WO2003011335A2 - Polyvalente vakzine gegen durch papillomaviren verursachte erkrankungen, verfahren zu deren herstellung und deren verwendung - Google Patents

Polyvalente vakzine gegen durch papillomaviren verursachte erkrankungen, verfahren zu deren herstellung und deren verwendung Download PDF

Info

Publication number
WO2003011335A2
WO2003011335A2 PCT/EP2002/008360 EP0208360W WO03011335A2 WO 2003011335 A2 WO2003011335 A2 WO 2003011335A2 EP 0208360 W EP0208360 W EP 0208360W WO 03011335 A2 WO03011335 A2 WO 03011335A2
Authority
WO
WIPO (PCT)
Prior art keywords
dna
vaccine
papillomavirus
structural protein
coding
Prior art date
Application number
PCT/EP2002/008360
Other languages
English (en)
French (fr)
Other versions
WO2003011335A3 (de
Inventor
Lutz Gissmann
Martin Müller
Kai Pohlmeyer
Original Assignee
Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts filed Critical Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts
Priority to EP02791474A priority Critical patent/EP1411981A2/de
Priority to US10/485,454 priority patent/US7320861B2/en
Priority to AU2002355654A priority patent/AU2002355654A1/en
Publication of WO2003011335A2 publication Critical patent/WO2003011335A2/de
Publication of WO2003011335A3 publication Critical patent/WO2003011335A3/de
Priority to US10/778,936 priority patent/US7354714B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/081Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from DNA viruses
    • C07K16/084Papovaviridae, e.g. papillomavirus, polyomavirus, SV40, BK virus, JC virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the invention relates to polyvalent vaccines against diseases caused by papillomaviruses, processes for their production and their use.
  • Papillomaviruses form a subfamily of papovaviruses with more than 80 genotypes. Infection with papilloma viruses can lead to warts, papillomas, acanthomas, skin and cervical carcinomas. A single disease can be caused by different types of papillomavirus.
  • HPV human pathogenic papillomaviruses
  • Vaccines for the effective prevention of HPV-related diseases must always contain a mixture of different virus types in order to achieve comprehensive protection. However, the preparation of such vaccines is difficult due to the fact described above that the same disease can be caused by different types of HPV.
  • the present invention is therefore based on the object of providing a vaccine and a method for its simple production, with which an immune response against various types of HPV can be obtained.
  • Mammals are injected with one or more expression vector (s) which have the DNA coding for a structural protein of papillomavirus (PV) or a fragment thereof, with at least some of the expression vectors being random in the coding DNA generated heterologous sequences are used,
  • fragments thereof indicates that the DNA encodes a protein that is shorter in comparison to the wild-type protein, but the properties required for the present invention, in particular chemical, physical and / or functional properties.
  • the gene coding for PV capsids of a certain type can be modified by inserting randomly generated sequences.
  • recombinant vectors such as plasmids
  • sera are prepared by immunization with a plurality of L1 expression vectors, which can be referred to as pools of expression vectors, which are then tested for reactivity with capsids of different PV types. Only then are the pools separated and capside with cross-neutralizing epitopes identified.
  • the vaccine according to the invention can be VLPs (virus-like particies) or capsomers which contain modified L1 proteins which may have epitopes which are neutralizing against cancer. H. which lead to an antibody response directed against different PV types.
  • VLPs virus-like particies
  • capsomers which contain modified L1 proteins which may have epitopes which are neutralizing against cancer. H. which lead to an antibody response directed against different PV types.
  • Such vaccines can be referred to as polyvalent vaccines that can be used against infections with various types of PV.
  • VLP virus-like particles
  • Epitope is another name for antigen determinants. These are areas on the surface of an antigen to which a specific antibody binds via its antigen-binding region.
  • a randomly generated heterologous sequence is used in a main structural protein, such as the L1 gene, of a certain type of a papillomavirus, in particular in the hypervariable regions of L1 genes.
  • insert in the sense of the present invention indicates that the randomly generated heterologous sequences can be present in addition to the naturally occurring epitopes in the gene for the structural protein and / or the naturally occurring epitope in the gene for the structural protein by a randomly generated heterologous Sequence can be exchanged.
  • an L1 gene cassette is described below, which makes it possible to insert different, randomly generated oligonucleotides into the hypervariable regions of the L1 structural protein.
  • a gene cassette can first be constructed for inserting the randomly generated oligonucleotides into the DNA sequence of the L1 structural protein.
  • This gene cassette is characterized in that, for example, the DNA coding for the hypervariable regions of the L1 structural protein is modified in such a way that silent mutations insert monovalent interfaces for restriction endonucleases which flank these hypervariable regions.
  • silent mutation is a term for the introduction of an altered DNA sequence that bears a recognition site for a specific restriction endonuclease without the amino acid sequence being changed thereby.
  • the term monovalent interface denotes a recognition sequence for a restriction endonuclease that occurs only once in the DNA sequence that codes for the target protein. For technical reasons, this is a recognition sequence for a restriction enzyme, which must not be present in the plasmid used for the preparation of the variable DNA mixtures.
  • the heterologous, randomly degenerate oligonucleotides can be constructed such that they are also flanked by the monovalent interfaces as they flank the hypervariable regions of the L1 DNA sequence. As a result, the gene cassette (in a cloning plasmid) and the oligonucleotides can be treated with the corresponding restriction enzymes. The oligonucleotides can then be ligated into the gene cassette.
  • heterologous sequences indicates a DNA sequence of any kind, that of the DNA sequence coding for the naturally occurring epitopes in the structural protein of PV in at least one to at most all nucleotides This can be achieved by exchanging nucleotides Since epitopes generally only comprise a few amino acids in the order of magnitude of oligoproteins, the heterologous sequences can be produced in the usual way, for example by oligonucleotide synthesis, starting from the DNA sequences of the known epitopes ,
  • the corresponding DNA sequence consists of 36 nucleotides. From these, one to at most all of the nucleotides can be exchanged for the randomly generated heterologous sequence. Since one nucleotide can be replaced by a total of three other dq of different nucleotides, the random generation of the DNA sequences can result in a multitude of up to several thousand new DNA sequences which are heterologous to the original DNA sequence. Since the production of this DNA is not targeted, as is the case, for example, when only a specific nucleotide in a DNA sequence is exchanged, it can be referred to as a randomly generated DNA sequence.
  • a so-called “random library” is an example of a collection of different heterologous, randomly generated sequences.
  • the randomly generated heterologous DNA sequences used to produce the vaccine according to the invention are therefore those which are not generated by targeted mutations, but rather, based on known epitope sequences, at least one nucleotide and at most all nucleotides are randomly generated by one of the three other conceivable nucleotides, which results in a randomly generated collection of different DNA sequences. It is favorable if the randomly generated heterologous DNA sequence is based on the naturally occurring epitopes with regard to the number of nucleotides, ideally even has the same number of nucleotides.
  • the oligonucleotides can be produced using the method of oligonucleotide synthesis.
  • the nucleotide sequence is generated linearly, i.e. the chain extension takes place through the reaction of the already existing nucleotide sequence with an activated precursor of the following nucleotide.
  • an activated precursor of the following nucleotide not only the activated precursor of a nucleotide but also activated precursors of 2, 3 or 4 nucleotides can be used for the production of degenerate oligonucleotides. This creates mixtures of oligonucleotides that code for several different amino acids at this point.
  • DNA sequences that do not occur in PV pathogens that are pathogenic to humans, as well as the sequences coding for the wild-type epitopes.
  • the sequence range from amino acid 130 to 152 can apply to the main structural protein L1 as an example.
  • a DNA sequence of 69 nucleotides encodes the 23 amino acids of this sequence section.
  • the additional introduction of the monovalent interfaces creates DNA sequences with over 80 nucleotides. Alternatively, the range from amino acid 260-299 or amino acid 349-360 can also be selected.
  • the counter strand can be synthesized by different filling reactions with DNA polymerases.
  • the double-stranded DNA obtained in this way can then be modified directly with the corresponding restriction endonucleases and ligated into the L1 gene cassette.
  • the person skilled in the art can first ligate the double-stranded DNA sequences via "blunt end” cloning in cloning vectors. The DNA sequences can then be cloned from these "random libraries" into the L1 gene cassettes with high efficiencies.
  • the randomly generated heterologous DNA sequences are then, as described above, inserted into the genes of the structural proteins of PV, in particular into the L1 genes of papilloma viruses of a certain type.
  • Papilloma viruses are represented by HPV, BPV and CRPV.
  • the insertion into the hypervariable regions of L1 genes takes place.
  • the invention is described here with reference to the preferred structural protein gene L1, but is not limited to this.
  • the length of the heterologous DNA used i.e. the number of nucleotides, as already mentioned above, is based on the length of the naturally occurring epitopes. Above all, it is chosen so that the formation of the capsomeres and the VLPs is not impaired.
  • the original epitopes of the L1 gene are replaced by the randomly generated heterologous DNA sequences, only one of the epitopes can be replaced. However, several, up to all of the maximum possible epitopes in the L1 gene can also be replaced by randomly generated heterologous sequences.
  • the L1 genes in which the randomly generated heterologous sequences are inserted can subsequently be cloned into eukaryotic expression vectors. This can result in a large number of bacterial clones, and subgroups can then be formed from this large number of bacterial clones, i.e. cloning this large number of bacteria is divided into pools of several thousand bacterial clones and further used for the production of the vaccine according to the invention.
  • mammals are injected with one or more expression vectors which can be characterized as described above.
  • the term “several” indicates that a pool of expression vectors can be used, which can contain up to 10,000, in particular up to 5,000, different expression vectors from one another.
  • the differences in the expression vectors consist in particular in the randomly generated cloned-in one heterologous DNA.As can be seen from the above explanations of the randomly generated heterologous DNA, the expression vectors can also contain DNA sequences which were obtained during the random generation of the DNA sequences, but - because the generation is just random - with the DNA Sequence is identical for the wild-type epitopes. Accordingly, expression vectors are injected into the mammals in which at least a part to a maximum of all heterologous DNA sequences randomly generated in the coding DNA are used.
  • DNA vaccination genetic immunization
  • This is a known method for immunization, which, in contrast to conventional immunization, does not inject antigens, but rather the coding DNA in an appropriate expression vector.
  • the intramuscular form of application has proven to be beneficial for DNA vaccination, since the gene obviously takes up and expresses the cell before the DNA is broken down. The immune reaction then takes place against the expressed protein.
  • An advantage of DNA vaccination can be seen in particular in the fact that the virus particles no longer have to be prepared and purified beforehand, for example by expression of the L1 gene using recombinant vectors. DNA vaccination can thus be carried out in a simple and quick manner.
  • This DNA vaccination can be carried out in mammals such as rats, mice, hamsters and guinea pigs.
  • Sera can then be obtained from the experimental animals in a conventional manner and tested for reactivity with different types of papillomavirus. This can be done for example by means of ELISA, which are specific for papillomavirus types.
  • DNA pools used for DNA vaccination which elicit an immune response against various types of papillomavirus, can subsequently be isolated and in turn analyzed by DNA. This enables those clones to be identified which code for VLPs or capsomers which have cross-neutralizing epitopes. These are epitopes that lead to an antibody response against various types of papillomavirus.
  • the corresponding DNA clones can then be further examined by conventional genetic engineering methods and, if necessary, the corresponding virus particles can be produced, isolated and purified.
  • the L1 molecules can be expressed, VLPs or capsomers can be produced and the immunity of the cleaned particles can be examined.
  • the vaccine according to the invention is therefore a multivalent vaccine which induces immune protection against diseases caused by different types of PV.
  • the papillomavirus is a human-pathogenic papillomavirus. This makes it possible to treat diseases in humans caused by human pathogenic papillomaviruses with the vaccine according to the invention.
  • the structural protein is L1, since this is particularly well suited for the production of the vaccine according to the invention.
  • the structural protein forms DNA-free virus capsids or capsomers.
  • the present invention furthermore relates to a DNA vaccine comprising one or more expression vector (s) which have the DNA coding for a structural protein of papillomavirus or a fragment thereof, at least some of the expression vectors being incorporated into the coding DNA randomly generated heterologous sequences are used.
  • the structural protein gene is expressed and the immunization is then carried out against the expressed protein. Immunization is achieved in a particularly simple manner in this way.
  • the present invention also relates to a method for producing the above-described vaccine, wherein
  • Mammals are injected with one or more expression vector (s) which have the DNA coding for a structural protein of papillomavirus or a fragment thereof, with at least some of the expression vectors in the coding DNA randomly generated heterologous sequences are used,
  • the process according to the invention is characterized in that the modified genes of the structural proteins (insertion of randomly generated heterologous DNA) no longer have to be individually checked for their ability to form VLPs or capsomers before the immunization. Rather, pools of recombinant DNA expression vectors are used to immunize mammals, especially mice. The sera obtained are examined for the presence of antibodies against particles of different types of papillomavirus, in particular types of HPV. If the reaction is positive, i.e. if cross-neutralizing epitopes are detected can, the pools of expression vectors are isolated and the corresponding proteins are analyzed.
  • This method according to the invention enables a large number of variants of papillomavirus particles, in particular capsids, to be examined for their immunogenic properties without the particles having to be individually expressed and purified beforehand by expression of the mutated structural protein. Furthermore, the method according to the invention enables highly effective, multivalent papillomavirus vaccines to be produced in a quick, simple and inexpensive manner.
  • the vaccine according to the invention is particularly suitable as a polyvalent vaccine for vaccination against diseases caused by papillomavirus, in particular those diseases which are caused by different types of papillomavirus. Examples of these diseases are warts, papillomas, acanthomas, skin and cervical carcinomas.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Beschrieben wird eine Vakzine gegen durch Papillomaviren verursachte Erkrankungen, die dadurch erhältlich ist, dass (a) Säugern ein oder mehrere Expressionsvektoren injiziert wird/werden, die die für ein Strukturprotein von Papillomaviren oder ein Fragment davon kodierende DNA aufweist/aufweisen, wobei mindestens bei einem Teil der Expressionsvektoren in die kodierende DNA zufällig generierte heterologe Sequenzen eingesetzt sind, (b) aus den Säugern Seren gewonnen werden, die auf das Vorhandensein von Antikörpern gegen Partikel verscheidener Papillomavirus-Typen untersucht werden und (c) mit Hilfe der untersuchten Seren diejenigen Strukturprotein-Klone identifiziert werden, die für eine polyvalente Vakzine kodieren und (d) aus denen dann die Vakzine hergestellt wird. Des weiteren wird ein Verfahren zur Herstellung der Vakzine beschrieben und deren Verwendung zur Impfung gegen durch Papillomaviren verursachte Erkrankungen.

Description

Polyvalente Vakzine gegen durch Papillomaviren verursachte Erkrankungen, Verfahren zu deren
Herstellung und deren Verwendung
Die Erfindung bezieht sich auf polyvalente Vakzine gegen durch Papillomaviren verursachte Erkrankungen, Verfahren zu deren Herstellung und deren Verwendung.
Papillomaviren bilden eine Unterfamilie der Papovaviren mit weit mehr als 80 Genotypen. Eine Infektion mit Papillomaviren kann zu Warzen, Papillomen, Akanthomen, Haut- und Zervixcarcinomen führen. Dabei kann eine einzige Krankheit durch verschiedene Papillomaviren- Typen verursacht werden.
Die Capside der einzelnen Typen humanpathogener Papillomaviren (HPV) unterscheiden sich in ihren antigenenen Eigenschaften (Epitopen), so dass nach Immunisierung mit einem bestimmten HPV-Typ keine neutralisierenden Antikörper gegen Capside anderer HPV-Typen induziert werden. Solche Antikörper wären aber für einen umfassenden Schutz gegen solche Erkrankungen notwendig, die durch unterschiedliche HPV-Typen bedingt sein können.
Beispielsweise kann die Infektion mit einem von mehr als zehn verschiedenen HPV-Typen zur Entstehung von Gebärmuttershalskrebs führen. Obwohl die Viruspartikel der einzelnen Typen in ihrem Aufbau sehr ähnlich sind, tragen sie doch auf ihrer Oberfläche unterschiedliche neutralisierende Epitope und werden daher von dem Immunsystem nur dann erkannt, wenn vorher entweder eine natürliche Infektion oder eine Impfung mit Partikeln desselben Typs stattgefunden hat und typenspezifische (neutralisierende) Antikörper induziert werden. Impfstoffe zur wirksamen Prävention HPV-bedingter Erkrankungen müssen also stets eine Mischung verschiedener Virustypen beinhalten, damit ein umfassender Schutz erreicht wird. Die Herstellung solcher Impfstoffe ist aber aufgrund der vorstehend beschriebenen Tatsache erschwert, dass ein und dieselbe Erkrankung durch verschiedene HPV-Typen hervorgerufen werden kann.
Bisher sind nur monovalente HPV-lmpfstoffe in der Entwicklung, d. h. Impfstoffe, die sich nur gegen einen HPV-Typ richten. Diese weisen jedoch den schwerwiegenden Nachteil auf, dass sie nur Schutz gegen diesen einen speziellen HPV-Typ, nicht aber gegen andere HPV-Typen gewährleisten. Eine umfassende Immunantwort wird also durch monovalente HPV-lmpfstoffe nicht erreicht.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, einen Impfstoff sowie ein Verfahren zu dessen einfacher Herstellung bereitzustellen, mit dem eine Immunantwort gegen verschiedene HPV-Typen erhalten werden kann.
Erfindungsgemäß wird dies erreicht durch eine Vakzine gegen durch Papillomaviren verursachte Erkrankungen, die dadurch erhältlich ist, dass
(a) Säugern ein oder mehrere Expressionsvektor(en) injiziert wird/werden, der/die die für ein Strukturprotein von Papillomaviren (PV) oder ein Fragmente davon kodierende DNA aufweist/aufweisen, wobei mindestens bei einem Teil der Expressionsvektoren in die kodierende DNA zufällig generierte heterologe Sequenzen eingesetzt sind,
(b) aus den Säugern Seren gewonnen werden, die auf das Vorhandensein von Antikörpern gegen Partikel verschiedener Papillomavirus-Typen untersucht werden
(c) mit Hilfe der untersuchten Seren diejenigen Strukturproteingen-Klone, insbesondere L1 Klone, identifiziert werden, die für eine polyvalente Vakzine kodieren und
(d) aus denen die Vakzine hergestellt wird.
Der Ausdruck „Fragmente davon", wie er vorstehend verwendet wird, weist darauf hin, dass die DNA für ein Protein kodiert, das im Vergleich zum Wildtyp-Protein kürzer ist, jedoch die für vorliegende Erfindung erforderlichen Eigenschaften, insbesondere chemischen, physikalischen und/oder funktioneilen Eigenschaften, aufweist.
Bei der Herstellung der erfindungsgemäßen Vakzine kann also das für PV-Capside eines bestimmten Typs kodierende Gen, beispielsweise L1, durch Einsetzen zufällig generierter Sequenzen modifiziert werden. Ohne vorherige Herstellung und Reinigung der Capside, beispielsweise durch Expression des L1-Gens mit Hilfe rekombinanter Vektoren, wie Plasmide, werden durch Immunisierung mit mehreren L1 -Expressionsvektoren, die als Pools von Expressionsvektoren bezeichnet werden können, Seren hergestellt, die dann auf Reaktivität mit Capsiden verschiedener PV-Typen getestet werden. Erst danach werden die Pools vereinzelt und so Capside mit kreuzneutralisierenden Epitopen identifiziert.
Wie aus den vorstehenden Ausführungen hervorgeht, kann es sich bei der erfindungsgemäßen Vakzine um VLPs (virus-like particies) oder Capsomere handeln, die modifizierte L1 -Proteine enthalten, die kreuneutralisierende Epitope aufweisen können, d. h. die zu einer gegen verschiedene PV-Typen gerichteten Antikörperantwort führen. Solche Vakzine können als polyvalente Vakzine bezeichnet werden, die gegen Infektionen mit verschiedenen PV-Typen verwendet werden kann.
Zur Induktion neutralisierender Antikörper können sich, wie vorstehend ausgeführt wurde, DNA- freie Viruscapside, so genannte virus-like particies (VLP), eignen, die sich nach Expression des Hauptstrukturproteins L1 mit Hilfe rekombinanter Vektoren in eukaryotischen Zellen zusammen lagern. Bei VLPs handelt es sich um gentechnisch hergestellte, leere (nukleinsäurefreie) Viruscapside. Auch SubStrukturen von VLPs, die als Capsomere bezeichnet werden, die aus einem unvollständigen Zusammenbau, beispielsweise bei vorliegen veränderter L1 -Moleküle, resultieren, weisen neutralisierende Epitope auf, so dass sie zur Herstellung erfindungsgemäßer Vakzine geeignet sind.
Epitop ist eine andere Bezeichnung für Antigen-Determinanten. Dabei handelt es sich um Bereiche an der Oberfläche eines Antigens, an den ein spezifischer Antikörper über seine Antigen- Bindungsregion bindet.
Zur Herstellung der erfindungsgemäßen Vakzine wird eine zufällig generierte heterologe Sequenz in ein Hauptstrukturprotein, wie das L1-Gen, eines bestimmten Typs eines Papillomavirus eingesetzt, insbesondere in die hypervariablen Regionen von L1 -Genen.
Der Ausdruck "einsetzen" im Sinne der vorliegenden Erfindung weist darauf hin, dass die zufällig generierten heterologen Sequenzen zusätzlich zu den natürlich vorkommenden Epitopen im Gen für das Strukturprotein vorliegen können und/oder das natürlich vorkommenden Epitop im Gen für das Strukturprotein durch eine zufällig generierte heterologe Sequenz ausgetauscht sein kann.
Nachfolgend wird beispielhaft die Herstellung einer L1 -Genkassette beschrieben, die es ermöglicht, unterschiedliche, zufällig generierte Oligonukleotide in die hypervariablen Bereiche des L1 Strukturproteins einzufügen- Für das Einsetzen der zufällig generierten Oligonukleotide in die DNA-Sequenz des L1 Strukturproteins kann zunächst eine Genkassette konstruiert werden. Diese Genkassette ist dadurch gekennzeichnet daß beispielsweise die für die hypervariablen Bereiche des L1 Strukturproteins kodierende DNA so modifiziert wird, daß durch stille Mutationen monovalente Schnittstellen für Restriktionsendonukleasen eingefügt werden, die diese hypervariablen Bereiche flankieren. Die Bezeichnung stille Mutation ist eine Bezeichnung für die Einführung einer veränderten DNA-Sequenz, die eine Erkennungsstelle für eine bestimmte Restriktionsendonuklease trägt, ohne daß dadurch die Aminosäuresequenz verändert wird. Die Bezeichnung monovalente Schnittstelle bezeichnet eine Erkennungssequenz für eine Restriktionsendonuklease, die nur einmal in der DNA-Sequenz, die für das Zielprotein kodiert vorkommt. Aus technischen Gründen handelt es sich dabei um eine Erkennnungsequenz für ein Restriktionsenzym, die auch in dem verwendeten Plasmiden für die Herstellung der variablen DNA- Gemische nicht vorhanden sein darf. Die heterologen, zufällig degenerierten Oligonukleotide können so konstruiert werden, daß sie ebenfalls von den monovalente Schnittstellen flankiert werden, wie sie die hypervariablen Bereiche der L1 DNA-Sequenz flankieren. Dadurch können die Genkassette (in einem Klonierungsplasmid) und die Oligonukleotide mit den entsprechenden gleichen Restriktionsenzymen behandelt werden. Anschließend kann die Ligation der Oligonukleotide in die Genkassette erfolgen.
Der Ausdruck „heterologe Sequenzen", wie er im Sinne der vorliegenden Erfindung verwendet wird, weist auf eine DNA-Sequenz jeglicher Art hin, die von der für die natürlich vorkommenden Epitope im Strukturprotein von PV kodierende DNA-Sequenz in mindestens einem bis maximal allen Nukleotiden unterschiedlich ist. Dies kann durch Austausch von Nukleotiden erreicht werden. Da Epitope in der Regel nur einige Aminosäuren in der Größenordnung von Oligoproteinen umfassen, können ausgehend von den DNA-Sequenzen der bekannten Epitopen die heterologen Sequenzen in üblicher Weise hergestellt werden, beispielsweise durch eine Oligonukleotidsynthese.
Weist ein Epitop beispielsweise 12 Aminosäuren auf, so besteht die entsprechende DNA-Sequenz aus 36 Nukleotiden. Von diesen können für die zufällig generierte heterologe Sequenz ein bis maximal alle der Nukleotide ausgetaussht werden. Da ein Nukleotid gegen insgesamt drei andere dqvon unterschiedliche Nukleotide ersetzt werden kann, können bei der zufälligen Generierung der DNA-Sequenzen eine Vielzahl von bis zu mehreren Tausend neuen DNA-Sequenzen entstehen, die zur ursprünglichen DNA-Sequenz heterolog sind. Da die Herstellung dieser DNA nicht zielgerichtet ist, wie beispielsweise bei dem Austausch nur eines bestimmten Nukleotids in einer DNA-Sequenz, kann sie als eine zufällig generierte DNA-Sequenz bezeichnet werden.
Beispiel für eine Sammlung verschiedener heterologer zufällig generierter Sequenzen stellt eine sogenannte „random library" dar. Bei den zur Herstellung der erfindungsgemäßen Vakzine eingesetzten zufällig generierten heterologen DNA-Sequenzen handelt es sich also um solche, die nicht durch eine zielgerichtete Mutationen erzeugt werden, sondern es werden vielmehr basierend auf bekannten Epitopsequenzen mindestens ein Nukleotid bis maximal alle Nukleotide in zufälliger Weise durch eines der drei anderen denkbaren Nukleotide ausgetauscht, wodurch eine zufällig generierte Sammlung verschiedenster DNA-Sequenzen entsteht. Günstig ist es, wenn die zufällig generierte heterologe DNA-Sequenz hinsichtlich der Anzahl der Nukleotide sich an den natürlich vorkommenden Epitopen orientieren, im Idealfall sogar die gleiche Anzahl an Nukleotiden aufweist.
Bei der Herstellung der zufällig generierten heterologen DNA-Sequenzen geschieht es zwangsläufig, dass durch die zufällige Kombination der Nukleotide wieder die DNA-Sequenz der Wildtyp-Epitope erhalten wird.
Nachfolgend wird beispielhaft beschrieben, wie zufällig generierte Oligonukleotide erhältlich sind. Die Oligonukleotide können über das Verfahren der Oligonukleotidsynthese hergestellt werden. Dabei wird die Nukleotidsequenz linear erzeugt, d.h. die Kettenverlängerung erfolgt durch die Reaktion der bereits vorhanden Nukleotidsequenz mit einer aktivierten Vorstufe des folgenden Nukleotids. Für die Herstellung degenerierter Oligonukleotide kann nun aber nicht nur die aktivierte Vorstufe eines Nukleotids, sondern auch aktivierte Vorstufen von 2, 3 oder 4 Nukleotiden eingesetzt werden. Dadurch entstehen Oligonukleotidgemische, die an dieser Stelle für mehrere verschiedenen Aminosäuren kodieren. Wird dieses Verfahren bei weiteren Reaktionsschritten wiederholt, entsteht eine Kombination verschiedenartiger DNA-Sequenzen. Dabei resultieren sowohl DNA-Sequenzen, die in humanpathogenen PVs nicht vorkommen, als auch die, für die Wildtypepitope kodierenden Sequenzen. Beispielhaft für das Hauptstrukturprotein L1 kann der Sequenzbereich von Aminosäure 130 bis 152 (Sequenznummerierung von HPV16L1) gelten. Für die 23 Aminosäuren dieses Sequenzabschnittes kodiert eine DNA-Sequenz aus 69 Nukleotiden. Durch die zusätzliche Einführung der monovalenten Schnittstellen entstehen DNA-Sequenzen mit über 80 Nukleotiden. Alternativ kann auch der Bereich von Aminosäure 260-299 oder Aminosäure 349-360 gewählt werden. Mit komplementären Primern kann durch verschiedene Auffüllreaktionen mit DNA Polymerasen der Gegenstrang synthetisiert werden. Die so erhaltene doppelsträngige DNA kann dann direkt mit den entsprechenden Restriktionsendonukleasen modifiziert und in die L1 Genkassette ligiert werden. Der Fachmann kann, um höhere Effizienzen zu erhalten, die doppelsträngigen DNA Sequenzen zunächst über "blunt end" Klonierungen in Klonierungsvektoren ligieren. Aus diesen "random libraries" können die DNA-Sequenzen dann mit hohen Effizienzen in die L1 -Genkassetten umkloniert werden.
Die zufällig generierten heterologen DNA-Sequenzen werden dann, wie vorstehend beschrieben, in die Gene der Strukturproteine der PV, insbesondere in die L1-Gene von Papillomaviren eines bestimmten Typs eingesetzt. Vertreter der Papillomaviren sind HPV, BPV und CRPV. Insbesondere erfolgt das Einsetzen in die hypervariablen Regionen von L1 -Genen. Die Erfindung wird vorliegend anhand des bevorzugten Strukturprotein-Gens L1 beschrieben, ohne aber darauf beschränkt zu sein.
Die Länge der eingesetzten heterologen DNA, d.h. die Anzahl der Nukleotide, orientiert sich dabei, wie bereits vorstehend erwähnt, an der Länge der natürlich vorkommenden Epitope. Sie wird vor allem so gewählt, dass die Bildung der Capsomeren und der VLPs nicht beeinträchtigt wird.
Werden die ursprünglichen Epitope des L1-Gens durch die zufällig generierten heterologen DNA- Sequenzen ausgetauscht, kann nur eines der Epitope ausgetauscht werden. Es können aber auch mehrere, bis zu allen der maximal möglichen Epitopen im L1-Gen durch zufällig generierte heterologen Sequenzen ersetzt werden.
Die L1-Gene, in die die zufällig generierten heterologen Sequenzen eingesetzt sind, können nachfolgend in eukaryontische Expressionsvektoren kloniert werden. Dabei können eine Vielzahl von Bakterienklonen entstehen, wobei aus dieser Vielzahl von Bakterienklonen dann Untergruppen gebildet werden können, d.h. diese Vielzahl von Baktierien klonen wird in Pools von einigen Tausend Bakterienklonen geteilt und weiter für die Herstellung der erfindungsgemäßen Vakzine eingesetzt.
Zur Herstellung der erfindungsgemäßen Vakzine wird/werden Säugern ein oder mehrere Expressionsvektor(en) injiziert, die wie vorstehend beschrieben, charakterisiert werden können. Der Begriff „mehrere" weist dabei darauf hin, dass ein Pool von Expressionsvektoren verwendet werden kann, der bis zu 10 000, insbesondere bis zu 5 000, voneinander unterschiedliche Expressionsvektoren enthalten kann. Die Unterschiede in den Expressionsvektoren bestehen dabei insbesondere in der einklonierten zufällig generierten heterologen DNA. Wie aus den vorstehenden Erläuterungen zur zufällig generierten heterologen DNA hervorgeht, können die Expressionsvektoren auch solche DNA-Sequenzen enthalten, die zwar bei der zufälligen Generierung der DNA-Sequenzen erhalten wurden, aber - weil die Generierung eben zufällig ist - mit der DNA-Sequenz für die Wildtyp-Epitope identisch ist. Demzufolge werden den Säugern Expressionsvektoren injiziert, bei denen bei mindestens einem Teil bis maximal allen in die kodierende DNA zufällig generierte heterologe DNA-Sequenzen eingesetzt sind.
Diese vorselektierten Pools werden somit für eine DNA-Vakzinierung (genetischen Immunisierung) verwendet. Dabei handelt es sich um ein an sich bekanntes Verfahren zur Immunisierung, bei der im Gegensatz zur konventionellen Immunisierung keine Antigene, sondern die kodierende DNA in einem entsprechenden Expressionsvektor injiziert wird. Die intramuskuläre Applikationsform hat sich für die DNA-Vakzinierung als günstig erwiesen, da hier offensichtlich eine Aufnahme und Expression des Gens durch die Zelle erfolgt, bevor die DNA abgebaut wird. Gegen das exprimierte Protein erfolgt dann die Immunreaktion. Ein Vorteil der DNA-Vakzinierung ist insbesondere darin zu sehen, dass die Viruspartikel nicht mehr vorher hergestellt und gereinigt werden müssen, beispielsweise durch Expression des L1- Gens mit Hilfe rekombinanter Vektoren. Die DNA-Vakzinierung kann somit in einfacher und schneller Weise durchgeführt werden.
Diese DNA-Vakzinierung kann in Säugern, wie Ratten, Mäusen, Hamstern und Meerschweinchen durchgeführt werden.
Aus den Versuchstieren können dann in üblicher Weise Seren gewonnen werden, die auf Reaktivität mit verschiedenen Papillomavirus-Typen getestet werden können. Dies kann beispielsweise mittels ELISA, die für Papillomavirus-Typen spezifisch sind, erfolgen.
Diejenigen der für die DNA-Vakzinierung eingesetzten DNA-Pools, die eine Immunantwort gegen verschiedene Papillomavirus-Typen hervorrufen, können nachfolgend vereinzelt und wiederum durch DNA analysiert werden. Dadurch können solche Klone identifiziert werden, die für VLPs oder Capsomere kodieren, die kreuzneutralisierende Epitope aufweisen. Dabei handelt es sich um solche Epitope, die zu einer gegen verschiedene Papillomavirus-Typen gerichtete Antikörperantwort führen.
Danach können die entsprechenden DNA-Klone durch übliche gentechnische Verfahren weiter untersucht und gegebenenfalls die entsprechenden Viruspartikel produziert, isoliert und gereinigt werden. Dazu können beispielsweise die L1 -Moleküle exprimiert, VLPs bzw. Capsomere können hergestellt und die Immunität der gereinigten Partikel kann untersucht werden. Letztendlich ist es auf diese Weise möglich, die erfindungsgemäße Vakzine zu gewinnen, die sich dadurch auszeichnet, dass eine Immunisierung gegen mehr als einen Papillomavirus-Typ möglich ist. Bei der erfindungsgemäßen Vakzine handelt es sich somit also um eine multivalente Vakzine, die Immunschutz gegen durch verschiedene PV-Typen hervorgerufene Erkrankungen induzieren.
In einer bevorzugten Ausführungsform der erfindungsgemäßen Vakzine handelt es sich bei dem Papillomavirus um einen humanpathogenen Papillomavirus. Dadurch wird die Behandlung von durch humanpathogene Papillomaviren entstandenen Erkrankungen beim Menschen mit der erfindungsgemäßen Vakzine möglich.
In einer anderen bevorzugten Ausführungsform ist das Strukturprotein L1, da dies für die Herstellung der erfindungsgemäßen Vakzine besonders gut geeignet ist.
In einer weiteren bevorzugten Ausführungsform bildet das Strukturprotein DNA-freie Virus-Capside oder Capsomere. Gegenstand der vorliegenden Erfindung ist ferner eine DNA-Vakzine, umfassend einen oder mehrere Expressionsvektor(en), der/die die für ein Strukturprotein von Papillomaviren oder ein Fragment davon kodierende DNA aufweist/aufweisen, wobei mindestens bei einem Teil der Expressionsvektoren in die kodierende DNA zufällig generierte heterologe Sequenzen eingesetzt sind.
Hinsichtlich der Strukturen und der Herstellung der DNA-Vakzine wird auf vorstehenden Ausführungen verwiesen:
Bei Verabreichung der erfindungsgemäßen DNA-Vakzine wird das Strukturproteingen exprimiert und gegen das exprimierte Protein erfolgt dann die Immunisierung. Auf diese Weise wird in besonders einfacher Weise eine Immunisierung erreicht.
Gegenstand der vorliegenden Erfindung ist ferner ein Verfahren zur Herstellung der vorbeschriebenen Vakzine, wobei
(a) Säugern ein oder mehrere Expressionsvektor(en) injiziert wird/werden, der/die die für ein Strukturprotein von Papillomaviren oder ein Fragment davon kodierende DNA aufweist/aufweisen, wobei mindestens bei einem Teil der Expressionsvektoren in die kodierende DNA zufällig generierte heterologe Sequenzen eingesetzt sind,
(b) aus den Säugern Seren gewonnen werden, die auf das Vorhandensein von Antikörpern gegen Partikel verschiedener Papillomavirus-Typen untersucht werden und
(c) mit Hilfe der untersuchten Seren diejenigen Strukturproteingen-Klone, insbesondere L1 Klone, identifiziert werden, die für eine polyvalente Vakzine kodieren und
(d) aus denen dann die Vakzine hergestellt wird.
Die einzelnen Verfahrensschritte des erfindungsgemäßen Verfahrens wurden bereits vorstehend im Zusammenhang mit der erfindungsgemäßen Vakzine erläutert, so dass auf die diesbezüglichen Ausführungen verwiesen wird.
Das erfϊndungsgemäße Verfahren zeichnet sich dadurch aus, dass die modifizierten Gene der Strukturproteine (Einsetzen zufällig generierter heterologer DNA) vor der Immunisierung nicht mehr individuell auf ihre Fähigkeit zur Bildung von VLPs oder Capsomeren überprüft werden müssen. Vielmehr werden Pools von rekombinanten DNA-Expressionsvektoren zur Immunisierung von Säugern, insbesondere Mäusen, verwendet. Die erhaltenen Seren werden auf das Vorhandensein von Antikörpern gegen Partikel verschiedener Papillomavirus-Typen, insbesondere HPV-Typen, untersucht. Bei positiver Reaktion, wenn also kreuzneutralisierende Epitope nachgewiesen werden können, werden die Pools von Expressionsvektoren vereinzelt und die entsprechenden Proteine analysiert.
Dieses erfindungsgemäße Verfahren ermöglicht die Untersuchung einer großen Zahl von Varianten von Papillomavirus-Partikeln, insbesondere Capsiden, auf ihre immunogenen Eigenschaften, ohne dass vorher die Partikel durch Expression des mutierten Strukturproteins einzeln exprimiert und gereinigt werden müssen. Des weiteren können durch das erfindungsgemäße Verfahren hochwirksame, multivalente Papillomavirus-Vakzine in schneller, einfacher und kostengünstiger Weise hergestellt werden.
Die erfindungsgemäße Vakzine eignet sich bestens als polyvalenter Impfstoff zur Impfung gegen durch Papillomavirus verursachte Erkrankungen, insbesondere solche Erkrankungen, die durch verschiedene Papillomavirus-Typen hervorgerufen werden. Beispiele dieser Erkrankungen sind Warzen, Papillome, Akanthome, Haut- und Zervixcarcinome.

Claims

Patentansprüche
1. Vakzine gegen durch Papillomaviren verursachte Erkrankungen, die dadurch erhältlich ist, dass
(a) Säugern ein oder mehrere Expressionsvektor(en) injiziert wird/werden, der/die die für ein Strukturprotein von Papillomaviren oder ein Fragment davon kodierende DNA aufweist/aufweisen, wobei mindestens bei einem Teil der Expressionsvektoren in die kodierende DNA zufällig generierte heterologe Sequenzen eingesetzt sind,
(b) aus den Säugern Seren gewonnen werden, die auf das Vorhandensein von Antikörpern gegen Partikel verschiedener Papillomavirus-Typen untersucht werden und
(c) mit Hilfe der untersuchten Seren diejenigen Strukturproteingen-Klone identifiziert werden, die für eine polyvalente Vakzine kodieren und
(d) aus denen dann die Vakzine hergestellt wird.
2. Vakzine nach Anspruch 1 , wobei der Papillomavirus ein humanpathogener Papillomavirus ist.
3. Vakzine nach einem der vorhergehenden Ansprüche, wobei das Strukturprotein L1 ist.
4. Vakzine nach einem der vorhergehenden Ansprüche, wobei das Strukturprotein DNA-freie Viruscapside bildet.
5. Vakzine nach einem der vorhergehenden Ansprüche, wobei das Strukturprotein Capsomere bildet.
6. DNA-Vakzine, umfassend einen oder mehrere Expressionsvektor(en), der/die die für ein Strukturprotein von Papillomaviren oder ein Fragment davon kodierende DNA aufweist/aufweisen, wobei bei mindestens einem Teil der Expressionsvektoren in die kodierende DNA zufällig generierte heterologe DNA-Sequenzen eingesetzt sind.
7. Herstellung der Vakzine nach einem der vorhergehenden Ansprüche, wobei
(a) Säugern ein oder mehrere Expressionsvektor(en) injiziert wird/werden, der/die die für ein Strukturprotein von Papillomaviren oder ein Fragment davon kodierende DNA auweist/aufweisen, wobei mindestens bei einem Teil der Expressionsvektoren in die kodierende DNA zufällig generierte heterologe Sequenzen eingesetzt sind,
(b) aus den Säugern Seren gewonnen werden, die auf das Vorhandensein von Antikörpern gegen j Partikel verschiedener Papillomavirus-Typen untersucht werden und
(c) mit Hilfe der untersuchten Seren diejenigen Strukturproteingen-Klone, insbesondere L1 Klone, identifiziert werden, die für eine polyvalente Vakzine kodieren und
(d) aus denen dann die Vakzine hergestellt wird.
8. Verwendung der Vakzine nach einem der Ansprüche 1 bis 6 zur Impfung gegen durch Papillomavirus verursachte Erkrankungen.
9. Verwendung nach Anspruch 8, wobei die Erkrankung aus der Gruppe Warzen, Papillome, Akanthome, Haut- und Zervixcarcinome ausgewählt ist.
PCT/EP2002/008360 2001-07-30 2002-07-26 Polyvalente vakzine gegen durch papillomaviren verursachte erkrankungen, verfahren zu deren herstellung und deren verwendung WO2003011335A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02791474A EP1411981A2 (de) 2001-07-30 2002-07-26 Polyvalente vakzine gegen durch papillomaviren verursachte erkrankungen, verfahren zu deren herstellung und deren verwendung
US10/485,454 US7320861B2 (en) 2001-07-30 2002-07-26 Polyvalent vaccine against diseases caused by papilloma viruses, method for the production and the use thereof
AU2002355654A AU2002355654A1 (en) 2001-07-30 2002-07-26 Polyvalent vaccine against diseases caused by papilloma viruses, method for the production and the use thereof
US10/778,936 US7354714B2 (en) 2001-07-30 2004-02-13 Production and applications for polyvalent vaccines against diseases caused by papilloma viruses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10137102A DE10137102A1 (de) 2001-07-30 2001-07-30 Polyvalente Vakzine gegen durch Papillomaviren verursachte Erkrankungen, Verfahren zu deren Herstellung und deren Verwendung
DE10137102.0 2001-07-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10485454 A-371-Of-International 2002-07-26
US10/778,936 Continuation-In-Part US7354714B2 (en) 2001-07-30 2004-02-13 Production and applications for polyvalent vaccines against diseases caused by papilloma viruses

Publications (2)

Publication Number Publication Date
WO2003011335A2 true WO2003011335A2 (de) 2003-02-13
WO2003011335A3 WO2003011335A3 (de) 2003-11-06

Family

ID=7693601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/008360 WO2003011335A2 (de) 2001-07-30 2002-07-26 Polyvalente vakzine gegen durch papillomaviren verursachte erkrankungen, verfahren zu deren herstellung und deren verwendung

Country Status (5)

Country Link
US (2) US7320861B2 (de)
EP (1) EP1411981A2 (de)
AU (1) AU2002355654A1 (de)
DE (1) DE10137102A1 (de)
WO (1) WO2003011335A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080160040A1 (en) * 2004-04-15 2008-07-03 Ghim Shin-Je Plant-produced compositions for treating papillomavirus infection and related methods
EP1934335A4 (de) * 2005-09-08 2010-05-05 Large Scale Biology Corp Modifizierte tabak-mosaikvirus-teilchen als gerüste zur anzeige von protein-antigenen für impfstoff-anwendungen
US7445786B1 (en) 2006-04-10 2008-11-04 Manuela Rehtanz Diagnosing and protecting against tursiops truncatus papillomavirus

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2524487B1 (fr) * 1982-04-05 1985-11-22 Pasteur Institut Fragments d'adn codant pour des polypeptides contenant au moins un determinant antigenique des papillomavirus, notamment du type hpv 1a et polypeptides correspondants
US5045447A (en) * 1989-03-15 1991-09-03 Minson Anthony C Method of producing antibodies to HPV
US5346703A (en) 1990-08-07 1994-09-13 Mediventures, Inc. Body cavity drug delivery with thermo-irreversible polyoxyalkylene and ionic polysaccharide gels
US6183745B1 (en) 1990-12-12 2001-02-06 The University Of Queensland Subunit papilloma virus vaccine and peptides for use therein
US6287792B1 (en) 1991-06-17 2001-09-11 The Regents Of The University Of California Drug delivery of antisense oligonucleotides and peptides to tissues in vivo and to cells using avidin-biotin technology
DE4123760C2 (de) 1991-07-18 2000-01-20 Dade Behring Marburg Gmbh Seroreaktive Bereiche auf den HPV 16 Proteinen E1 und E2
US7476389B1 (en) 1991-07-19 2009-01-13 The University Of Queensland Papillomavirus vaccines
US5500013A (en) 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5302397A (en) 1991-11-19 1994-04-12 Amsden Brian G Polymer-based drug delivery system
US6235313B1 (en) 1992-04-24 2001-05-22 Brown University Research Foundation Bioadhesive microspheres and their use as drug delivery and imaging systems
US6317629B1 (en) 1992-06-02 2001-11-13 Alza Corporation Iontophoretic drug delivery apparatus
US5885211A (en) 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
DE4415743C2 (de) 1994-05-04 1996-10-10 Deutsches Krebsforsch Papillomviren, Mittel zu deren Nachweis sowie zur Therapie von durch sie verursachten Erkrankungen
US5888516A (en) 1994-05-16 1999-03-30 Merck & Co. Inc. Recombinant papillomavirus vaccines
CN1152935A (zh) 1994-05-16 1997-06-25 麦克公司 乳头状瘤病毒疫苗
IL113817A (en) 1994-06-30 2001-03-19 Merck & Co Inc Polynucleotide for vaccination against the umbilical cord virus
US5891108A (en) 1994-09-12 1999-04-06 Cordis Corporation Drug delivery stent
EP1728800A1 (de) 1994-10-07 2006-12-06 Loyola University Of Chicago Papillomavirusähnliche Partikel, Fusionsproteine sowie Verfahren zu deren Herstellung
US5820870A (en) 1995-03-22 1998-10-13 Merck & Co., Inc. Recombinant human papillomavirus type 18 vaccine
US5840306A (en) 1995-03-22 1998-11-24 Merck & Co., Inc. DNA encoding human papillomavirus type 18
US5821087A (en) 1995-03-30 1998-10-13 Merck & Co., Inc. Production of recombinant human papillomavirus type II protein utilizing papillomavirus 6/11 hybrid DNA
US6041252A (en) 1995-06-07 2000-03-21 Ichor Medical Systems Inc. Drug delivery system and method
US6350780B1 (en) 1995-07-28 2002-02-26 Allergan Sales, Inc. Methods and compositions for drug delivery
US6068829A (en) 1995-09-11 2000-05-30 The Burnham Institute Method of identifying molecules that home to a selected organ in vivo
US5981173A (en) 1996-02-14 1999-11-09 Institut Pasteur Genital human papillomavirus type 68a (HPV-68a), related to the potentially oncogenic HPV-39
US6245349B1 (en) 1996-02-23 2001-06-12 éLAN CORPORATION PLC Drug delivery compositions suitable for intravenous injection
US6132765A (en) 1996-04-12 2000-10-17 Uroteq Inc. Drug delivery via therapeutic hydrogels
US6074673A (en) 1996-04-22 2000-06-13 Guillen; Manuel Slow-release, self-absorbing, drug delivery system
US5874064A (en) 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US6296621B1 (en) 1996-08-23 2001-10-02 Baxter International Inc. Receptacle for passive drug delivery
ATE314054T1 (de) 1996-10-25 2006-01-15 Shire Lab Inc Osmotisches verabreichungssystem für lösliche dosen
ZA9710342B (en) 1996-11-25 1998-06-10 Alza Corp Directional drug delivery stent and method of use.
US6126919A (en) 1997-02-07 2000-10-03 3M Innovative Properties Company Biocompatible compounds for pharmaceutical drug delivery systems
US6086582A (en) 1997-03-13 2000-07-11 Altman; Peter A. Cardiac drug delivery system
ZA982950B (en) 1997-04-08 1998-10-19 Merck & Co Inc Stabilized human papillomavirus formulations
ES2216280T3 (es) 1997-04-08 2004-10-16 MERCK & CO., INC. Formulaciones estabilizadas de papilomavirus humano.
US6060082A (en) 1997-04-18 2000-05-09 Massachusetts Institute Of Technology Polymerized liposomes targeted to M cells and useful for oral or mucosal drug delivery
US6183444B1 (en) 1998-05-16 2001-02-06 Microheart, Inc. Drug delivery module
US5972027A (en) 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system
US6083996A (en) 1997-11-05 2000-07-04 Nexmed Holdings, Inc. Topical compositions for NSAI drug delivery
ES2255155T3 (es) 1998-02-05 2006-06-16 Biosense Webster, Inc. Dispositivo para la administracion intracardiaca de farmacos.
US6086912A (en) 1998-02-11 2000-07-11 Gilman; Marvin S. Topical drug delivery system
US20020039584A1 (en) 1998-02-20 2002-04-04 Medigene Ag Papilloma virus capsomere vaccine formulations and methods of use
US6309410B1 (en) 1998-08-26 2001-10-30 Advanced Bionics Corporation Cochlear electrode with drug delivery channel and method of making same
US6251079B1 (en) 1998-09-30 2001-06-26 C. R. Bard, Inc. Transthoracic drug delivery device
AU770809B2 (en) 1998-12-17 2004-03-04 Merck Sharp & Dohme Corp. Synthetic virus-like particles with heterologous epitopes
US6309380B1 (en) 1999-01-27 2001-10-30 Marian L. Larson Drug delivery via conformal film
SI1150712T1 (sl) 1999-02-05 2009-02-28 Merck & Co Inc Pripravek cepiva proti humanem papiloma virusu
US6245568B1 (en) 1999-03-26 2001-06-12 Merck & Co., Inc. Human papilloma virus vaccine with disassembled and reassembled virus-like particles
US6235312B1 (en) 1999-05-14 2001-05-22 Eastman Chemical Company Liquid crystalline phase drug delivery vehicle
DE19925199A1 (de) * 1999-06-01 2000-12-07 Medigene Ag Zytotoxische T-Zellepitope des Papillomavirus L1-Proteins und ihre Verwendung in Diagnostik und Therapie
US6283947B1 (en) 1999-07-13 2001-09-04 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
JP4799789B2 (ja) 1999-08-25 2011-10-26 メルク・シャープ・エンド・ドーム・コーポレイション ヒト細胞中での発現用に最適化された合成ヒトパピローマウイルス遺伝子
US6283949B1 (en) 1999-12-27 2001-09-04 Advanced Cardiovascular Systems, Inc. Refillable implantable drug delivery pump
US6379382B1 (en) 2000-03-13 2002-04-30 Jun Yang Stent having cover with drug delivery capability
US6908613B2 (en) * 2000-06-21 2005-06-21 Medimmune, Inc. Chimeric human papillomavirus (HPV) L1 molecules and uses therefor
DE10059631A1 (de) * 2000-12-01 2002-07-18 Medigene Ag T-Zellepitope des Papillomavirus L1-und E7-Proteins und ihre Verwendung in Diagnostik und Therapie
GB0206359D0 (en) 2002-03-18 2002-05-01 Glaxosmithkline Biolog Sa Viral antigens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
US7354714B2 (en) 2008-04-08
AU2002355654A1 (en) 2003-02-17
US20050004054A1 (en) 2005-01-06
WO2003011335A3 (de) 2003-11-06
EP1411981A2 (de) 2004-04-28
DE10137102A1 (de) 2003-02-27
US20050026257A1 (en) 2005-02-03
US7320861B2 (en) 2008-01-22

Similar Documents

Publication Publication Date Title
DE69231837T2 (de) Antigen praesentierende ms2-huelle
DE60110822T2 (de) Zubereitung zur immunisierung gegen den aids-virus
DE69920011T2 (de) Rekombinantes virus-vakzin gegen das virus der venezolanischen equinen encephalitis
DE69731309T3 (de) Impfstofformel auf polynukleotidbasis zur behandlung von hundekrankheiten, insbesondere solcher des atmungs- und verdauungstraktes
DE69519041T2 (de) Dna-impfstoffe gegen rotavirusinfektionen
DE69529748T2 (de) Polynukleotide vakzine gegen den papilloma virus
DE69734284T2 (de) Zusammensetzung eines polynukleotidvakzins zur behandlung von atemwegs- und fortpflanzungsbezogenen erkrankungen des schweins
DE3751092T2 (de) Herstellung und Immunogenität von Rotavirus-Genen mittels eines Bakulovirus-Expressionssystems.
DE60010921T2 (de) Künstliche chromosomen, die die genetische information für die bildung von rekombinantem rna-virus enthalten
DE69814177T2 (de) Impfstoffe mit einem ltb adjuvans
DE69837390T2 (de) Rekombinanter schweine adenovirus vektor
DE3486110T2 (de)
EP2102345B1 (de) Rsv f-protein und seine verwendung
DE69034075T2 (de) Rekombinantes poxvirus und streptokokken enthaltend ein m-protein
DE68924183T2 (de) Zusammensetzung und Verfahren zum Schutz gegen durch Mikroorganismen verursachte Krankheiten.
DE3806565A1 (de) Virusmodifizierte tumorvakzinen fuer die immuntherapie von tumormetastasen
WO1991005567A1 (de) Vakzine zum schutz vor hiv-virusinfektionen, verfahren zu ihrer herstellung und ihre verwendung als diagnostikum und immuntherapeutikum
DE3641040C2 (de)
EP0516655B1 (de) Trägergebundene rekombinante proteine, verfahren zur herstellung und verwendung als immunogene und vakzine
DE69929530T2 (de) Attenuierter pferdeherpesvirus
DE3137300A1 (de) Zur expression von proteinen von maul- und klauen-seuchen-viren geeignetes dna-molekuel, verfahren zu seiner herstellung und seine verwendung zur erzeugung von proteinen und impfstoffen
WO2003011335A2 (de) Polyvalente vakzine gegen durch papillomaviren verursachte erkrankungen, verfahren zu deren herstellung und deren verwendung
DE69835424T2 (de) Boviner atmungs- und darmcoronavirus als impfstoff
DE3853672T2 (de) Nichtzurückschlagende RNS-Viren.
DE69032787T2 (de) Mutantes pseudorabiesvirus und dasselbe enthaltende vakzine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002791474

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002791474

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10485454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP