WO2003020680A1 - Procede de production d'acide dicarboxylique aromatique - Google Patents

Procede de production d'acide dicarboxylique aromatique Download PDF

Info

Publication number
WO2003020680A1
WO2003020680A1 PCT/JP2002/008606 JP0208606W WO03020680A1 WO 2003020680 A1 WO2003020680 A1 WO 2003020680A1 JP 0208606 W JP0208606 W JP 0208606W WO 03020680 A1 WO03020680 A1 WO 03020680A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
slurry
crystals
dicarboxylic acid
liquid separation
Prior art date
Application number
PCT/JP2002/008606
Other languages
English (en)
French (fr)
Inventor
Takayuki Isogai
Motoki Numata
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP02767859A priority Critical patent/EP1422214A4/en
Publication of WO2003020680A1 publication Critical patent/WO2003020680A1/ja
Priority to US10/785,400 priority patent/US20040225148A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B3/00Centrifuges with rotary bowls in which solid particles or bodies become separated by centrifugal force and simultaneous sifting or filtering
    • B04B3/04Centrifuges with rotary bowls in which solid particles or bodies become separated by centrifugal force and simultaneous sifting or filtering discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption

Definitions

  • the present invention relates to a method for producing an aromatic dicarboxylic acid, and more particularly, to a solid-liquid separation of a slurry containing crystals of an aromatic dicarboxylic acid obtained by a reaction, wherein a screen having a screw conveyor disposed therein is used.
  • the present invention relates to a method for producing an aromatic dicarboxylic acid using a centrifugal separator.
  • the aromatic dicarboxylic acid is obtained by subjecting an aromatic compound having an alkyl substituent or a partially oxidized alkyl substituent to a liquid phase oxidation with a molecular oxygen-containing gas in a reaction solvent in the presence of a catalyst, and then obtained.
  • the slurry containing the aromatic dicarboxylic acid crystals is subjected to solid-liquid separation to recover the crystals.
  • the present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to use a screen-type centrifugal separator in which a screw conveyor is disposed, and prepare a slurry containing aromatic dicarboxylic acid crystals obtained by the reaction. It is an object of the present invention to provide an improved method for producing an aromatic dicarboxylic acid which prevents clogging of a centrifugal separator during solid-liquid separation and enables efficient solid-liquid separation. Another object of the present invention is to provide a method for producing aromatic dicarboxylic acid which is improved so that the purity of the crystals recovered by the solid-liquid separation is improved.
  • FIG. 1 is an explanatory sectional view of a preferred screen type centrifuge which can be used in the present invention.
  • the present inventors have conducted intensive studies on a consolidated layer (cake layer) formed in a compacted state inside a screen by a screw in order to achieve the above object, and as a result, have obtained the following knowledge. . That is, by letting relatively small-sized irregular particles in the slurry leak out of the screen, a solidified layer formed in a compacted state inside the screen by relatively large-sized irregular particles is formed. The cake layer does not cause major clogging. In the case where the amorphous particles are crystals, the impurities are concentrated in crystals having a relatively small particle size, so that the purity of the recovered crystals is increased by the leakage.
  • the present invention has been completed based on the above-mentioned findings, and the gist of the present invention is to convert an aromatic compound having an alkyl substituent or a partially oxidized alkyl substituent into a reaction solvent in the presence of a catalyst in molecular form.
  • the slurry containing the crystals of the aromatic dicarboxylic acid is subjected to liquid-phase oxidation with an oxygen-containing gas, and then the slurry is recovered by solid-liquid separation.
  • the screen of the screen-type centrifugal separator is used as a screen where some of the crystals in the supplied slurry leak.
  • liquid phase oxidation reaction an aromatic compound having an alkyl substituent or a partially oxidized alkyl substituent is subjected to liquid phase oxidation with a molecular oxygen-containing gas in a reaction solvent in the presence of a catalyst, and contains an aromatic dicarboxylic acid. Obtain a slurry.
  • an aromatic compound having an alkyl substituent or a partially oxidized alkyl substituent is used as a reaction raw material.
  • Such an aromatic compound may be monocyclic or polycyclic.
  • the alkyl substituent include an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. Examples thereof include a aldehyde group, an acyl group, a carboxyl group, and a hydroxyalkyl group.
  • aromatic compounds having alkyl substituents include m-diisopropylbenzene, p-diisopropylbenzene, m-cymene, p-cymene, m-xylene, p-xylene and the like.
  • aromatic compound having a partially oxidized alkyl substituent examples include 3-methylbenzaldehyde, 4-methylbenzaldehyde, m-toluic acid, p-toluic acid, 3-formylbenzoic acid, 4-formylbenzoic acid and formylna phthalene carboxylic acid.
  • a combination of a heavy metal compound and a bromine compound is used.
  • the heavy metal in the heavy metal compound include conoreto, manganese, nickel, chromium, zirconium, copper, lead, hafnium, and cerium.
  • Heavy Examples of the metal compound include acetate, nitrate, acetyl acetonate, naphthenate, stearate, and bromide.
  • bromine compound examples include inorganic bromine compounds such as molecular bromine, hydrogen bromide, sodium bromide, potassium bromide, cobalt bromide, and manganese bromide; methyl bromide, methylene bromide, bromoform, bromobenzyl, Organic bromine compounds such as bromomethyltoluene, dibromoethane, tribromoethane and tetrabromoethane are exemplified.
  • inorganic bromine compounds such as molecular bromine, hydrogen bromide, sodium bromide, potassium bromide, cobalt bromide, and manganese bromide
  • methyl bromide methylene bromide, bromoform, bromobenzyl
  • Organic bromine compounds such as bromomethyltoluene, dibromoethane, tribromoethane and tetrabromoethane are exemplified.
  • the ratio of the heavy metal compound to the bromine compound is selected from the range of usually 0.05 to 10 mol, preferably 0.1 to 2 mol, as the ratio of bromine atom to 1 mol of heavy metal atom.
  • the amount of the catalyst used is generally selected from the range of 10 to 10,000 ppm, preferably 100 to 5000 ppm as the concentration of heavy metal in the reaction solvent.
  • a lower aliphatic carboxylic acid 5 ' is suitably used as the reaction solvent.
  • the lower aliphatic carboxylic acid include acetic acid, propionic acid, and butyric acid.
  • the lower aliphatic carboxylic acids can be used alone or in a mixture with water.
  • the amount of the reaction solvent to be used is generally selected from the range of 0.5 to 70 parts by weight, preferably 2 to 50 parts by weight, relative to 1 part by weight of the raw material in the liquid phase.
  • the molecular oxygen-containing gas examples include oxygen and air.
  • the molecular oxygen-containing gas is supplied in excess of the amount required to oxidize the aromatic compound with the raw material to aromatic carboxylic acid.
  • the amount of using air as a percentage of the aromatic compounds 1 kg of the oxidizing material, typically 2 to 20 nm 3, preferably selected from the range of 2. 5 ⁇ 1 5 Nm 3.
  • the reaction is carried out at room temperature, and the reaction time is generally selected from the range of 4 to 180 minutes, preferably from 6 to 120 minutes.
  • the above reaction time is the residence time.
  • Aromatic dicarboxylic acid generated by the reaction partially precipitates as crystals, and forms a slurry in which a part thereof is dissolved in a solvent.
  • a catalyst dissolved in a reaction solvent unreacted raw materials, It is composed of by-products and unprecipitated terephthalic acid.
  • the average particle size of terephthalic acid crystals is usually 120 m ⁇ 40 m.
  • the solid-liquid separation will be described.
  • the slurry containing the aromatic dicarboxylic acid crystals obtained by the above reaction is subjected to solid-liquid separation to recover the crystals.
  • the crude crystals thus recovered from the reaction step are generally processed in a purification step.
  • a high-purity aromatic dicarboxylic acid is recovered by solid-liquid separation of the slurry generated in the purification step. Crystals can be washed during solid-liquid separation.
  • a lower fatty acid such as acetic acid is suitably used as the washing liquid.
  • the above solid-liquid separation is performed using a screen type centrifugal separator in which a screw conveyor is arranged.
  • any type of screen type centrifugal separators can be used, regardless of the name, as long as the separator can separate solid and liquid by the action of centrifugal force while transferring the object to be processed on a screen by a screw conveyor.
  • decanter centrifuge Japanese Patent Application Laid-Open No. 7-155643
  • screen ball type centrifuge Japanese Patent Application Laid-Open No. 2000-350946, WO98Z18750
  • the 1 includes an outer rotating cylinder (1), a cylindrical rotating shaft (2 1) and a screw (2 2) which are provided in the outer rotating cylinder so as to be relatively rotatable.
  • the outer rotating cylinder (1) has a large-diameter section (1 1) on the base end side and a gradually decreasing inclined section.
  • the small-diameter portion (13) has a solid material outlet (5) at the tip.
  • the inside of the rotary shaft (21) of the screw conveyor is partitioned into a slurry supply part (21a) on the base end side and a cleaning liquid supply part (21b) on the tip end side, and
  • the slurry supply section (2 1a) is connected to the slurry supply pipe (3).
  • the slurry supply unit (21b) is configured to be capable of supplying slurry
  • the cleaning liquid supply unit (21b) is configured to be able to supply the cleaning liquid by the cleaning liquid supply tube (6) inserted inside the slurry supply tube (3).
  • Each of the above components is housed in a casing (9).
  • the inside of the casing (9) is divided by a partition wall into an overflow liquid storage chamber (91), a filtrate storage chamber (92), and a solid substance storage chamber (93).
  • (92) is divided into three chambers (92a), (92b) and (92c) along the longitudinal direction of the small diameter part (13) for the convenience of sampling the filtrate.
  • a feature of the present invention resides in that a screen having an aperture through which a part of crystals in a supplied slurry is leaked is used as a screen of a screen type centrifuge.
  • “leakage of a part of the crystal” means that the crystal leaks in an amount of 1% by weight or more specifically.
  • the aperture of the screen used in the present invention is, for example, assuming that the speed of crystals in a continuously supplied slurry is A (K g / hr), 0.01 A to 0.1 A ( K gZh r) It must be of such a size that a considerable amount can be continuously leaked. Since it is considered that the leakage occurs preferentially from the crystal having a small particle diameter, in the present invention, the crystal having a relatively small particle diameter in the slurry is leaked from the screen.
  • the screen aperture is usually (B-10) It is not less than (B + 80) ⁇ m and preferably not less than (B_5) ⁇ m and not more than (B + 60) /. m when not less than ⁇ m.
  • the aperture of the screen is usually 90 to 180 m, preferably 95 to 160 ⁇ m.
  • the size of the aperture generally means the minimum width of the hole, and is determined as follows depending on the shape of the hole in the screen.
  • the size of the aperture is the width of the hole for the slit type, the diameter for the circular shape, the minor diameter of the hole for the elliptical shape, the short side length of the hole for the rectangular shape, and the square size for the square shape. Is the length of one side of the hole, the shortest distance between two parallel sides of the hole for a diamond, and the shortest distance between the long sides of a parallelogram other than the above.
  • the particle size of the crystals in the slurry is generally a force s that can be measured by various known methods for measuring the particle size of the powder, and in the present invention, the force is measured using a laser scattering type particle size distribution measuring device. Adopt the value that did.
  • the inside of the screen specifically, the outside rotating cylinder
  • the consolidated layer (cake layer) of crystals formed in a compacted state at the space between (1) and the screw (22) is composed of crystals having a relatively large grain size.
  • the consolidation layer (cake layer) contains relatively small-sized irregular particles
  • the consolidation layer (cake layer) becomes strong due to the strong bridging action.
  • the solidified layer (cake layer) composed of relatively large-sized irregular particles tends to collapse because there is no strong bridging effect. Therefore, the above-mentioned solidified layer (cake layer) in the case of the present invention is presumed to be continually disintegrated and renewed, and therefore is not considered to cause a large clogging.
  • the amount of leakage is 40% by weight or less. Preferred And more preferably 20% by weight or less, particularly preferably 10% by weight or less.
  • solid-liquid separation is performed as follows.
  • the slurry is supplied from the slurry supply pipe (3) to the large-diameter portion (11) of the outer rotating cylinder (1) via the slurry supply section (21a).
  • solid-liquid separation is performed by the centrifugal separation action of the outer rotating cylinder (1) rotating at high speed.
  • the separated liquid is taken out from the overflow port (4) through the overflow liquid storage chamber (91).
  • the crystal is transferred from the inclined part (1 2) to the small diameter part (13) by the screw (22).
  • the mother liquor in the crystal is separated by the centrifugal force on the screen (13a).
  • the cleaning liquid is supplied from the cleaning liquid supply pipe (6).
  • the cleaning liquid is sprayed from the cleaning liquid supply (24) to the crystal being transferred via the cleaning liquid supply section (21b).
  • the washed and dehydrated crystals are removed from the solids outlet (5) through the solids storage chamber (93).
  • the conditions for the solid-liquid separation are not particularly limited, but it is preferable to apply a centrifugal force of 300 to 500 G on the screen and set the residence time of the solid-liquid separation on the screen to 2 to 20 seconds.
  • the above residence time is a condition that the residence time is the residence time after passing through the supply area of the cleaning liquid.
  • the preferred centrifugal force is between 500 and 3000 G. Such adjustment of the centrifugal force is performed by controlling the rotation speed of the drive motor of the outer rotating cylinder (1).
  • the residence time is less than 2 seconds, sufficient solid-liquid separation will not be performed. If the residence time exceeds 20 seconds, the solid-liquid separation effect will be saturated and the operating efficiency of the centrifuge will decrease.
  • the preferred residence time is 3-5 seconds. Such adjustment of the residence time depends on the design method of screen size (length) and the rotation of the outer rotating cylinder (1) and screw conveyor (2). It can be performed by controlling the operating condition of the difference in rolling speed (ie, the transfer speed of the object to be processed on the screen).
  • the screen-type centrifugal separator shown in Fig. 1 equipped with a screen (slit type) with the openings shown in Table 1 below was used to add the terephthalic acid crystal-containing slurry (solid content concentration) obtained in the terephthalic acid production process. : 30 WT%, average particle size: 100 m, paratoluic acid (P-TA) concentration in solids: 180 ppm) was continuously supplied under normal pressure at 40 ° C under the conditions shown in Table 1. Solid-liquid separation was performed. The centrifugal force in Table 1 shows the value on the screen. Table 1 shows the results.
  • the average particle size of the terephthalic acid crystals is 50% integrated from the particle size distribution measured using a particle size distribution analyzer (“LASER MI CRON SI ZER LMS-24”) manufactured by Seishin Enterprise Co., Ltd. The particle size reading was taken. The aperture of the screen was obtained by enlarging the slit with a microscope, measuring the width of 360 holes, and obtaining the average value.
  • LASER MI CRON SI ZER LMS-24 manufactured by Seishin Enterprise Co., Ltd.
  • the particle size reading was taken.
  • the aperture of the screen was obtained by enlarging the slit with a microscope, measuring the width of 360 holes, and obtaining the average value.
  • Example 1 a terephthalic acid crystal-containing slurry having an average particle size of terephthalic acid crystal of 110 / m and a solid concentration of 30% by weight was used, and a screen (slit type) having an aperture of 150 m was used. Solid-liquid separation was performed in the same manner as in Example 1 except that the conditions of 160 ° C. and 0.65 MPa were adopted. Table 1 shows the results. table 1
  • the residence time in Table 2 is the time after passing through the supply area of the cleaning liquid sprayed from the cleaning liquid supply port (24) (specifically, after 2 seconds from immediately below the cleaning liquid supply port (24)).
  • the residence time and the liquid content of the recovered cake were determined as follows for convenience. That is, the filtrate samples were collected from the positions corresponding to the respective residence times, the solids concentration in the filtrate samples at each residence time was measured, and the liquid content of the recovered cake was calculated by mass balance calculation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Centrifugal Separators (AREA)

Description

明 細 書 芳香族ジ力ルボン酸の製造方法 技術分野
本発明は、 芳香族ジカルボン酸の製造方法に関し、 詳しくは、 反応によって 得られた芳香族ジ力ルボン酸の結晶を含むスラリーの固液分離に際し、 内部に スクリユーコンベアが配置されたスクリ一ン型遠心分離機を使用する芳香族ジ カルボン酸の製造方法に関する。 背景技術
芳香族ジカルボン酸は、 反応溶媒中、 触媒の存在下、 アルキル置換基または 一部酸化したアルキル置換基を有する芳香族化合物を分子状酸素含有ガスによつ て液相酸化し、 次いで、 得られた芳香族ジカルボン酸の結晶を含むスラリーを 固液分離して結晶を回収する方法によって製造される。
そして、 上記の固液分離方法として内部にスクリユーコンベアが配置された スクリーン型遠心分離機を使用する方法が提案されている (例えば W098/ 1 8750号公報) 。
ところで、 スクリーンを介して固液分離する場合、 如何に目詰まりを防止し て効率的に固液分離を行なうかが重要である。 特に、 スクリューコンベアが配 置されたスクリーン型遠心分離機の場合、 スクリューによってスクリーンの内 側に圧密状態で形成される固結層 (ケーキ層) により目詰まり力5'助長される。 特開平 8— 294643号公報には、 スクリーンの機能を維持するためにス クリ一ン内の固結層を搔き取るためのスクレーパー力提案されている力 スク レーパーの設置により装置が複雑化するという問題がある。 また、 スクリーン の目開きに関しては、 例えば、 「F i l t r a t i o n & S e p a r a t i o n (S e p. , 2000, p. 245) 」 には、 スクリ一ンに粒子が引つ 掛かって目詰まりが生じるのを防止するためにスクリーンの目開きは分離され る固形物の粒径の 2〜 3倍に設定するのがよい旨の記載があるが、 この様な大 きな目開きのスクリーンでは目洩れ量が多すぎるという問題がある。
本発明は、 上記実情に鑑みなされたものであり、 その目的は、 内部にスクリユー コンベアが配置されたスクリーン型遠心分離機を使用し、 反応によって得られ た芳香族ジカルボン酸の結晶を含むスラリーを固液分離するに際し、 遠心分離 機の目詰まりを防止し、 効率的に固液分離を行ない得る様に改良された芳香族 ジカルボン酸の製造方法を提供することにある。 また、 本発明の他の目的は、 上記の固液分離によって回収される結晶の純度が高められる様に改良された芳 香族ジ力ルボン酸の製造方法を提供することにある。 図面の簡単な説明
図 1 は本発明で使用し得る好適なスクリーン型遠心分離機の断面説明図であ
発明の開示
本発明者らは、 上記の目的を達成すべく、 スクリューによってスクリーンの 内側に圧密状態で形成される固結層 (ケーキ層) について鋭意検討を重ねた結 果、 次の様な知見を得た。 すなわち、 スラリー中の比較的小粒径の不定形粒子 をスクリーンから目洩れさせることにより、 比較的大粒径の不定形粒子によつ てスクリーンの内側に圧密状態で形成される固結層 (ケーキ層) は、 大きな目 詰まりを惹起しない。 また、 上記の不定形粒子が結晶の場合は、 比較的小粒径 の結晶に不純物が濃縮されるため、 上記の目洩れにより、 回収される結晶の純 度が高められる。
本発明は、 上記の知見に基づき完成されたものであり、 その要旨は、 反応溶 媒中、 触媒の存在下、 アルキル置換基または一部酸化したアルキル置換基を有 する芳香族化合物を分子状酸素含有ガスによって液相酸化し、 次いで、 得られ た芳香族ジ力ルボン酸の結晶を含むスラリーを固液分離して結晶を回収する芳 香族ジカルボン酸の製造方法において、 内部にスクリユーコンベアが配置され たスクリーン型遠心分離機に上記のスラリ一を連続的に供給して固液分離する に当たり、 スクリーン型遠心分離機のスクリーンとして、 供給されるスラリー 中の結晶の一部が目洩れする目開きのスクリーンを使用することを特徴とする 芳香族ジ力ルボン酸の製造方法に存する。
以下、 本発明を詳細に説明する。
先ず、 液相酸化反応について説明する。 本発明においては、 反応溶媒中、 触 媒の存在下、 アルキル置換基または一部酸化したアルキル置換基を有する芳香 族化合物を分子状酸素含有ガスによって液相酸化し、 芳香族ジカルボン酸を含 むスラリーを得る。
反応原料としては、 アルキル置換基または一部酸化したアルキル置換基を有 する芳香族化合物が使用される。 斯かる芳香族化合物は単環であつても多環で あってもよい。 また、 上記のアルキル置換基としては、 例えば、 メチル基、 ェ チル基、 n—プロピル基、 イソプロピル基などの炭素数 1〜 4のアルキル基が 挙げられ、 上記の一部酸化したアルキル基としては、 例えば、 ルデヒド基、 ァ シル基、 カルボキシル基、 ヒ ドロキシアルキル基などが挙げられる。
アルキル置換基を有する芳香族化合物 (アルキル置換芳香族炭化水素) の具 体^]としては、 m—ジイソプロピルベンゼン、 p—ジイソプロピルベンゼン、 m—シメン、 p —シメン、 m—キシレン、 p —キシレン等のジアルキルべンゼ ン類; ジメチルナフタレン類、 ジェチルナフタレン類、 ジイソプロピルナフタ レン類などのジアルキルナフタレン類; ジメチルビフエニル類などのジアルキ ルビフエニル類などが挙げられる。
一部酸化したアルキル置換基を有する芳香族化合物の具体例と しては、 3 一メチルベンズアルデヒ ド、 4 _メチルベンズアルデヒ ド、 m— トルィル酸、 p — トルィル酸、 3 _ホルミル安息香酸、 4ーホルミル安息香酸、 ホルミルナ フタレンカルボン酸類などが挙げられる。
触媒としては、 重金属化合物と臭素化合物との組合せが使用される。 重金属 化合物における重金属としては、 例えば、 コノ レト、 マンガン、 ニッケル、 ク ロム、 ジルコニウム、 銅、 鉛、 ハフニウムおよびセリウム等が挙げられる。 重 金属の化合物としては、 例えば、 酢酸塩、 硝酸塩、 ァセチルァセトナート塩、 ナフテン酸塩、 ステアリン酸塩、 臭化物などが挙げられる。 臭素化合物として は、 例えば分子状臭素、 臭化水素、 臭化ナトリウム、 臭化カリウム、 臭化コバ ルト、 臭化マンガン等の無機臭素化合物;臭化メチル、 臭化メチレン、 ブロモ ホルム、 臭ィヒベンジル、 ブロモメチルトルエン、 ジブロモェタン、 トリブロモ ェタン、 テトラブロモェタン等の有機臭素化合物が挙げられる。
重金属化合物と臭素化合物と使用割合は、 重金属原子 1モルに対する臭素原 子の割合として、 通常 0. 05〜 1 0モル、 好ましくは 0. 1〜 2モルの範囲 から選択される。 触媒の使用量は、 反応溶媒中の重金属濃度として、 通常 10 〜 10000 p pm、 好ましくは 1 00〜5000 p pmの範囲から選択され o
反応溶媒としては、 低級脂肪族カルボン酸力5'好適に使用される。 低級脂肪族 カルボン酸の具体例としては、 酢酸、 プロピオン酸、 酪酸などが挙げられる。 低級脂肪族カルボン酸は、 単独使用の他、 水と混合して混合物の状態で使用す ることも出来る。 反応溶媒の使用量は、 液相部における原料 1重量部に対する 割合として、 通常 0. 5〜70重量部、 好ましくは 2〜 50重量部の範囲から 選択される。
分子状酸素含有ガスとしては、 例えば、 酸素、 空気などが挙げられる。 分子 状酸素含有ガスは、 原料との芳香族化合物を芳香族カルボン酸に酸化するのに 必要な量より過剰に供給される。 空気を使用する場合の使用量は、 酸化原料と なる芳香族化合物 1 k gに対する割合として、 通常 2〜20Nm3、 好ましくは 2. 5〜 1 5 Nm3の範囲から選択される。
通常、 反応は常温で行われ、 反応時間は、 通常 4〜 1 80分、 好ましくは 6 〜 120分の範囲から選択される。 ここで、 酸化反応を連続式に行う場合、 上 記反応時間は滞留時間である。 反応により生成する芳香族ジカルボン酸は一部 が結晶として析出し、 一部が溶媒中に溶解した状態のスラリーを形成する。 例 えば、 パラシレンの液相酸化によるテレフタル酸の製造の場合、 通常、 反応溶 媒としての酢酸、 テレフタル酸結晶、 反応溶媒に溶解した触媒、 未反応原料、 副生物および未析出のテレフタル酸などから構成される。 また、 テレフタル酸 結晶の平均粒径は通常 1 20 m±40 mである。
次に、 固液分離について説明する。 本発明においては、 上記の反応で得られ た芳香族ジカルボン酸の結晶を含むスラリーを固液分離して結晶を回収する。 この様に反応工程から回収された粗結晶は、 一般に精製工程で処理される。 そ して、 精製工程で生じるスラリーの固液分離によつて高純度の芳香族ジ力ルボ ン酸が回収される。 また、 固液分離の際に結晶の洗浄を行なうことも出来る。 洗浄液として酢酸などの低級脂肪酸が好適に使用される。
上記の固液分離は、 内部にスクリユーコンベアが配置されたスクリーン型遠 心分離機を使用して行われる。 本発明においては、 スクリーン上でスクリユー コンベアにより被処理物を移送させながら遠心力の作用により固液分離し得る 分離機である限り、 呼名の如何を問わず各種の構造のスクリ―ン型遠心分離機 を使用し得る。 例えば、 通称 「デカンタ型遠心分離機」 (特開平 7— 1 556 43号など) 、 「スクリーンボール型デ力ゥンタ遠心分離機」 (特開昭 200 0— 3 50946号、 WO98Z1 8750号公報など) が知られている。 図 1 に示すスクリーン型遠心分離機は、 外側回転筒 (1) と、 当該外側回転 筒内に相対回転自在に設けられ且つ円筒状の回転軸 (2 1) とスクリュー (2 2) とから成るスクリューコンベア (2) と、 当該スクリューコンベアの回転 軸の内部に配置され且つ当該回転軸の内部にスラリーを供給するスラリー供給 管 (3) とを有し、 スクリューコンベア (2) の基端側には外側回転筒 (1) にスラリーを供給するスラリー供給口 (23) が設けられ、 外側回転筒 (1) は、 基端側の大径部 (1 1) と、 漸次縮径された傾斜部 (1 2) と、 スクリー ン (1 3 a) を備えた小径部 (1 3) とを順次に配置して構成され、 大径部 (1 1) の基端には溢流口 (4) 力設けられ、 小径部 (1 3) の先端には固形 物排出口 (5) が設けられた構造を有する。
更に、 好ましい態様として、 スクリューコンベアの回転軸 (2 1) の内部は 基端側のスラリー供給部 (2 1 a) と先端側の洗浄液供給部 (2 1 b) とに仕 切られ、 そして、 スラリー供給部 (2 1 a) はスラリー供給管 (3) によって スラリ ーの供給が可能に構成され、 洗浄液供給部 (2 1 b) は、 スラリー供給 管 (3) の内部に挿通された洗浄液供給管 (6) によって洗浄液の供給が可能 に構成され、 スクリューコンベア (2) の先端側には外側回転筒 ( 1 ) の小径 部 (1 3) に洗浄液を供給する洗浄液供給口 (2 4) 力 ?設けられている。
外側回転筒用駆動軸 ( 7 ) のフランジ (7 1 ) の外周部には複数の開口 (7 1 c) 力 殳けられ、 これによつて固形物排出口 (5) 力 s構成されている。 また、 スクリユーコンベア用駆動軸 ( 8 ) のフランジ (8 1 ) の外周部には複数の開 口 (8 1 c) カ?設けられ、 これによつて溢流口 (4) が構成されている。
前記の各要素はケーシング (9) に収容されている。 そして、 ケ一シング (9) の内部は、 仕切り壁により、 溢流液収容室 (9 1) 、 濾液収容室 (92) 、 固形物収容室 (9 3) に分割され、 更に、 濾液収容室 (9 2) は、 濾液のサン プリングの便宜のため、 小径部 (1 3) の長手方向に沿って 3つの部屋 (9 2 a) 、 (9 2 b) 、 (9 2 c) に仕切り壁によって分割されている。 そして、 上記の溢流液収容室 (9 1) 、 濾液収容室 (9 2) の各部屋 (9 2 a) 、 ( 9 2 b) 、 (9 2 c ) , 固形物収容室 (9 3) には、 それぞれ、 取出配管が設け られている。
本発明の特徴は、 スクリーン型遠心分離機のスクリーンとして、 供給される スラリー中の結晶の一部が目洩れする目開きのスクリーンを使用する点にある。 ここで結晶の一部が目洩れするとは、 具体的には、 1重量%相当量以上の結晶 が目洩れすることを意味する。
すなわち、 本発明で使用するスクリーンの目開きは、 例えば、 連続的に供給 されるスラリー中の結晶の速度を A (K g/h r) とした場合、 0. 0 1 A〜 0. 1 A (K gZh r) 相当量を連続的に目洩れさせ得る大きさのものでなけ ればならない。 目洩れは、 粒径の小さい結晶から優先して生じると考えられる ことから、 本発明においては、 スラリ一中の比較的小粒径の結晶がスクリーン から目洩れさせられることとなる。
具体的な目開きとしては次の通りである。 すなわち、 スラリー中の結晶の平 均粒径を B ( m) としたときに、 スクリーンの目開きは、 通常 (B— 1 0) μ m以上で (B + 8 0 ) μ m以下、 好ましくは (B _ 5 ) μ m以上で (B + 6 0 ) /. m以下である。 従って、 例えば、 結晶の平均粒径が 1 0 0 mの場 合、 スクリーンの目開きは、 通常 9 0〜 1 8 0 m、 好ましくは 9 5〜 1 6 0 μ mでめ
なお、 目開きの大きさは、 一般的に穴の最小幅を意味しており、 スクリーン の穴の形状によって次の様に求められる。 すなわち、 目開きの大きさは、 スリツ ト形の場合は穴の幅、 円形の場合は直径、 楕円形の場合は穴の短径、 長方形の 場合は穴の短辺長さ、 正方形場合の場合は穴の一辺の長さ、 菱形の場合は穴の 平行な二辺間の最短距離、 上記以外の平行四辺形の場合は穴の長辺間の最短距 離である。
また、 スラリー中の結晶の粒径は、 一般に粉体の粒径を測定する公知の各種 の方法によって測定し得る力 s、 本発明においては、 レーザー散乱型の粒度分布 測定装置を使用して測定した値を採用する。
上記の結果、 本発明の場合、 スクリーンの内側、 具体的には、 外側回転筒
( 1 ) とスクリユー (2 2 ) との間の間隔に圧密状態で形成される結晶の固結 層 (ケーキ層) は、 比較的大粒径の結晶によって構成される。 この様な固結層
(ケーキ層) の場合には大きな目詰まりが惹起されない理由は、 必ずしも明ら かではないが、 次の様に推定される。
すなわち、 一般に、 固結層 (ケーキ層) は、 比較的小粒径の不定形粒子を含 む場合は、 それによる強固なブリッジング作用によって強固となる。 これに対 し、 比較的大粒径の不定形粒子によって構成される固結層 (ケーキ層) は、 強 固なブリッジング作用が存在しないために崩壊し易い。 従って、 本発明の場合 の上記の固結層 (ケーキ層) は、 絶えず崩壊されて更新されていると推定され、 そのため、 大きな目詰まりの原因とならないと考えられる。
上記の目洩れ量の割合が 1重量 6未満となる様な目開きのスクリーンを使用 した場合は、 目詰まり防止効果は達成されない。 一方、 目開きの大き過ぎるス クリーンを使用した場合は、 目詰まり防止効果が飽和する一方で目洩れ量が多 くなり過ぎ効率的ではないので、 目洩れ量としては、 4 0重量%以下が好まし く、 20重量%以下が更に好ましく、 1 0重量%以下が特に好ましい。
また、 比較的小粒径の結晶に不純物が濃縮されるため、 上記の目洩れにより、 回収される結晶の純度が高められる。 すなわち、 パラシレンの液相酸化による テレフタル酸の製造の場合は、 代表的な不純物であるパラトルィル酸の濃度が 低減された結晶が回収される。
本発明において、 固液分離は次の様に行われる。 スラリーは、 スラリー供給 管 (3) からスラリー供給部 (2 1 a) を介し外側回転筒 (1) の大径部 (1 1) に供給される。 そして、 ここで、 高速回転する外側回転筒 (1) の遠心分 離作用により固液分離される。
分離液は、 溢流口 (4) から溢流液収容室 (9 1) を介して取出される。 一 方、 結晶は、 スクリュー (22) より傾斜部 (1 2) から小径部 (1 3) に移 送される。 この際、 結晶中の母液は、 スクリーン (1 3 a) において遠心力に より分離される。 同時に洗浄液供給管 (6) から洗浄液が供給される。 洗浄液 は、 洗浄液供給部 (2 1 b) を介し洗浄液供給 (24) から移送中の結晶に噴 射される。 洗浄および脱水された結晶は、 固形物排出口 (5) から固形物収容 室 (93) を介して取出される。
固液分離の条件は特に制限されないが、 スクリーン上において 300〜50 00 Gの遠心力を作用させ、 スクリーン上の固液分離の滞留時間を 2〜 20秒 に設定するのが好ましい。 上記の滞留時間は、 洗浄液供給口が備えられている 場合は洗浄液の供給域を通過した以降の滞留時間であることを条件とする。 遠心力が 300 G未満の場合はスクリ一ン上での固液分離の滞留時間が余り にも長くなり、 5000 Gを超える場合は遠心分離機の安定運転が困難となる。 好ましい遠心力は 500〜3000 Gである。 斯かる遠心力の調節は外側回転 筒 (1) の駆動モータの回転数の制御によって行われる。
滞留時間が 2秒未満の場合は十分な固液分離が行われず、 20秒を超える場 合は固液分離効果が飽和して遠心分離機の運転効率が低下する。 好ましい滞留 時間は 3〜 5秒である。 斯かる滞留時間の調節は、 スクリーンのサイズ (長さ) という設計上の方法の他、 外側回転筒 (1) とスクリューコンベア (2) の回 転速度差 (すなわちスクリーン上における被処理物の移送速度) という運転条 件の制御によって行なうことが出来る。 発明を実施するための最良の形態
以下、 本発明を実施例により更に詳細に説明する力^ 本発明は、 その要旨を 超えない限り、 以下の実施例に限定されるものではない。
実施例 1及び 2並びに比較例 1
以下の表 1に示す目開きのスクリーン (スリッ ト型) を備えた図 1に示すス クリーン型遠心分離機に、 テレフタル酸の製造工程で得られたテレフタル酸結 晶含有スラリ一 (固形分濃度: 30WT%、 平均粒径: 100 m, 固形物中 のパラトルィル酸 (P—TA) 濃度: 180 p pm) を、 40°C、 常圧下で連 続的に供給し、 表 1に示す条件で固液分離した。 表 1中の遠心力はスクリーン 上の値を示す。 結果を表 1に示す。
なお、 テレフタル酸結晶の平均粒径は、 セイシン企業 (株) 製の粒度分布測 定装置 ( 「LASER MI CRON S I ZER LMS— 24」 ) にて測 定した粒度分布から、 積算値 50%となる粒径の読取値とした。 また、 スクリー ンの目開きは、 マイクロスコープにてスリッ ト部分を拡大し、 360点の穴の 幅を測定して平均値として求めた。
実施例 3
実施例 1において、 テレフタル酸結晶の平均粒径が 1 10/ m、 固形分濃度 力 30重量%のテレフタル酸結晶含有スラリーを使用し、 目開き 1 50 mの スクリーン (スリ ッ ト型) を使用し、 1 60°C、 0. 65 MP aの条件を採用 した以外は、 実施例 1と同様に固液分離を行なった。 結果を表 1に示す。 表 1
Figure imgf000012_0001
表 1 に示す結果から明らかな様に、 実施例 1〜 3の場合は、 比較例 1に比し 回収した固形物の含液率力 ?低い。 これは、 目詰まりが防止されて良好に脱液さ れていることによるものである。
参考例 1〜 6
滞留時間の効果を確認するため、 表 2に示す条件 (但しスクリーン上の遠心 力は 7 5 0 G ) を採用して実施例 1と同様に固液分離を行なった。 回収ケーキ の含液率を表 2に示す。
表 2
Figure imgf000013_0001
表 2中の滞留時間は、 洗浄液供給口 (2 4 ) から噴射される洗浄液の供給域 を通過した以降の時間 (具体的には洗浄液供給口 (2 4 ) の直下から 2秒経過 した時点以降の時間) であり、 各滞留時間と回収ケーキの含液率は、 便宜上、 次の様にして求めた。 すなわち、 上記のそれぞれの滞留時間の相当位置から濾 液試料を回収し、 各滞留時間毎の濾液試料中の固形物濃度を測定し、 物質収支 計算によって回収ケーキの含液率を算出した。
表 2に示す結果から明らかな様に、 参考例 1〜4の場合は、 滞留時間が適切 であるため、 遠心分離機の運転が効率的に行われて十分に脱液されたケーキが 回収される。 これに対し、 参考例 5及び 6の場合は滞留時間が短いため回収ケー キの含液率が高い。 産業上の利用可能性
以上説明した本発明によれば、 反応によつて得られた芳香族ジカルボン酸の 結晶を含むスラリーを固液分離するに際し、 遠心分離機の目詰まりが防止され る。 また、 本発明によれば結晶の純度が高められる。 従って、 本発明の工業的 価値は大きい。

Claims

請 求 の 範 囲
1. 反応溶媒中、 触媒の存在下、 アルキル置換基または一部酸化したアルキル 置換基を有する芳香族化合物を分子状酸素含有ガスによつて液相酸化し、 次い で、 得られた芳香族ジ力ルボン酸の結晶を含むスラリーを固液分離して結晶を 回収する芳香族ジカルボン酸の製造方法において、 内部にスクリユーコンベア が配置されたスクリ一ン型遠心分離機に上記のスラリーを連続的に供給して固 液分離するに当たり、 スクリ一ン型遠心分離機のスクリーンとして、 供給され るスラリー中の結晶の一部が目洩れする目開きのスクリーンを使用することを 特徴とする芳香族ジ力ルボン酸の製造方法。
2. スクリーン型遠心分離機のスクリーンとして、 供給されるスラリー中の結 晶の 1〜 1 0重量%相当量が目洩れする目開きのスクリーンを使用することを 特徴とする 1に記載の製造方法。
3. スクリーン型遠心分離機として、 外側回転筒 ( 1 ) と、 当該外側回転筒内 に相対回転自在に設けられ且つ円筒状の回転軸 (2 1) 及びスクリュー (22) を備えたスクリユーコンベア (2) と、 当該スクリューコンベアの回転軸の内 部に配置され且つ当該回転軸の内部にスラリーを供給するスラリ一供給管 ( 3 ) とを有し、 スクリユーコンベア (2) の基端側には外側回転筒 ( 1 ) にスラリー を供給するスラリー供給口 (23) が設けられ、 外側回転筒 (1) は、 基端側 の大径部 (1 1) と、 漸次縮径された傾斜部 (1 2) と、 スクリーン (1 3 a) を備えた小径部 (1 3) とを順次に配置して構成され、 大径部 (1 1) の基端 には溢流口 (4) が設けられ、 小径部 (1 3) の先端には固形物排出口 (5) 力 ?設けられたスクリーン型遠心分離機を使用する 1に記載の製造方法。
4. スクリユーコンベアの回転軸 (2 1) の内部は基端側のスラリー供給部 (2 1 a) と先端側の洗浄液供給部 (2 1 b) とに仕切られ、 そして、 スラリー 供給部 (2 1 a) はスラリー供給管 (3) によってスラリーの供給が可能に構 成され、 洗浄液供給部 (2 1 b) は、 スラリー供給管 (3) の内部に挿通され た洗浄液供給管 (6) によって洗浄液の供給が可能に構成され、 スクリユーコ (2) の先端側には外側回転筒 (1) の小径部 (1 3) に洗浄液を供給 する洗浄液供給口 (24) が設けられている 3に記載の製造方法。
5. スクリ ーン上の固液分離の滞留時間を 2〜20秒に設定し、 ただし、 洗浄 液供給口が備えられている場合は洗浄液の供給域を通過した以降の滞留時間で あることを条件とし、 しかも、 スクリーン上において 3 00〜 5000 Gの遠 心力を作用させる 1に記載の製造方法。
6. スラリ ー中の結晶の平均粒径が 80〜 1 60 mである 1に記載の製造方 法。
7. スラリ ー中の結晶の平均粒径を B (μ m) としたときに、 スクリーンの目 開き力? (B— 1 0) m以上で (B + 80) m以下である 6に記載の製造 方法。
PCT/JP2002/008606 2001-08-29 2002-08-27 Procede de production d'acide dicarboxylique aromatique WO2003020680A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02767859A EP1422214A4 (en) 2001-08-29 2002-08-27 PROCESS FOR PREPARING AROMATIC DICARBOXYLIC ACID
US10/785,400 US20040225148A1 (en) 2001-08-29 2004-02-25 Process for the preparation of aromatic dicarboxylic acids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001259353 2001-08-29
JP2001-259353 2001-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/785,400 Continuation US20040225148A1 (en) 2001-08-29 2004-02-25 Process for the preparation of aromatic dicarboxylic acids

Publications (1)

Publication Number Publication Date
WO2003020680A1 true WO2003020680A1 (fr) 2003-03-13

Family

ID=19086740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/008606 WO2003020680A1 (fr) 2001-08-29 2002-08-27 Procede de production d'acide dicarboxylique aromatique

Country Status (4)

Country Link
US (1) US20040225148A1 (ja)
EP (1) EP1422214A4 (ja)
CN (1) CN1264797C (ja)
WO (1) WO2003020680A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193109B2 (en) 2003-03-06 2007-03-20 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production
US7214760B2 (en) 2004-01-15 2007-05-08 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production
US7276625B2 (en) 2002-10-15 2007-10-02 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10206168A1 (de) * 2002-02-14 2003-08-21 Guehring Joerg Kupplung für mudular aufgebaute Werkzeughalterarme
US7470348B2 (en) * 2002-08-30 2008-12-30 Mitsubishi Heavy Industries, Ltd. Separator for producing aromatic carboxylic acids
WO2004043893A1 (ja) * 2002-11-14 2004-05-27 Mitsubishi Chemical Corporation テレフタル酸の製造方法
US7282151B2 (en) * 2003-06-05 2007-10-16 Eastman Chemical Company Process for removal of impurities from mother liquor in the synthesis of carboxylic acid using pressure filtration
US7351396B2 (en) * 2003-06-05 2008-04-01 Eastman Chemical Company Extraction process for removal of impurities from an aqueous mixture
US7494641B2 (en) * 2003-06-05 2009-02-24 Eastman Chemical Company Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid
US7452522B2 (en) * 2003-06-05 2008-11-18 Eastman Chemical Company Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid
US7410632B2 (en) * 2003-06-05 2008-08-12 Eastman Chemical Company Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
US8460550B2 (en) * 2004-04-12 2013-06-11 Thar Process, Inc. Continuous processing and solids handling in near-critical and supercritical fluids
CA2562505A1 (en) * 2004-04-12 2005-10-27 Thar Technologies, Inc. Continuous processing and solids handling in near-critical and supercritical fluids
US20050283022A1 (en) * 2004-06-18 2005-12-22 Sheppard Ronald B Filtrate preparation process for terephthalic acid filtrate treatment
US7589231B2 (en) 2004-09-02 2009-09-15 Eastman Chemical Company Optimized liquid-phase oxidation
US7741515B2 (en) 2004-09-02 2010-06-22 Eastman Chemical Company Optimized liquid-phase oxidation
US7381836B2 (en) 2004-09-02 2008-06-03 Eastman Chemical Company Optimized liquid-phase oxidation
US7692037B2 (en) 2004-09-02 2010-04-06 Eastman Chemical Company Optimized liquid-phase oxidation
US7683210B2 (en) 2004-09-02 2010-03-23 Eastman Chemical Company Optimized liquid-phase oxidation
US7582793B2 (en) 2004-09-02 2009-09-01 Eastman Chemical Company Optimized liquid-phase oxidation
US7910769B2 (en) 2004-09-02 2011-03-22 Eastman Chemical Company Optimized liquid-phase oxidation
US20070238899A9 (en) * 2004-09-02 2007-10-11 Robert Lin Optimized production of aromatic dicarboxylic acids
US7572936B2 (en) 2004-09-02 2009-08-11 Eastman Chemical Company Optimized liquid-phase oxidation
US7888530B2 (en) * 2004-09-02 2011-02-15 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7507857B2 (en) 2004-09-02 2009-03-24 Eastman Chemical Company Optimized liquid-phase oxidation
US7568361B2 (en) 2004-09-02 2009-08-04 Eastman Chemical Company Optimized liquid-phase oxidation
US7897810B2 (en) 2004-09-02 2011-03-01 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7692036B2 (en) 2004-11-29 2010-04-06 Eastman Chemical Company Optimized liquid-phase oxidation
US7504535B2 (en) 2004-09-02 2009-03-17 Eastman Chemical Company Optimized liquid-phase oxidation
US7884232B2 (en) 2005-06-16 2011-02-08 Eastman Chemical Company Optimized liquid-phase oxidation
US7402694B2 (en) * 2005-08-11 2008-07-22 Eastman Chemical Company Process for removal of benzoic acid from an oxidizer purge stream
US7569722B2 (en) * 2005-08-11 2009-08-04 Eastman Chemical Company Process for removal of benzoic acid from an oxidizer purge stream
US7355068B2 (en) * 2006-01-04 2008-04-08 Eastman Chemical Company Oxidation system with internal secondary reactor
US7897808B2 (en) * 2006-03-01 2011-03-01 Eastman Chemical Company Versatile oxidation byproduct purge process
US7880032B2 (en) * 2006-03-01 2011-02-01 Eastman Chemical Company Versatile oxidation byproduct purge process
US7863481B2 (en) * 2006-03-01 2011-01-04 Eastman Chemical Company Versatile oxidation byproduct purge process
US20070203359A1 (en) * 2006-03-01 2007-08-30 Philip Edward Gibson Versatile oxidation byproduct purge process
EP2321057B1 (en) * 2008-06-06 2020-01-01 M-I L.L.C. Dual feed centrifuge
CN106522976A (zh) * 2016-12-16 2017-03-22 徐工集团凯宫重工南京有限公司 一种盾构机用异径式螺旋输送装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184972A (ja) * 1992-01-08 1993-07-27 Sekisui Chem Co Ltd 連続遠心分離機
JPH1036313A (ja) * 1996-07-22 1998-02-10 Tsukishima Kikai Co Ltd 高純度芳香族ジカルボン酸の製造方法およびその装置
WO1998018750A1 (fr) * 1996-10-30 1998-05-07 Mitsui Chemicals, Inc. Processus de preparation d'acides dicarboxyliques aromatiques

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3328543A1 (de) * 1983-08-08 1985-03-21 Klöckner-Humboldt-Deutz AG, 5000 Köln Verwendung einer vollmantel-sieb-schneckenzentrifuge zur trennung feinkristalliner feststoffe von einer fluessigkeit
US5653673A (en) * 1994-06-27 1997-08-05 Amoco Corporation Wash conduit configuration in a centrifuge apparatus and uses thereof
US5971907A (en) * 1998-05-19 1999-10-26 Bp Amoco Corporation Continuous centrifugal separator with tapered internal feed distributor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184972A (ja) * 1992-01-08 1993-07-27 Sekisui Chem Co Ltd 連続遠心分離機
JPH1036313A (ja) * 1996-07-22 1998-02-10 Tsukishima Kikai Co Ltd 高純度芳香族ジカルボン酸の製造方法およびその装置
WO1998018750A1 (fr) * 1996-10-30 1998-05-07 Mitsui Chemicals, Inc. Processus de preparation d'acides dicarboxyliques aromatiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1422214A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276625B2 (en) 2002-10-15 2007-10-02 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production
US7339072B2 (en) 2002-10-15 2008-03-04 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production
US7193109B2 (en) 2003-03-06 2007-03-20 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production
US7214760B2 (en) 2004-01-15 2007-05-08 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production
US7601795B2 (en) 2004-01-15 2009-10-13 Eastman Chemical Company Process for production of a carboxylic acid/diol mixture suitable for use in polyester production

Also Published As

Publication number Publication date
CN1543450A (zh) 2004-11-03
EP1422214A4 (en) 2007-07-11
EP1422214A1 (en) 2004-05-26
US20040225148A1 (en) 2004-11-11
CN1264797C (zh) 2006-07-19

Similar Documents

Publication Publication Date Title
WO2003020680A1 (fr) Procede de production d'acide dicarboxylique aromatique
US7462736B2 (en) Methods and apparatus for isolating carboxylic acid
US20070208199A1 (en) Methods and apparatus for isolating carboxylic acid
EP1989165B1 (en) Carboxylic acid production process
TWI507382B (zh) 氧化烷基芳族化合物之方法
JP2006509044A (ja) 粗製カルボン酸スラリーの精製方法
US7847121B2 (en) Carboxylic acid production process
JP2007523228A (ja) ポリエステル製造への使用に適したカルボン酸/ジオール混合物の製造方法
TW201213292A (en) Process for producing terephthalic acid
JP2007517896A (ja) ポリエステル製造への使用に適した乾燥カルボン酸ケークの製造方法
WO2007103022A1 (en) Methods and apparatus for producing a low-moisture carboxylic acid wet cake
US5925786A (en) Process for producing aromatic dicarboxylic acid
US20080039650A1 (en) Versatile oxidation byproduct purge process
WO2005115956A1 (ja) 高純度テレフタル酸の製造方法
US8455680B2 (en) Carboxylic acid production process employing solvent from esterification of lignocellulosic material
JPH09278709A (ja) 芳香族カルボン酸の製造方法
JP2003146939A (ja) 芳香族ジカルボン酸の製造方法
TWI434827B (zh) 芳香族羧酸之製造方法
JP2006008671A (ja) 高純度テレフタル酸の製造方法
JP2003062405A (ja) 固液分離方法
JP3843533B2 (ja) 芳香族カルボン酸の製造方法
JP2003062487A (ja) 固液分離方法
TW201708177A (zh) 高純度對苯二甲酸之製造方法
WO2004063139A1 (ja) 芳香族カルボン酸含有スラリーの遠心分離方法
JP2004231642A (ja) 芳香族カルボン酸含有スラリーの遠心分離方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BG BR BZ CA CN CO CR CU CZ DM DZ EC EE GD GE HR HU ID IL IN IS KP KR LC LK LR LT LV MA MG MK MN MX NO NZ OM PH PL RO SG SI SK TN TT UA US UZ VC VN YU ZA

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BG BR BZ CA CO CR CU CZ DM DZ EC EE GD GE HU ID IL IN IS KP KR LC LK LR LT MA MG MK MN MX NO NZ OM PH RO SG SI SK TN TT UA US UZ VC VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002767859

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20028159977

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 416/DELNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10785400

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002767859

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002767859

Country of ref document: EP