WO2003015968A1 - Ultra high-pressure sintered cutter with recess or groove, holding mechanism for the cutter, and method of manufacturing the cutter - Google Patents

Ultra high-pressure sintered cutter with recess or groove, holding mechanism for the cutter, and method of manufacturing the cutter Download PDF

Info

Publication number
WO2003015968A1
WO2003015968A1 PCT/JP2002/007828 JP0207828W WO03015968A1 WO 2003015968 A1 WO2003015968 A1 WO 2003015968A1 JP 0207828 W JP0207828 W JP 0207828W WO 03015968 A1 WO03015968 A1 WO 03015968A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sintered
cutting tool
sintered compact
ultra
ultrahigh
Prior art date
Application number
PCT/JP2002/007828
Other languages
English (en)
French (fr)
Inventor
Joji Ueda
Ryousuke Baba
Toshiyuki Sahashi
Satoru Kukino
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to JP2003520511A priority Critical patent/JPWO2003015968A1/ja
Priority to EP02755734A priority patent/EP1435271A4/en
Priority to US10/486,371 priority patent/US20040213639A1/en
Publication of WO2003015968A1 publication Critical patent/WO2003015968A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/16Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped
    • B23B27/1644Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped with plate-like cutting inserts of special shape clamped by a clamping member acting almost perpendicularly on the chip-forming plane and at the same time upon the wall of a hole in the cutting insert
    • B23B27/1651Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped with plate-like cutting inserts of special shape clamped by a clamping member acting almost perpendicularly on the chip-forming plane and at the same time upon the wall of a hole in the cutting insert characterised by having a special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/04Overall shape
    • B23B2200/0461Round
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/04Overall shape
    • B23B2200/049Triangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/04Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/36Titanium nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/092Lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/12Boron nitride
    • B23C2226/125Boron nitride cubic [CBN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/22Cutters, for shaping including holder having seat for inserted tool
    • Y10T407/2272Cutters, for shaping including holder having seat for inserted tool with separate means to fasten tool to holder
    • Y10T407/2282Cutters, for shaping including holder having seat for inserted tool with separate means to fasten tool to holder including tool holding clamp and clamp actuator
    • Y10T407/2284Wedge clamp element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/27Cutters, for shaping comprising tool of specific chemical composition

Definitions

  • the present invention relates to an ultrahigh-pressure sintered compact cutting tool having recesses or grooves, a mechanism for holding the tool, and a method for manufacturing the same.
  • the present invention relates to a cutting tool comprising a diamond sintered body or a cubic boron nitride (hereinafter referred to as “cBN”) sintered body which is an ultra-high pressure sintered body, having a recess or a groove, It is intended to provide a manufacturing method thereof.
  • cBN cubic boron nitride
  • Cutting tools with ultrahigh-pressure sintered compacts as cutting edges can be broadly classified into the following three types.
  • Ultra-high pressure sintered compacts have high hardness and excellent wear resistance, but they are expensive, so we are trying to reduce their usage as much as possible. Therefore, in the case of a cutting tool having a large shape with an inscribed circle diameter of 3.97 mm or more, the above-mentioned third method has been mainly adopted. Generally, the size of a tool is often determined by an inscribed circle. On the other hand, for cutting tools with small shapes, the first and second methods are used. The reason is that it is more economical to use a cutting tool as it is without cutting it and brazing it to a cemented carbide base metal, rather than using the third method to reduce the amount of ultra-high pressure sintered compact used. This is because it can be manufactured in a specific manner.
  • the first and second methods are used for cutting tools with relatively large shapes, because the length of the cutting edge is insufficient, and the heat generated during cutting may cause the temperature of the cutting edge to rise, causing the ironed part to come off. Caught It may be.
  • ultra-high pressure sintered bodies are sintered under ultra-high pressure and high temperature, and have a disk shape with a diameter of 25 mm or more.
  • various processing steps are performed.
  • the ultra-high pressure sintered body has extremely high hardness and is difficult to add, and there is a great limitation in the processing method.
  • a general cutting tool with an ultra-high pressure sintered body as a cutting edge is mainly made by attaching a sintered body cut into a predetermined shape to a base as shown in Fig. 7 (c). .
  • Slicing machine, wire cutting, laser machining, electric discharge machining, etc. are known for cutting high pressure sintered compacts. Among them, electric discharge machining can be applied only to conductive objects.
  • Japanese Unexamined Patent Publication No. Hei 7-2995777 discloses a method for cutting a cubic boron nitride sintered body by irradiating a laser beam, which is performed in nitrogen or an inert atmosphere gas. ing.
  • the present invention relates to cutting of a cBN sintered body, which enables processing such as cutting with a lower laser output than conventional processing in the atmosphere, and has a crack-free cut surface with less heat-induced deterioration. Can be obtained.
  • Japanese Patent Application Laid-Open No. H04-2402 discloses a cutting tool made of whisker-reinforced ceramics, which is provided with a mounting hole.
  • the ultra-high pressure sintered body of the first or second method As a conventional small cutting tool made of an ultra-high pressure sintered body, the ultra-high pressure sintered body of the first or second method has been used.
  • the mounting method was a clamp-on method.
  • the clamp-on method which is mainly held by the friction force between the rake face and the holding jig, was unstable.
  • a through hole is required at almost the center of the cutting tool. There is a drawback that the through-hole cannot be used under severe conditions because the strength is reduced.
  • the present invention provides an ultra-high pressure sinter cutting tool characterized in that the entire rake face is made of an ultra-high pressure sintered body, and that the rake face has a recess or a groove in the center of the rake face for mounting a tool holder. It is about. Since the entire rake face is made of an ultra-high pressure sintered body, there is no attachment near the cutting edge, so the attachment does not come off, and the manufacturing process is simplified and the processing cost can be reduced. . Furthermore, since the cutting tool is pressed against the holder seat surface by the recess or groove provided in the rake face and can be pulled into the holder side at the same time, the tool does not shift or come off the holder. -.
  • the present invention can be applied to any of the above ultra-high pressure sintered bodies, including those made entirely of an ultra high pressure sintered body and those whose rake face is reinforced with a cemented carbide on the opposite side. .
  • the heat load can be reduced by constructing the entire body with an ultra-high pressure sintered body having high thermal conductivity.
  • the toughness of the cemented carbide improves the overall tool toughness, and the use of expensive ultra-high-pressure sintered compacts reduces the tool cost. it can.
  • any of a cBN sintered body and a diamond sintered body can be used as the ultra-high pressure sintered body.
  • optimum tool performance can be achieved by using diamond sintered compacts, such as aluminum alloys, and cBN sintered compacts, such as iron, steel, and iron-based alloys. it can.
  • the depression or groove provided on the rake face can be configured such that a line formed by intersection of the rake face and the rake face has a straight line portion. With this configuration, the depression or groove is configured to have a linear component in its plane, and the contact between the presser foot and the tool is made linear by precisely processing the contact part of the presser foot attached to the holder with the tool. The holding force is improved by contact or surface contact.
  • the recess may be in the form of a cone or a truncated cone.
  • a stable point contact can be obtained by making the shape of the contact part of the presser foot attached to the holder into contact with the tool in a spherical or spheroidal shape.
  • the shape of the depression or groove of the present invention in addition to the above, various shapes such as a convex shape and a concave shape when viewed from the rake face can be adopted.
  • the presser foot When the presser foot is tightened, its tip hits an inclined surface such as a dent, so that the presser tool pulls the cutting tool into the tool restraining surface. And the force is closely related to the inclination of the dent etc. The steeper the inclination, the stronger the retraction force. In actual use, it is determined by the balance between the above pulling force and the pressing force against the holder.
  • the pulling force to the tool restraining surface and the force for tightening the cutting tool to the holder are both approximately constant, and stable mounting is possible.
  • the tip angle of the cone is preferably from 100 degrees to 140 degrees for balance. Above all, 110 ° to 130 ° is particularly preferable because of good balance. In the case of a convex shape, the cutting tool can be more firmly restrained on the tool restraining surface.
  • the recess or groove provided on the rake face according to the present invention is preferably formed by laser processing.
  • the laser processing used in the present invention can be applied to both cBN sintered bodies and diamond sintered bodies. These ultra-high pressure sintered bodies have high hardness, and grinding speed with a stone or the like does not provide a sufficient processing speed, making economic production impossible.
  • the inside surface of the cavities processed in this way is characterized by the presence of dent-shaped laser marks (dimlestructure) as shown in FIG. When machining with a rotating grindstone, grinding streaks that are concentric with the center axis of the recess or regularly arranged in a certain direction remain.
  • the cross section of the plane in the recess is formed by a continuous straight line.
  • the cross-sectional shape of the depression or groove processed by the method of the present invention should theoretically be as shown in FIG.
  • the laser beam is scanned in different directions each time, and the processing proceeds while gradually reducing the scan area at each step, so that the cross section has a stepped shape.
  • the cross-sectional shape is such that the inclined slope is connected while changing the angle. With the progress of processing, an annual ring-shaped pattern is observed, which can be distinguished from the conventional processing method.
  • a cutting tool in which the entire rake face is formed of an ultra-high pressure sintered body and has a recess or a groove for attachment to a tool holder at the center of the rake face is attached to a holder.
  • a holding mechanism is provided in which a drawn portion of a presser foot hits the depression or groove and is drawn into a tool restraining surface.
  • a soft material such as resin, copper, a copper alloy, or lead can be interposed between the depression or groove and the presser foot as a cushioning material. Due to the presence of the cushioning material, the contact between the presser foot and the tool changes from point or line contact to surface contact, thereby improving the holding force and preventing the cutting tool from cracking.
  • the present invention also provides a pulse transmission method that increases the local energy density of a YAG laser with an output of 50 to 100 tons, thereby forming a recess or groove on the rake face of a cutting tool whose entire rake face is made of an ultra-high pressure sintered body.
  • the present invention provides a method for manufacturing a cutting tool for forming a cutting tool. By adopting this method, damage due to heat during processing can be suppressed, and a good processed surface can be obtained.
  • FIG. 1A is a perspective view of a round piece chip according to the present invention.
  • FIG. 1 (b) is a cross-sectional view passing through the center in FIG. 1 (a).
  • FIG. 2A shows another example of the ultrahigh-pressure sintered cutting tool obtained by the present invention.
  • Overall force Triangular tip made of sintered diamond.
  • FIG. 2B is a cross-sectional view taken along line AA of FIG.
  • FIG. 3 is a perspective view of an ultrahigh-pressure sintered compact cutting tool obtained by the present invention.
  • FIG. 4 shows an example of a cutting tool obtained by the present invention.
  • FIG. 5A shows an example of the cutting tool obtained by the present invention.
  • FIG. 5B shows a cross-sectional view taken along the line BB ′ of FIG. 5A.
  • FIG. 6 is a conceptual diagram showing a state in which the ultrahigh-pressure sintered compact cutting tool obtained by the present invention is attached to a holder.
  • Fig. 7 (a) shows a conventional ultra-high pressure sintered compact cutting tool, which is entirely composed of cBN sintered compact.
  • Fig. 7 (b) shows a conventional ultra-high pressure sintered compact cutting tool, which has two layers of ultra-high pressure sintered compact and cemented carbide.
  • Fig. 7 (c) shows a conventional ultra-high pressure sintered compact cutting tool, in which a part of the metal base of the cemented carbide is cut out and the ultra-high pressure sintered compact is welded.
  • FIG. 8 is a theoretical cross-sectional view of a hollow portion of the ultra-high pressure sintered body hollowed by laser processing used in the present invention.
  • FIG. 9 is an actual cross-sectional view of the hollow portion of the ultra-high pressure sintered body hollowed by laser processing used in the present invention.
  • FIG. 10 is a scanning electron micrograph of the surface of the concave portion of the ultrahigh-pressure sintered compact cutting tool obtained by the present invention. '' Best mode for carrying out the invention
  • the present invention is a cutting tool having an indentation 3 as shown in FIGS. Fig. 1 is usually called a round piece chip, and has a hollow at almost the center.
  • the depression is formed in the part of the ultra-high pressure sintered body, but depending on the conditions of use, the depression may be formed in the back metal part of the cemented carbide.
  • Fig. 2 shows a commonly used triangular cutting tool with a hollow at the approximate center.
  • a hollow is formed at the approximate center of each surface of the rectangular parallelepiped. If there are no major breaks such as cracks or defects, 24 corners and all 12 sides can be used.
  • the contact area decreases because the cutting tool drawing part and the dent are curved. Increasing the contact area can further increase the holding strength. As shown in FIG. 4, when the line formed by the intersection of the dent and the rake face has a straight portion, the contact area with the presser foot can be reduced.
  • FIG. 5 shows that a groove-shaped depression is formed as is apparent from the cross section taken along the line BB ′. And since it is held using the groove facing the corner used for cutting, the contact area can be increased.
  • the ultra-high pressure cutting tool having the depressions or grooves as described above can maintain the position as shown in FIG. 6, and can increase the positioning accuracy, as well as the mounting strength and reliability.
  • the ultrahigh-pressure sintered compact cutting tool 1 is placed on the holder 4, and the cutting tool drawing portion 7 at the tip of the presser foot 5 is tightened and held in the recess 3 with the presser foot tightening screw.
  • a laser light source it is most effective to use a YAG laser having a wavelength of 1064 nm, which is generally used industrially as a laser for fine processing.
  • a semiconductor laser having an emission light near the same wavelength can be used.
  • the dent provided in the center of the cutting tool adjusts the output, and at the same time, controls the output, transmission frequency, and processing pitch using a high-output pulsed YAG laser with a high-concentration galvanometer mirror. Processing is performed while digging at a constant processing amount in a shape. In the laser processing method, the thermal effect on the processing surface can be reduced by keeping the total output of the laser light low and increasing the degree of condensing.
  • CAD that automatically sends shape model data created by a 3D CAD system to a laser processing machine that is connected to receive electronic data, and automatically generates a path from the received shape model data to the laser processing machine.
  • a CAM system By configuring a CAM system, it is possible to process not only general linear cutting but also fine and irregularly shaped surfaces.
  • the present invention can be achieved using DML40 manufactured by DECKEL MAHO.
  • Ultra high pressure cBN sintered body 1 composed of 60 vol% of cBN sintered at high temperature, 20 vol% of TiN, 10 vol% of A1N10 and the balance of TiB
  • a disk-shaped cBN sintered body with hard alloy back metal 2 was prepared.
  • a disk-shaped cutting tool with a diameter of 10 mm and a thickness of 3.18 mm was fabricated as shown in Fig. 1.
  • a 1.6 mm deep recess shown in Fig. 1 was formed on the cutting tool using a pulsed 6 OW YAG laser. After the formation of the depressions, the surface roughness of the surface was measured. Using a continuous oscillation type 10 OW YAG laser, a recess of the same shape was formed on the cutting tool. In this case, the surface roughness of the recess was Rz 100 ⁇ m.
  • the obtained cutting tool was mounted on a holder similar to Fig. 6, and a cutting test was performed.
  • the work material was SKD 11 hardened steel (hardness HRC 55-58) under the conditions of a peripheral speed of 150 m / min, a depth of cut of 0.2 mm, and a feed of 0.1 mm / rev.
  • SKD 11 hardened steel hardness HRC 55-58
  • the same sintered body as above was used, and a cutting tool was mounted by the clamp-on method without forming a cavity.
  • An abrasion test was performed under the same conditions.
  • a sintered body consisting of 90% by volume of diamond and a balance of cobalt and tungsten was prepared under ultra high pressure and high temperature. This sintered body does not have cemented carbide reinforcement. This was cut into the shape of model number TNMN12404 shown in FIG. 2 by a wire discharge method. Next, a recess was formed in the center of the sintered body using a 7 OW laser. The depth was 2.1 mm and the diameter was 4.2 mm. A cutting test was performed using this cutting tool.
  • the work material is SKD61 hardened steel (hardness HRC 60-62), under the conditions of a peripheral speed of 20 Om / min, a cut-in of 0.2 mm, and a feed of 0.15 mmZrev. there were. For comparison, a cutting test was carried out under the same conditions using the same sintered body as described above, with a cutting tool mounted in a clamp-on manner without forming a cavity.
  • the cutting tool without dents chattered on the machined surface.
  • a cutting tool with a recess generates a pulling force not only in the thrust direction but also in the holder counterbore, so that a more stable holding force can be obtained. Therefore, machining was possible without generating chatter on the machined surface.
  • Example 3 a plate made of 0.3 mm thick copper alloy is interposed as a cushioning material at the contact between the tip of the presser and the recess, so that it can be clamped with a stronger tightening torque and the cutting depth No chatter and stable even if is increased to 0.3 mm I was able to process.
  • Example 3 a plate made of 0.3 mm thick copper alloy is interposed as a cushioning material at the contact between the tip of the presser and the recess, so that it can be clamped with a stronger tightening torque and the cutting depth No chatter and stable even if is increased to 0.3 mm I was able to process.
  • Ultra-high pressure c92 sintered volume under high temperature A disk-shaped cBN sintered body composed of / 0 and the balance Co, W, and B was produced. This sintered body is reinforced with a cemented carbide back metal. A cutting tool material of model number SNGN 120404 as shown in Fig. 4 was prepared from this and a cutting test was performed.
  • this tool has a higher cutting load than those of Examples 1 and 2, the following structure was adopted to increase the contact area between the recessed portion of the cutting tool and the recess. That is, the holding force is increased by increasing the area where the cutting tool retracted portion hits the recess by making the line formed by the intersection of the recess and the rake face facing the cutting edge straight. is there.
  • the work material was SUJ 2 (HRC62-64) under the following conditions: peripheral speed 180 mZmin, depth of cut 0.2 mm, feed 0.2 m / rev.
  • a cutting test was carried out under the same conditions using the same sintered body as described above, with a cutting tool mounted in the clamp-on system without forming a cavity.
  • This embodiment is an evaluation under a high-speed and high-load condition.
  • the work material is ADC 12, the conditions are: peripheral speed 28 OmZm in, depth of cut 2.5 mm, feed 0.5 mmZr was ev.
  • a cutting test was carried out using the same sintered body as described above, with the cutting tool mounted in the clamp-on system without forming a cavity, and under the same conditions.
  • a cutting tool that does not form a depression has a cutting edge that is broken during descent due to insufficient holding force, whereas a cutting tool that has a depression generates a pulling force not only in the thrust direction but also in the holder counterbore. As a result of obtaining a stronger holding force, chipping of the cutting edge did not occur.
  • 4GPa under ultra-high pressure of 1200 ° C and high temperature, contains 85% by volume of cBN particles with an average particle size of 10 m, the balance being A1 compounds mainly composed of A1N and A1B2
  • the cBN sintered body was sintered.
  • This sintered body was cut with a YAG laser to produce a cutting tool (hereinafter referred to as a solid cBN sintered body tool) in which the entire tool of ISO model SNGN 120416 was composed of a cBN sintered body.
  • a frustum of 1.6 mm diameter and ⁇ 8.4 mm-3.0 mm was formed.
  • a sintered compact cutting tool was manufactured.
  • the obtained cutting tool was mounted on a holder and a cutting test was performed.
  • a commercially available Si 3 of the same solid cBN sintered body of ISO model SNGN 120416 without hollow, ISO model SNGA 120416 with holes and ISO model SNGX 1 20416 with elliptical hollow Cutting evaluation using an N 4 sintered compact cutting tool was also performed. No dents I SO Model No.
  • the SNGX 1204 6 c BN sintered compact cutting tool with the truncated cone of the present invention was normally worn after 600 seconds, the VB amount was as small as 10 O xm, and continuous machining was possible. .
  • a 1.6 mm deep recess shown in FIG. 1 was formed by using the laser machining method and the electric discharge machining method of the present invention. Laser processing was performed at a power of 6 OW.
  • EDM For EDM, prepare an electrode with the hole shape reversed, apply the electrode from the diamond side of the sintered body, replace the electrode until the electrode is no longer worn due to electric discharge, and the shape of the recess is as designed Carried out.
  • a recess having a diameter of 1.6 mm and a truncated cone with a diameter of 8.4 mm-3.0 mm was formed by the laser processing method of the present invention. It was created by using the grinding process.
  • the same sintered body was subjected to electrical discharge machining to form a recess having the same shape as above, but the fabrication did not proceed and the fabrication was stopped.
  • the measured electric resistivity of the sintered body was 5 5 ⁇ ⁇ cm.
  • Laser processing was performed at a power of 6 OW.
  • For grinding stone processing prepare a rotating grinding stone with the hole shape reversed, apply the grinding stone from the cBN side of the sintered body, and wear the grinding stone due to wear This was done while changing the grinding stone until the shape of the hollow became as designed.
  • the ultrahigh-pressure sintered compact cutting tool having the depression according to the present invention can be easily held with high dimensional accuracy. Particularly effective when applied to small cutting tools.
  • the manufacturing method according to the present invention is capable of forming recesses of various shapes on the rake face of a cutting tool at high speed and with little damage due to processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Description

明細書 くぼみ又は溝を有する超高圧焼結体切削工具とその保持機構及ぴその製造方法 技術分野
本発明は、 超高圧焼結体であるダイヤモンド焼結体や立方晶窒化硼素 (以下 「c B N」 と記す) 焼結体からなる切削工具であって、 くぼみ又は溝を有するも のであり、 またその製造方法を提供しようとするものである。 背景技術
超高圧焼結体を刃先とする切削工具は、 大きく分類すると以下の 3種類に分類 することが出来る。 第 1は、 切削工具全体が図 7 ( a ) に示すように超高圧焼結 体 1で構成されているもので特に小型の切削工具に利用されている。 第 2は、 超 高圧焼結体 1を図 7 ( b ) に示すように超硬合金製のバックメタル 2で補強した ものである。 第 3は、 図 7 ( c ) に示すように超硬合金を台金とし、 その一部を 切り欠いて、 切り欠き部にバックメタ/レ付きの超高圧焼結体をロウ付けしたもの である。 図 7 ( c ) に示されている例では、 中央部に取付け穴がある。
超高圧焼結体は、 硬度が高く耐摩耗性に優れているが、 高価なのでその使用量 を極力削減しょうとする. 力がなされてきた。 従って、 内接円の直径が 3 . 9 7 mm以上の大きな形状をした切削工具においては、 主に、 上記の第 3の方式が採 用されてきた。 一般的に工具の大きさは、 内接円で定められる場合が多い。 一 方、 小さな形状をした切削工具においては、 第 1および第 2の方式が採用されて いる。 その理由は、 第 3の方式を採用して超高圧焼結体の使用量を削減するよ り、 切断したままで超硬合金台金にロウ付けすることなく切削工具として使用す る方が経済的に製造できるからである。 また、 昨今では、 切削加工の高能率化に 対する要求が強まっており、 切り込み深さや送り速度の大きい切削加工をする場 合があるが、 こうした切削の際には第 3の方式の切削工具では切刃の長さが不足 したり、 切削時の大きな発熱による刃先温度の上昇で鐡付け部が外れる恐れがあ るなどの理由で、 比較的大きな形状の切削工具でも第 1および第 2の方式が取ら れることもある。
工具の取付けには、 その中央部に穴を有していてその穴の中に, ねじなどを用 いてホルダーに取付ける方式が知られている。 また、 クランプオン方式といわ れ、 穴のない切削工具をその上から押え金によってホルダーに押さえ込んで取付 けるクランプオン方式もよく利用される。 取付け穴を設ける方式では、 小型の切 削工具においては、 その中心部に穴をあけると工具自体の機械的強度が低下する という問題がある。 またクランプオン方式では、 切削工具とホルダーの摩擦にの み依存して工具を把持するため、 保持強度が取付け穴を用いる方式に比べて、 相 対的に弱いという問題がある。
ところで、 超高圧焼結体は、 超高圧■高温下で焼結され、 直径 2 5 mm以上の 円板状である。 そしてこれを材料に用いて切削工具を製造するためには、 種々の 加工の工程を経過する。 しかしながら、 超高圧焼結体は、 硬度が極めて高く難加 ェ性であり、 加工方法に大きな制限がある。
超高圧焼結体を刃先とする一般的な切削工具は、 図 7 ( c ) のように主として 所定の形状に切断加工した焼結体を台金に口ゥ付けすることによつて作成され る。 超高圧焼結体の切断加ェには、 スライシンダマシン、 ワイヤー切断、 レーザ 一加工、 放電加工といった方法が知られている。 この中で、 放電加工は、 導電性 のある物にしか適用できない。
特開平 7— 2 9 9 5 7 7号公報.は、 立方晶窒化硼素焼結体をレーザー光の照射 により切断加工する方法において、 それを窒素もしくは不活性雰囲気ガス中で行 う方法が開示されている。 この発明は、 c B N焼結体の切断に関するもので、 従 来の大気中の加工に比較してより低いレーザー出力でも切断等の加工が可能で、 熱による変質部が少なくクラックのない切断面を得ることが出来る。 また、 特開 平 4 _ 2 4 0 2号公報には、 ゥイスカー強化セラミック製切削工具に取付け用の 穴を設けたものが開示されている。
従来の超高圧焼結体からなる小型切削工具として、 前記した第 1又は 2の方式 の超高圧焼結体が使用されていた。 この場合取付け方式は、 クランプオン方式で あった。 クランプオン方式は、 主としてすくい面と押さえ冶具の摩擦力により保 持するが、 不安定であった。 また、 ネジ締め方式の場合は、 切削工具のほぼ中心部に貫通穴が必要である。 貫通穴の部分は強度が低下するので、 過酷な条件で使用できないと言う欠点があ る。
超高圧焼結体の加工は、 前述のよう こその硬度のため非常に困難であり、 ひと つの解決法としてレーザー加工が適用されてきた。 しかし、 従来のレーザーによ る超高圧焼結体の加工は、 レーザー光が c B N焼結体を貫通する切断加工が中心 であったため、 加工速度を重視し、 高出力レーザーを用いていた。 この場合、 レ 一ザ一ビームを絞りにくく、 熱による変質相が多くなつて切り代が著しく大きく なると言う問題点があつた。 発明の開示
本発明は、 すくい面全面が超高圧焼結体で構成されていて、 すくい面の中心部 に工具ホルダ ^ ·の取付け用のくぼみ又は溝を有することを特徴とする超高圧焼 結体切削工具に関するものである。 すくい面全体が超高圧焼結体で構成されてい るため、 刃先近傍に鎩付け部分がないので、 鱲付けが外れることがなく、 また製 造工程も簡単になり加工コストを低く抑えることが出来る。 さらにすくい面に設 けたくぼみまたは溝によって切削工具をホルダー座面へ押し付けると同時にホル ダー側へ引き込むことができるため、 工具がホルダー上で位置ずれを起こしたり 外れてしまうこともない。 - .
前記超高圧焼結体には、 全体が超高圧焼結体で出来ているものと、 すくい面の 反対側が超硬合金で補強されているこものがある力 何れにも本発明を適用でき る。 大きな熱負荷が発生する切削条件で使用する場合は、 全体を熱伝導率の高い 超高圧焼結体で構成して熱負荷を軽減することができる。 また、 超硬合金で補強 されているものは、 超硬合金の靭性により工具全体の靭性が向上し、 また高価な 超高圧焼結体の使用量が少ないため、 工具コス トを低く抑えることができる。 更に前記超高圧焼結体としては、 c B N焼結体、 ダイャモンド焼結体の何れで も使用することができる。 被削材の種類によって、 たとえばアルミニウム合金な どにはダイヤモンド焼結体を、 铸鉄、 鋼、 鉄系合金などには c B N焼結体を用い ることによって最適な工具性能を発揮させることができる。 前記すくい面に設けるくぼみ又は溝は、 それらとすくい面の交わりで構成され る線が直線部を有するように構成することができる。 本構成により、 くぼみ又は 溝はその面内に直線成分を持つように構成され、 ホルダーに取付けられた押え金 の工具への接触部分を精度良く加工することによって押え金と工具との接触が線 接触もしくは面接触となって保持力が向上する。
同じく前記くぼみは、 円錐ないしは円錐台の形状とすることもできる。 この場 合は、 ホルダーに取付けられた押え金の工具への接触部分の形状を球状や回転楕 円体状にすることによって安定した点接触が得られ、 片当たりなどによる締結力 の不安定を来たすことがない。
本発明のくぼみ又は溝の形状は、 上述の他、 すくい面から見て凸な形状や凹な 形状のものなど種々な形状を採用できる。 押え金は、 締め付けるときにその先端 がくぼみ等の傾斜している面にあたることで、 切削工具を工具拘束面に引き込む 働きを生じる。 そして、 その力は、 くぼみ等の傾斜と密接に関係していて、 急な 傾斜であればあるほど, 引き込み力は強くなる。 実際の使用に際しては、 上記の 引き込み力と、 ホルダーへの押し付け力のバランスで決められる。
くぼみの形状が上記の円錐の場合は、 工具拘束面への引き込み力と切削工具を ホルダーに締め付ける力は共に、 概略一定となり安定した取付けができる。 円錐 の先端角は、 1 0 0度から 1 4 0度がパランス上望ましい。 なかでも 1 1 0度か ら 1 3 0度は特にバランスが良く好ましい。 凸な形状の場合は、 工具拘束面に切 削工具をより強固に拘束することができる。
本発明によるすくい面に設けられるくぼみ又は溝は、 レーザー加工によって形 成されることが好ましい。 本発明で用いるレーザー加工は、 c B N焼結体にもダ ィャモンド焼結体にも適用できる。 これらの超高圧焼結体は硬度が高く、 ®石な どによる研削加工では十分な加工速度が得られず、 経済的な製造はできない。 このようにして加工したくぼみの内部表面には、 詳細に観察すると、 図 1 0に その一 ί列を示すような、 くぼみ状のレーザー痕 ( d i m l e s t r u c t u r e ) が残ることが特徴である。 回転砥石で加工した場合には必ずくぼみの中心 軸に対して同心円状の、 もしくはある方向に規則的にならんだ研削条痕が残る。 また、 全体的に見ると、 前記くぼみ内の平面での断面が連続した直線で形成され ていることも本件発明のくぼみ又は溝の特徴である。 本願発明の方法で加工した くぼみ又は溝の断面の形状は、 理論的には図 8のようになるはずである。 即ち、 毎回異なった方向にレーザー光をスキャンさせながら、 ステップ毎に徐々にスキ ヤンの面積を小さくしながら加工が進むので、 断面は階段状になる。 しかしなが ら現実には図 9に示すように傾斜した斜面が角度を変えながらつながっているよ うな断面形状になる。 し力 し、 加工の進拔に従った年輪状の模様が観察され、 従 来の加工方法とは区別できる。
また、 放電カ卩ェによる加工では、 一般的には Ι πι Ω · c m以上の電気抵抗率を 有する、 電気伝導性が低 ヽまたは有さな 、超高圧焼結体の加工は不可能であるが 本発明の方法では、 Ι ηι Ω■ c m以上の電気抵抗率を有する超高圧焼結体でも加 ェが可能である。
本願の他の発明は、 すくい面全面が超高圧焼結体で構成されていて、 すくい面 の中心部に工具ホルダーへの取付け用のくぼみ又は溝を有する切削工具を、 ホル ダ一に取付けられた押え金の引き込み部が前記くぼみ又は溝に当たり、 工具拘束 面に引き込むようにしてある保持機構を提供する。 従来の、 すくい面が平面状の 切削工具を工具ホルダーに単に押さえつけて取付ける保持機構に比べて、 強固で 安定した保持力を発揮できる。
また、 前記くぼみ又は溝と押え金の間に、 樹脂、 銅、 銅合金、 鉛、 など柔らか い材料を緩衝材として介在させることができる。 緩衝材の存在により、 押え金と 工具の接触が点または線接触から面接触になり、 保持力の向上と切削工具の割れ が防止できる。
また本発明は、 パルス発信で、 5 0から 1 0 0ヮツトの出力の YA Gレーザー の局所エネルギー密度を高めて、 すくい面全面が超高圧焼結体からなる切削工具 のすくい面にくぼみ又は溝を形成する切削工具の製造方法を提供する。 本方法を とることにより、 加工時の熱による損傷が抑制でき、 また、 良好な加工面が得ら れる。 図面の簡単な説明
図 1 ( a ) は、 本発明に係わる丸駒チップの斜視図である。 図 1 (b) は、 図 1 (a) において、 中央を通る断面図である。 図 2 (a) は、 本発明で得られた、 超高圧焼結切削工具の別の例である。 全体 力 ダイヤモンド焼結体で構成されている三角チップである。
図 2 (b) は、 (a) の A— A断面図である。
図 3は、 本発明で得られた、 超高圧焼結体切削工具の斜視図である。
図 4は、 本発明で得られた切削工具の一例。
図 5 (a) は、 本発明で得られた切削工具の一例を示す。
図 5 (b) は、 図 5 (a) の B— B '断面図を示す。
図 6は、 本発明で得られた超高圧焼結体切削工具を、 ホルダーに取付けた状態 を示す概念図。
図 7 (a) は、 従来の超高圧焼結体切削工具であって、 全体が c BN焼結体で 構成されている。
図 7 (b) は、 従来の超高圧焼結体切削工具であって、 超高圧焼結体と超硬合 金で 2層になっている。
図 7 (c) は、 従来の超高圧焼結体切削工具であって、 超硬合金の台金の一部 を切り欠いて超高圧焼結体を口ゥ付けしたものである。
図 8は、 本発明で用いたレーザー加工によりくぼみ加工された超高圧焼結体の くぼみ部分の理論的断面図。
図 9は、 本発明で用いたレーザー加工によりくぼみ加工された超高圧焼結体の くぼみ部分の実際の断面図。
図 1 0は、 本発明で得られた超高圧焼結体切削工具のくぼみ部分表面の走查電 子顕微鏡写真。 ' 発明を実施するための最良の形態
以下本発明に基づいた実施の形態について説明する。
本発明は、 超高圧焼結体のすくい面に、 図 1、 2、 3に示すようにくぼみ 3を 有する切削工具である。 図 1は、 通常丸駒チップと言われ、 そのほぼ中心部にく ぼみを有する。 この例では、 くぼみは超高圧焼結体の部分に形成されているが、 使用の条件によっては、 超硬合金のバックメタル部にまでくぼみを形成すること もできる。 図 2は、 よく使用されている三角形の切削工具で、 そのほぼ中央部に くぼみが形成されている。 図 3は、 直方体の各面のほぼ中央部にくぼみが形成さ れている。 割れや、 欠損など大きな欠けがない場合は、 2 4コーナーおよび 1 2 辺全てを使用できる。
すくい面とくぼみの交わりにより形成される線が曲率を持つ場合は、 切削工具 引き込み部とくぼみが曲線となるので、 接触面積が少なくなる。 接触面積を増や すと、 保持強度を更に高めることが出来る。 図 4に示すような、 くぼみと、 前記 すくい面の交わりで構成される線が直線部を有する場合は、'押え金との接触面積 を增やすことができる。 図 5は、 その B— B '断面からも明らかなように、 溝の 形状のくぼみが形成されている。 そして、 切削に用いるコーナーに対向する溝を 用いて保持されるので、 接触面積を増やすことが出来る。
上記のようなくぼみ又は溝を有する超高圧切削工具では、 図 6に示すような保 持が出来、 位置決め精度を高めてしかも取付け強度や信頼性を高めることができ る。 図 6は、 ホルダー 4の上に超高圧焼結体切削工具 1を載せ、 そのくぼみ 3に 押え金 5の先端の切削工具引き込み部 7を押え金締め付け用ねじで締め付けて保 持する。 図に示されたように押え金締め付け用ねじを切削工具の座面に垂直な方 向から、 ねじの進行方向を工具の反対方向へ傾斜させておくことによって工具に 対する引き込み力を強くすることができる。 このような構成とすることで、 例え 小さくても超高圧焼結体をホルダーに強固に保持することが出来る。 · 該くぼみ又は溝のレーザー加工に関しては、 c B N焼結体及びダイャモンド焼 結体の場合、 従来の方法により大気中でレーザー加工を行うと加工に伴って発生 する熱によって加工される近傍の温度が上昇し、 c B N焼結体の場合は結合材部 が、 ダイヤモンド焼結体ではダイヤモンド結晶が熱的変性を受け、 機械的強度が 劣化する。 その範囲は、 2 0 0 μ πιにもおよぶ。 しかしながら本宪明の方法によ れば、 レーザー出力が小さいことから、 超高圧焼結体の比較的高い熱伝導率によ つて、 加工時に発生した熱は速やかに除去され、 熱的変成を受ける部分を 2 0〜 4 0 /z m程度に押さえることが出来る。
レーザー光源としては、 微細加工用レ ザ一として工業的に一般的に使用され ている波長 1 0 6 4 n mの YA Gレーザ を使用するのが最も効果的である。 ま た、 同じ波長に'近い発信光を持つ半導体レーザーも使用できる。 切削工具の中心 部に設けるくぼみは、 出力を調整し、 同時にガルバノメーターミラーにより集光 性を高めた高出力パルス YAGレーザーを用いて、 出力、 発信周波数、 加工ピッ チを制御することで、 等高線状に一定の加工量で掘り進みながら加工を行う。 該 レーザー加工法では、 レーザー光の総出力を低く押さえ、 且つ集光度を高めるこ とにより、 加工面への熱影響が少なくすることができる。 また三次元 CADシス テムで作成した形状モデルデータを、 電子データを受信可能に接続したレーザー 加工機に直接送信して、 該レーザー加工機に、 受信した形状モデノレデータから加 ェパスを自動生成する CAD— CAMシステムを構成することにより、 一般的な 線状の切断の加工のみに留まらず、 微細でかつ異形曲面を持つ形状の加工も可能 である。 例えば DECKEL MAHO社製の DML 40を用いて本件発明を達 成することが出来る。
以下、 具体的な実施例で本発明をさらに詳しく説明する。 実施例 1
超高圧 ·高温下で焼結された c B N 60体積%と T i N 20体積%と A 1 N 1 0体積%と残部 T i Bの金属間化合物からなる c B N焼結体 1を、 超硬合金バッ クメタル 2をもつ円板状の c BN焼結体を作製した。 これを従来からの切断方法 を用いて、 図 1に示す直径 10mm、 厚さ 3. 18 mmの円板形状の切削工具を 作製した。
次に、 パルス式の 6 OWの YAGレーザーをもちいて、 図 1に示す深さ 1. 6 mmのくぼみを切削工具上に形成した。 くぼみの形成後、 その表面の面粗さを測 定したところ、 1 2で10// 111でぁった。 同じく連続発振式の 10 OWの YAG レーザーを用いて、 同じ形状のくぼみを切削工具上に形成した。 この場合のくぼ みの表面の面粗さは R z 100 μ mであった。 得られた切削工具を、 図 6に類似 したホルダに装着し、 切削試験を行った。 被削材は、 SKD 1 1焼き入れ鋼 (硬 度 HRC 55-58) で、 その条件は、 周速 150 m/m i n、 切り込み 0. 2 mm、 送り 0. lmm/r e vであった。 比較のために、 上記と同じ焼結体を用 いて、 くぼみを作ることなくそのままクランプオン方式で切削工具を装着して切 削試験を同じ条件で行った。
くぼみを持たない切削工具は、 加工面にビビリが発生した。 これに対し、 パル ス発振レーザーでくぼみを形成した切削工具は、 その締め付けカをスラスト方向 のみならずホルダー座繰りへの引き込み力を発生させるので、 より安定した保持 力を得ることができた。 従って、 加工面にビビリを発生することなく加工でき た。 更に押さえ金の先端部を c B Nよりも抗折力の高い超硬合金と接触させる ことでより強固な締め付けトルクでクランプすることが出来、 切り込み量を 0 . 3 5 mmに大きくしてもビビルことなく安定した加工ができるようになった。 連続発振レーザーでくぼみを形成したものについては、 加工途中でくぼみ部分 から切削工具が割れ、 それ以上の加工ができなかった。 実施例 2
超高圧■高温下で焼結体されたダイヤモンド含有量 9 0体積%、 残部がコパル トおよびタングステンからなる焼結体を準備した。 この焼結体には、 超硬合金の 補強はない。 これを図 2に示す型番 T NMN 1 2 0 4 0 4の形状に、 ワイヤー放 電加ェ方法により切断した。 つぎにこの焼結体の中央部に、 7 O Wのレーザーを 用いて、 くぼみを設けた。 深さは、 2 . 1 mmで、 直径 4 . 2 mmであった。 この切削工具を用いて切削試験を実施した。 被削材は、 S KD 6 1焼き入れ鋼 (硬度 H R C 6 0— 6 2 ) で、 その条件は、 周速 2 0 O m/m i n、 きりこみ 0 . 2 mm、 送り 0 . 1 5 mmZ r e vであった。 比較のために、 上記と同じ焼 結体を用いて、 くぼみを作ることなくそのままクランプオン方式で切削工具を装 着して切削試験を同じ条件で行った。
くぼみを持たない切削工具は、 加工面にビビリが発生した。 これに対し、 くぼ みを形成した切削工具はその締め付けカをスラスト方向のみならずホルダー座繰 りへの引き込み力を発生させ、 より安定した保持力を得ることができるようにな つた。 従って、 加工面にビビリを発生することなく加工できた。
更に押さえ金の先端部とくぼみの接触部に厚さ 0 . 3 mmの銅合金からなる板 材を緩衝材として介在させさせた結果、 より強固な締め付けトルクでクランプす ることが出来、 切り込み量を 0 . 3 mmに大きくしてもビビリを起こさず、 安定 した加工ができた。 実施例 3
超高圧 ·高温下で焼結された c B N 92体積。 /0と残部が C o、 W、 Bからなる 円板状の c B N焼結体を作製した。 この焼結体は、 超硬合金のバックメタルによ つて補強されている。 これを図 4に示すような型番 SNGN 120404の切削 工具素材を作製し、 切削試験を実施した。
この工具は、 実施例 1、 2のものに比較すると負荷の高い切削なので、 切削ェ 具引き込み部とくぼみの接触面積を増やすべく以下の構造とした。 すなわち、 切 刃に相対するくぼみの部分とすくい面の交わりで形成された線が直線となるよう にして、 切削工具引き込み部がくぼみと当たる面積を増加することにより、 保持 力を高めたものである。
被削材は、 SUJ 2 (HRC62〜64) で、 その条件は、 周速 180 mZm i n、 切り込み 0. 2mm、 送り 0. 2m/r e vであった。 比較のために、 上 記と同じ焼結体を用いて、 くぼみを作ることなくそのままクランプオン方式で切 削工具を装着して切削試験を同じ条件で行った。
くぼみを持たない切削工具は、 加工面にビビリが発生した。 これに対し、 くぼ みを形成した切削工具はその締め付けカをスラスト方向のみならずホルダー座繰 りへの引き込み力を発生させ、 より強固な保持力を得ることができるようになつ た結果、 加工面にビビリを発生することなく安定して加工できた。 実施例 4
超高圧■高温下で焼結体されたダイヤモンド含有量 85体積%、 残部がコバル トからなる焼結体を準備した。 この焼結体には、 超硗合金の補強はない。 この焼 結体から型審 TBGN06102の切削工具を切り出し、 すくい面に切刃に対向 する部分に、 図 5に示すような溝を設けた。 切削工具引き込み部に当たるくぼみ の面積を増加させることで保持力を高めたものである。
本実施例は、 高速高負荷条件下での評価である。 被削材は、 ADC 12で、 その条件は、 周速 28 OmZm i n、 切り込み 2. 5 mm、 送り 0. 5mmZr e vであった。 比較のために、 上記と同じ焼結体を用いて、 くぼみを作ること なくそのままクランプオン方式で切削工具を装着して切削試験を同じ条件で行つ た。
くぼみを形成しない切削工具は、 保持力不足により下降中に刃先が欠損したの に対し、 くぼみを形成した切削工具はその締め付けカをスラスト方向のみならず ホルダー座繰りへの引き込み力を発生させ、 より強固な保持力を得ることができ るようになった結果、 刃先の欠損は発生しなかった。 実施例 5
4GP a, 1200 °Cの超高圧、 高温条件で、 平均粒径 10 mの c B N粒子 を体積で 85%を含有し、 残部が A 1 Nと A 1 B 2を主成分とする A 1化合物と する c BN焼結体を焼結した。 本焼結体を Y AGレーザーで切断し、 I SO型番 SNGN 120416の工具全体が c B N焼結体で構成された切削工具 (以下ソ リツド c BN焼結体工具と記す) を作製した。 次に、 これをパルス式の 60Wの Y AGレーザーを用いて深さ 1. 6 mm直径、 φ 8 · 4 mm- 3. 0 mmの円 錐台のくぼみを形成し、 SNGX1 2041 6の c B N焼結体切削工具を作製し た。
得られた切削工具をホルダーに装着し、 切削試験を行った。 被削材は、 FC 2 50の丸棒を切削速度 V= 1500 m/m i n, 切り込み d = 5 mm, 送り F = 0. 4mm/ r e v、 WETの条件で行った。 比較のために、 同じソリッド cB N焼結体からなるくぼみのない I S O型番 SNGN 120416、 や穴付きの I SO型番 SNGA 120416、 楕円状のくぼみを有する I SO型番 SNGX 1 20416の市販の S i 3 N 4焼結体切削工具を用いた切削評価も行った。 くぼみのない I SO型番 SNGN 12041 6のソリツド c BN焼結体切削ェ 具は、 切削開始後 44秒の時点では、 工具に欠損などの異常な損傷は全くなかつ たが、 送り分力方向に切削工具がずれ、 加工面に段差が付き継続加工が不可能と なった。
楕円状のくぼみを有する I SO型番 SNGX 120416の市販の S i 3N4 焼結体切削工具は、 切削開始後 30秒の時点では、 VB量が 200 /zmと発達 し、 30 μιηのチッビングが生じているものの,継続可能であつたが、 その後 3 8 秒の時点で欠損により切削工具が大破した。 この切削工具の場合は、 破損したェ 具の破面から、 楕円状のくぼみに対して押え金が片当たりして、 その部分からェ 具が割れて破損したものと推定された。
穴付きの I S Ο型番 SNGA1 2041 6のソリッド c B N焼結体切削工具 は、 切削開始後 3 1 5秒後の被削材丸棒への食い付き時に切削工具側面で割れが 生じ継続切削が不可能となつた。
本件発明である円錐台のくぼみを形成した SNGX 1 2041 6 c B N焼結体 切削工具は、 600秒後も正常摩耗であり、 VB量も 1 0 O xmと小さく、 継続 加工が可能であった。 実施例 6
実施例 2で作成したダイャモンド焼結体を用いて、 図 1に示す深さ 1. 6 mm のくぼみを本発明のレーザー加工方法おょぴ放電加工方法を用いて作成した。 レーザー加工は 6 OWの出力で実施した。 放電加工は、 穴形状を凹凸逆にした 電極を準備し、 焼結体のダイヤモンド側の面から電極を当て、 放電による電極の 損耗がなくなり、 くぼみの形状が設計どおりになるまで電極を取り替えながら実 施した。
レーザー加工では 1つのくぼみを形成するのに 5分 30秒かかったが、 放電加 ェでは 5個の電極を使い、 45分の加工時間を要した。 実施例 7
実施例 5で作製した c B N焼結体を用いて、 深さ 1. 6 mm直径、 φ 8. 4 m m- 3. 0 mmの円錐台のくぼみを本発明のレーザー加工方法おょぴ砥石によ る研削加工を用いて作成した。 尚、 同じ焼結体を用いて放電加工により前記と同 形状のくぼみを加工しょうとしたが、 加工が進まず、 作製を中止した。 本焼結体 の電気抵抗率を測定したところ、 5ιηΩ ■ cmであった。
レーザー加工は 6 OWの出力で実施した。 砥石加工は穴形状を凹凸逆にした回 転砥石を準備し、 焼結体の c BN側の面から砥石を当て、 摩耗による砥石の損耗 がなくなり、 くぼみの形状が設計どおりになるまで砥石を取り替えながら実施し た。
レーザー加工では 1つのくぼみを形成するのに 7分かかったが、 砥石; ¾ェでは 2 0個の砥石を使い、 8 0時間の加工時間を要した。 産業上の利用可能性 ·
以上のように、 本発明に係わるくぼみを有する超高圧焼結体切削工具は、 容易 に、 且つ寸法精度高く保持することが出来る。 小さな切削工具に適用すると、 特 に効果が大きい。 また本発明に係わる製造方法は、 高速で、 加工による損傷が少 なく、 種々の形状のくぼみを切削工具のすくい面に加工することが出来る。

Claims

請求の範囲 '
1 . すくい面全面が超高圧焼結体で構成されていて、 すくい面の中心部に工具 ホルダーへの取付け用のくぼみ又は溝を有することを特徴とする超高圧焼結体切 削工具。
2. 前記超高圧焼結体のすくい面の反対面が、 超硬合金で補強されていること を特徴とする請求項 1に記載の超高圧焼結体切削工具。
3 . 前記超高圧焼結体は、 c B N焼結体か又はダイャモンド焼結体であること を特徵とする請求項 1または 2のいずれかに記載の超高圧焼結体切削工具。
4. 前記くぼみ又は溝と、 前記すくい面の交わりで構成される線が直線部を有 することを特徴とする請求項 1〜 3のいずれかに記載の超高圧焼結体切削工具。 '
5 . 前記くぼみの形状が、 円錐ないしは円錐台であることを特徴とする請求項 1〜 3のいずれかに記載の超高圧焼結体切削工具。
6 . 前記くぼみ又は溝が、 レーザーにより形成されたことを特徴とする請求項 1〜 5のいずれかに記載の超高圧焼結体切削工具。
7. 前記くぼみを有する部位の電気抵抗率が Ι ιη Ω■ c m以上であることを特 徴とする、 請求項 1〜 6のいずれかに記載の超高圧焼結体切削工具。
8 . すくい面全面が超高圧焼結体で構成されていて、 すくい面の略中心部にェ 具ホルダーへの取付け用のくぼみ又は溝を有する超高圧焼結体切削工具を、 ホル ダ一に取付けられた押え金の引き込み部が前記くぼみ又は溝に当たり、 工具拘束 面に引き込むようにしたことを特徴とする超高圧焼結体切削工具の保持機構。
9 . 前記くぼみ又は溝と押え金の間に、 樹脂、 銅、 銅合金、 鉛から選ばれた材 料を緩衝材として介在させることを特徴とする請求項 8に記載の超高圧焼結体切 肖 IJ工具の保持機構。
1 0 . パルス発信で、 5 0から 1 0 0ワットの出力の YA Gレーザーを用い て、 すくい面全面が超高圧焼結体からなる超高圧焼結体切削工具のすくい面にく ぼみ又は溝を形成することを特徴とする超高圧焼結体切削工具の製造方法。
PCT/JP2002/007828 2001-08-10 2002-07-31 Ultra high-pressure sintered cutter with recess or groove, holding mechanism for the cutter, and method of manufacturing the cutter WO2003015968A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003520511A JPWO2003015968A1 (ja) 2001-08-10 2002-07-31 くぼみ又は溝を有する超高圧焼結体切削工具とその保持機構及びその製造方法
EP02755734A EP1435271A4 (en) 2001-08-10 2002-07-31 HIGH-PRESSURE FRITTED TRANCHET DISPOSABLE BLADE HAVING AN EVIDENCE OR GROOVE, FIXING MECHANISM, AND MANUFACTURING METHOD THEREOF
US10/486,371 US20040213639A1 (en) 2001-08-10 2002-07-31 Ultra-high-pressure sintered cutter with recess or groove, holding mechanism for the cutter,and method of manufacturing the cutter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-243972 2001-08-10
JP2001243972 2001-08-10

Publications (1)

Publication Number Publication Date
WO2003015968A1 true WO2003015968A1 (en) 2003-02-27

Family

ID=19073975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007828 WO2003015968A1 (en) 2001-08-10 2002-07-31 Ultra high-pressure sintered cutter with recess or groove, holding mechanism for the cutter, and method of manufacturing the cutter

Country Status (5)

Country Link
US (1) US20040213639A1 (ja)
EP (1) EP1435271A4 (ja)
JP (1) JPWO2003015968A1 (ja)
CN (1) CN1538890A (ja)
WO (1) WO2003015968A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021192A1 (de) * 2003-08-22 2005-03-10 Ceramtec Ag Innovative Ceramic Engineering Schneidplatte aus pcbn oder einem cbn- verbundwerkstoff mit spannmulde
WO2013190977A1 (ja) * 2012-06-21 2013-12-27 住友電工ハードメタル株式会社 切削工具
KR20140078727A (ko) * 2011-10-06 2014-06-25 세람테크 게엠베하 소형화 절단 판
JP7094501B1 (ja) 2021-11-30 2022-07-04 株式会社タンガロイ 切削工具

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040088448A (ko) * 2004-09-21 2004-10-16 정세영 단결정 와이어 제조방법
GB2434771B (en) * 2006-02-02 2011-11-30 Bencere Ltd A Cutting Insert
US7510353B2 (en) * 2006-02-16 2009-03-31 Remark Technologies, Inc. Indexable cutting tool insert and cutting tool
US8287213B2 (en) * 2006-02-16 2012-10-16 Remark Technologies, Inc. Indexable cutting tool insert for cutting tools
JP4976576B2 (ja) 2010-11-01 2012-07-18 住友電気工業株式会社 切削工具とその製造方法および製造装置
US11241747B2 (en) * 2017-10-16 2022-02-08 Iscar, Ltd. Cutting tool and undersized bore-less indexable insert therefor
CN111570833A (zh) * 2020-05-26 2020-08-25 赣州市普希德工具有限公司 一种刀片结构、切割刀头及装夹方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4716045Y1 (ja) * 1969-07-24 1972-06-06
JPS60141407A (ja) * 1983-11-28 1985-07-26 フエルトミユーレ・アクチエンゲゼルシヤフト セラミツク製チツプのためのクランプ保持体
JPH042402A (ja) * 1990-04-16 1992-01-07 Riken Corp ウィスカー強化型セラミックス製切削チップ
JPH07276105A (ja) * 1994-04-07 1995-10-24 Mitsubishi Materials Corp スローアウェイチップ
JPH07299577A (ja) * 1994-05-09 1995-11-14 Denki Kagaku Kogyo Kk 立方晶窒化ほう素焼結体のレーザー加工方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB929691A (en) * 1961-04-19 1963-06-26 Metro Cutanit Ltd Improvements relating to cutting tools for lathes and other machine tools
JPS58199841A (ja) * 1982-05-18 1983-11-21 Nippon Oil & Fats Co Ltd 切削工具用の硬度焼結体スローアウェイチップの製造方法
DE3713334A1 (de) * 1987-04-21 1988-11-03 Krupp Gmbh Presswerkzeug und aus einem damit geformten gruenling gesinterter schneideinsatz
JPH0340003U (ja) * 1989-08-31 1991-04-17
US5026960A (en) * 1989-10-31 1991-06-25 The General Electric Company Chip breaker for polycrystalline CBN and diamond compacts
US5643523A (en) * 1995-04-18 1997-07-01 Saint-Gobain/Norton Industrial Ceramics Corp. Method of manufacturing diamond-coated cutting tool inserts
GB9616043D0 (en) * 1996-07-31 1996-09-11 De Beers Ind Diamond Diamond
JP3050183B2 (ja) * 1997-09-09 2000-06-12 住友電気工業株式会社 セラミックチップクランプ型切削工具
US6709747B1 (en) * 1998-09-28 2004-03-23 Skeleton Technologies Ag Method of manufacturing a diamond composite and a composite produced by same
JP2000246512A (ja) * 1998-12-28 2000-09-12 Ngk Spark Plug Co Ltd ダイヤモンド類被覆切削工具
DE19903037C2 (de) * 1999-01-26 2003-12-04 Jakob Lach Gmbh & Co Kg Schneidwerkzeug mit Mitteln zur Spankontrolle
US6488715B1 (en) * 2000-01-30 2002-12-03 Diamicron, Inc. Diamond-surfaced cup for use in a prosthetic joint
US6712564B1 (en) * 2000-09-29 2004-03-30 Greenleaf Technology Corporation Tool with improved resistance to displacement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4716045Y1 (ja) * 1969-07-24 1972-06-06
JPS60141407A (ja) * 1983-11-28 1985-07-26 フエルトミユーレ・アクチエンゲゼルシヤフト セラミツク製チツプのためのクランプ保持体
JPH042402A (ja) * 1990-04-16 1992-01-07 Riken Corp ウィスカー強化型セラミックス製切削チップ
JPH07276105A (ja) * 1994-04-07 1995-10-24 Mitsubishi Materials Corp スローアウェイチップ
JPH07299577A (ja) * 1994-05-09 1995-11-14 Denki Kagaku Kogyo Kk 立方晶窒化ほう素焼結体のレーザー加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1435271A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021192A1 (de) * 2003-08-22 2005-03-10 Ceramtec Ag Innovative Ceramic Engineering Schneidplatte aus pcbn oder einem cbn- verbundwerkstoff mit spannmulde
KR20140078727A (ko) * 2011-10-06 2014-06-25 세람테크 게엠베하 소형화 절단 판
KR101990608B1 (ko) * 2011-10-06 2019-06-18 세람테크 게엠베하 소형화 절단 판
WO2013190977A1 (ja) * 2012-06-21 2013-12-27 住友電工ハードメタル株式会社 切削工具
JP2014000663A (ja) * 2012-06-21 2014-01-09 Sumitomo Electric Hardmetal Corp 切削工具
US9707629B2 (en) 2012-06-21 2017-07-18 Sumitomo Electric Hardmetal Corp. Cutting tool
JP7094501B1 (ja) 2021-11-30 2022-07-04 株式会社タンガロイ 切削工具
JP2023080517A (ja) * 2021-11-30 2023-06-09 株式会社タンガロイ 切削工具

Also Published As

Publication number Publication date
US20040213639A1 (en) 2004-10-28
CN1538890A (zh) 2004-10-20
JPWO2003015968A1 (ja) 2004-12-02
EP1435271A1 (en) 2004-07-07
EP1435271A4 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP2751873B2 (ja) フライス用スローアウェイチップおよびそれを用いたフライス用カッタ
US7059811B2 (en) Cutting tool coated with diamond
Hosokawa et al. Laser dressing of metal bonded diamond wheel
EP1435270A1 (en) Throw-away tip
KR101729804B1 (ko) 절삭 공구
WO2013161849A1 (ja) ダイシングブレード
KR101456395B1 (ko) 입방정 질화 붕소 소결체 공구
WO2003015968A1 (en) Ultra high-pressure sintered cutter with recess or groove, holding mechanism for the cutter, and method of manufacturing the cutter
CN102458730A (zh) 超硬刀片
JP4583222B2 (ja) 硬質焼結体切削工具およびその製造方法
JP2006096051A (ja) 硬質材料の加工方法及び硬質材料部品
JP2006341321A (ja) 切削工具
JP2016196085A (ja) 加工砥石
JP4688110B2 (ja) 単結晶ダイヤモンドバイト及びその製造方法
JP3698207B2 (ja) 刃先交換式チップ
JP2021530372A (ja) 硬脆性難削材加工用ダイヤモンド切削工具
JP3938312B2 (ja) 硬質材料の加工方法
JP2005199428A5 (ja)
JP5183256B2 (ja) 切削工具とこれを用いた切削方法
JP2005199428A (ja) 刃先交換式チップ及び丸チップの固定構造
CN113732366A (zh) 一种深小孔内壁超声振动加工刀具及其制备方法
JPH09314406A (ja) 超硬質切削用チップ及びその製造方法
JP4126377B2 (ja) ダイヤモンドの加工方法
JP6515387B2 (ja) 超硬工具及びその製造方法
JP2000126906A (ja) 切削用バイト及び製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003520511

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028153332

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10486371

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002755734

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002755734

Country of ref document: EP