can be.
  • a firm connection between the plate body and the pelletizing head is also possible in a simple manner if the plate body is attached to the pelletizing head by shrinking on.
  • the plate body can also be screwed onto the pelletizing head.
  • the end face of the pelletizing head has nozzle-shaped projections, each with a bore, which are arranged in plastic passage openings in the pelletizing die, it is achieved that no plastic melt can penetrate between the end face of the pelletizing head and the plate body, which solidifies to loosen the mechanical fastening of the Plate body could lead to the pelletizing head.
  • the neck-shaped projections also provide protection against twisting of the pelletizing plate.
  • FIG. 1 shows a sectional view of a pelletizing head of an underwater pelletizing system with a shrunk-on pelletizing die
  • a part of an underwater pelletizer 1 is shown with a pelletizing head 2, on the end face of a pelletizing plate 3 is fixed, which consists of a one-piece ceramic plate body 4.
  • holes 5 are provided along a circular path, through which a plastic melt provided for pelletizing and supplied by an extruder, not shown, flows.
  • the plastic melt emerges from the bores 5 at outlet openings 6 from the pelletizing head 2 and is cut with the aid of pelletizing knives 7 resting on the pelletizing die plate 3.
  • the pelletizing head 2 is heated to the process temperature with the aid of heating cartridges 8 and is kept at this temperature, while cooling water is introduced into a cutting chamber 10 enclosed by a pelletizing housing 9 in the direction of the arrow 11 and emerges from the pelletizing housing 9 in the direction of the arrow 12. So there arises between that about 250 to 320 ° C heated pelletizing head 2 and the cooling water, which has a temperature of about 30 to 60 ° C, a large temperature gradient.
  • the one-piece plate body 4 of the granulating perforated plate 3 is made of ceramic material with poor thermal conductivity. In this way, solidification or freezing of the plastic melt can be prevented even during the start-up process, which ensures high operational reliability.
  • All ceramics with good thermal shock resistance and sufficient wear resistance can be provided as ceramic materials, as is the case, for example, with aluminum oxide, chromium oxide, silicon carbide, silicon nitride and quartz porcelain. All of these materials have a Vickers hardness HV between 10-30 10 ⁇ 3 N / mm 2 , with aluminum oxide, for example, depending on the aluminum content, a hardness HV of approx. 12-23 x 10 ⁇ 3 N / mm 2 .
  • metal with a thermal conductivity of 70-80 W / m * K and steel with a thermal conductivity of 20-50 W / m * K all the ceramic materials mentioned above have a comparatively low thermal conductivity of approx. 2-10 W / m * K, which can reliably prevent the plastic melt from solidifying in the area of the outlet openings 6.
  • the ceramic materials have a coefficient of thermal expansion of approximately 10 " 5 K” 1 , which corresponds to that of the hard metal usually used for the pelletizing head 2, for example ST-37.
  • the same thermal expansion of the pelletizing die plate and the carrier material is particularly important when starting up (heating) or when shutting down (cooling down) the pelletizing device, since this guarantees the firm mechanical connection of the pelletizing die plate 3 on the pelletizing head 2 or increased stresses in the pelletizing die plate 3 in the various temperature ranges that could possibly cause cracking in the ceramic material.
  • the remaining area of the pelletizing head 12 is separated from the pelletizing housing 9 by an insulating layer 13, whereby heat dissipation to the cooling water is prevented.
  • a bore 5 in the granulating head 2 is shown in detail in FIG is shown, wherein a one-piece ceramic plate body 4 with two layers 4 ', 4 "is provided as the granulating perforated plate 3.
  • the outermost layer 4", on which the granulating knives 7 lie, consists of a ceramic material that is harder than the ceramic layer 4', whereby this is, for example, chromium oxide or aluminum oxide.
  • the one-piece ceramic pelletizing die plate according to the invention can of course also be used in all other pelletizations, for example hot-cut pelletizing. This also results in significant cost advantages in the manufacture of the granulating device and also increased operational reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

Granulierlochplatte (3) zur Anordnung an der Stirnfläche (14) eines Granulierkopfes (2) eines Extruders zum Granulieren von Kunststoffen, die zur Wärmeisolierung und zum Verschleissschutz als einteiliger keramischer Plattenkörper (4) ausgebildet ist, wobei der Plattenkörper (4) zumindest teilweise aus Aluminiumoxid, Chromoxid, Siliziumcarbid, Siliziumnitrid, Quarzporzellan oder dergleichem temperaturwechselbeständigen keramischen Material besteht; sowie eine Baueinheit mit einem Granulierkopf (2) und einer erfindungsgemässen Granulierlochplatte (3), wobei der Plattenkörper (4) auf dem Granulierkopf (2) fest angeordnet ist.

Description

Granulierlochplatte
Die Erfindung betrifft eine Granulierlochplatte zur Anordnung an der Stirnfläche eines Granulierkopfes eines Extruders zum Granulieren von Kunststoffen, die zur Wärmeisolierung und zum Verschleißschutz als einteiliger keramischer Plattenkörper ausgebildet ist.
Weiters bezieht sich die Erfindung auf eine Baueinheit mit einem Granulierkopf und einer Granulierlochplatte.
Aus der US 3 599 286 A ist eine Granulierlochplatte bekannt, welche einen schichtförmigen Aufbau aufweist, wobei je eine Keramikschicht abwechselnd mit einer Metallschicht vorgesehen ist. Hierdurch soll eine verbesserte Wärmeisolierung erlangt werden; jedoch ist durch die mechanische Verbindung der Metall- und Ke- ramikschichten eine aufwendig herzustellende, kostspielige Granulierlochplatte die Folge.
In der EP 739 700 AI ist eine Unterwasser-Granulierlochplatte gezeigt, bei welcher zwischen der eigentlichen Granulierlochplatte und einer Verschleißschutzschicht eine Isolierschicht angeordnet ist; die Verschleißschutzschicht ist gegenüber der Isolierschicht mit radialem Spiel und mit nur geringem axialen Druck gelagert. Die keramische Isolierschicht besteht aus Zirkoniumoxid und soll die Funktion der thermischen Isolierung zwischen der Außenseite des Granulierkopfes und dem innenliegenden Teil hievon, mit den beheizten Kunststoffkanälen, erfüllen, wogegen die metallische Verschleißschicht als notwendig im Hinblick auf die über sie bewegten Granuliermesser angesehen wird, d.h. die Verschleißschutzschicht soll die Isolierschicht vor einer Beschädigung durch die Granuliermesser schützen. Neben dem aufwendigen Aufbau ergibt sich hier aber die Gefahr, dass die metallische Verschleißschutzschicht, welche direkt mit dem Kühlwasser in Kontakt steht, wegen des geringen thermischen Widerstands ungewollt abkühlt, wodurch ein Erstarren der Kunst- stoffschmelze bereits in den Bohrungen der Verschleißschutzschicht auftreten kann.
Aus der US 5 290 496 A ist eine Vorrichtung zur Granulierung eines Reinigungsmittels mit einer Granulierlochplatte bekannt, die bevorzugt aus irgendeinem nicht näher bezeichneten keramischen Material besteht und auch als einteiliger keramischer Plattenkörper ausgebildet sein kann. Bei Verwendung dieser Vor- richtung wird jedoch das Reinigungsmittel lediglich auf 25°C bis 75°C erhitzt und mit Kühlluft zum Erstarren gebracht, so dass im Vergleich zur Herstellung von Kunststoffgranulaten keine besonderen Anforderungen an die Temperaturwechselbeständigkeit des keramischen Materials gestellt werden müssen. Auf Grund der üblicherweise bei der Herstellung von Kunststoffgranulat vorliegenden hohen Temperaturunterschiede von ca. 200°C - 300°C zwischen der der Stirnseite des Granulierkopfes zugewandten Seite der Granulierlochplatte und der der Schneidkammer zugewandten Seite ist hingegen eine hohe Temperaturwechselbeständigkeit erforderlich, und diese ist keineswegs bei allen keramischen Materialien in entsprechender Weise gegeben.
Ziel der vorliegenden Erfindung ist es daher, eine konstruktiv einfache und kostengünstig herzustellende Granulierlochplatte sowie eine Baueinheit mit einer solchen Granulierlochplatte zu schaffen, wobei die Granulierlochplatte auch bei vergleichsweise großen Temperaturunterschieden zwischen dem Granulierkopf und einer an die Granulierlochplatte anschließenden Schneidkammer eingesetzt werden kann. Überdies soll zuverlässig gewährleistet sein, dass die Kunststoffschmelze nicht bereits beim Durchtritt durch die Granulierlochplatte zum Erstarren gelangt.
Dies wird erfindungsgemäß bei einer Granulierlochplatte der eingangs angeführten Art dadurch erlangt, dass der Plattenkörper zumindest teilweise aus Aluminiumoxid, Chromoxid, Siliziumcarbid, Siliziumnitrid, Quarzporzellan oder dergleichem temperatur- wechselbeständigen keramischen Material besteht. Bei Verwendung derartiger Materialien wird eine gute Temperaturwechselbeständigkeit des Keramik-Plattenkörpers sichergestellt, so dass lange Standzeiten der Granulierlochplatten erzielt werden können, in Gegensatz zu den bekannten keramischen Materialien. Zudem kann der Plattenkörper in Abhängigkeit von den gegebenen Umgebungsparametern (Material des Granulierköpfes, Temperatur des Granulierkopfes, Anpressdruck der Schneidmesser usw.) durch die Materialwahl auf verschiedenste Weisen ausgelegt werden. Darüber hinaus besteht die erfindungsgemäße Granulierlochplatte zur Herstellung von Kunststoffgranulat - entgegen der früheren Ansicht, dass zur Erhöhung der Verschleißfestigkeit der Granulierlochplatte gesonderte Verschleiß-festere bzw. metallische Schichten vorzusehen sind - lediglich aus einem einteiligen Keramik-Plat- tenkörper, wodurch sich eine einfache und preiswerte Herstellung der Granulierlochplatte ergibt. Mit dem keramischen Plattenkörper wird eine zuverlässige Wärmeisolierung erlangt und es ist zugleich - entgegen den bisherigen Annahmen bei vergleichbaren Granulierlochplatten zur Herstellung von Kunststoffgranulat - ein ausreichender Verschleißschutz erreichbar. Mit Hilfe des einteiligen keramischen Plattenkörpers ist sowohl in axialer als auch in umfangsseitiger Richtung des Plattenkörpers ein konstanter Temperaturverlauf gewährleistet, durch welchen zuverlässig ein Erstarren der Kunststoffschmelze vor ihrem Austritt aus dem Granulierkopf verhindert wird. Zudem weisen die genannten keramischen Materialien im Wesentlichen einen Wärmeausdehnungs- Koeffizient auf, der jenem des üblicherweise aus Metall, z.B. Stahl, bestehenden Granulierkopfes entspricht. Mit den genannten Materialien kann somit erstmals eine als einteiliger Plattenkörper ausgebildete Granulierlochplatte geschaffen werden, die die vorstehend genannten Kriterien bezüglich Temperaturwechselbe- ständigkeit, Wärmeisolierung, Verschleißschutz, und Wärmeausde- hungskoeffizient zuverlässig erfüllt.
Um alle unterschiedlichen Kriterien hinreichend zu erfüllen, welchen der Plattenkörper genügen soll, nämlich insbesondere gute Wärmeisolierung, hinreichender Verschleißschutz, hohe Temperaturwechselbeständigkeit und mit dem Material des Granulierkopfes vergleichbarer Wärmeausdehnungskoeffizient, kann der Plattenkörper auch mehrere Schichten aus verschiedenen keramischen Materialien aufweisen. Hierbei ist es insbesondere zur Schaffung einer besonders Verschleiß-festen äußersten Schicht, welche von rotierenden Granuliermessern der Granuliervorrichtung überstrichen wird, günstig, wenn die im montierten Zustand vom Granulierkopf weg gerichtete, äußerste Schicht die größte Härte aufweist.
Die erfindungsgemäße Baueinheit der eingangs angeführten Art ist dadurch gekennzeichnet, dass der Plattenkörper auf dem Granulierkopf fest angeordnet ist. Für ein direktes, festes Aufbringen des Plattenkörpers auf dem Granulierkopf ist es von Vorteil, wenn der Plattenkörper auf dem Granulierkopf aufgespritzt ist, wobei diese Fixierung insbesondere auch günstig ist, wenn ein mehrschichtiger Plattenkörper vorgesehen ist, da somit die verschiedenen keramischen Schichten hintereinander durch Plasmaspritzen aufgebracht werden können. Ebenso ist eine feste Verbindung zwischen dem Plattenkörper und dem Granulierkopf auf einfache Weise möglich, wenn der Plattenkörper auf dem Granulierkopf durch Aufschrumpfen befestigt ist. Selbstverständlich kann der Plattenkörper an dem Granulierkopf auch angeschraubt sein.
Wenn die Stirnfläche des Granulierkopfes stutzenförmige, je eine Bohrung aufweisende Vorsprünge aufweist, welche in Kunststoffdurchtritts-Öffnungen der Granulierlochplatte angeordnet sind, wird erreicht, dass keine Kunststoffschmelze zwischen die Stirnfläche des Granulierkopfes und dem Plattenkörper eindringen kann, welche bei Erstarren zum Lockern der mechanischen Befestigung des Plattenkörpers auf dem Granulierkopf führen könnte. Zudem ist durch die stutzenförmigen Vorsprünge zugleich ein Verdrehschutz der Granulierlochplatte gegeben.
Die Erfindung wird nachstehend anhand von in der Zeichnung dargestellten bevorzugten Ausführungsbeispielen, auf die sie jedoch nicht beschränkt sein soll, noch weiter erläutert. In der Zeichnung zeigen:
Fig.l eine Schnittansieht eines Granulierkopfes einer Un- terwasser-Granulieranlage mit einer aufgeschrumpften Granulierlochplatte; und
Fig.2 im Detail eine Kunststoff-Durchtrittsbohrung im Bereich der Austrittsöffnung.
In Fig.l ist ein Teil einer Unterwasser-Granuliervorrichtung 1 mit einem Granulierkopf 2 gezeigt, an dessen Stirnfläche eine Granulierlochplatte 3 fest angeordnet ist, welche aus einem einteiligen keramischen Plattenkörper 4 besteht.
Im Granulierkopf 2 sind entlang einer Kreisbahn Bohrungen 5 vorgesehen, welche von einer zur Granulierung vorgesehenen, durch einen nicht gezeigten Extruder herangeförderten Kunststoffschmelze durchströmt werden. Die Kunststoffschmelze tritt aus den Bohrungen 5 bei Austrittsöffnungen 6 aus dem Granulierkopf 2 aus und wird mit Hilfe von auf der Granulierlochplatte 3 aufliegenden Granuliermessern 7 geschnitten.
Der Granulierkopf 2 wird mit Hilfe von Heizpatronen 8 auf Verfahrenstemperatur erwärmt und auf dieser Temperatur gehalten, während in eine von einem Granuliergehäuse 9 eingeschlossene Schneidkammer 10 in Richtung des Pfeiles 11 Kühlwasser eingebracht wird, welches in Richtung des Pfeiles 12 aus dem Granuliergehäuse 9 wieder austritt. Somit ergibt sich zwischen dem auf ca. 250 bis 320°C erwärmten Granulierkopf 2 und dem Kühlwasser, welches eine Temperatur von ca. 30 bis 60°C aufweist, ein starkes Temperaturgefälle. Um ein Erstarren der Kunststoffschmelze bereits vor dem Austritt aus den Bohrungen 5 im Bereich der Austrittsöffnungen 6 zu vermeiden, besteht der einteilige Plattenkörper 4 der Granulierlochplatte 3 aus keramischem Material mit schlechter Wärmeleitfähigkeit. Somit kann auch beim An- fahrprozess ein Erstarren bzw. Einfrieren der Kunststoffschmelze verhindert werden, wodurch eine hohe Betriebssicherheit gewährleistet ist.
Als keramische Materialien können hierbei alle Keramiken mit einer guten Temperaturwechselbeständigkeit und ausreichender Verschleißfestigkeit vorgesehen werden, wie dies z.B. bei Aluminiumoxid, Chromoxid, Siliziumcarbid, Siliziumnitrid und Quarzporzellan der Fall ist. Alle diese Materialien weisen eine Vickers-Härte HV zwischen 10-30 10~3 N/mm2 auf, wobei beispielsweise Aluminiumoxid abhängig von dem Aluminiumgehalt eine Härte HV von ca. 12-23 x 10~3 N/mm2. Im Vergleich zu Metall mit einer Wärmeleitfähigkeit von 70-80 W/m*K und Stahl mit einer Wärmeleitfähigkeit von 20-50 W/m*K weisen alle vorstehend genannten keramischen Materialien eine vergleichsweise geringe Wärmeleit- fähgikeit von ca. 2-10 W/m*K auf, wodurch zuverlässig ein Erstarren der Kunststoffschmelze im Bereich der Austrittsöffnungen 6 verhindert werden kann.
Zudem weisen die keramischen Materialien einen Wärmeausdehnungskoeffizienten von ca. 10"5 K"1 auf, welcher jenem von dem für den Granulierkopf 2 üblicherweise verwendeten Hartmetall, z.B. ST-37, entspricht. Die gleiche Wärmeausdehnung der Granulierlochplatte und des Trägermaterials ist insbesondere beim Hochfahren (Erwärmen) bzw. beim Herunterfahren (Abkühlen) der Granuliervorrichtung wesentlich, da somit die feste mechanische Verbindung der Granulierlochplatte 3 auf dem Granulierkopf 2 gewährleistet ist bzw. erhöhte Spannungen in der Granulierlochplatte 3 in den verschiedenen Temperaturbereichen vermieden werden, welche möglicherweise eine Rissbildung im Keramik-Material verursachen könnten.
Der restliche Bereich des Granulierkopfes 12 ist gegenüber dem Granuliergehäuse 9 durch eine Isolierschicht 13 getrennt, wodurch eine Wärmeableitung zum Kühlwasser verhindert wird.
In Fig.2 ist im Detail eine Bohrung 5 im Granulierkopf 2 gezeigt, wobei als Granulierlochplatte 3 ein einteiliger keramischer Plattenkörper 4 mit zwei Schichten 4', 4" vorgesehen ist. Die äußerste Schicht 4", auf welcher die Granuliermesser 7 aufliegen, besteht hierbei aus einem gegenüber der keramischen Schicht 4' härteren keramischen Material, wobei dies beispielsweise Chromoxid oder Aluminiumoxid ist.
Insbesondere ist in Fig.2 ersichtlich, dass im Bereich der Bohrungen 5 an der Stirnfläche 14 des Granulierkopfes 2 stutzen- förmige Vorsprünge 15 vorgesehen sind, wodurch sich auch im Bereich der Austrittsöffnung 6 eine durchgehende Bohrung 5 ergibt. Hierdurch wird die Gefahr vermieden, dass Kunststoffschmelze in einen zwischen der Granulierlochplatte 3 und der Stirnfläche 14 des Granulierkopfes 2 vorliegenden Spalt eintritt und somit die Kunststoffschmelze zum Erstarren gelangt. Zudem ergibt sich durch eine derartige Ausgestaltung der Stirnfläche 14 auch der Vorteil, dass die Granulierlochplatte 3 ohne zusätzliche Maßnahmen gegen Verdrehung gesichert ist.
Obwohl in dem gezeigten Ausführungsbeispiel eine Unterwasser-Granuliervorrichtung gezeigt ist, kann die erfindungsgemäße einteilige keramische Granulierlochplatte selbstverständlich auch bei allen übrigen Granulierungen, beispielsweise Heißabschlag- granulierung, verwendet werden. Hierbei ergeben sich ebenfalls wesentliche Kostenvorteile bei der Herstellung der Granuliervorrichtung und zudem eine erhöhte Betriebssicherheit.

Claims

Patentansprüche :
1. Granulierlochplatte (3) zur Anordnung an der Stirnfläche (14) eines Granulierkopfes (2) eines Extruders zum Granulieren von Kunststoffen, die zur Wärmeisolierung und zum Verschleißschutz als einteiliger keramischer Plattenkörper (4) ausgebildet ist, dadurch gekennzeichnet, dass der Plattenkörper (4) zumindest teilweise aus Aluminiumoxid, Chromoxid, Siliziumcarbid, Siliziumnitrid, Quarzporzellan oder dergleichem temperaturwechselbeständigen keramischen Material besteht.
2. Granulierlochplatte nach Anspruch 1, dadurch gekennzeichnet, dass der Plattenkörper (4) mehrere Schichten (4', 4") aus verschiedenen keramischen Materialien aufweist.
3. Granulierlochplatte nach Anspruch 2, dadurch gekennzeichnet, dass die im montierten Zustand vom Granulierkopf (2) weg gerichtete, äußerste Schicht (4") die größte Härte aufweist.
4. Baueinheit mit einem Granulierkopf (2) und einer Granulierlochplatte (3) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Plattenkörper (4) auf dem Granulierkopf (2) fest angeordnet ist.
5. Baueinheit nach Anspruch 4, dadurch gekennzeichnet, dass der Plattenkörper (4) auf dem Granulierkopf (2) aufgespritzt ist.
6. Baueinheit nach Anspruch 4, dadurch gekennzeichnet, dass der Plattenkörper (4) auf dem Granulierkopf (2) aufgeschrumpft ist.
7. Baueinheit nach Anspruch 4, dadurch gekennzeichnet, dass der Plattenkörper (4) an dem Granulierkopf (2) angeschraubt ist.
8. Baueinheit nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass die Stirnfläche (14) des Granulierkopfes (2) stutzenförmige, je eine Bohrung aufweisende Vorsprünge (15) aufweist, welche in Kunststoffdurchtritts-Öffnungen der Granulierlochplatte (3) angeordnet sind.
PCT/AT2002/000286 2001-10-04 2002-10-04 Granulierlochplatte WO2003031132A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1570/2001 2001-10-04
AT15702001 2001-10-04

Publications (1)

Publication Number Publication Date
WO2003031132A1 true WO2003031132A1 (de) 2003-04-17

Family

ID=3688362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2002/000286 WO2003031132A1 (de) 2001-10-04 2002-10-04 Granulierlochplatte

Country Status (1)

Country Link
WO (1) WO2003031132A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004016104U1 (de) * 2004-10-18 2006-02-23 C.F. Scheer & Cie. Gmbh & Co. Lochplatte für einen Unterwassergranulator
DE102008062519A1 (de) 2008-12-16 2010-06-17 Automatik Plastics Machinery Gmbh Lochplatte und Verfahren zu deren Herstellung
DE102009019954A1 (de) 2009-05-05 2010-11-11 Automatik Plastics Machinery Gmbh Lochplatte
DE212009000038U1 (de) 2008-08-13 2010-11-11 Gala Industries, Inc. Wärmeisolierte Düsenplattenanordnung für Unterwassergranulieren und dergleichen
DE102010023826A1 (de) 2010-06-15 2011-12-15 Automatik Plastics Machinery Gmbh Lochplatte
DE102011008257A1 (de) 2011-01-11 2012-07-12 Automatik Plastics Machinery Gmbh Lochplatte
DE202013004394U1 (de) 2013-05-10 2013-06-04 Automatik Plastics Machinery Gmbh Temperaturmessvorrichung und Verwendung derselben
DE102012012062A1 (de) 2012-06-15 2013-12-19 Automatik Plastics Machinery Gmbh Granuliervorrichtung
DE102013103664A1 (de) 2013-04-11 2014-10-16 Reduction Engineering Gmbh Granuliervorrichtung für Kunststoffe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308507A (en) * 1965-09-17 1967-03-14 Rexall Drug Chemical Extrusion apparatus
US3452394A (en) * 1966-10-31 1969-07-01 Andale Co Extruder heads
US3599286A (en) * 1968-11-12 1971-08-17 Norton Co Thermally insulated extrusion die and method of making
US4470791A (en) * 1982-08-04 1984-09-11 The Japan Steel Works, Ltd. Pipe die for underwater pelletizer
DE3420944A1 (de) * 1983-08-02 1985-02-21 The Japan Steel Works, Ltd., Tokio/Tokyo Granulierwerkzeug fuer einen kunstharzextruder
US4516925A (en) * 1982-12-10 1985-05-14 The Japan Steel Works, Ltd. Pelletizing die for synthetic resin extruding machine
US4720251A (en) * 1984-08-24 1988-01-19 Muesco Mallay Houston Inc. Extrusion die plate construction
US4800792A (en) * 1984-06-08 1989-01-31 Montedison S.P.A. Cutting device for hot granulation of thermoplastic polymers
US5620130A (en) * 1994-07-15 1997-04-15 Werner & Pfleiderer Gmbh Process for producing a die plate for underwater granulation of plastic material with an intermediate nickel alloy layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308507A (en) * 1965-09-17 1967-03-14 Rexall Drug Chemical Extrusion apparatus
US3452394A (en) * 1966-10-31 1969-07-01 Andale Co Extruder heads
US3599286A (en) * 1968-11-12 1971-08-17 Norton Co Thermally insulated extrusion die and method of making
US4470791A (en) * 1982-08-04 1984-09-11 The Japan Steel Works, Ltd. Pipe die for underwater pelletizer
US4516925A (en) * 1982-12-10 1985-05-14 The Japan Steel Works, Ltd. Pelletizing die for synthetic resin extruding machine
DE3420944A1 (de) * 1983-08-02 1985-02-21 The Japan Steel Works, Ltd., Tokio/Tokyo Granulierwerkzeug fuer einen kunstharzextruder
US4800792A (en) * 1984-06-08 1989-01-31 Montedison S.P.A. Cutting device for hot granulation of thermoplastic polymers
US4720251A (en) * 1984-08-24 1988-01-19 Muesco Mallay Houston Inc. Extrusion die plate construction
US5620130A (en) * 1994-07-15 1997-04-15 Werner & Pfleiderer Gmbh Process for producing a die plate for underwater granulation of plastic material with an intermediate nickel alloy layer

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004016104U1 (de) * 2004-10-18 2006-02-23 C.F. Scheer & Cie. Gmbh & Co. Lochplatte für einen Unterwassergranulator
US8708688B2 (en) 2008-08-13 2014-04-29 Gala Industries, Inc. Thermally insulated die plate assembly for underwater pelletizing and the like
DE212009000038U1 (de) 2008-08-13 2010-11-11 Gala Industries, Inc. Wärmeisolierte Düsenplattenanordnung für Unterwassergranulieren und dergleichen
EP2899006A1 (de) 2008-08-13 2015-07-29 Gala Industries, Inc. Wärmeisolierte Lochplattenanordnung für Unterwassergranulierung und dergleichen
DE102008062519A1 (de) 2008-12-16 2010-06-17 Automatik Plastics Machinery Gmbh Lochplatte und Verfahren zu deren Herstellung
DE102009019954A1 (de) 2009-05-05 2010-11-11 Automatik Plastics Machinery Gmbh Lochplatte
DE102010023826A1 (de) 2010-06-15 2011-12-15 Automatik Plastics Machinery Gmbh Lochplatte
CN103298592A (zh) * 2011-01-11 2013-09-11 自动化塑料机械有限责任公司 多孔板
JP2014505608A (ja) * 2011-01-11 2014-03-06 オートマティック プラスティックス マシーナリー ゲーエムベーハー 穴あきプレート
WO2012095125A1 (de) 2011-01-11 2012-07-19 Automatik Plastics Machinery Gmbh Lochplatte
DE102011008257A1 (de) 2011-01-11 2012-07-12 Automatik Plastics Machinery Gmbh Lochplatte
CN103298592B (zh) * 2011-01-11 2016-05-04 自动化塑料机械有限责任公司 多孔板
TWI562879B (en) * 2011-01-11 2016-12-21 Maag Automatik Gmbh Die plate
DE102012012062A1 (de) 2012-06-15 2013-12-19 Automatik Plastics Machinery Gmbh Granuliervorrichtung
WO2013185924A1 (de) * 2012-06-15 2013-12-19 Automatik Plastics Machinery Gmbh Granuliervorrichtung
US9358514B2 (en) 2012-06-15 2016-06-07 Maag Automatik Gmbh Granulation device
DE102013103664A1 (de) 2013-04-11 2014-10-16 Reduction Engineering Gmbh Granuliervorrichtung für Kunststoffe
DE102013103664B4 (de) * 2013-04-11 2016-09-01 Reduction Engineering Gmbh Granuliervorrichtung für Kunststoffe
DE202013004394U1 (de) 2013-05-10 2013-06-04 Automatik Plastics Machinery Gmbh Temperaturmessvorrichung und Verwendung derselben

Similar Documents

Publication Publication Date Title
DE3784268T2 (de) Innenisolierte extruderduese.
DE69837631T2 (de) Isolierte modulare Spritzdüsenanordnung
DE69224183T2 (de) Plasmaschneidebrenner
EP0739700B1 (de) Unterwasser-Granulierlochplatte mit Verschleissschutzschicht
EP1593474B1 (de) Anordnung mit einem Granulierkopf eines Extruders
EP0645946B1 (de) Brennerkopf für Plasmaspritzgeräte
DE19521733B4 (de) Einteiliger Druckgußeinsatz mit einer mit radialen Rippen versehenen Kühlkammer
EP0222090A2 (de) Lochplatte für die Unterwassergranulierung von Kunststoffsträngen
WO2003031132A1 (de) Granulierlochplatte
DE4137664B4 (de) Spritzgießvorrichtung mit gesondertem Heizelement im den Formhohlraum bildenden Einsatz
EP1413413A1 (de) Granulierlochplatte
DE4003971A1 (de) Spritzgiessduese
EP1148985B1 (de) Düse zum spritzgiessen von kunststoff
DE102011102069B4 (de) Vorrichtung zum Granulieren von Kunststoff
EP2996849B1 (de) Extrusionskopf mit lochplatte einer granulieranlage
DE10356937A1 (de) Düsenspitze und -dichtung
EP0879548B1 (de) Elektrode und kühlelement für ein metallurgisches gefäss
EP1476262B1 (de) Giesswalze und verfahren zur herstellung einer giesswalze
EP0692354A2 (de) Verfahren zur Herstellung einer Düsenplatte mit zwischen Grundkörper und Schneidkörper eingelagerter Zwischenschicht
AT503368B1 (de) Vorrichtung zum granulieren von kunststoff
DE4114932A1 (de) Schmelze-verteilerstueck fuer eine spritzgiesseinrichtung
WO2012095125A1 (de) Lochplatte
DE3330137A1 (de) Verschleissgeschuetztes werkstueck
DE2517402B1 (de) Lochplatte zum granulieren von kunststoffen
EP1245310B1 (de) Stranggiesskokille mit Warmhaube

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NO NZ OM PH PT RO RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 092142002

Country of ref document: AT

Date of ref document: 20030417

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 92142002

Country of ref document: AT

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP