WO2003022533A1 - Detecteur de reactions du sol integre a un robot marcheur mobile - Google Patents

Detecteur de reactions du sol integre a un robot marcheur mobile Download PDF

Info

Publication number
WO2003022533A1
WO2003022533A1 PCT/JP2002/008299 JP0208299W WO03022533A1 WO 2003022533 A1 WO2003022533 A1 WO 2003022533A1 JP 0208299 W JP0208299 W JP 0208299W WO 03022533 A1 WO03022533 A1 WO 03022533A1
Authority
WO
WIPO (PCT)
Prior art keywords
floor reaction
reaction force
force detector
walking robot
foot
Prior art date
Application number
PCT/JP2002/008299
Other languages
English (en)
French (fr)
Inventor
Masato Hirose
Hiroshi Gomi
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to KR10-2004-7001487A priority Critical patent/KR100535927B1/ko
Priority to EP02760648A priority patent/EP1433573B1/en
Priority to DE60232530T priority patent/DE60232530D1/de
Priority to US10/487,892 priority patent/US7756605B2/en
Publication of WO2003022533A1 publication Critical patent/WO2003022533A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers

Definitions

  • the present invention relates to a floor reaction force detector of a legged walking robot.
  • a floor reaction force acting from a floor surface that contacts the ground is detected using, for example, a floor reaction force detector such as a 6-axis force sensor, etc. Based on the above, appropriate control is performed to realize stable walking.
  • the floor reaction force detector for detecting this floor reaction force is preferably disposed near the ground contact end of the foot in order to improve detection accuracy.
  • a floor reaction force detector is mounted on the lower surface of the sole so that the floor reaction force detector itself is in contact with the floor surface.
  • the rigidity of the floor reaction force detector has to be improved.
  • the legs of the leg type walking robot in particular, the biped robot, have appropriate rigidity so as to stably hold the standing posture on the one hand, and the shock at the time of landing of the free leg on the other hand. It is desirable to provide appropriate elasticity so that it can be absorbed and relaxed.
  • the object of the present invention is to solve the above-mentioned problems of the prior art and to improve the detection accuracy.
  • To provide a floor reaction force detector for a foot type walking robot that is designed to reduce the influence of an impact at the time of landing while holding the posture at the time of standing up stably while preventing the controllability from being deteriorated. It is in.
  • the foot of the free leg usually lands on the heel, so that the impact tends to be concentrated around the heel.
  • the area around the heel of the foot is likely to deteriorate, and the impact reduction effect at the time of landing may deteriorate over time to lower the stability, and the floor reaction force detection accuracy may decrease.
  • the robot in order to prevent the inward part of the foot from interfering with other legs and to improve the stability, the robot is positioned outward from the center line of the leg. It is desirable to make the area of the foot part larger than the area of the foot part located inward. However, with this configuration, more load and spin moment due to the free legs will be applied to the foot located outward with respect to the center line of the leg. For this reason, there is a problem in that the site is likely to be deteriorated, there is a possibility that the stability is similarly lowered, and the detection accuracy of the floor reaction force is lowered.
  • the second object of the present invention is to improve the durability of the foot portion outward with respect to the heel periphery and the leg center line, and to prevent the temporal deterioration of the impact reduction effect at the time of landing.
  • An object of the present invention is to provide a floor reaction force detector for a legged walking robot that is designed to prevent deterioration in stability and floor reaction force detection accuracy.
  • the inner part of the foot also becomes an important space for accommodating various control devices.
  • a control device or the like is housed inside the foot where the floor reaction force detector is disposed, there is a risk that the current flowing through the housed control device may affect the floor reaction force detector as noise through a frame or the like. there were.
  • the motor for driving the ankle joint is placed near the ankle joint, the same effect may be caused by the current flowing through the motor.
  • a third object of the present invention is to provide a floor reaction force detector for a legged walking robot that is designed to prevent the influence of control devices, motors and the like arranged in the periphery.
  • a plurality of legs connected to the upper body via the first joint, and a foot connected to the end of the leg via the second joint.
  • the floor reaction force detector of a legged walking robot provided with a floor reaction force detector for detecting a floor reaction force acting from the floor surface via the ground contact end of the floor, the floor reaction force detector is It is configured to be disposed between the joint and the ground contact end of the foot.
  • the floor reaction force detector is configured to be disposed between the second joint, specifically, the ankle joint and the ground contact end of the foot, the floor reaction force detector is disposed closer to the ground contact surface, and thus the floor The accuracy of reaction detection can be improved, and the grounding end of the foot can be inserted between the floor reaction force detector and the floor surface, thereby reducing the impact of landing impact. There is no need to improve the rigidity of the floor reaction force detector.
  • one end of the floor reaction force detector is connected near the second joint, and the vicinity of the grounding end of the foot portion is It is constituted by a member whose rigidity is lower than the member constituting the vicinity of the second joint, and the other member of the floor reaction force detector is connected to the member whose rigidity is low.
  • One end of the floor reaction force detector is connected to the vicinity of the second joint, and the vicinity of the grounding end of the foot is formed of a member having rigidity lower than that of the member constituting the vicinity of the second joint, the rigidity Since the other end of the floor reaction force detector is connected to the lower member in the above, appropriate elasticity is given to the foot, and the influence of the impact at the time of landing can be further reduced. In addition, since elasticity is given to the lower part than the floor reaction force detector and the upper part (the part closer to the upper body) is made to be high rigidity, detection accuracy of the floor reaction force can be further improved. At the same time, the detected floor reaction force and the force actually acting on the robot coincide, and the controllability does not deteriorate.
  • the member having low rigidity is formed of a panel mechanism, and the floor reaction force detector is connected to the foot via the spring mechanism. It connected to the earthing end of the part.
  • the low rigidity member is formed of a panel mechanism and the floor reaction force detector is connected to the ground end of the foot via the spring mechanism, the same effect as described above can be obtained. You can get it.
  • the spring mechanism was configured as described later, the oblique impact acting at the time of landing while maintaining the stability at the time of standing up (at the time of standing still) Can be relaxed.
  • the panel mechanism body includes at least two elastic members
  • the floor reaction force detector includes at least two elastic members. Configured to be placed between.
  • the spring mechanism includes at least two elastic members, and the floor reaction force detector is arranged between the at least two elastic members, the detection accuracy of the floor reaction force is further enhanced. It can be improved.
  • the at least two elastic members are arranged in a predetermined positional relationship with each other in the traveling direction of the legged walking robot.
  • the floor reaction force detector is arranged between the elastic members arranged to have the predetermined positional relationship.
  • the at least two elastic members are arranged in a predetermined positional relationship with each other in the traveling direction of the legged walking robot, and the floor reaction force detector is arranged in the predetermined positional relationship. Since it is arranged to be disposed between the elastic members, the stability in the traveling direction (front-back direction) at the time of standing up can be improved, and the detection accuracy of the floor reaction force can be further improved.
  • the elastic material is mutually specified in a direction orthogonal to the traveling direction of the legged walking robot and orthogonal to the direction of gravity.
  • the floor reaction force detector is arranged between the elastic members arranged to have the predetermined positional relationship, and the elastic member is arranged to be the leg type walking
  • the floor reaction force detectors are arranged so as to be in a predetermined positional relationship with each other in a direction orthogonal to the traveling direction of the robot and in a direction orthogonal to the gravity direction, and the floor reaction detectors are arranged so as to have the predetermined positional relationship. Since it is configured to be disposed between the elastic members, it is possible to improve the stability in the direction orthogonal to the traveling direction at the time of standing up and in the direction orthogonal to the gravity direction, that is, the lateral direction. Further It can be.
  • the spring mechanism includes n (n ⁇ 3) elastic members, and the floor reaction force detector includes the foot portion. It is configured to be disposed in the vicinity of the center of gravity of the n-shaped square having the n elastic materials as apexes in a bottom view of
  • the panel mechanism body includes n (n 3 3) elastic members, and the floor reaction force detector is located in the vicinity of the center of gravity of an n-gon having the n elastic members as a vertex in a bottom view of the foot. Since the arrangement is made possible, the same (uniform) shock absorption becomes possible for the load from any direction (floor reaction force), so the stability is improved and the detection accuracy of the floor reaction force is improved. It can be further improved.
  • the elastic materials of the elastic materials disposed behind the floor reaction force detector in the traveling direction of the leg type walking robot.
  • the rigidity is set to be larger than the rigidity of the elastic material disposed in front of the floor reaction force detector.
  • the rigidity of the elastic material disposed rearward of the floor reaction force detector in the traveling direction of the legged walking robot is the elastic material disposed forward of the floor reaction force detector. Since the rigidity is set to be larger than the rigidity, the rigidity around the weir increases and the durability improves, so that the time-lapse degradation of the impact reduction effect at the time of landing can be prevented, and the stability and the floor reaction force There is no reduction in detection accuracy.
  • the rigidity of the elastic material disposed on the outside of the leg walking robot relative to the force detector is greater than the rigidity of the elastic material disposed on the inside of the leg walking robot relative to the floor reaction force detector. It was configured to set large.
  • an elastic member disposed on the outer side of the leg walking robot than the floor reaction force detector in a direction orthogonal to the traveling direction of the leg type walking robot and orthogonal to the gravity direction.
  • the rigidity of the elastic member is set to be greater than the rigidity of the elastic material disposed inward of the leg walking robot than that of the floor reaction force detector.
  • the rigidity of the foot portion is increased to improve the durability, and therefore, the impact reduction effect at the time of landing can be prevented from deteriorating with time, and the stability and the floor reaction force detection accuracy are not reduced.
  • the floor reaction force is described.
  • An insulator was arranged in the vicinity of the detector.
  • the insulator is arranged in the vicinity of the floor reaction force detector, it is possible to prevent the influence of the current flowing in the control device or motor arranged in the vicinity of the floor reaction force detector.
  • FIG. 1 is a front view of a legged walking robot to which a floor reaction force detector of a legged walking robot according to a third preferred embodiment of the present invention is applied.
  • FIG. 2 is a side vertical cross-sectional view of the foot of the legged walking robot shown in FIG.
  • FIG. 3 is a bottom view of the foot shown in FIG.
  • FIG. 4 is a partially enlarged cross-sectional view in which a part of the cross-sectional view shown in FIG. 2 is enlarged.
  • FIG. 5 is a partially enlarged cross-sectional view similar to FIG. 4 in which a part of the cross-sectional view shown in FIG. 2 is enlarged.
  • FIG. 6 is a graph showing noise generation in the floor reaction force detector of the legged walking robot according to the present invention and the floor reaction force detector according to the prior art.
  • FIG. 7 is a bottom view of a foot similar to FIG. 3, showing a floor reaction force detector of a legged walking robot according to a second embodiment of the present invention.
  • FIG. 8 is a bottom view of the foot similar to FIG. 3, showing a floor reaction force detector of a legged walking robot according to a third embodiment of the present invention.
  • FIG. 1 is a schematic view generally showing a legged walking robot on which a floor reaction force detector according to this embodiment is premised, and more specifically a biped walking robot.
  • the biped robot (hereinafter referred to as “robot”) 1 has six joints on each of the left and right legs (leg links) 2.
  • Six joints are from top to bottom in order to rotate the legs of the crotch (lumbar) (around Z-axis) 1 OR, 1 0 L (right side is R, left side is the same as the following), crotch (lumbar) Joints in the roll direction (around X axis) 1 2 R, 1 2 L, joint in the pitch direction (around Y axis) of the crotch (lumbar) 1 4 R, 1 4 L, joint in the pitch direction of the knee 1 6 R, 1 6 L, joint in the pitch direction of the ankle 1 8 R , 18 L, and joints 20 R and 20 L in the same roll direction.
  • the lower part of the joint 18 R (L), 20 R (L) is attached with a foot (foot) 22 R, L, and at the top, an upper body (base) 24 is provided.
  • a control unit 26 such as a microcomputer is stored inside.
  • the hip joint (or the hip joint, the first joint mentioned above) is the joint 1 OR (L), 12 R (L), 14 R (L) from the ankle joint (the ankle joint).
  • Joint 2) consists of joints 1 8 R (L) and 2 0 R (L).
  • the hip joint and knee joint (16 R (L)) and the thigh link 2 8 R, L are connected with the knee joint and the ankle joint with the lower leg link 3 0 R, L, and the leg 2 is
  • a known 6-axis force sensor (floor reaction force detector) 34 is attached between the ground joints of the ankle joints 18 20 R (L) and the foot 22 R (L). Measure the three-direction component of force Fx, Fy, Fz and the three-direction component Mx, My, Mz of the moment, and work from the presence or absence of landing on the foot and from the floor surface (not shown) Detect floor reaction force (ground load) etc. Further, a tilt sensor 36 is installed in the upper body 24 to detect the tilt relative to the Z axis (vertical direction (gravity direction)) and its angular velocity. In addition, a rotary encoder (not shown) for detecting the amount of rotation is provided to the electric motor for driving each joint.
  • the outputs of these 6-axis force sensors 34 and the like are input to the control unit 26 and the control unit 26 is based on the data stored in the memory (not shown) and the input detected values.
  • the joint drive control value is calculated, and the aforementioned joint is driven.
  • a panel mechanism 3 8 (described later in detail) is provided between the grounding end of the foot 22 R (L) and the 6-axis force sensor 34, and a fool 40 is attached to the sole to provide a compliance mechanism. 4 Configure 2 When foot 22 R (L) receives floor reaction force, compliance In mechanism 42, panel mechanism 3 8 and fool 40 flex, and foot 2 2 R (L) is displaced to reduce the impact at the time of landing.
  • FIG. 2 is a side cross-sectional view of the foot 22 L of the left leg among the above-mentioned feet 22 R and L
  • FIG. 3 is a bottom view of FIG. 2 as viewed from the bottom.
  • the foot 2 2 R, L is a left-right control
  • the description of the foot 2 2 R of the right leg will be omitted, and the addition of R 1, L will be omitted unless particularly necessary.
  • a six-axis force sensor 34 is an ankle joint 18 and 20 and a ground end of a foot 22. More specifically, a spring mechanism 38 on the lower side of the foot 22 and a sole frame 50 0, attached to the ground end consisting of the sole plate 52 and the fool 40.
  • the six-axis force sensor 34 can be disposed at a position closer to the ground contact surface, and detection accuracy can be improved, and the foot 2 between the six-axis force sensor 34 and the floor surface Since the ground end of 2 is intervened and the impact of landing impact can be reduced, there is no need to improve the rigidity of the 6-axis force sensor 34.
  • the upper portion of the six-axis force sensor 34 is positioned by the positioning pin 54 on the lower leg link 30 near the ankle joints 1 8 and 20 by a plurality of upper fixing bolts 56 Fastened and fixed.
  • the lower leg link 30 is formed of a highly rigid metal (alloy) such as titanium or magnesium alloy.
  • the lower portion of the 6-axis force sensor 3 4 is connected to the metal sole frame 50 via the spring mechanism 38 described above.
  • the spring mechanism 38 is composed of a reverse ⁇ -shaped frame 3 8 1, a rubber bush 3 8 2 (the elastic material described above), and a bolt 3 8 3 for the spring mechanism.
  • Inverted ⁇ -shaped frame 3 8 1 is made of aluminum (or an alloy thereof), and has a recess in the same shape as that of 6-axis force sensor 34 4 at the center. While inserting the 6-axis force sensor 34 into this recess, the lower part of the 6-axis sensor 34 and reverse ⁇ -shaped frame 3 8 1 (more specifically 8 pieces as shown in Fig. 1) are fixed Fasten with bolt 58. As a result, the 6-axis force sensor 34 can be further brought closer to the grounding end of the foot 22 and the detection accuracy is further improved. It can be done.
  • the output of the 6-axis force sensor 34 is input to the control unit 26 via the harness 34a.
  • a plurality of rubber bushes 3 82 having a H-shaped cross section are disposed around the six-axis force sensor 34 (specifically, four as shown in FIG. 3). Further, the reverse ⁇ -shaped frame 3 8 1 and the sole frame 50 are connected while holding the H-shaped central recess of this rubber bush 3 8 2 with the upper and lower two bolt for spring mechanism 3 8 3.
  • the rubber bush 3 82 is made of synthetic rubber and given appropriate elasticity.
  • the lower leg link 30 to which the upper portion of the 6-axis force sensor 34 is connected is formed by a high rigidity member which is higher in rigidity than the overall rigidity of the spring mechanism 38.
  • the detection accuracy can be improved, and the detected floor reaction force and the force actually acting on the robot coincide with each other, and the controllability does not deteriorate.
  • it can improve the stability when standing up (at rest) when a load is applied in the direction of gravity.
  • a ring-shaped member 60 intervenes in the gap between the reverse ⁇ -shaped frame 3 8 1 and the sole frame 50, and when the reverse ⁇ -shaped frame 3 8 1 slides up and down in the sole frame 50. It works like a biston ring. As a result, the reverse ⁇ -shaped frame 3 8 1 is able to slide up and down smoothly without blurring.
  • the ring-shaped member 60 is formed of a material having high lubricity, such as a fluorine resin, for example, polytetrafluoroethylene (PTFE).
  • the bottom (bottom of the foot) of the foot 22 has a substantially rectangular shape, and the six-axis sensor is slightly behind the center position in the front-rear direction (X-axis direction) 3 4 Is placed.
  • Xc indicates the sensitivity centerline in the X-axis direction of the six-axis force sensor 34
  • Yc indicates the sensitivity centerline in the Y-axis direction.
  • the X-axis sensitivity centerline Xc and the Y-axis direction sensitivity centerline Yc are orthogonal to the leg centerline (Z-axis direction) f t c well shown in FIG. That is, since the 6-axis force sensor 34 is disposed so that the Z-axis direction sensitivity center line Zc of the 6-axis force sensor 34 is the same as the leg center line ftc, The force can be detected with high accuracy.
  • the front-rear direction means the X-axis direction, as apparent from FIG. 1 described above.
  • the left-right (horizontal) direction means the Y-axis direction, and means the direction orthogonal to the X-axis direction (traveling direction) and the Z-axis direction (gravity direction). The same shall apply hereinafter.
  • the six-axis force sensor 34 has two rubber bushes 3 8 2 (3 8 2 F and R, or 3 8 2 a and b. 2) arranged on the same straight line so as to be in a predetermined positional relationship with each other. Also, the Z axis direction sensitivity center line Z c is positioned near the center of the panel mechanism body bolt 3 83 shown in FIG.
  • the Z-axis direction sensitivity center line Z c Is arranged so as to be located in the left-right direction (Y-axis direction), more specifically, in the vicinity of the centers of two rubber bushes 3 82 2 a and b located on the sensitivity center line in the Y-axis direction.
  • the sensitivity center line Z c is positioned.
  • the rigidity of the rubber bush 3 8 2 R behind the 6-axis force sensor 3 4 in the traveling direction (X-axis direction) is set to be more forward than the 6-axis force sensor 3 4 It was configured to be higher than that. Since the center line of the 6-axis force sensor 34 in the Z-axis direction is the same as the leg center line ftc as described above, the rubber bush 3 82 R behind the 6-axis force sensor 34 is It shows the one placed near the site. As described above, by increasing the rigidity of the rubber bush 3 82 R disposed at a position close to the weir, the rigidity around the weir is enhanced and the durability is improved. It is possible to prevent deterioration of the reduction effect over time, and not to lower the stability and the floor reaction force detection accuracy.
  • the outer foot 22a of the robot 1 with respect to the X-axis direction sensitivity center line Xc of the six-axis force sensor 34 (this figure is the foot 22L of the left leg).
  • the foot 22a on the right side of the figure is outward and the foot 22b on the left is inward) in the front-rear direction from the toe 64 of the tip (X-axis direction)
  • the width (foot width) in the left-right (horizontal) direction (Y-axis direction) gradually widens, and after reaching a maximum value near the Y-axis direction sensitivity center line Y c, It has a shape that narrows to the same width as the toe 64 described above.
  • the X-axis direction sensitivity center line Xc (and the Y-axis direction sensitivity center line Yc) of the six-axis force sensor 34 is the leg center line (Z-axis direction) ftc well shown in FIG. Orthogonal to That is, the outer foot 22a in the robot 1 with respect to the X-axis direction sensitivity centerline Xc can be rephrased as the outward in the robot 1 with respect to the foot centerline f t c. The same applies to the inner foot 2 2 b.
  • the bottom of the foot 22 a on the outer side with respect to the foot center line f t c has a larger area than the bottom of the foot 22 b on the inward. As a result, it is possible to prevent the interference with the other leg inside the foot (2 2 b) and to maintain the stability of the robot 1.
  • the rigidity of the rubber bush 3 8 2 a disposed on the foot 2 2 a on the outer side with respect to the foot center line ftc is the same as that on the foot 2 2 b on the inward side. It was configured to be higher than the rubber bush 3 8 2 b to be placed. In this way, by increasing the rigidity of the goose bush 3 8 2 a disposed in the large area of the outer foot 2 2 a, the rigidity of the outer foot 2 2 a is enhanced and the durability is improved. As a result, the impact reduction effect at landing can be prevented from deteriorating with time, and stability and detection accuracy of floor reaction force are not reduced.
  • a plurality of (specifically, nine) rubber tools 40 divided into two on the entire surface excluding the vicinity of the X-axis direction sensitivity center line X c 6 Fastened by 8 As a result, it is possible to further reduce the impact acting on the robot 1 at the time of landing, and to improve the frictional force of the sole to prevent a slip or the like.
  • the ankle joints 18 and 20 are composed of the joint 18 in the pitch direction and the joint 20 in the roll direction.
  • the joint 18 is transmitted with the driving force generated by the rotation of the motor via a reduction gear (not shown).
  • the foot 22 is moved in the mouth direction (about the X axis, specifically about the ankle joint roll center center line indicated by 18 X c).
  • the joint 20 is driven by the rotation of a motor (not shown) installed above the foot 22 through a reduction gear (not shown), a velocity 70, and a pulley 72. It is driven by being transmitted, and desired in the pitch direction (around the Y-axis, specifically, around the direction orthogonal to the ankle joint roll direction center line 18 X c and the leg center line ftc). Give movement.
  • a driver 74 for driving these sensors is installed near the toe near the position where the six-axis force sensor 34 is disposed in order to effectively use the space.
  • the current flowing through the housed control device is a frame (foot bottom frame 50), etc.
  • the 6-axis force sensor 34 will be affected as noise through the elastic member.
  • the motor itself is installed near the lower leg link 30, and the driver 74 is installed near the toe of the foot 22, the electric wires 76 connecting the driver 74 to each motor are shown, for example, as illustrated. Due to the wiring, the current through the lower leg link 30 may also cause the 6-axis force sensor 34 to be affected by noise.
  • the insulator is arranged in the vicinity of the six-axis force sensor 34. Specifically, the first insulator 78 is interposed between the upper portion of the 6-axis force sensor 34 and the lower leg link 30, and the reverse ⁇ -shaped frame 3 8 of the lower portion of the 6-axis force sensor 34 Between the two, a second insulator 80 is interposed.
  • the first and second insulators 7 8 and 80 are formed of a member having high insulation and high mechanical strength. Also, the positioning pin 54 described above has similar properties. It is formed of a support member.
  • the first insulating washer 82 is interposed between the head 5 6 a of the (6 axis force sensor) upper fixing bolt 5 6 and the 6 axis force sensor 3 4.
  • a first insulating sleeve 84 is provided in a portion where the upper fixing bolt 56 of the first insulator 78 and the six-axis force sensor 34 is inserted. This completely insulates the six-axis force sensor 34 from the lower leg link 30 and the upper fixing bolt 56.
  • a second insulating washer 86 is disposed between the head portion 5 8 a of the (6 axis force sensor) upper fixing bolt 5 8 and the reverse ⁇ frame 3 8 1. Intervened.
  • a second insulating sleeve 88 is provided at a portion where the lower fixing bolt 58 of the second insulator 80 and the reverse ⁇ frame 3 8 1 penetrates.
  • the 6-axis force sensor 34 is completely insulated from the reverse ⁇ -shaped frame 3 8 1 and the lower fixing bolt 5 8.
  • the first and second insulating washers 82 and 86, and the first and second insulating sleeves 84 and 88 are similarly formed of a material having high insulation and high mechanical strength. Be done.
  • the insulator is arranged in the vicinity of the 6-axis force sensor 34, it is possible to prevent the influence of the current flowing in the control device, motor or the like arranged in the periphery.
  • FIG. 6 is a graph showing the influence of noise due to current in the six-axis force sensor 34 according to the prior art and this embodiment. As apparent from the figure, in this embodiment, the noise at the time of motor drive is almost completely eliminated.
  • FIG. 7 is a bottom view of the foot portion 2 2 L of the left leg among the foot portions 2 2 R and L similar to FIG. 3 for explaining the floor reaction force detector according to the second embodiment.
  • FIG. 7 is a bottom view of the foot portion 2 2 L of the left leg among the foot portions 2 2 R and L similar to FIG. 3 for explaining the floor reaction force detector according to the second embodiment.
  • the 6-axis force sensor 34 is a pair of rubber bushes 3 8 2 (3 8 2 F a and R b, which are arranged on the same straight line, and 3 8 2 R a and F b, respectively). Both are arranged so that the Z-axis direction sensitivity center Zc is located near the center of the spring mechanism bolt 383) located below it. Furthermore, a quadrangle formed by four rubber bushes 3 8 2 (3 8 2 F, R, a, b), specifically a rectangular shape with each vertex being a right angle (more specifically, a square having the same length and four sides) Since the Z-axis direction sensitivity center line Z c is disposed near the center of gravity of the), stability can be improved and detection accuracy can be further improved.
  • 3 2 8 F a and 3 8 2 Rb are obtained from rubber bush 3 8 2 F b, and 3 8 2 R a is obtained from 3 8 2 F a and 3 8 2 Rb.
  • FIG. 8 is a bottom view of the foot portion 2 2 L of the left leg among the foot portions 2 2 R and L similar to FIG. 3 for explaining the floor reaction force detector according to the third embodiment.
  • FIG. 8 is a bottom view of the foot portion 2 2 L of the left leg among the foot portions 2 2 R and L similar to FIG. 3 for explaining the floor reaction force detector according to the third embodiment.
  • the six-axis force sensor 34 is a triangle formed by three rubber bushes 3 8 2 (3 8 2 F, Ra, Rb), specifically, each vertex is at the same angle. Since the Z-axis direction sensitivity center line Zc is disposed near the center of gravity of the regular triangle, stability can be improved and detection accuracy can be further improved.
  • the rigidity of 3 82 R b is higher than that of the rubber bush 3 82 F, and the rigidity of 3 82 R a is higher than that of 3 82 Rb.
  • the rigidity of the side and outer legs 22 a is increased and the durability is improved, so that the impact reduction effect at landing can be prevented from deteriorating with time, and the stability and the floor reaction force detection accuracy can be improved. There is no reduction.
  • the floor reaction force detector can be disposed at a position closer to the ground contact surface to improve the detection accuracy of the floor reaction force, and between the floor reaction force detector and the floor surface.
  • the grounding end of the foot can be inserted to reduce the impact of landing impact.
  • the ground contact end of the foot is interposed between the floor reaction force detector and the ground contact surface, it is not necessary to improve the floor reaction force detector strength.
  • one end of the floor reaction force detector is connected in the vicinity of the second joint, and rigidity in the vicinity of the grounding end of the foot is higher than that of a member (the lower leg link 30) constituting the vicinity of the second joint.
  • the floor reaction force detector is constructed so as to connect the other end of the floor reaction force detector to the low rigidity member.
  • the member having low rigidity is formed of a spring mechanism 38, and the floor reaction force detector is connected to the ground end of the foot via the panel mechanism.
  • the panel mechanism comprises at least two elastic members (rubber bush 3 82), and the floor reaction force detector is arranged between the at least two elastic members. .
  • the at least two elastic members are arranged so as to be in a predetermined positional relationship with each other in the advancing direction (front-rear direction) of the leg type walking robot (the rubber bush 3 82 F, R).
  • the floor reaction force detector is configured to be disposed between the elastic members arranged to have the predetermined positional relationship.
  • the at least two elastic members are in a predetermined positional relationship with each other in a direction (horizontal direction (horizontal direction)) orthogonal to the traveling direction of the legged walking robot and orthogonal to the gravity direction.
  • the floor reaction force detector is arranged between the elastic members arranged so as to have the predetermined positional relationship (rubber bush 3 82 2 a, b).
  • the spring mechanism includes n (n 3 3) elastic members
  • the floor reaction force detector is an n-square weight having the n elastic members as apexes in a bottom view of the foot portion. It was configured to be placed near the heart.
  • the rigidity of the elastic members (rubber bushes 3 82 R, R a, R b) disposed behind the floor reaction force detector in the traveling direction of the leg type walking robot is as follows:
  • the rigidity of the elastic material (rubber bush 3 8 2 F, F a, F b) disposed in front of the floor reaction force detector is set to be larger than the rigidity.
  • the leg walking robot is more than the floor reaction force detector in the direction orthogonal to the traveling direction of the leg type walking robot and orthogonal to the weight direction.
  • the rigidity of the elastic material (rubber bush 3 82 2 a, F a, R a) disposed outward of the leg center line ftc (specifically, the foot walking robot) than that of the floor reaction force detector.
  • the rigidity of the elastic material (rubber bush 3 82 b, F b, R b) placed inward of the g is set to be larger than that of the elastic material.
  • the rigidity of the foot located outward with respect to the center line of the leg is enhanced and the durability is improved, whereby the impact reduction effect at the time of landing can be prevented from deteriorating with time, stability and floor. There is no reduction in the reaction force detection accuracy.
  • insulators first and second insulators 7 8 and 8 0, first and second insulators 8 2 and 8 6, and first and second insulator strips
  • insulators may be provided near the floor reaction force detector. It was configured to provide one set 8 4, 8 8).
  • the number of rubber bushes is three or four, and the polygon formed thereby is a triangle or a quadrangle, but it is not limited thereto, and any n (n n 3) rubbers may be used. It may be an arbitrary n-gon using a bush. Also, the triangle and the quadrilateral are not limited to the illustrated rectangle (square) or an equilateral triangle, and the angle of the vertex and the length of the side may be arbitrarily set, in short, the six-axis force sensor 3 4 It is good to arrange the
  • the rigidity is made to differ according to the arrangement position of the bushes. This may be realized by the difference of the material or by the difference of the shape.
  • Robot floor reaction force detectors can be provided.
  • stability is improved by improving the durability of the foot around the heel and the centerline of the foot and preventing the temporal deterioration of the impact reduction effect at the time of landing.
  • a floor reaction force detector for a legged walking robot that is capable of preventing a decrease in floor reaction detection accuracy and preventing the influence of control devices and motors disposed in the vicinity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

明細書 脚式歩行ロボッ 卜の床反力検出器 技術分野
この発明は脚式歩行ロボッ 卜の床反力検出器に関する。 背景技術
脚式歩行ロボッ ト、 特に 2足歩行ロボッ トにおいては、 接地する床面から作用 する床反力を例えば 6軸力センサなどの床反力検出器を用いて検出し、 検出した 床反力などに基づいて安定した歩行を実現するように適宜な制御が行われる。 こ の床反力を検出する床反力検出器は、 検出精度を向上させるために足部の接地端 に近い場所に配置することが望ましく、 このため、 例えば特開 2 0 0 0 - 2 5 4 8 8 8号公報で提案されている技術にあっては、 床反力検出器を足底下面に取り 付け、 床反力検出器自体が床面に接するようにしている。
ところが、 前記した従来技術の場合、 床反力検出器自体が床面に接するため、 床反力検出器の剛性を向上させなければならないといった不都合があった。 また 、 脚式歩行ロボッ ト、 特に 2足歩行ロボッ トの足部は、 一方では起立時の姿勢を 安定に保持できるように適宜な剛性を備えると共に、 他方では遊脚の着地時の衝 撃を吸収して緩和できるように適宜な弾性を備えることが望ましい。
このような理由から足部に適宜な弾性を備える場合、 前記した従来技術にあつ ては、 構成上、 床反力検出器よりも上部 (より上体に近い部位) に弾性が与えら れることになる。 しかしながら、 床反力検出器よりも上部に弾性が与えられると 、 床反力検出器により検出された床反力がその部位により吸収されることから、 検出した床反力と実際にロボッ トに作用する力が相違してしまい、 制御性を悪化 させるといった問題があった。 発明の開示
従って、 この発明の目的は従来技術の上記した課題を解決し、 検出精度を向上 させて制御性を悪化させることがないと共に、 起立時の姿勢を安定に保持しつつ 、 着地時の衝撃の影響を低減するようにした脚式歩行ロボッ 卜の床反力検出器を 提供することにある。
また、 脚式歩行ロボッ ト、 特に 2足歩行ロボッ 卜にあっては、 遊脚の足部は通 常踵から着地するため、 踵周辺に衝撃が集中し易い。 このため、 足部の踵周辺が 劣化し易く、 着地時の衝撃低減効果が経時的に劣化して安定性を低下させるおそ れがあると共に、 床反力の検出精度を低下させるといった問題があった。
また、 特に 2足歩行ロボッ トにあっては、 足部内方が他脚に干渉するのを防止 し、 かつ安定性を向上させるために、 脚部の中心線に対してロボッ ト外方に位置 する足部の面積を、 内方に位置する足部の面積に比して大きくすることが望まし い。 しかし、 このように構成すると、 脚部中心線に対して外方に位置する足部に より多くの荷重や遊脚によるスピンモーメントなどが加わることになる。 このた め、 その部位が劣化し易く、 同様に安定性を低下させるおそれがあると共に、 床 反力の検出精度を低下させるといった問題があった。
従って、 この発明の第 2の目的は、 踵周辺、 および脚部中心線に対して外方の 足部の耐久性を向上させ、 着地時の衝撃低減効果の経時的劣化を防止することに より、 安定性および床反力検出精度の低下を防止するようにした脚式歩行ロボッ 卜の床反力検出器を提供することにある。
また、 脚式歩行ロボッ 卜の小型化 (ダウンサイジング) を考えると、 足部の内 部も種々の制御機器などを収容するための重要なスペースとなる。 しかしながら 、 床反力検出器が配置される足部の内部に制御機器などを収容した場合、 収容し た制御機器を流れる電流がフレームなどを通じて床反力検出器にノイズとして影 響を及ぼす恐れがあった。 また、 足首関節付近には、 足首関節駆動用のモー夕が 配置されるため、 そのモータを流れる電流によっても同様な影響を及ぼす恐れが あつ 7こ。
従って、 この発明の第 3の目的は、 周辺に配置された制御機器やモータなどの 影響を防止するようにした脚式歩行ロボッ 卜の床反力検出器を提供することにあ この発明は、 上記の課題を解決するために、 後述する請求の範囲第 1項に記載 する如く、 少なく とも上体と、 前記上体に第 1の関節を介して連結される複数本 の脚部を備え、 前記脚部の端部に第 2の関節を介して連結される足部の接地端を 介して床面から作用する床反力を検出する床反力検出器を備えた脚式歩行ロボッ トの床反力検出器において、 前記床反力検出器を、 前記第 2の関節と前記足部の 接地端の間に配置するように構成した。
床反力検出器を、 第 2の関節、 具体的には足首関節と足部の接地端の間に配置 するように構成したので、 より接地面に近い位置に配置されることとなつて床反 力の検出精度を向上させることができると共に、 床反力検出器と床面との間に足 部の接地端が介挿されることとなって着地時の衝撃の影響を低減することができ 、 床反力検出器の剛性を向上させる必要がない。
また、 この発明は、 後述する請求の範囲第 2項に記載する如く、 前記第 2の関 節付近に前記床反力検出器の一端を接続すると共に、 前記足部の接地端付近を前 記第 2の関節付近を構成する部材よりも剛性において低い部材で構成し、 前記剛 性において低い部材に前記床反力検出器の他端を接続するように構成した。 前記第 2の関節付近に前記床反力検出器の一端を接続すると共に、 前記足部の 接地端付近を前記第 2の関節付近を構成する部材よりも剛性において低い部材で 構成し、 前記剛性において低い部材に前記床反力検出器の他端を接続するように 構成したので、 足部に適宜な弾性が与えられ、 より一層着地時の衝撃の影響を低 減することができる。 また、 床反力検出器よりも下部に弾性が与えられると共に 、 その上部 (より上体に近い部位) は高い剛性とされることから、 床反力の検出 精度をより一層向上させることができると共に、 検出した床反力と実際にロボッ 卜に作用する力が一致し、 制御性を悪化させることがない。
また、 この発明は、 後述する請求の範囲第 3項に記載する如く、 前記剛性にお いて低い部材がパネ機構体からなると共に、 前記床反力検出器を前記バネ機構体 を介して前記足部の接地端に接続するように構成した。
前記剛性において低い部材がパネ機構体からなると共に、 前記床反力検出器を 前記バネ機構体を介して前記足部の接地端に接続するように構成したので、 前記 したのと同様な効果を得ることができる。 また、 バネ機構体を後述の如く構成し たので、 起立時 (静止時) の安定性を維持しつつ、 着地時に働く斜め方向の衝撃 を緩和することができる。
また、 この発明は、 後述する請求の範囲第 4項に記載する如く、 前記パネ機構 体は少なくとも 2個の弾性材を備えると共に、 前記床反力検出器を前記少なくと も 2個の弾性材の間に配置するように構成した。
前記バネ機構体は少なくとも 2個の弾性材を備えると共に、 前記床反力検出器 を前記少なくとも 2個の弾性材の間に配置するように構成したので、 床反力の検 出精度をより一層向上させることができる。
また、 この発明は、 後述する請求の範囲第 5項に記載する如く、 前記少なくと も 2個の弾性材を前記脚式歩行ロボットの進行方向において相互に所定の位置関 係となるように配列すると共に、 前記床反力検出器を前記所定の位置関係となる ように配列された弾性材の間に配置するように構成した。
前記少なくとも 2個の弾性材を前記脚式歩行ロボッ トの進行方向において相互 に所定の位置関係となるように配列すると共に、 前記床反力検出器を前記所定の 位置関係となるように配列された弾性材の間に配置するように構成したので、 起 立時の進行方向 (前後方向) の安定性を向上させることができると共に、 床反力 の検出精度をより一層向上させることができる。
また、 この発明は、 後述する請求の範囲第 6項に記載するように、 前記弾性材 を前記脚式歩行ロボッ 卜の進行方向と直交し、 かつ重力方向と直交する方向にお いて相互に所定の位置関係となるように配列すると共に、 前記床反力検出器を前 記所定の位置関係となるように配列された弾性材の間に配置するように構成した 前記弾性材を前記脚式歩行ロボッ 卜の進行方向と直交し、 かつ重力方向と直交 する方向において相互に所定の位置関係となるように配列すると共に、 前記床反 力検出器を前記所定の位置関係となるように配列された弾性材の間に配置するよ うに構成したので、 起立時の進行方向と直交し、 かつ重力方向と直交する方向、 即ち左右方向の安定性を向上させることができると共に、 床反力の検出精度をよ り一層向上させることができる。
また、 この発明は、 後述する請求の範囲第 7項に記載するように、 前記バネ機 構体は n ( n≥ 3 ) 個の弾性材を備えると共に、 前記床反力検出器を、 前記足部 の底面視において前記 n個の弾性材を頂点とする n角形の重心付近に配置するよ うに構成した。
前記パネ機構体は n ( n≥ 3 ) 個の弾性材を備えると共に、 前記床反力検出器 を、 前記足部の底面視において前記 n個の弾性材を頂点とする n角形の重心付近 に配置するように構成したので、 いかなる方向からの荷重 (床反力) に対しても 同様な (均一な) 衝撃吸収が可能となるため、 安定性が向上すると共に、 床反力 の検出精度をより一層向上させることができる。
また、 この発明は、 後述する請求の範囲第 8項に記載する如く、 前記弾性材の うち、 前記脚式歩行ロボッ 卜の進行方向において前記床反力検出器よりも後方に 配置した弾性材の剛性を、 前記床反力検出器よりも前方に配置した弾性材の剛性 よりも大きく設定するように構成した。
前記弾性材のうち、 前記脚式歩行ロボッ 卜の進行方向において前記床反力検出 器よりも後方に配置した弾性材の剛性を、 前記床反力検出器よりも前方に配置し た弾性材の剛性よりも大きく設定するように構成したので、 踵周辺の剛性が高ま つて耐久性が向上し、 よって着地時の衝撃低減効果の経時的劣化を防止すること ができ、 安定性および床反力検出精度を低下させることがない。
また、 この発明は、 後述する請求の範囲第 9項に記載する如く、 前記弾性材の うち、 前記脚式歩行ロボッ トの進行方向と直交し、 かつ重力方向と直交する方向 において、 前記床反力検出器よりも前記脚部歩行ロボッ トの外方に配置した弾性 材の剛性を、 前記床反力検出器よりも前記脚部歩行ロボッ トの内方に配置した弾 性材の剛性よりも大きく設定するように構成した。
前記弾性材のうち、 前記脚式歩行ロボッ 卜の進行方向と直交し、 かつ重力方向 と直交する方向において、 前記床反力検出器よりも前記脚部歩行ロボッ トの外方 に配置した弾性材の剛性を、 前記床反力検出器よりも前記脚部歩行ロボッ 卜の内 方に配置した弾性材の剛性よりも大きく設定するように構成したので、 脚部中心 線に対して外方に位置する足部の剛性が高まって耐久性が向上し、 よって着地時 の衝撃低減効果の経時的劣化を防止することができ、 安定性および床反力検出精 度を低下させることがない。
また、 この発明は、 後述する請求の範囲第 1 0項に記載する如く、 前記床反力 検出器の付近に絶縁体を配置するように構成した。
前記床反力検出器の付近に絶縁体を配置するように構成したので、 床反力検出 器周辺の付近に配置された制御機器やモー夕などに流れる電流の影響を防止する ことができる。 図面の簡単な説明
第 1図は、 この発明の一^ 3の実施の形態に係る脚式歩行ロボッ 卜の床反力検出 器が前提とする脚式歩行ロボッ 卜の正面図である。
第 2図は、 第 1図に示す脚式歩行ロボッ トの足部の側面縦断面図である。
第 3図は、 第 2図に示す足部の底面図である。
第 4図は、 第 2図に示す断面図の一部を拡大した部分拡大断面図である。
第 5図は、 第 2図に示す断面図の一部を拡大した第 4図と同様な部分拡大断面 図である。
第 6図は、 この発明に係る脚式歩行ロボッ トの床反力検出器と従来技術に係る 床反力検出器におけるノイズの発生を対比して示すグラフである。
第 7図は、 この発明の第 2の実施の形態に係る脚式歩行ロボットの床反力検出 器を示す、 第 3図と同様な足部の底面図である。
第 8図は、 この発明の第 3の実施の形態に係る脚式歩行ロボッ卜の床反力検出 器を示す、 第 3図と同様な足部の底面図である。 発明を実施するための最良の形態
以下、 添付図面に即してこの発明の一つの実施の形態に係る脚式歩行ロボッ ト の床反力検出器を説明する。
第 1図は、 この実施の形態に係る床反力検出器が前提とする脚式歩行ロボッ ト 、 より詳しくは 2足歩行ロボッ トを全体的に示す概略図である。
図示の如く、 2足歩行ロボッ ト (以下 「ロボッ ト」 という) 1は、 左右それぞ れの脚部 (脚部リンク) 2に 6個の関節を備える。 6個の関節は上から順に、 股 (腰部) の脚部回転用 (Z軸まわり) の関節 1 O R , 1 0 L (右側を R、 左側を しとする。 以下同じ) 、 股 (腰部) のロール方向 (X軸まわり) の関節 1 2 R , 1 2 L、 股 (腰部) のピッチ方向 (Y軸まわり) の関節 1 4 R, 1 4 L、 膝部の ピッチ方向の関節 1 6 R, 1 6 L、 足首のピッチ方向の関節 1 8 R, 1 8 L、 お よび同ロール方向の関節 20 R, 20 Lから構成される。
関節 1 8 R (L) , 20 R (L) の下部には足部 (足平) 2 2R, Lが取り付 けられると共に、 最上位には上体 (基体) 2 4が設けられ、 その内部にマイクロ コンピュータからなる制御ユニッ ト 2 6などが格納される。 上記において、 股関 節 (あるいは腰関節。 前記した第 1の関節) は関節 1 O R (L) , 1 2 R (L) , 1 4 R (L) から、 足関節 (足首関節。 前記した第 2の関節) は関節 1 8 R ( L) , 2 0 R (L) から構成される。 また、 股関節と膝関節 ( 1 6 R (L) ) と は大腿リンク 2 8 R, L、 膝関節と足関節とは下腿リンク 3 0 R, Lで連結され 上記の構成により、 脚部 2は左右の足それぞれについて 6つの自由度を与えら れ、 歩行中にこれら 6 X 2 = 1 2個の関節を適宜な角度で駆動することで、 足全 体に所望の動きを与えることができ、 任意に 3次元空間を歩行させることができ o
また、 同図に示す如く、 足関節 1 8, 20 R (L) と足平 22R (L) の接地 端の間には、 公知の 6軸力センサ (床反力検出器) 34が取り付けられ、 力の 3 方向成分 Fx, F y, F zとモーメン トの 3方向成分 Mx, My, Mzとを測定 し、 足部の着地 (接地) の有無および床面 (図示せず) から作用する床反力 (接 地荷重) などを検出する。 また、 上体 24には傾斜センサ 3 6が設置され、 Z軸 (鉛直方向 (重力方向) ) に対する傾きとその角速度を検出する。 また、 各関節 を駆動する電動モータには、 その回転量を検出するロータリエンコーダ (図示せ ず) が設けられる。
これら 6軸力センサ 34などの出力は制御ュニッ ト 2 6に入力され、 制御ュニ ッ ト 2 6はメモリ (図示せず) に格納されているデ一夕および入力された検出値 に基づいて関節駆動制御値を算出し、 前記した関節を駆動する。
足部 22 R (L) の接地端と 6軸力センサ 34の間には、 パネ機構体 3 8 (後 に詳説) が装備されると共に、 足底にはフール 4 0が貼られてコンプライアンス 機構 4 2を構成する。 足部 22 R (L) が床反力を受けると、 コンプライアンス 機構 4 2においてパネ機構体 3 8およびフール 4 0がたわみ、 足部 2 2 R ( L ) を変位させて着地時の衝撃を緩和する。
続いて、 第 2図以降を参照して第 1図に示したロボッ ト 1の足部 2 2 R ( L ) の構成、 具体的には 6軸力センサ 3 4、 およびその周辺部材の構成を詳細に説明 する。
第 2図は、 前記した足部 2 2 R , Lのうち、 左脚の足部 2 2 Lの側面断面図、 第 3図は第 2図を底面から見た底面図である。 また、 足部 2 2 R , Lは左右対照 であるため、 右脚の足部 2 2 Rの説明は省略すると共に、 以下特に必要な場合を 除き R , Lを付すのを省略する。
第 2図に示す如く、 6軸力センサ 3 4は足関節 1 8 , 2 0と足部 2 2の接地端 、 より具体的には足部 2 2下部のバネ機構体 3 8、 足底フレーム 5 0、 足底プレ —ト 5 2およびフール 4 0からなる接地端の間に取り付けられる。 これにより、 6軸力センサ 3 4がより接地面に近い位置に配置されることとなつて検出精度を 向上させることができると共に、 6軸力センサ 3 4と床面との間に足部 2 2の接 地端が介在されることとなつて着地時の衝撃の影響を低減することができ、 6軸 力センサ 3 4の剛性を向上させる必要がない。
より具体的に説明すると、 6軸力センサ 3 4の上部は、 足関節 1 8 , 2 0付近 の下腿リンク 3 0に位置決めピン 5 4によって位置決めされつつ複数個の上部固 定用ボルト 5 6によって締結固定される。 下腿リンク 3 0はチタンやマグネシゥ ム合金などの高剛性の金属 (合金) により形成される。 また、 6軸力センサ 3 4 の下部は、 前記したバネ機構体 3 8を介し、 金属製の足底フレーム 5 0に接続さ れる。
バネ機構体 3 8は、 逆 Ω状フレーム 3 8 1 と、 ゴムブッシュ 3 8 2 (前記した 弾性材) と、 バネ機構体用ボルト 3 8 3から構成される。 逆 Ω状フレーム 3 8 1 は、 アルミニウム (あるいはその合金) からなり、 中央に 6軸力センサ 3 4下部 と略同形の凹部を備える。 この凹部に 6軸力センサ 3 4を挿入しつつ、 6軸カセ ンサ 3 4と逆 Ω状フレーム 3 8 1を複数個 (具体的には第 1図に示すように 8個 ) の下部固定用ボルト 5 8によって締結固定する。 これにより、 6軸力センサ 3 4をより一層足部 2 2の接地端に近付けることができ、 検出精度をより一層向上 させることができる。 尚、 6軸力センサ 3 4の出力は、 ハーネス 3 4 aを介して 前記した制御ュニッ ト 2 6に入力される。
断面 H状を呈するゴムブッシュ 3 8 2は 6軸力センサ 3 4のまわりに複数個 ( 具体的には第 3図に示すように 4個) 配置される。 また、 逆 Ω状フレーム 3 8 1 と足底フレーム 5 0は、 上下 2個のバネ機構体用ボルト 3 8 3でこのゴムブッシ ュ 3 8 2の H状中央の凹部を挟持しつつ接続される。 尚、 ゴムブッシュ 3 8 2は 合成ゴムにより形成され、 適宜な弾性が与えられる。
このように構成することで、 着地時に 6軸力センサ 3 4に加わる衝撃、 特に斜 め方向に働く衝撃をゴムブッシュ 3 8 2が変形することによって低減することが できる。 また、 6軸力センサ 3 4の上部が接続される下腿リンク 3 0は、 ノくネ機 構体 3 8の全体的な剛性に比して剛性の高い高剛性部材によって形成されるため 、 より一層検出精度を向上させることができると共に、 検出した床反力と実際に ロボッ 卜に作用する力が一致し、 制御性を悪化させることがない。 さらに、 荷重 が重力方向へと加わる起立時 (静止時) の安定性を向上させることができる。 尚、 逆 Ω状フレーム 3 8 1 と足底フレーム 5 0の間隙にはリング状部材 6 0が 介在し、 逆 Ω状フレーム 3 8 1が足底フレーム 5 0内を上下に摺動する際にビス トンリングのような働きをする。 これにより、 逆 Ω状フレーム 3 8 1は、 ブレの ない滑らかな上下摺動が可能となる。 このリング状部材 6 0はフッ素樹脂、 例え ばポリテトラフルォロエチレン (P T F E ) などの潤滑性の高い素材により形成 される。
次いで第 3図を参照して説明すると、 足部 2 2の底面 (足底面) は大略矩形状 を呈し、 その中心位置よりも前後方向 (X軸方向) においてやや後方に 6軸カセ ンサ 3 4が配置される。 同図で X cは 6軸力センサ 3 4の X軸方向における感度 中心線を示し、 Y cとは、 Y軸方向における感度中心線を示す。 また、 これら X 軸方向感度中心線 X cおよび Y軸方向感度中心線 Y cは、 第 2図に良く示す脚部 中心線 (Z軸方向) f t cと直交する。 即ち、 6軸力センサ 3 4の Z軸方向感度 中心線 Z cが脚部中心線 f t cと同一となるように 6軸力センサ 3 4を配置して いるので、 ロボッ ト 1に作用する床反力を精度良く検出することができる。
尚、 上記で前後方向とは X軸方向を意味し、 前記した第 1図から明らかなよう に、 ロボッ ト 1の進行方向を意味する。 また、 左右 (横) 方向とは Y軸方向を意 味し、 X軸方向 (進行方向) および Z軸方向 (重力方向) に直交する方向を意味 する。 以下同様とする。
6軸力センサ 3 4は、 互いに所定の位置関係になるように同一直線上に配置さ れた 2個のゴムブッシュ 3 8 2 ( 3 8 2 Fと R、 あるいは 3 8 2 aと b。 いずれ もその下方に位置するパネ機構体用ボルト 3 8 3で示す) の中心付近に Z軸方向 感度中心線 Z cが位置するように配置される。 具体的には、 進行方向 (X軸方向 ) 、 より具体的には X軸方向感度中心線上に位置する 2個のゴムブッシュ 3 8 2 Fと Rの中心付近に Z軸方向感度中心線 Z cが位置するように配置されると共に 、 左右方向 (Y軸方向) 、 より具体的には Y軸方向感度中心線上に位置する 2個 のゴムブッシュ 3 8 2 aと bの中心付近に Z軸方向感度中心線 Z cが位置するよ うに配置される。 さらには、 4個のゴムブッシュ 3 8 2 ( 3 8 2 F , R, a , b ) によって形成される四角形、 具体的には各頂点が直角の長方形 (より具体的に は四辺同長の正方形) の重心付近に Z軸方向感度中心線 Z cが位置するように配 置される。
これにより、 いかなる方向からの荷重 (床反力) に対しても同様な (均一な) 衝撃吸収が可能となるため、 安定性、 特に起立時の進行方向 (X軸方向) および 左右方向 (Y軸方向) の安定性が向上すると共に、 床反力の検出精度をより一層 向上させることができる。
ところで、 脚式歩行ロボッ ト、 特に 2足歩行ロボッ トにおいては、 通常歩行に おいて遊脚は踵から着地するため、 踵周辺の劣化が生じ易いのは前述した通りで あ 。
このため、 この実施の形態にあっては、 進行方向 (X軸方向) において 6軸力 センサ 3 4よりも後方のゴムブッシュ 3 8 2 Rの剛性を、 6軸力センサ 3 4より も前方のそれよりも高くするように構成した。 6軸力センサ 3 4の Z軸方向感度 中心線は前記したように脚部中心線 f t cと同一であるため、 6軸力センサ 3 4 よりも後方のゴムブッシュ 3 8 2 Rとは、 即ち踵に近い位置に配置されたものを 示す。 このように、 踵に近い位置に配置されたゴムブッシュ 3 8 2 Rの剛性を高 くすることで、 踵周辺の剛性が高まって耐久性が向上し、 よって着地時の衝撃低 減効果の経時的劣化を防止することができ、 安定性および床反力検出精度を低下 させることがない。
説明を続けると、 6軸力センサ 3 4の X軸方向感度中心線 X cに対してロボッ ト 1における外方の足部 2 2 a (同図は左脚の足部 2 2 Lであることから、 起立 時においては同図右側の足部 2 2 aが外方となると共に、 左側の足部 2 2 bが内 方となる) は、 先端の爪先 6 4から前後方向 (X軸方向) 後方に向けて左右 (横 ) 方向 (Y軸方向) の幅 (足幅) が徐々に広くなり、 さらに、 Y軸方向感度中心 線 Y c付近で最大値をとつた後、 踵 6 6に向けて前記した爪先 6 4と同じ幅とな るように狭くなる形状を呈する。
前記したように、 6軸力センサ 3 4の X軸方向感度中心線 X c (および Y軸方 向感度中心線 Y c ) は、 第 3図に良く示す脚部中心線 (Z軸方向) f t cと直交 する。 即ち、 X軸方向感度中心線 X cに対してロボッ ト 1における外方の足部 2 2 aとは、 脚部中心線 f t cに対してロボッ ト 1における外方と換言することが できる。 内方の足部 2 2 bについても同様である。
このように、 脚部中心線 f t cに対して外方の足部 2 2 aの底面は、 内方の足 部 2 2 bの底面に比して面積が大きく形成される。 これにより、 足部内方 (2 2 b ) の他脚への干渉を防止すると共に、 ロボッ ト 1の安定性を維持することがで きる。
ここで、 面積の大きい外方の足部 2 2 aにはより多くの荷重や遊脚によるスピ ンモーメントなどが加わり、 よってその部位が劣化し易いといった問題があるの は前述した通りである。 従って、 この実施の形態にあっては、 脚部中心線 f t c に対して外方の足部 2 2 aに配置されるゴムブッシュ 3 8 2 aの剛性を、 内方の 足部 2 2 bに配置されるゴムブッシュ 3 8 2 bよりも高くするように構成した。 このように、 面積の大きい外方の足部 2 2 aに配置されたゴ厶ブッシュ 3 8 2 a の剛性を高くすることで、 外方の足部 2 2 aの剛性が高まって耐久性が向上し、 よって着地時の衝撃低減効果の経時的劣化を防止することができ、 安定性および 床反力の検出精度を低下させることがない。
また、 足部 2 2の底面には、 X軸方向感度中心線 X c付近を除く全面に 2分割 されたゴム製のツール 4 0が複数個 (具体的には 9個) のツール固定用ボルト 6 8によって締結固定される。 これにより、 着地時にロボッ ト 1に作用する衝撃を より一層低減することができると共に、 足裏の摩擦力を向上させてスリップなど を防止することができる。
ところで、 足関節 1 8 , 2 0は前記したように、 ピッチ方向の関節 1 8、 およ びロール方向の関節 2 0から構成される。 具体的には、 第 2図に示すように、 足 関節 1 8 , 2 0のうち関節 1 8は、 モータの回転によって生じた駆動力が減速ギ ャ (共に図示せず) を介して伝達されることによって駆動され、 足部 2 2に口一 ル方向 (X軸まわり。 具体的には 1 8 X cで示す足関節ロール方向中心線まわり ) において所望の動きを与える。 また、 関節 2 0は、 足部 2 2の上方に設置され たモータ (図示せず) の回転によって生じた駆動力が減速ギヤ (図示せず) 、 ベ ノレト 7 0およびプーリ 7 2を介して伝達されることにより駆動され、 足部 2 2に ピッチ方向 (Y軸まわり。 具体的には足関節ロール方向中心線 1 8 X cと脚部中 心線 f t cに直交する方向まわり) において所望の動きを与える。
これら乇一夕を駆動するためのドライバ 7 4を、 スペースの有効活用のため、 この実施の形態においては 6軸力センサ 3 4の配置位置に近い爪先付近に設置し た。 しかしながら、 前述したように、 床反力検出器が配置される足部 2 2の内部 に制御機器などを収容した場合、 収容した制御機器を流れる電流がフレーム (足 底フレー厶 5 0 ) など導電性の部材を通じて 6軸力センサ 3 4にノイズとして影 響を及ぼす恐れがあった。 また、 下腿リンク 3 0付近にはモータ自体が設置され ると共に、 ドライバ 7 4を足部 2 2の爪先付近に設置すると、 ドライバ 7 4から 各モータへとつながる電線 7 6が例えば図示のように配線されることにより、 下 腿リンク 3 0を通じた電流によっても同様に 6軸力センサ 3 4にノイズの影響を 及ぼす恐れがあった。
そこで、 この実施の形態にあっては、 6軸力センサ 3 4付近に絶縁体が配置さ れるように構成した。 具体的には、 6軸力センサ 3 4の上部と下腿リンク 3 0の 間に第 1の絶縁体 7 8が介在されると共に、 6軸力センサ 3 4の下部と逆 Ω状フ レーム 3 8 1の間に第 2の絶縁体 8 0が介在される。
これら第 1および第 2の絶縁体 7 8, 8 0は、 絶縁性が高く、 かつ機械的強度 の高い部材から形成される。 また、 前記した位置決めピン 5 4も同様な性質を持 っ部材から形成される。
さらに、 第 4図に良く示すように、 ( 6軸力センサ) 上部固定用ボルト 5 6の 頭部 5 6 aと 6軸力センサ 3 4の間には、 第 1の絶縁ヮッシャ 8 2が介在される 。 また、 第 1の絶縁体 7 8および 6軸力センサ 3 4の上部固定用ボルト 5 6が挿 通する部分には第 1の絶縁スリーブ 8 4が設けられる。 これにより、 6軸力セン サ 3 4が下腿リンク 3 0および上部固定用ボルト 5 6から完全に絶縁される。 また、 第 5図に良く示すように、 ( 6軸力センサ) 上部固定用ボルト 5 8の頭 部 5 8 aと逆 Ω状フレーム 3 8 1の間には、 第 2の絶縁ヮッシャ 8 6が介在され る。 また、 第 2の絶縁体 8 0および逆 Ω状フレーム 3 8 1の下部固定用ボルト 5 8が揷通する部分には第 2の絶縁スリーブ 8 8が設けられる。 これにより、 6軸 力センサ 3 4が逆 Ω状フレーム 3 8 1および下部固定用ボルト 5 8から完全に絶 縁される。 尚、 第 1および第 2の絶縁ヮッシャ 8 2, 8 6、 ならびに、 第 1およ び第 2の絶縁スリーブ 8 4 , 8 8も同様に絶縁性が高く、 かつ機械的強度の高い 部材から形成される。
このように、 6軸力センサ 3 4付近に絶縁体を配置するように構成したので、 周辺に配置された制御機器やモー夕などに流れる電流の影響を防止することがで きる。
第 6図は、 従来技術とこの実施の形態に係る 6軸力センサ 3 4における電流に よるノイズの影響を対比して示すグラフである。 同図から明らかなように、 この 実施の形態においてはモ一夕駆動時のノイズを略完全に解消している。
尚、 逆 Ω状フレーム 3 8 1 と足底フレーム 5 0は、 前記したようにゴムブッシ ュ 3 8 2を挟持しつつ接続されていることから、 ゴムブッシュ 3 8 2の絶縁性を 向上させることで逆 Ω状フレーム 3 8 1を介した電流の影響を防止することがで きる。 しかしながら、 絶縁性を考慮に入れると弾性の設計自由度 (材質の選別自 由度) が低下してしまうため、 所望の衝撃吸収性能を得ることが困難となるが、 上記のように絶縁体を介揷する構成とすることで、 係る不具合も解消することが できる。
次いで第 7図を参照してこの発明の第 2の実施の形態に係る脚式歩行ロボッ ト の床反力検出器について説明する。 第 7図は、 第 2の実施の形態に係る床反力検出器を説明するための、 第 3図と 同様な足部 2 2 R, Lのうち、 左脚の足部 2 2 Lの底面図である。
同図に示すように、 6軸力センサ 34は、 同一直線上に配置された 2個のゴム ブッシュ 3 8 2 ( 3 8 2 F aと Rb、 あるレヽは 3 8 2 R aと F b。 いずれもその 下方に位置するバネ機構体用ボルト 3 8 3で示す) の中心付近に Z軸方向感度中 心線 Z cが位置するように配置される。 さらには、 4個のゴムブッシュ 3 8 2 ( 3 8 2 F, R, a, b ) によって形成される四角形、 具体的には各頂点が直角の 長方形 (より具体的には四辺同長の正方形) の重心付近に Z軸方向感度中心線 Z cが位置するように配置されるため、 安定性を向上させることができると共に、 検出精度をより一層向上させることができる。
また、 この実施の形態の場合、 ゴムブッシュ 3 8 2 F bよりも 3 8 2 F aおよ び 3 8 2 Rbを、 3 8 2 F aおよび 3 8 2 Rbよりも 3 8 2 R aの剛性を高くす ることで、 踵周辺および外方の足部 22 aの剛性が高まって耐久性が向上し、 よ つて着地時の衝撃低減効果の経時的劣化を防止することができ、 安定性および床 反力検出精度を低下させることがない。
尚、 他の構成については前述の実施の形態と同一なため、 説明を省略する。 次いで第 8図を参照してこの発明の第 3の実施の形態に係る脚式歩行ロボッ ト の床反力検出器について説明する。
第 8図は、 第 3の実施の形態に係る床反力検出器を説明するための、 第 3図と 同様な足部 2 2 R, Lのうち、 左脚の足部 2 2 Lの底面図である。
同図に示すように、 6軸力センサ 3 4は、 3個のゴムブッシュ 3 8 2 ( 3 8 2 F, R a, Rb) によって形成される三角形、 具体的には各頂点が同角度の正三 角形の重心付近に Z軸方向感度中心線 Z cが位置するように配置されるため、 安 定性を向上させることができると共に、 検出精度をより一層向上させることがで きる。
また、 この実施の形態の場合、 ゴムブッシュ 3 8 2 Fよりも 3 8 2 R bの剛性 を高くすると共に、 3 8 2 Rbよりも 3 8 2 R aの剛性を高くすることで、 踵周 辺および外方の足部 2 2 aの剛性が高まって耐久性が向上し、 よって着地時の衝 撃低減効果の経時的劣化を防止することができ、 安定性および床反力検出精度を 低下させることがない。
尚、 他の構成については前述の実施の形態と同一なため、 説明を省略する。 上記した如く、 この実施の形態にあっては、 少なく とも上体 2 4と、 前記上体 に第 1の関節 (股関節 (あるいは腰関節) 。 関節 1 0 , 1 2 , 1 4 R ( L ) ) を 介して連結される複数本の脚部 (脚部リンク 2 ) を備え、 前記脚部の端部に第 2 の関節 (足関節 (足首関節。 関節 1 8 , 2 0 R ( L ) ) を介して連結される足部 2 2 R ( L ) の接地端を介して床面から作用する床反力を検出する床反力検出器 ( 6軸力センサ 3 4 ) を備えた脚式歩行ロボッ ト 1の床反力検出器において、 前 記床反力検出器を、 前記第 2の関節と前記足部の接地端 (バネ機構体 3 8、 ツー ル 4 0、 足底フレーム 5 0および足底プレート 5 2 ) の間に配置するように構成 した。
これにより、 床反力検出器は、 より接地面に近い位置に配置されることとなつ て床反力の検出精度を向上させることができると共に、 床反力検出器と床面との 間に足部の接地端が介挿されることとなって着地時の衝撃の影響を低減すること ができる。 また、 床反力検出器と接地面との間に足部の接地端が介在することと なり、 床反力検出器の強度を向上させる必要がない。
また、 前記第 2の関節付近に前記床反力検出器の一端を接続すると共に、 前記 足部の接地端付近を前記第 2の関節付近を構成する部材 (下腿リンク 3 0 ) より も剛性において低い部材で構成し、 前記剛性において低い部材に前記床反力検出 器の他端を接続するように構成した。
これにより、 足部に適宜な弾性が与えられ、 より一層着地時の衝撃の影響を低 減することができる。 また、 床反力検出器よりも下部に弾性が与えられると共に 、 その上部 (より上体に近い部位) は高い剛性とされることから、 床反力の検出 精度をより一層向上させることができると共に、 検出した床反力と実際にロボッ 卜に作用する力が一致し、 制御性を悪化させることがない。
具体的には、 前記剛性において低い部材がバネ機構体 3 8からなると共に、 前 記床反力検出器を前記パネ機構体を介して前記足部の接地端に接続するように構 成した。
これにより、 前記したのと同様な効果を得ることができると共に、 起立時 (静 止時) の安定性を維持しつつ、 着地時に働く斜め方向の衝撃を緩和することがで きる。
また、 前記パネ機構体は少なく とも 2個の弾性材 (ゴムブッシュ 3 8 2 ) を備 えると共に、 前記床反力検出器を前記少なく とも 2個の弾性材の間に配置するよ うに構成した。
これにより、 検出精度をより一層向上させることができる。
また、 前記少なく とも 2個の弾性材を前記脚式歩行ロボッ 卜の進行方向 (前後 方向) において相互に所定の位置関係となるように配列する (ゴムブッシュ 3 8 2 F , R ) と共に、 前記床反力検出器を前記所定の位置関係となるように配列さ れた弾性材の間に配置するように構成した。
これにより、 起立時の進行方向 (前後方向) の安定性を向上させることができ o
また、 前記少なく とも 2個の弾性材を前記脚式歩行ロボッ'トの進行方向と直交 し、 かつ重力方向と直交する方向 (左右方向 (横方向) ) において相互に所定の 位置関係となるように配列する (ゴムブッシュ 3 8 2 a , b ) と共に、 前記床反 力検出器を前記所定の位置関係となるように配列された弾性材の間に配置するよ うに構成した。
これにより、 起立時の進行方向と直交し、 かつ重力方向と直交する方向、 即ち 左右方向の安定性を向上させることができる。
また、 前記バネ機構体は n ( n≥ 3 ) 個の弾性材を備えると共に、 前記床反力 検出器を、 前記足部に底面視において前記 n個の弾性材を頂点とする n角形の重 心付近に配置するように構成した。
これにより、 いかなる方向からの荷重 (床反力) に対しても同様な (均一な) 衝撃吸収が可能となるため、 安定性が向上すると共に、 床反力の検出精度をより 一層向上させることができる。
また、 前記弾性材のうち、 前記脚式歩行ロボッ 卜の進行方向において前記床反 力検出器よりも後方に配置した弾性材 (ゴムブッシュ 3 8 2 R , R a , R b ) の 剛性を、 前記床反力検出器よりも前方に配置した弾性材 (ゴムブッシュ 3 8 2 F , F a , F b ) の剛性よりも大きく設定するように構成した。 これにより、 踵周辺の剛性が高まって耐久性が向上し、 よって着地時の衝撃低 減効果の経時的劣化を防止することができ、 安定性および床反力検出精度を低下 させることがない。
また、 前記弾性材のうち、 前記脚式歩行ロボッ 卜の進行方向と直交し、 かつ重 力方向と直交する方向において、 前記床反力検出器よりも前記脚部歩行ロボッ ト
(具体的には脚部中心線 f t c ) の外方に配置した弾性材 (ゴムブッシュ 3 8 2 a , F a , R a ) の剛性を、 前記床反力検出器よりも前記脚部歩行ロボッ トの内 方に配置した弾性材 (ゴムブッシュ 3 8 2 b , F b , R b ) の剛性よりも大きく 設定するように構成した。
これにより、 脚部中心線に対して外方に位置する足部の剛性が高まって耐久性 が向上し、 よって着地時の衝撃低減効果の経時的劣化を防止することができ、 安 定性および床反力検出精度を低下させることがない。
また、 前記床反力検出器の付近に絶縁体 (第 1および第 2の絶縁体 7 8 , 8 0 、 第 1および第 2の絶縁ヮッシャ 8 2, 8 6、 第 1および第 2の絶縁スリ一ブ 8 4 , 8 8 ) を設けるように構成した。
これにより、 床反力検出器周辺の付近に配置された制御機器やモータなどに流 れる電流の影響を防止することができる。
尚、 上記において、 ゴムブッシュの数を 3個あるいは 4個とし、 それによつて 形成される多角形を三角形あるいは四角形としたがそれに限られるものではなく 、 任意の n個 (n≥ 3 ) のゴムブッシュを用いて任意の n角形として良い。 また 、 三角形および四角形も例示した長方形 (正方形) あるいは正三角形に限られる ものではなく、 任意に頂点の角度や辺の長さを設定して良く、 要はその重心付近 に 6軸力センサ 3 4を配置するようにすれば良い。
また、 上記した種々の部材の材質も記載したものに限られず、 適宜選別しても 良いことは言うまでもない。
また、 ゴ厶ブッシュの配置位置に応じてその剛性を相違させるように構成した 力 \ これは、 材質の相違によって成しえても良いし、 形状の相違によって成しえ ても良い。
また、 2足歩行ロボッ トを例にとって説明したが、 この発明は 3足以上の脚式 歩行ロボッ トにおいても妥当するものである。 産業上の利用可能性
この発明によれば、 検出精度を向上させて制御性を悪化させることがないと共 に、 起立時の姿勢を安定に保持しつつ、 着地時の衝撃の影響を低減するようにし た脚式歩行ロボッ トの床反力検出器を提供することができる。 特に 2足歩行ロボ ッ トにおいて踵周辺、 および脚部中心線に対して外方の足部の耐久性を向上させ 、 着地時の衝撃低減効果の経時的劣化を防止することにより、 安定性および床反 力検出精度の低下を防止できると共に、 周辺に配置された制御機器やモータなど の影響を防止するようにした脚式歩行ロボッ トの床反力検出器を提供することが できる。

Claims

請求の範囲
1 . 少なく とも上体と、 前記上体に第 1の関節を介して連結される複数本の脚部 を備え、 前記脚部の端部に第 2の関節を介して連結される足部の接地端を介して 床面から作用する床反力を検出する床反力検出器を備えた脚式歩行ロボッ トの床 反力検出器において、 前記床反力検出器を、 前記第 2の関節と前記足部の接地端 の間に配置することを特徴とする脚式歩行ロボッ 卜の床反力検出器。
2 . 前記第 2の関節付近に前記床反力検出器の一端を接続すると共に、 前記足部 の接地端付近を前記第 2の関節付近を構成する部材ょりも剛性において低い部材 で構成し、 前記剛性において低い部材に前記床反力検出器の他端を接続すること を特徴とする請求の範囲第 1項記載の脚式歩行ロボッ トの床反力検出器。
3 . 前記剛性において低い部材がバネ機構体からなると共に、 前記床反力検出器 を前記バネ機構体を介して前記足部の接地端に接続することを特徴とする請求の 範囲第 2項記載の脚式歩行ロボッ 卜の床反力検出器。
4 . 前記パネ機構体は少なく とも 2個の弾性材を備えると共に、 前記床反力検出 器を前記少なく とも 2個の弾性材の間に配置すること特徴とする請求の範囲第 3 項記載の脚式歩行ロボッ トの床反力検出器。
5 . 前記少なく とも 2個の弾性材を前記脚式歩行□ボッ トの進行方向において相 互に所定の位置関係となるように配列すると共に、 前記床反力検出器を前記所定 の位置関係となるように配列された弾性材の間に配置することを特徴とする請求 の範囲第 4項記載の脚式歩行ロボッ トの床反力検出器。
6 . 前記弾性材を前記脚式歩行ロボッ トの進行方向と直交し、 かつ重力方向と直 交する方向において相互に所定の位置関係となるように配列すると共に、 前記床 反力検出器を前記所定の位置関係となるように配列された弾性材の間に配置する ことを特徴とする請求の範囲第 4項記載の脚式歩行ロボッ 卜の床反力検出器。
7 . 前記バネ機構体は n ( n≥ 3 ) 個の弾性材を備えると共に、 前記床反力検出 器を、 前記足部の底面視において前記 n個の弾性材を頂点とする n角形の重心付 近に配置することを特徴とする請求の範囲第 3項記載の脚式歩行ロボッ トの床反 力検出器。
8 . 前記弾性材のうち、 前記脚式歩行ロボッ トの進行方向において前記床反カ検 出器よりも後方に配置した弾性材の剛性を、 前記床反力検出器よりも前方に配置 した弾性材の剛性よりも大きく設定することを特徴とする請求の範囲第 4項、 第 5項および第 7項のいずれかに記載の脚式歩行ロボッ 卜の床反力検出器。
9 . 前記弾性材のうち、 前記脚式歩行ロボッ トの進行方向と直交し、 かつ重力方 向と直交する方向において、 前記床反力検出器よりも前記脚部歩行ロボッ 卜の外 方に配置した弾性材の剛性を、 前記床反力検出器よりも前 脚部歩行ロボッ トの 内方に配置した弾性材の剛性よりも大きく設定することを特徴とする請求の範囲 第 4項、 第 6項および第 7項のいずれかに項記載の脚式歩行ロボッ トの床反カ検
1 0 . 前記床反力検出器の付近に絶縁体を配置することを特徴とする請求の範囲 第 1項から第 9項のいずれかに記載の脚式歩行ロボットの床反力検出器。
PCT/JP2002/008299 2001-08-28 2002-08-15 Detecteur de reactions du sol integre a un robot marcheur mobile WO2003022533A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2004-7001487A KR100535927B1 (ko) 2001-08-28 2002-08-15 레그식 보행 로봇의 바닥 반력 검출기
EP02760648A EP1433573B1 (en) 2001-08-28 2002-08-15 Floor reaction detector of legged mobile robot
DE60232530T DE60232530D1 (de) 2001-08-28 2002-08-15 Bodenreaktionsdetektor für beweglichen laufroboter
US10/487,892 US7756605B2 (en) 2001-08-28 2002-08-15 Floor reaction detector of legged mobile robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-258144 2001-08-28
JP2001258144A JP4733317B2 (ja) 2001-08-28 2001-08-28 脚式歩行ロボットの床反力検出器

Publications (1)

Publication Number Publication Date
WO2003022533A1 true WO2003022533A1 (fr) 2003-03-20

Family

ID=19085715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/008299 WO2003022533A1 (fr) 2001-08-28 2002-08-15 Detecteur de reactions du sol integre a un robot marcheur mobile

Country Status (6)

Country Link
US (1) US7756605B2 (ja)
EP (1) EP1433573B1 (ja)
JP (1) JP4733317B2 (ja)
KR (1) KR100535927B1 (ja)
DE (1) DE60232530D1 (ja)
WO (1) WO2003022533A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3726058B2 (ja) * 2001-12-28 2005-12-14 本田技研工業株式会社 脚式移動ロボットおよびその床反力検出装置
EP2305436B1 (en) * 2002-03-18 2015-10-28 Sony Corporation Robot device and movement controlling method for a robot device
JP3938326B2 (ja) * 2002-05-10 2007-06-27 川田工業株式会社 ロボット用付加的支持構造
KR100571839B1 (ko) * 2004-03-31 2006-04-17 삼성전자주식회사 인간형 로봇
JP4495549B2 (ja) 2004-08-30 2010-07-07 本田技研工業株式会社 脚式移動ロボット
JP2006068872A (ja) 2004-09-03 2006-03-16 Honda Motor Co Ltd 脚式移動ロボット
CN1294045C (zh) * 2004-09-09 2007-01-10 上海交通大学 足部浮动支撑的四足步行机器人的脚结构
KR100688338B1 (ko) * 2005-09-30 2007-03-02 한국과학기술원 시간영역 수동성 제어를 이용한 보행 로봇의 충격제어시스템
EP1953071B1 (en) 2007-02-02 2020-07-29 Honda Motor Co., Ltd. Leg type mobile robot with schock absorber
JP5171290B2 (ja) * 2007-02-02 2013-03-27 本田技研工業株式会社 脚式移動ロボット
JP4847401B2 (ja) * 2007-06-18 2011-12-28 本田技研工業株式会社 移動ロボットの駆動装置
US7905303B2 (en) * 2009-02-10 2011-03-15 Honda Motor Co., Ltd. Legged locomotion robot
WO2011002306A1 (en) * 2009-07-01 2011-01-06 Rex Bionics Limited Control system for a mobility aid
JP4912477B2 (ja) * 2010-02-02 2012-04-11 公立大学法人高知工科大学 移動型床反力計測装置
CN102556199B (zh) * 2011-12-29 2013-07-31 北京航空航天大学 一种仿人机器人多自由度柔性脚板
KR101985790B1 (ko) * 2012-02-21 2019-06-04 삼성전자주식회사 보행 로봇 및 그 제어 방법
CN103434581B (zh) * 2013-08-08 2015-10-14 大连理工大学 一种机器人的脚掌机构
US10988191B2 (en) 2014-08-20 2021-04-27 Hydraulic Systems, Llc Load transporting apparatus and methods of using same
JP6342772B2 (ja) * 2014-10-06 2018-06-13 本田技研工業株式会社 動力システム
CN105564529A (zh) * 2016-01-14 2016-05-11 大连理工大学 一种足式机器人仿生足底机构
CN106272533B (zh) * 2016-10-16 2018-07-10 福州幻科机电科技有限公司 一种仿真智能机器人的脚掌关节总成
CN107472394A (zh) * 2017-09-15 2017-12-15 杭州南江机器人股份有限公司 一种机器人触地感知脚掌结构
CN108068908B (zh) * 2017-12-29 2023-10-10 深圳市优必选科技有限公司 机器人脚板结构和人形机器人
CN109606500B (zh) * 2018-12-14 2020-07-28 浙江大学 一种跑跳双足机器人踝足机构
US11813742B2 (en) * 2019-10-25 2023-11-14 Sony Interactive Entertainment Inc. Foot structure of legged mobile robot and legged mobile robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360923A1 (de) * 1988-09-30 1990-04-04 Kistler Instrumente AG Messplattform
WO1998033629A1 (fr) * 1997-01-31 1998-08-06 Honda Giken Kogyo Kabushiki Kaisha Appareil de controle de robot mobile du type a jambes
WO1999054095A1 (fr) * 1998-04-20 1999-10-28 Honda Giken Kogyo Kabushiki Kaisha Controleur pour robot mobile muni de jambes

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255753A (en) * 1989-12-14 1993-10-26 Honda Giken Kogyo Kabushiki Kaisha Foot structure for legged walking robot
US5500635A (en) * 1990-02-20 1996-03-19 Mott; Jonathan C. Products incorporating piezoelectric material
US5455497A (en) * 1992-04-20 1995-10-03 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot and a system for controlling the same
JP3148827B2 (ja) * 1992-04-30 2001-03-26 本田技研工業株式会社 脚式移動ロボットの歩行制御装置
US5357696A (en) * 1992-05-01 1994-10-25 Gray Frank B Device for measuring force applied to a wearer's foot
US5416393A (en) * 1992-05-20 1995-05-16 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot foot structure
FR2697492B1 (fr) * 1992-11-05 1994-12-23 Commissariat Energie Atomique Pied de robot marcheur.
US5918384A (en) * 1993-08-17 1999-07-06 Akeva L.L.C. Athletic shoe with improved sole
JP3330710B2 (ja) * 1993-12-30 2002-09-30 本田技研工業株式会社 移動ロボットの位置検知および制御装置
US6206934B1 (en) * 1998-04-10 2001-03-27 Flex-Foot, Inc. Ankle block with spring inserts
US5551525A (en) * 1994-08-19 1996-09-03 Vanderbilt University Climber robot
US5765300A (en) * 1995-12-28 1998-06-16 Kianka; Michael Shoe activated sound synthesizer device
US5813148A (en) * 1996-04-08 1998-09-29 Guerra; Rafael J. Footwear with optical fiber illuminating display areas and control module
JP3667914B2 (ja) * 1997-01-31 2005-07-06 本田技研工業株式会社 脚式移動ロボットの遠隔制御システム
US6625846B2 (en) * 1998-03-06 2003-09-30 Shigeo Takizawa Caster for robot
US6519876B1 (en) * 1998-05-06 2003-02-18 Kenton Geer Design Associates, Inc. Footwear structure and method of forming the same
US6553692B1 (en) * 1998-07-08 2003-04-29 Gary G. Pipenger Shock absorption mechanism for shoes
US6751891B2 (en) * 1999-04-29 2004-06-22 Thomas D Lombardino Article of footwear incorporating a shock absorption and energy return assembly for shoes
US6442871B2 (en) * 1999-06-28 2002-09-03 Brown Shoe Co. Shoe heel
JP4279425B2 (ja) * 1999-11-05 2009-06-17 本田技研工業株式会社 脚式歩行ロボットの足部構造
JP3615702B2 (ja) * 1999-11-25 2005-02-02 ソニー株式会社 脚式移動ロボットの動作制御装置及び動作制御方法、並びに、脚式移動ロボット
US6280045B1 (en) * 2000-01-06 2001-08-28 E. S. Originals, Inc. Lighted footwear module with random time delay
JP2001260063A (ja) * 2000-03-21 2001-09-25 Sony Corp 多関節型ロボット及びその動作制御方法
US6578291B2 (en) * 2000-06-06 2003-06-17 John Hirsch Shoe wear indicator
WO2002002034A1 (en) * 2000-06-30 2002-01-10 Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Partner Of The Roland J. Christensen Family Limited Partnership Prosthetic foot
US20020094919A1 (en) * 2000-07-26 2002-07-18 Rennex Brain G. Energy-efficient running aid
JP2002127059A (ja) * 2000-10-20 2002-05-08 Sony Corp 行動制御装置および方法、ペットロボットおよび制御方法、ロボット制御システム、並びに記録媒体
WO2002069609A2 (en) * 2001-02-27 2002-09-06 Anthrotronix, Inc. Robotic apparatus and wireless communication system
US7153242B2 (en) * 2001-05-24 2006-12-26 Amit Goffer Gait-locomotor apparatus
US20090030530A1 (en) * 2002-04-12 2009-01-29 Martin James J Electronically controlled prosthetic system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360923A1 (de) * 1988-09-30 1990-04-04 Kistler Instrumente AG Messplattform
WO1998033629A1 (fr) * 1997-01-31 1998-08-06 Honda Giken Kogyo Kabushiki Kaisha Appareil de controle de robot mobile du type a jambes
WO1999054095A1 (fr) * 1998-04-20 1999-10-28 Honda Giken Kogyo Kabushiki Kaisha Controleur pour robot mobile muni de jambes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1433573A4 *

Also Published As

Publication number Publication date
EP1433573B1 (en) 2009-06-03
US7756605B2 (en) 2010-07-13
JP4733317B2 (ja) 2011-07-27
KR20040030890A (ko) 2004-04-09
US20040238240A1 (en) 2004-12-02
EP1433573A4 (en) 2008-02-13
DE60232530D1 (de) 2009-07-16
JP2003071776A (ja) 2003-03-12
KR100535927B1 (ko) 2005-12-09
EP1433573A1 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
WO2003022533A1 (fr) Detecteur de reactions du sol integre a un robot marcheur mobile
US6564888B1 (en) Biped mobile robot
US6401846B1 (en) Knee pad for a legged walking robot
US5455497A (en) Legged mobile robot and a system for controlling the same
EP1637050B1 (en) Legged mobile robot with means for removing the static electric charge accumulated in the robot's feet
JP3574952B2 (ja) 二脚歩行式移動装置及びその歩行制御装置
JP4279425B2 (ja) 脚式歩行ロボットの足部構造
US7904200B2 (en) Leg type mobile robot
EP0406018A1 (en) Legged walking robot and system for controlling the same
US20080297091A1 (en) Foot of walking robot and walking robot having the same
JPH10286789A (ja) 関節トルク検出装置
WO2003051582A1 (fr) Dispositif mobile de type marche de bipède, et dispositif de commande de marche et procédé de commande de marche correspondant
JP3118777B2 (ja) 脚式歩行ロボットの足部構造
JP3629143B2 (ja) 脚式移動ロボットの制御装置
JPH04122586A (ja) 脚式移動ロボット及びその歩行制御装置
JP4675356B2 (ja) 脚式移動ロボット
JP2002307339A (ja) 脚式移動ロボット及びその制御方法、並びに脚式移動ロボットのための足首構造
JP4516344B2 (ja) 脚式移動ロボット
JP3405868B2 (ja) 脚式歩行ロボットの歩容生成方法
JP3270767B2 (ja) 衝撃吸収機構を備えた脚式歩行ロボット
JP5528916B2 (ja) ロボット及びロボットの外力検出機構
CN117208114A (zh) 点足式双足机器人、机器人
Ota et al. Six-axis force control for walking robot with serial/parallel hybrid mechanism

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047001487

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10487892

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002760648

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002760648

Country of ref document: EP