WO2003007032A1 - Dispositif a reseau de diffraction de guide d'ondes optiques et procede de fabrication correspondant - Google Patents

Dispositif a reseau de diffraction de guide d'ondes optiques et procede de fabrication correspondant Download PDF

Info

Publication number
WO2003007032A1
WO2003007032A1 PCT/JP2002/006868 JP0206868W WO03007032A1 WO 2003007032 A1 WO2003007032 A1 WO 2003007032A1 JP 0206868 W JP0206868 W JP 0206868W WO 03007032 A1 WO03007032 A1 WO 03007032A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical waveguide
diffraction grating
optical axis
index modulation
Prior art date
Application number
PCT/JP2002/006868
Other languages
English (en)
French (fr)
Inventor
Masaki Ohmura
Masakazu Shigehara
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to KR10-2003-7003393A priority Critical patent/KR20030026364A/ko
Priority to EP02741421A priority patent/EP1406098A4/en
Priority to JP2003512743A priority patent/JPWO2003007032A1/ja
Priority to CA002453533A priority patent/CA2453533A1/en
Publication of WO2003007032A1 publication Critical patent/WO2003007032A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02123Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
    • G02B6/02133Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating using beam interference
    • G02B6/02138Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating using beam interference based on illuminating a phase mask
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/02085Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical

Definitions

  • the present invention relates to an optical waveguide type diffraction grating device having a refractive index modulation portion formed along the longitudinal direction of an optical waveguide, and a method for manufacturing the same.
  • the optical waveguide type diffraction grating element has a refractive index modulation portion formed over a predetermined range along the longitudinal direction of an optical waveguide (for example, an optical fiber).
  • an optical waveguide for example, an optical fiber.
  • a straight line perpendicular to the refractive index equalizing surface is parallel to the optical axis of the optical waveguide.
  • the index modulation period is
  • the light having the reflection wavelength ⁇ reflected by the refractive index modulation section propagates through the optical waveguide in a direction opposite to that at the time of incidence.
  • an optical waveguide type diffraction grating element (hereinafter, referred to as an “inclined type diffraction grating element”) in which a straight line perpendicular to the refractive index equipotential plane is not parallel to the optical axis of the optical waveguide (for example, References: M. J. Holmes, et al., "Ultra Narrow-Band Optical Fiber Sidetap Filters", ECOC '98, pp. 137-138 (1998)).
  • 1A and IB are explanatory diagrams of a conventional tilted diffraction grating device.
  • FIG. 1A is a cross-sectional view taken along a plane including the optical axis of the tilted diffraction grating element
  • FIG. 1B is a cross-sectional view taken along a plane perpendicular to the optical axis.
  • the conventional tilted diffraction grating element 9 shown in this figure is an optical fiber 90 having a high-refractive-index core region 91 and a low-refractive-index cladding region 92.
  • the refractive index modulator 93 is formed over a predetermined range along the axis.
  • a straight line A perpendicular to the refractive index isotropic plane L in the refractive index modulation section 93 is parallel to the optical axis of the optical fiber 90 (the X axis in the figure). And the angle ⁇ between the straight line A and the optical axis is not zero.
  • the light having the reflection wavelength ⁇ reflected by the refractive index modulator 93 is radiated outside the optical fiber 90 without propagating through the optical fiber 90. That is, the tilt type diffraction grating element 9 functions as a low reflection loss filter. Therefore, the tilt type diffraction grating element 9 can be suitably used, for example, as a gain equalizer for equalizing the gain of an optical fiber amplifier.
  • the loss characteristics of the conventional tilted diffraction grating element 9 have polarization dependence. That is, a polarization mode having a polarization plane parallel to the polarization plane ⁇ (the Xy plane in FIGS. 11A and 11B) formed by the straight line ⁇ and the optical axis, and a polarization mode perpendicular to the polarization plane M.
  • the loss characteristics are different from those of the polarization mode having a wavefront.
  • the optical fiber is made of glass and is fragile.
  • the refractive index modulation section must be long. is necessary.
  • an extra length section is required for fusion splicing, so that the entire refractive index modulation section becomes long.
  • the conventional tilt type diffraction grating element is short and cannot reduce the polarization dependent loss.
  • the present invention has been made to solve the above problems, and has been made in consideration of an optical waveguide type diffraction grating. It is an object of the present invention to provide a slave element (inclined diffraction grating element) and a method for manufacturing the same. Disclosure of the invention
  • N is an integer not smaller than 2 refractive index modulation section
  • N is an integer not smaller than 2 refractive index modulation section
  • N pieces of The straight line perpendicular to the refractive index equalization plane of each of the refractive index modulation sections is not parallel to the optical axis of the optical waveguide
  • 3 ) the straight line perpendicular to the refractive index equalization plane of each of the N refractive index modulation sections is The declination planes formed by the optical axis of the waveguide do not coincide with each other, and (4) at least a part of the formation regions of any two of the N refractive index modulation portions overlap each other. It is characterized by
  • the method of manufacturing an optical waveguide type diffraction grating device comprises the steps of: (1) N (N is an integer of 2 or more) refractive index modulating sections along the longitudinal direction of the optical waveguide perpendicular to the refractive index equal plane. In addition, di and di are not formed in parallel with the optical axis of the optical waveguide and are sequentially formed.
  • N N is an integer of 2 or more
  • di and di are not formed in parallel with the optical axis of the optical waveguide and are sequentially formed.
  • optical waveguide type diffraction grating element is manufactured such that the formation regions of any two of the N refractive index modulating portions at least partially overlap each other. I do.
  • the optical waveguide type diffraction grating device according to the present invention and the optical waveguide type diffraction grating device manufactured by the optical waveguide type diffraction grating device manufacturing method according to the present invention, have an even refractive index modulation portion.
  • the straight line perpendicular to the refractive index equipotential surface of each refractive index modulating section is not parallel to the optical axis of the optical waveguide, and the deflector planes of each refractive index modulating section do not match each other. At least a part of the formation region of each of the modulation portions overlaps each other. With this configuration, the optical waveguide type diffraction grating element is short and has reduced polarization dependent loss.
  • the optical waveguide type diffraction grating element according to the present invention has N refractive index modulating portions. Are deviated by 180 degrees / N around the optical axis of the optical waveguide.
  • the method of manufacturing an optical waveguide type diffraction grating device according to the present invention comprises the steps of: shifting the deflected surface of each of the N refractive index modulation portions by 180 degrees ZN around the optical axis of the optical waveguide; It is characterized in that a grating element is manufactured.
  • the optical waveguide type diffraction grating element is one in which the polarization dependent loss is efficiently reduced.
  • the optical waveguide type diffraction grating element according to the present invention is characterized in that the deflector planes of the N refractive index modulation portions are shifted by 360 ° ZN around the optical axis of the optical waveguide.
  • the method of manufacturing an optical waveguide type diffraction grating device according to the present invention comprises the steps of: shifting the declination plane of each of the N refractive index modulation portions by 360 ° / N around the optical axis of the optical waveguide; It is characterized in that a diffraction grating element is manufactured.
  • N may be an odd number, but is preferably an even number. If N is an even number, the birefringence due to the non-axial symmetry of each pair of the refractive index modulators whose declination planes differ by 180 degrees from each other is canceled out. In the optical waveguide type diffraction grating element, the polarization dependent loss is further reduced efficiently.
  • each of the N refractive index modulating portions has the same angle between a straight line perpendicular to the refractive index equalizing surface and the optical axis of the optical waveguide.
  • the lengths of the formation regions along the longitudinal direction of the optical waveguide are the same, the refractive index modulation periods are the same, and the refractive index modulation amplitudes are the same.
  • the method for manufacturing an optical waveguide type diffraction grating device is characterized in that, when forming each of the N refractive index modulating portions, an angle formed between a straight line perpendicular to the refractive index isotope plane and the optical axis of the optical waveguide.
  • the characteristics are the same, the lengths of the formation regions along the longitudinal direction of the optical waveguide are the same, the refractive index modulation periods are the same, and the refractive index modulation amplitudes are the same.
  • the optical waveguide type diffraction grating element is one in which the polarization dependent loss is efficiently reduced.
  • the optical waveguide type diffraction grating element according to the present invention is characterized in that the polarization dependent loss is 1/10 or less of the maximum transmission loss at the wavelength where the transmission loss is maximum.
  • the optical waveguide type diffraction grating element is suitably used as an optical device (or a part thereof) which is required to have a small polarization dependent loss in the field of optical communication.
  • each of the N refractive index modulation portions is formed while monitoring transmission loss.
  • each of the N refractive index modulators is formed while monitoring the polarization dependent loss.
  • the manufactured optical waveguide type diffraction grating element has the polarization dependent loss reduced efficiently.
  • FIGS. 1A and 1B are explanatory diagrams of a conventional tilted diffraction grating element.
  • FIG. 2 is an explanatory diagram of the optical waveguide type diffraction grating device (tilted diffraction grating device) according to the present embodiment.
  • FIG. 3 is a perspective view for explaining the optical waveguide type diffraction grating device manufacturing method according to the present embodiment.
  • FIG. 4A, FIG. 4B, FIG. 4C, and FIG. 4D are cross-sectional views for explaining the optical waveguide type diffraction grating device manufacturing method according to the present embodiment.
  • FIGS. 5A and 5B are diagrams showing the transmission characteristics of the optical waveguide type diffraction grating device (tilted type diffraction grating device) of the present embodiment.
  • FIG. 5A shows the completion of the formation of the first refractive index modulation section.
  • FIG. 5B is a diagram illustrating transmission characteristics at a time point, and
  • FIG. 5B is a diagram illustrating transmission characteristics at a time point when the formation of the second refractive index modulation section is completed.
  • FIGS. 6A and 6B are diagrams showing the transmission characteristics and polarization dependent loss characteristics of the optical waveguide type diffraction grating device (tilted diffraction grating device) of the present example, respectively.
  • FIGS. 7A and 7B are diagrams showing transmission characteristics and polarization dependent loss characteristics of the optical waveguide type diffraction grating device (tilted diffraction grating device) of the comparative example, respectively.
  • FIG. 8 shows an optical waveguide type diffraction grating device (tilt type diffraction grating device) according to another embodiment.
  • FIG. 8 shows an optical waveguide type diffraction grating device (tilt type diffraction grating device) according to another embodiment.
  • 9A and 9B show the transmittance T and the polarization-dependent loss PDL of the tilted diffraction grating element in which the refractive index change inducing light is irradiated from only one direction to form one refractive index modulation unit.
  • 4 is a graph showing wavelength dependence.
  • 1OA and 1OB are the transmittance T and the polarization of the tilted diffraction grating element 1 in which two refractive index modulating portions are formed by irradiating the refractive index change inducing light from two directions different from each other by 90 degrees.
  • 6 is a graph showing the wavelength dependence of each dependent loss PDL.
  • FIGS. 11A and 11B show the transmittance of the tilted diffraction grating element 2 having four refractive index modulation portions formed by irradiating the refractive index change inducing light from four directions different from each other by 90 degrees.
  • 9 is a graph showing the wavelength dependence of each of T and polarization dependent loss PDL.
  • FIG. 2 is an explanatory diagram of an optical waveguide type diffraction grating device (tilted diffraction grating device) 1 according to the present embodiment.
  • a cross-sectional view taken along a plane including the optical axis and a cross-sectional view taken along a plane perpendicular to the optical axis are shown.
  • the inclined diffraction grating element 1 has N (N is an integer of 2 or more) refractive index modulation sections along the longitudinal direction of the optical fiber 10 as an optical waveguide. 13 to 13 N are formed.
  • Optical fiber 1 0 includes a one that the quartz glass base, and the core region 1 1 G e 0 2 is added, and a cladding region 1 2 surrounding the core region 1 1.
  • the refractive index isotropic surface is denoted by L n, and is perpendicular to the refractive index isotropic surface L n .
  • the straight line intersects the optical fiber 1 0 of the optical axis (X-axis) represents the a n there, represents the angle formed by the straight line a n and the optical axis and theta eta, linear Alpha eta and declination plane and the optical axis forms the representative of the ⁇ ⁇ .
  • each refractive index modulation section 1 3 eta in which the refractive index modulation in a linear Alpha eta inclined by an angle theta eta respect to the optical axis along connection period lambda eta is formed in Koa region 1 1. Also, the declination plane of each refractive index modulating unit 13 ⁇ ! ⁇ . Do not match each other.
  • any two of the refractive index modulation section 1 3 nl, 1 3 n2 each formation region of the N refractive index modulation unit 1 3i ⁇ l 3 N overlaps at least a part from one another.
  • forming region of the refractive index modulation unit 1 3A_ are partially overlapped and forming region of the refractive index modulation section 1 3 2, partially overlaps with formation region of the refractive index modulation section 1 3 3 and which, also, it is partially overlapped with formation region of the refractive index modulation section 1 3 N.
  • the N refractive index modulating sections 1 Sil 3 N are formed, and the angle ⁇ ⁇ of each refractive index modulating section 13 n is 0. without no declination surface Micromax eta each refractive index modulation section 1 3 eta coincide with each other, any two of the refractive index modulation section 1 3 ⁇ 1, 1 3 ⁇ 2 is at least a portion each forming regions from each other overlapping.
  • the tilt type diffraction grating element 1 configured as described above is short and has reduced polarization dependent loss.
  • each of the ⁇ refractive index modulation sections 13i to l3 1 ⁇ be deflected by 180 ° / N around the optical axis of the optical fiber 10 for each of the declination planes 1 to ⁇ . is there.
  • N 2
  • the deflected plane Mi Ms is shifted by 60 degrees around the optical axis of the optical fiber 10.
  • each of the N refractive index modulation unit 1 3i ⁇ l 3 N, straight / sickle A n and the angle between the optical axis theta eta are the same and, in the formation region along the longitudinal direction of the optical fiber 10 length
  • D n are the same
  • the refractive index modulation periods are the same
  • the refractive index modulation amplitudes are the same.
  • the polarization dependent loss is 1 Z 10 or less of the maximum value of the transmission loss at the wavelength where the transmission loss is the maximum.
  • Such a tilted diffraction grating element 1 is suitably used as an optical device (or a part thereof) which is required to have a small polarization dependent loss in the field of optical communication.
  • the gain of an optical fiber amplifier is equalized. It can be suitably used as a gain equalizer that performs
  • FIGS. 3 and 4A to 4D are views for explaining the method of manufacturing the optical waveguide type diffraction grating element according to the present embodiment.
  • FIG. 3 is a perspective view
  • FIGS. 4A to 4D are cross-sectional views taken along a plane perpendicular to the optical axis.
  • an optical fiber 10, a phase grating mask 20, and a light source 30 are prepared.
  • the optical fiber 10 is based on quartz glass,
  • the phase grating mask 20 is formed by forming a phase grating composed of groove-like irregularities with a period of 2 mm on one surface of a quartz glass flat plate.
  • the light source 30 outputs light having a wavelength that induces a change in the refractive index of the core region 11 of the optical fiber 10 (hereinafter referred to as “refractive index change-inducing light”).
  • a KrF excimer laser light source that outputs n ni laser light as refractive index change inducing light is used.
  • the phase grating mask 20 is arranged on the side of the optical fiber 10 such that the surface on which the phase grating is formed faces the optical fiber 10. At this time, the direction of the groove in the phase grating of the phase grating mask 20 is
  • the refractive index change inducing light UV output from the light source 30 is irradiated perpendicularly to the phase grating mask 20. Due to the irradiation of the refractive index change inducing light UV, the diffraction action of the phase grating mask 20 generates + 1st-order and 1st-order diffraction lights, and these + 1st-order and 1st-order diffraction lights interfere with each other. Then, an interference fringe having a period ⁇ is generated.
  • the refractive index modulating section 1 is defined as follows: When a straight line perpendicular to the refractive index isotropic plane 1 ⁇ and intersecting with the optical axis of the optical fiber 10 is represented by A, the angle between the straight line and the optical axis is Si. And the declination plane formed by the straight line and the optical axis is parallel to the plane of the phase grating mask 20 (see FIGS. 3 and 4A).
  • the first refractive index modulation section 13 is formed by irradiating the refractive index change inducing light UV for a fixed time in the arrangement state shown in FIG. 4A.
  • the irradiation of the refractive index change inducing light UV is interrupted, and during that time, the optical fiber 10 is rotated around the optical axis by a certain angle, and the arrangement state shown in FIG. 4B is obtained.
  • 4 refractive index modulation section 1 3 2 of the second by being irradiated only between the refractive index change inducing light UV gar scheduled in the arrangement state shown in B is formed.
  • the first second refractive index modulation section 1 3 2 formed by a straight line intersecting a perpendicular to the refractive index or the like proximal surface L 2 and the optical axis of the optical fiber 1 0 is taken as A 2
  • the angle formed by the straight line A 2 and the optical axis is ⁇ 2
  • the declination plane ⁇ 2 formed by the straight line ⁇ 2 and the optical axis is parallel to the plane of the phase grating mask 20.
  • Declination surface Micromax 2 of the second refractive index modulation section 1 3 2 no longer coincide with the deflection angle plane Mi of the first refractive index modulation section 1 3 E formed.
  • Third refractive index modulation section 1 3 3 formed in this manner, bending Assuming that a straight line perpendicular to the refractive index equipotential plane L 3 and intersecting the optical axis of the optical fiber 10 is A 3 , the angle between the straight line A 3 and the optical axis is ⁇ 3 , and the straight line ⁇ An angle plane 3 formed by 3 and the optical axis is parallel to the plane of the phase grating mask 20. Third refractive index modulation section 1 3 3 declination surface Micromax 3 of is not already match the polarization angle surface of the first refractive index modulation section 1 3 formed, also already formed the second refractive index modulation section 1 3 2 do not match both declination plane M 2.
  • second N-th refractive index modulation unit 1 3 4 to 1 3 N are sequentially formed.
  • the N-th refractive index modulation section 1 3 N is the N-th refractive index in the refractive index change inducing light UV with placement state shown in FIG. 4 D is irradiated for a certain time
  • a modulation section 13N is formed.
  • N-th refractive index modulation section 1 3 N formed in this way, a straight line intersecting a perpendicular to the refractive index or the like proximal surface L N to the optical axis of the optical fiber 1 0 is taken as A N, the straight line a N and the angle between the optical axis is the theta New, declination plane formed by the straight line Alpha New and the optical axis Micromax New is parallel to the plane of the phase grating mask 2 0.
  • the declination plane ⁇ ⁇ of the ⁇ th refractive index modulator 13 ⁇ is the first to ( ⁇ — 1) th refractive index modulators 13 31 to 1 ⁇ ⁇ already formed. Does not match any of the above.
  • each ⁇ ⁇ has the same value.For each force S, each ⁇ ⁇ is different because the phase grating mask 20 is rotated on its surface. be able to. Further, one be employed as a phase grating mask 2 0, all the refractive index modulation periods along line Alpha eta at each refractive index modulation section 1 3 eta is the same value, different phase grating mask of the phase grating period by being exchanged, ⁇ Tsuta refractive index modulation period in a linear Alpha eta at each refractive index modulation section 1 3 eta may be different in.
  • the straight lines ⁇ ⁇ perpendicular to n are sequentially formed so that they are not parallel to the optical axis of the optical fiber 10 (that is, the angle ⁇ ⁇ ⁇ 0).
  • the formation regions of any two of the N refractive index modulation sections 1 to 3N are formed such that at least a part thereof overlaps each other.
  • the tilted diffraction grating element 1 according to the present embodiment is manufactured.
  • the optical fiber 10 is rotated around the optical axis by a fixed angle of 18 O ZN after the (n-1) th refractive index modulation section 13-is formed, and the nth refractive index modulation is performed.
  • the part 13 n is formed.
  • the tilt type diffraction grating element 1 manufactured as described above has a structure in which the deflector planes ⁇ N of the N refractive index modulators 13 i to l 3 N are arranged around the optical axis of the optical fiber 10. Since it is shifted by 80 degrees, the polarization-dependent loss is efficiently reduced.
  • the tilt type diffraction grating element 1 manufactured in this manner has a polarization-dependent loss that is efficiently reduced.
  • each of the refractive index modulators 13 n it is preferable to monitor the transmission loss or the polarization dependent loss of the tilted diffraction grating element 1 during the manufacture. By doing so, the polarization-dependent loss in the manufactured tilted diffraction grating element 1 is efficiently reduced.
  • the optical waveguide type diffraction grating element (tilted type diffraction grating element) 1 according to the present embodiment and a method of manufacturing the same will be described.
  • the optical fiber 1 0 been filed in which G e 0 2 in the cladding region 1 2 not only Koa region 1 1 is added.
  • the period is not constant, but changes gradually along the direction perpendicular to the groove direction, the center period is 1.065 6 ⁇ , and the period change rate is 1 0. It was OnmZcm.
  • the light source 30 used was a KrF excimer laser light source that outputs laser light having a wavelength of 248 nm as refractive index change inducing light.
  • the manufactured tilted diffraction grating element 1 of the present example had two refractive index modulating sections 13 1 ⁇ 13 2 . 1 3 2 each of the two refractive index modulation unit 1 3h, the length of the forming area is 5 mm, formed by superposed each other at all.
  • the deflection angle plane of the refractive index modulation section 1 3 ⁇ and declination surface M 2 of the refractive index modulation section 1 3 2 was also of the mutually orthogonal.
  • the first refractive index modulation section 13i is formed, and thereafter, while the irradiation of the refractive index change inducing light UV is interrupted, the optical fiber 10 is moved by 90 degrees along the optical axis. It is rotated about, followed by a second refractive index modulation section 1 3 2 are formed. Further, at the time of forming each of the two refractive index modulation portions 13 13 32, the transmission loss of the tilted diffraction grating element 1 during the manufacturing was monitored.
  • the target value of the transmission loss at the wavelength at which the transmission loss is the maximum is 1 dB. Then, when the first refractive index modulation section 13 is formed, when the monitored transmission loss becomes 1/2 (0.5 dB) of the target value, the refractive index change inducing light UV Irradiation was interrupted. Further, subsequent to the time of the second refractive index forming the modulation unit 13 2, when the monitored transmission loss became the target value (l dB), is terminated irradiation of the refractive index change induced Okoshiko UV Was.
  • FIG. 5A is a graph showing the transmission characteristics of the formation termination point of the first refractive index modulation section 1 3 ⁇ , Figure 5B, at the second refractive index modulation section 1 3 2 forming end
  • FIG. 4 is a diagram showing transmission characteristics of the hologram.
  • the maximum value of the transmission loss of the inclined grating element 1 of this embodiment is a 0. 5 dB in the first forming end of the refractive index modulation section 1 3 1, the At the end of the formation of the second refractive index modulation section 132, it was 1.0 dB.
  • FIG. 6A is a diagram illustrating transmission characteristics of the tilted diffraction grating element of the present embodiment
  • FIG. 6B is a diagram illustrating polarization dependent loss characteristics of the tilted diffraction grating device of the present embodiment
  • FIG. 7A is a diagram showing transmission characteristics of the tilted diffraction grating element of the comparative example
  • FIG. It is a figure which shows the polarization dependent loss characteristic of the inclination type diffraction grating element of a comparative example.
  • the tilt type diffraction grating element of the comparative example had only one refractive index modulation section without being overwritten .
  • the tilted diffraction grating element of the present example and the tilted diffraction grating element of the comparative example each have a similar transmission spectrum shape, and In each case, the maximum value of the transmission loss was about 0.6 dB. However, as can be seen by comparing FIG. 6B and FIG. 7B, the maximum value of the polarization dependent loss of the tilted diffraction grating element of the comparative example is about 0.125 dB. The maximum value of the polarization dependent loss of the tilted diffraction grating element of this example was about 0.03 dB.
  • the maximum value of the polarization dependent loss of the tilted diffraction grating element of the present example is about 1/4 compared to the maximum value of the polarization dependent loss of the tilted diffraction grating element of the comparative example.
  • the transmission loss was about 1/20 compared with the maximum value of the transmission loss of the tilted diffraction grating element of the example.
  • FIG. 8 is an explanatory diagram of an optical waveguide type diffraction grating device (tilted diffraction grating device) 2 according to another embodiment.
  • This figure shows a cross-sectional view when cut along a plane including the optical axis and a cross-sectional view when cut along a plane perpendicular to the optical axis.
  • the inclined diffraction grating element 2 according to the present embodiment shown in this figure has N (N is an integer of 2 or more) refractive index modulation sections along the longitudinal direction of the optical fiber 20 as an optical waveguide.
  • 23 i to 23 N are formed.
  • Optical fiber 2 0 includes a one that the quartz glass base, a core region 2 1 G E_ ⁇ 2 is added, and a cladding region 2 2 surrounding the core region 2 1.
  • the refractive index isotropic surface is denoted by L n, and the refractive index is perpendicular to the refractive index isotropic surface L n .
  • the straight line intersects the optical fiber 2 0 of the optical axis (X-axis) represents the a n there, represents the angle formed by the straight line a n and the optical axis and theta eta, linear Alpha eta and declination plane and the optical axis forms And.
  • each refractive index modulating section 23 n The formation region of each refractive index modulating section 23 n , the refractive index equipotential surface L n , the straight line An, and the angle ⁇ ⁇ are as described above.
  • the optical waveguide type diffraction grating element 2 further has The polarization dependent loss is reduced efficiently.
  • the non-axial symmetry referred to here means that the refractive index modulation section 23 formed by irradiating the optical fiber 20 with the refractive index change inducing light has a refractive index on the incident side of the refractive index change inducing light. Say that the rise is getting bigger.
  • This tilted diffraction grating element 2 also preferably has a polarization dependent loss of 1/10 or less of the maximum transmission loss at the wavelength where the transmission loss is maximum.
  • Such a tilted diffraction grating element 2 is also suitably used as an optical device (or a part thereof) that is required to have a small polarization dependent loss in the field of optical communication.
  • the gain of an optical fiber amplifier is equalized. It can be suitably used as a gain equalizer that performs
  • FIGS. 9A to 11B are graphs showing the wavelength dependence of the transmittance T and the polarization dependent loss PDL of three types of tilted [II-fold grating elements, respectively.
  • FIGS. 9A and 9B show an oblique diagonal diffraction grating element in which one refractive index modulation section is formed by irradiating the refractive index change inducing light only from one direction.
  • FIGS. 9A and 9B show the tilted diffraction grating element 1 in which two refractive index modulating portions are formed by irradiating the refractive index change inducing light from two directions different from each other by 90 degrees.
  • FIGS. 11A and 11B show an inclined diffraction grating element 2 in which four refractive index modulating portions are formed by irradiating refractive index change inducing light from four directions different from each other by 90 degrees.
  • Each of the tilt type diffraction grating elements 1 and 2 has a refractive index modulation
  • the wavelength dependence of the transmittance T of each of the three types of tilted diffraction grating elements was substantially the same.
  • the polarization dependent loss PDL of the tilted diffraction grating element with one refractive index modulation section reached 0.127 dB.
  • the polarization dependent loss PDL of the tilted diffraction grating element 1 was as small as 0.023 dB, and the polarization dependent loss PDL of the tilted diffraction grating element 2 was even smaller as 0.016 dB.
  • N is an integer of 2 or more refractive index modulating portions are formed, and a straight line perpendicular to the refractive index equipotential surface of each refractive index modulating portion is formed.
  • the deflected surfaces of the respective refractive index modulators do not coincide with each other, and the formation regions of any two refractive index modulators at least partially overlap each other .
  • the optical waveguide type diffraction grating element thus configured is short and has a reduced polarization dependent loss.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Integrated Circuits (AREA)

Description

明 細 書
光導波路型回折格子素子およびその製造方法
技術分野
本発明は、 光導波路の長手方向に沿って屈折率変調部が形成された光導波路型 回折格子素子およぴその製造方法に関するものである。
背景技術
光導波路型回折格子素子は、 光導波路 (例えば光ファイバ) における長手方向 に沿った所定範囲に亘つて屈折率変調部が形成されたものである。 通常の光導波 路型回折格子素子は、 屈折率等位面 (屈折率変調部における屈折率が等位となる 面) に垂直な直線が光導波路の光軸と平行である。 この場合、 屈折率変調周期が
Λであり、 光導波路の屈折率変調部における平均の実効屈折率が 11 aveであれば、 この光導波路型回折格子素子は、 A= 2 n aveA なる式で表されるブラッグ条件式 を満たす反射波長 λの光を選択的に反射し、 他の波長の光を透過する。 この屈折 率変調部において反射された反射波長 λの光は、入射時と逆の方向に光導波路を 伝搬していく。
これに対して、 屈折率等位面に垂直な直線が光導波路の光軸と平行でない光導 波路型回折格子素子 (以下 「傾斜型回折格子素子」 と言う。) が知られている (例 ば文献 「M . J . Holmes , et al . , "Ultra Narrow-Band Optical Fibre Sidetap Filters " , ECOC ' 98 , pp . 137- 138 ( 1998 )」 を参照)。 図 1 A及 び図 I Bは、 従来の傾斜型回折格子素子の説明図である。 図 1 Aは、 傾斜型回折 格子素子の光軸を含む面で切断したときの断面図であり、 図 1 Bは、 光軸に垂直 な面で切断したときの断面図である。 この図に示される従来の傾斜型回折格子素 子 9は、 高屈折率のコア領域 9 1および低屈折率のクラッド領域 9 2を有する光 ファイバ 9 0において、 そのコア領域 9 1の長手方向に沿った所定範囲に亘つて 屈折率変調部 9 3が形成されたものである。 そして、 屈折率変調部 9 3における 屈折率等位面 Lに垂直な直線 Aは、 光ファイバ 9 0の光軸 (図中の X軸) と平行 でなく、 直線 Aと光軸とがなす角度 Θは 0でない。 この場合、 直線 Αに沿った屈 折率変調周期が Λであり、 屈折率変調部 9 3における平均の実効屈折率が n ave であれば、 この傾斜型回折格子素子 9は、 λ= 2 n aveA/s in6 なる式で表される ブラッグ条件式を満たす反射波長 λの光を選択的に反射し、 他の波長の光を透過 する。 この屈折率変調部 9 3において反射された反射波長 λの光は、 光ファイバ 9 0を伝搬していくことなく、 光ファイバ 9 0の外部へ放射される。 すなわち、 この傾斜型回折格子素子 9は低反射の損失フィルタとして作用する。したがって、 傾斜型回折格子素子 9は、 例えば光ファイバ増幅器の利得を等化する利得等化器 として好適に用いられ得る。
しかしながら、 従来の傾斜型回折格子素子 9の損失特性は偏波依存性を有して いる。 すなわち、 直線 Αと光軸とがなす偏角面 Μ (図 1 1 A及び図 1 1 B中の X y平面) に平行な偏波面を有する偏波モードと、 偏角面 Mに垂直な偏波面を有す る偏波モードとでは、 損失特性が相違している。
そこで、 このような偏波依存損失を低減する為に、 例えば、 従来の傾斜型回折 格子素子を光軸回りに捻回させることで長手方向に沿って偏角面を回転させるこ とが考えられる。 また、 複数の屈折率変調部を接続するとともに長手方向に沿つ て各々の偏角面を異なるものとすることも考えられる。 このようにすれば、 長手 方向の或る位置および他の位置それぞれにおける偏波依存損失が互いに相殺され て、 偏波依存損失が低減され得る。
しかし、 傾斜型回折格子素子を捻回させる場合には、 光ファイバがガラスから なるものであって脆弱であることから、 偏波依存損失を低減するには、 屈折率変 調部が長いことが必要である。 また、 複数の屈折率変調部を接続する場合には、 融着接続のために余長部が必要となることから、 屈折率変調部が全体として長く なってしまう。 何れにしても、 従来の傾斜型回折格子素子は、 短尺で偏波依存損 失を低減することができない。
本発明は、 上記問題点を解消する為になされたものであり、 光導波路型回折格 子素子 (傾斜型回折格子素子)およびその製造方法を提供することを目的とする。 発明の開示
本発明に係る光導波路型回折格子素子は、 (1 ) 光導波路の長手方向に沿って N (Nは 2以上の整数)個の屈折率変調部が形成されており、 (2 ) N個の屈折率変 調部それぞれの屈折率等位面に垂直な直線が光導波路の光軸と平行でなく、 (3 ) N個の屈折率変調部それぞれの屈折率等位面に垂直な直線と光導波路の光軸とが なす偏角面が互いに一致しておらず、 (4 ) N個の屈折率変調部のうちの何れか 2 つの屈折率変調部それぞれの形成領域が互いに少なくとも一部が重なっているこ とを特徴とする。
本発明に係る光導波路型回折格子素子製造方法は、 (1 ) 光導波路の長手方向に 沿って N (Nは 2以上の整数) 個の屈折率変調部を、 屈折率等位面に垂直な直,棣 が光導波路の光軸と平行とならないようにして順次に形成するとともに、 (2 ) 第 n ( nは 2以上 N以下の整数) 番目の屈折率変調部を形成する際に、 屈折率等位 面に垂直な直線と光導波路の光軸とがなす偏角面が、 既に形成した第 1番目〜第 ( n— 1 )番目の屈折率変調部それぞれの偏角面の何れとも一致しないようにし、
( 3 ) N個の屈折率変調部のうちの何れか 2つの屈折率変調部それぞれの形成領 域が互いに少なくとも一部が重なるようにして、 光導波路型回折格子素子を製造 することを特徴とする。
本発明に係る光導波路型回折格子素子、 および、 本発明に係る光導波路型回折 格子素子製造方法により製造される光導波路型回折格子素子は、 N偶の屈折率変 調部が形成されていて、 各屈折率変調部の屈折率等位面に垂直な直線が光導波路 の光軸と平行でなく、 各屈折率変調部の偏角面が互いに一致しておらず、 何れか 2つの屈折率変調部それぞれの形成領域が互いに少なくとも一部が重なっている。 このように構成されることで、 光導波路型回折格子素子は、 短尺であって、 偏波 依存損失が低減されたものとなる。
また、 本発明に係る光導波路型回折格子素子は、 N個の屈折率変調部それぞれ の偏角面が光導波路の光軸の回りに 1 8 0度/ Nずつずれていることを特徴とす る。 本発明に係る光導波路型回折格子素子製造方法は、 N個の屈折率変調部それ ぞれの偏角面を光導波路の光軸の回りに 1 8 0度 ZNずつずらして、 光導波路型 回折格子素子を製造することを特徴とする。 この場合には、 光導波路型回折格子 素子は、 偏波依存損失が効率よく低減されたものとなる。
また、 本発明に係る光導波路型回折格子素子は、 N個の屈折率変調部それぞれ の偏角面が光導波路の光軸の回りに 3 6 0度 ZNずつずれていることを特徴とす る。 本発明に係る光導波路型回折格子素子製造方法は、 N個の屈折率変調部それ ぞれの偏角面を光導波路の光軸の回りに 3 6 0度/ Nずつずらして、 光導波路型 回折格子素子を製造することを特徴とする。 上述した 1 8 0度 ZNずつずらす場 合と比較して、 このように 3 6 0度 ZNずつずらす場合には、 光導波路型回折格 子素子は、 更に偏波依存損失が効率よく低減されたものとなる。 また、 Nは、 奇 数であってもよいが、 偶数であるのが好適である。 Nが偶数であれば、 偏角面が 互いに 1 8 0度だけ異なる対の屈折率変調部それぞれが有する非軸対称性に因る 複屈折性が相殺されるので、 このことによつても、 光導波路型回折格子素子は、 更に偏波依存損失が効率よく低減されたものとなる。
また、 本発明に係る光導波路型回折格子素子では、 N個の屈折率変調部それぞ れは、 屈折率等位面に垂直な直線と光導波路の光軸とがなす角度が互いに同一で あり、 光導波路の長手方向に沿った形成領域の長さが互いに同一であり、 屈折率 変調周期が互いに同一であり、 屈折率変調振幅が互いに同一であることを特徴と する。 本発明に係る光導波路型回折格子素子製造方法は、 N個の屈折率変調部そ れぞれを形成する際に、 屈折率等位面に垂直な直線と光導波路の光軸とがなす角 度を互いに同一にし、 光導波路の長手方向に沿った形成領域の長さを互いに同一 し、 屈折率変調周期を互いに同一にし、 屈折率変調振幅を互いに同一にすること を特徴とする。 この場合にも、 光導波路型回折格子素子は、 偏波依存損失が効率 よく低減されたものとなる。 また、 本発明に係る光導波路型回折格子素子は、 透過損失が最大となる波長に おいて偏波依存損失が透過損失最大値の 1 / 1 0以下であることを特徴とする。 この場合には、 光導波路型回折格子素子は、 光通信の分野で偏波依存損失が小さ いことが要求される光学装置 (またはその一部) として好適に用いられる。
また、 本発明に係る光導波路型回折格子素子製造方法は:、 透過損失をモニタし ながら N個の屈折率変調部それぞれを形成することを特徴とする。 或いは、 偏波 依存損失をモエタしながら N個の屈折率変調部それぞれを形成することを特徴と する。 この場合には、 製造される光導波路型回折格子素子は、 偏波依存損失が効 率よく低減されたものとなる。
図面の簡単な説明
図 1 A及び図 1 Bは、 従来の傾斜型回折格子素子の説明図である。
図 2は、 本実施形態に係る光導波路型回折格子素子 (傾斜型回折格子素子) の説 明図である。
図 3は、 本実施形態に係る光導波路型回折格子素子製造方法を説明するための斜 視図である。
図 4A、 図 4 B、 図 4 C及び図 4 Dは、 それぞれ本実施形態に係る光導波路型回折 格子素子製造方法を説明するための断面図である。
図 5 A及び図 5 Bは、 本実施例の光導波路型回折格子素子 (傾斜型回折格子素子) の透過特性を示す図であり、 図 5 Aは第 1番目の屈折率変調部の形成終了時点で の透過特性を示す図であり、 図 5 Bは第 2番目の屈折率変調部の形成終了時点で の透過特性を示す図である。
図 6 A及び図 6 Bは、 それぞれ本実施例の光導波路型回折格子素子 (傾斜型回折 格子素子) の透過特性および偏波依存損失特性を示す図である。
図 7 A及び 7 Bは、 それぞれ比較例の光導波路型回折格子素子 (傾斜型回折格子 素子) の透過特性および偏波依存損失特性を示す図である。
図 8は、 他の実施形態に係る光導波路型回折格子素子 (傾斜型回折格子素子) の 説明図である。
図 9 A及び 9 Bは、 それぞれ 1方向のみから屈折率変化誘起光が照射されて 1つ の屈折率変調部が形成された傾斜型回折格子素子の透過率 Tおよび偏波依存損失 P D Lそれぞれの波長依存性を示すグラフである。
図 1 O A及び図 1 O Bは、 互いに 9 0度だけ異なる 2方向から屈折率変化誘起光 が照射されて 2つの屈折率変調部が形成された傾斜型回折格子素子 1の透過率 T および偏波依存損失 P D Lそれぞれの波長依存性を示すグラフである。
図 1 1 A及び図 1 1 Bは、 それぞれ、 互いに 9 0度ずつ異なる 4方向から屈折率 変化誘起光が照射されて 4つの屈折率変調部が形成された傾斜型回折格子素子 2 の透過率 Tおよび偏波依存損失 P D Lそれぞれの波長依存性を示すグラフである。 発明を実施するための最良の形態
以下、 添付図面を参照して本発明の実施の形態を詳細に説明する。 なお、 図面 の説明において同一の要素には同一の符号を付し、 重複する説明を省略する。 図 2は、 本実施形態に係る光導波路型回折格子素子 (傾斜型回折格子素子) 1 の説明図である。 この図には、 光軸を含む面で切断したときの断面図、 および、 光軸に垂直な面で切断したときの断面図が示されている。 この図に示される本実 施形態に係る傾斜型回折格子素子 1は、 光導波路である光ファイバ 1 0の長手方 向に沿って、 N (Nは 2以上の整数) 個の屈折率変調部 1 3 〜1 3 Nが形成され ている。 光ファイバ 1 0は、 石英ガラスをベースとするものであって、 G e 02 が添加されたコア領域 1 1と、 このコア領域 1 1を取り囲むクラッド領域 1 2と を含む。
各屈折率変調部 1 3 n ( nは 1以上 N以下の任意の整数) について、屈折率が等 位となる屈折率等位面を L nと表し、屈折率等位面 L nに垂直であって光ファイバ 1 0の光軸 (X軸) と交わる直線を Anと表し、 直線 Anと光軸とがなす角度を θη と表し、 直線 Αηと光軸とがなす偏角面を Μηと表す。
各屈折率変調部 1 3 ηは、 直線 Αηが光軸と平行でなく、 直線 Αηと光軸とがな す角度 θηが 0でない。 すなわち、 各屈折率変調部 1 3ηは、 光軸に対して角度 θη だけ傾斜した直線 Αηに沿つて周期 Ληの屈折率変調がコァ領域 1 1に形成された ものである。 また、 各屈折率変調部 1 3ηの偏角面!^。は互いに一致していない。 すなわち、 Ν個の屈折率変調部 13i〜l 3Nのうちの任意の 2つの屈折率変調部 1 3nl, 1 3n2を取り上げたときに、 偏角面 Mnlと偏角面 Mn2とは一致していな い。
N個の屈折率変調部 1 3i〜l 3Nのうちの何れか 2つの屈折率変調部 1 3nl, 1 3 n2それぞれの形成領域は、 互いに少なくとも一部が重なっている。 図では、 例えば、 屈折率変調部 1 3a_の形成領域は、 屈折率変調部 1 32の形成領域と一部 が重なっており、屈折率変調部 1 33の形成領域とも一部が重なっており、また、 屈折率変調部 1 3Nの形成領域とも一部が重なっている。 また、 N個の屈折率変 調部 13i〜l 3Nそれぞれの形成領域は全て一致しているのが好適である。
このように、 本実施形態に係る傾斜型回折格子素子 1は、 N個の屈折率変調部 1 Si l 3 Nが形成されていて、 各屈折率変調部 1 3nの角度 θηが 0でなく、 各 屈折率変調部 1 3 ηの偏角面 Μηが互いに一致しておらず、何れか 2つの屈折率変 調部 1 3η1, 1 3 η2それぞれの形成領域が互いに少なくとも一部が重なっている。 このように構成された傾斜型回折格子素子 1は、 短尺であって、 偏波依存損失が 低減されたものとなる。
また、 Ν個の屈折率変調部 1 3i〜l 31^それぞれの偏角面 1〜^^は、 光ファ ィバ 10の光軸の回りに 180度/ Nずつずれているのが好適である。 例えば、 N= 2であれば、偏角面 と偏角面 Μ2とは互いに直交している。また、例えば、 Ν= 3であれば、 偏角面 Mi Msは光ファイバ 10の光軸の回りに 60度ずつず れている。 このように偏角面 Mi Mwが配置されることにより、 傾斜型回折格子 素子 1は、 偏波依存損失が効率よく低減されたものとなる。
また、 N個の屈折率変調部 1 3i〜l 3Nそれぞれは、 直/镰 Anと光軸とがなす 角度 θηが互いに同一であり、光ファイバ 10の長手方向に沿った形成領域の長さ D nが互いに同一であり、 屈折率変調周期が互いに同一であり、 屈折率変調振幅 が互いに同一であるのが好適である。 このように各屈折率変調部 1 3 nが形成さ れることにより、 傾斜型回折格子素子 1は、 偏波依存損失が効率よく低減された ものとなる。
そして、 本実施形態に係る傾斜型回折格子素子 1は、 透過損失が最大となる波 長において、 偏波依存損失が透過損失最大値の 1 Z 1 0以下であるのが好適であ る。 このような傾斜型回折格子素子 1は、 光通信の分野で偏波依存損失が小さい ことが要求される光学装置 (またはその一部) として好適に用いられ、 例えば光 ファイバ増幅器の利得を等化する利得等化器として好適に用いられ得る。
次に、 本実施形態に係る光導波路型回折格子素子 (傾斜型回折格子素子) 1の 製造方法について説明する。 図 3および図 4 Aから図 4 Dは、 本実施形態に係る 光導波路型回折格子素子製造方法を説明するための図である。 図 3は斜視図であ り、 図 4 Aから図 4 Dは光軸に垂直な面で切断したときの断面図である。
初めに、 光ファイバ 1 0、 位相格子マスク 2 0および光源 3 0が用意される。 光ファイバ 1 0は、 上述したように、 石英ガラスをベースとするものであって、
G e〇2が添加されたコア領域 1 1と、 このコア領域 1 1を取り囲むクラッド領 域 1 2とを含むものである。 位相格子マスク 2 0は、 石英ガラス平板の一方の面 に周期 2 Λの溝状凹凸からなる位相格子が形成されたものである。 光源 3 0は、 光ファイバ 1 0のコア領域 1 1の屈折率変化を誘起せしめる波長の光 (以下 「屈 折率変化誘起光」 という。) を出力するものであり、例えば、波長 2 4 8 n niのレ 一ザ光を屈折率変化誘起光として出力する K r Fエキシマレーザ光源が用いられ る。
そして、 図 3に示されるように、 位相格子マスク 2 0は、 光ファイバ 1 0の側 方に、 位相格子が形成された面が光ファイバ 1 0に対向するように配置される。 また、 このとき、 位相格子マスク 2 0の位相格子における溝方向は、 光ファイバ
1 0の光軸に垂直な面に対して角度 だけ傾斜している。このように両者が配置 された状態で、 光源 3 0から出力された屈折率変化誘起光 U Vは、 位相格子マス ク 2 0に対して垂直に照射される。 この屈折率変化誘起光 U Vの照射に伴い、 位 相格子マスク 2 0の回折作用により + 1次回折光と一 1次回折光とが生じ、 これ ら + 1次回折光と一 1次回折光とが互いに干渉して、 周期 Λの干渉縞が生じる。 光ファイバ 1 0の G e 02が添加されたコア領域 1 1では、 干渉縞の各位置にお ける屈折率変化誘起光のエネルギの大きさに応じて屈折率が上昇するので、 これ により屈折率変調部 1 3 iが形成される。 この屈折率変調部 1 は、 屈折率等位 面 1^に垂直であって光ファイバ 1 0の光軸と交わる直線を Aュとしたときに、 こ の直線 と光軸とがなす角度が Siであり、 直線 と光軸とがなす偏角面 が 位相格子マスク 2 0の面に平行である (図 3および図 4 A参照)。
このように図 4Aに示された配置状態で屈折率変化誘起光 U Vがー定時間だけ 照射されることで第 1番目の屈折率変調部 1 3ェが形成される。 形成後、 屈折率 変化誘起光 U Vの照射が中断され、 その間に光ファイバ 1 0が一定角度だけ光軸 回りに回転されて、 図 4 Bに示された配置状態となる。 そして、 図 4 Bに示され た配置状態で屈折率変化誘起光 U Vがー定時間だけ照射されることで第 2番目の 屈折率変調部 1 3 2が形成される。 このようにして形成された第 2番目の屈折率 変調部 1 3 2は、 屈折率等位面 L 2に垂直であって光ファイバ 1 0の光軸と交わる 直線を A2としたときに、 この直線 A2と光軸とがなす角度が θ2であり、 直線 Α2 と光軸とがなす偏角面 Μ2が位相格子マスク 2 0の面に平行である。 第 2番目の 屈折率変調部 1 3 2の偏角面 Μ2は、既に形成された第 1番目の屈折率変調部 1 3 ェの偏角面 Miと一致していない。
さらに、 第 2番目の屈折率変調部 1 3 2の形成後、 屈折率変化誘起光 U Vの照 射が中断され、 その間に光ファイバ 1 0が一定角度だけ光軸回りに回転されて、 図 4 Cに示された配置状態となる。 そして、 図 4 Cに示された配置状態で屈折率 変化誘起光 U Vがー定時間だけ照射されることで第 3番目の屈折率変調部 1 3 3 が形成される。 このようにして形成された第 3番目の屈折率変調部 1 3 3は、 屈 折率等位面 L 3に垂直であって光ファイバ 1 0の光軸と交わる直線を A3としたと きに、 この直線 A3と光軸とがなす角度が θ3であり、 直線 Α3と光軸とがなす偏 角面 Μ3が位相格子マスク 2 0の面に平行である。 第 3番目の屈折率変調部 1 3 3 の偏角面 Μ3は、 既に形成された第 1番目の屈折率変調部 1 3 の偏角面 と一 致しておらず、 また、 既に形成された第 2番目の屈折率変調部 1 3 2の偏角面 M2 とも一致していない。
以降も同様にして、 第 4番目〜第 N番目の屈折率変調部 1 3 4〜1 3 Nが順次に 形成される。第 N番目の屈折率変調部 1 3 Nの形成の際には、図 4 Dに示された配 置状態で屈折率変化誘起光 U Vが一定時間だけ照射されることで第 N番目の屈折 率変調部 1 3 Nが形成される。 このようにして形成された第 N番目の屈折率変調 部 1 3 Nは、屈折率等位面 LNに垂直であって光ファイバ 1 0の光軸と交わる直線 を ANとしたときに、 この直線 ANと光軸とがなす角度が ΘΝであり、 直線 ΑΝと光 軸とがなす偏角面 ΜΝが位相格子マスク 2 0の面に平行である。 第 Ν番目の屈折 率変調部 1 3 Νの偏角面 ΜΝは、既に形成された第 1番目〜第(Ν _ 1 )番目の屈折 率変調部 1 3 〜1
Figure imgf000012_0001
の何れとも一致していない。
なお、位相格子マスク 2 0が位置固定のままであれば各 θηは全て同一値である 力 S、位相格子マスク 2 0がその面上で回転されることにより各 θηは異なるものと することができる。 また、 1つの位相格子マスク 2 0が用いられれば、 各屈折率 変調部 1 3 ηにおいて直線 Αηに沿った屈折率変調周期は全て同一値であるが、異 なる位相格子周期の位相格子マスクに交換されることで、 各屈折率変調部 1 3 η において直線 Αηに沿つた屈折率変調周期は異なるものとすることができる。 このように、 本実施形態に係る光導波路型回折格子素子製造方法では、 Ν個の 屈折率変調部 1 〜丄 3 Νは、 光ファイバ 1 0の長手方向に沿って、 屈折率等位 面 Lnに垂直な直線 Αηが光ファイバ 1 0の光軸と平行とならない (すなわち角度 θη≠0となる) ようにして順次に形成される。 また、 第 η番目の屈折率変調部 1
3 ηを形成する際に、 その偏角面 Μηが、 既に形成された第 1番目〜第(η— 1 )
0 番目の屈折率変調部 1 3 1 3
Figure imgf000013_0001
の何れとも一致 しないようにされる。 さらに、 N個の屈折率変調部 1 〜丄 3 Nのうちの何れか 2つの屈折率変調部それぞれの形成領域が互いに少なくとも一部が重なるように 形成される。 このようにして、 本実施形態に係る傾斜型回折格子素子 1が製造さ れる。
特に、 第(n— 1 )番目の屈折率変調部 1 3 — が形成された後に、 光ファイバ 1 0が一定角度 1 8 O ZNだけ光軸回りに回転されて、 第 n番目の屈折率変調部 1 3 nが形成されるのが好適である。 このようにして製造される傾斜型回折格子 素子 1は、 N個の屈折率変調部 1 3 i〜l 3 Nそれぞれの偏角面 Μ ΜΝが光ファ ィバ 1 0の光軸の回りに 1 8 0度 ΖΝずつずれているので、 偏波依存損失が効率 よく低減されたものとなる。
また、 各屈折率変調部 1 3 ηを形成する際に、 屈折率等位面 Lnに垂直な直線 A nと光ファ 1 0の光軸とがなす角度 Anを互いに同一にし、光ファイバ 1 0の 長手方向に沿った形成領域の長さ Dnを互いに同一し、 屈折率変調周期を互いに 同一にし、 屈折率変調振幅を互いに同一にするのが好適である。 このようにして 製造される傾斜型回折格子素子 1は、 偏波依存損失が効率よく低減されたものと なる。
また、 各屈折率変調部 1 3 nを形成する際に、 製造途中の傾斜型回折格子素子 1の透過損失または偏波依存損失をモニタするのが好適である。 このようにする ことで、 製造される傾斜型回折格子素子 1は、 偏波依存損失が効率よく低減され たものとなる。
次に、 本実施形態に係る光導波路型回折格子素子 (傾斜型回折格子素子) 1お よびその製造方法の実施例について説明する。本実施例では、光ファイバ 1 0は、 コァ領域 1 1だけでなくクラッド領域 1 2にも G e 02が添加されたものであつ た。 位相格子マスク 2 0は、 一定周期ではなく、 溝方向に垂直な方向に沿って周 期が次第に変化していて、 中心周期が 1 . 0 6 5 Ο μΐηであり、 周期変化率が 1 0. OnmZcmであった。 光源 30は、 波長 248 n mのレーザ光を屈折率変 化誘起光として出力する Kr Fエキシマレーザ光源が用いられた。
そして、 製造された本実施例の傾斜型回折格子素子 1は、 2つの屈折率変調部 131} 1 32を有するものであった。 2つの屈折率変調部 1 3h 1 32それぞれ は、 形成領域の長さが 5 mmであり、 互いに全く重ねられて形成された。 屈折率 変調部 1 3丄の偏角面 と屈折率変調部 1 32の偏角面 M2とは互いに直交するも のであった。
本実施例の製造方法では、 初めに第 1番目の屈折率変調部 1 3iが形成され、 その後、 屈折率変化誘起光 UVの照射が中断されている間に光ファイバ 10が 9 0だけ光軸回りに回転されて、 続いて第 2番目の屈折率変調部 1 32が形成され た。 また、 2つの屈折率変調部 1 3 1 32それぞれの形成の際に、 製造途中の 傾斜型回折格子素子 1の透過損失がモニタされた。
本実施例では、 透過損失が最大となる波長における透過損失の目標値は 1 dB とされた。 そして、 第 1番目の屈折率変調部 1 3 の形成の際には、 モニタされ た透過損失が目標値の 1/2 (0. 5 dB) となった時点で、 屈折率変化誘起光 UVの照射が中断された。 また、 続く第 2番目の屈折率変調部 132の形成の際 には、 モニタされた透過損失が目標値 (l dB) となった時点で、 屈折率変化誘 起光 UVの照射が終了された。図 5Aは、第 1番目の屈折率変調部 1 3丄の形成終 了時点での透過特性を示す図であり、 図 5Bは、 第 2番目の屈折率変調部 1 32 の形成終了時点での透過特性を示す図である。 この図に示されるように、 本実施 例の傾斜型回折格子素子 1の透過損失の最大値は、第 1番目の屈折率変調部 1 31 の形成終了時点では 0. 5 dBであり、 第 2番目の屈折率変調部 132の形成終 了時点では 1. 0 d Bであった。
図 6Aは、 本実施例の傾斜型回折格子素子の透過特性を示す図であり、 図 6B は、 本実施例の傾斜型回折格子素子の偏波依存損失特性を示す図である。 また、 図 7Aは、 比較例の傾斜型回折格子素子の透過特性を示す図であり、 図 7Bは、 比教例の傾斜型回折格子素子の偏波依存損失特性を示す図である。 ここで、 比較 例の傾斜型回折格子素子は、 重ね書きされ ώることなく 1つの屈折率変調部のみを 有するものであった。
図 6 Αと図 7Αとを比較して判るように、 本実施例の傾斜型回折格子素子およ び比較例の傾斜型回折格子素子それぞれは、 透過スぺクトルの形状が互いに似て おり、 何れも透過損失の最大値が 0 . 6 d B程度であった。 しかし、 図 6 Bと図 7 Bとを比較して判るように、 比較例の傾斜型回折格子素子の偏波依存損失の最 大値は 0 . 1 2 5 d B程度であるのに対して、 本実施例の傾斜型回折格子素子の 偏波依存損失の最大値は 0 . 0 3 d B程度であつた。 本実施例の傾斜型回折格子 素子の偏波依存損失の最大値は、 比較例の傾斜型回折格子素子の偏波依存損失の 最大値と比較して約 1 / 4であり、 また、 本実施例の傾斜型回折格子素子の透過 損失の最大値と比較して約 1 / 2 0であった。
図 8は、 他の実施形態に係る光導波路型回折格子素子 (傾斜型回折格子素子) 2の説明図である。この図には、光軸を含む面で切断したときの断面図、および、 光軸に垂直な面で切断したときの断面図が示されている。 この図に示される本実 施形態に係る傾斜型回折格子素子 2は、 光導波路である光ファイバ 2 0の長手方 向に沿って、 N (Nは 2以上の整数) 個の屈折率変調部 2 3 i〜 2 3 Nが形成され ている。 光ファイバ 2 0は、 石英ガラスをベースとするものであって、 G e〇2 が添加されたコア領域 2 1と、 このコア領域 2 1を取り囲むクラッド領域 2 2と を含む。
各屈折率変調部 2 3 n ( nは 1以上 N以下の任意の整数) について、 屈折率が等 位となる屈折率等位面を L nと表し、屈折率等位面 L nに垂直であって光ファイバ 2 0の光軸 (X軸) と交わる直線を Anと表し、直線 Anと光軸とがなす角度を θη と表し、 直線 Αηと光軸とがなす偏角面を と表す。 各屈折率変調部 2 3 nの形 成領域、屈折率等位面 Ln、直線 Anおよび角度 θηそれぞれに関しては、既に説明 したとおりである。 この傾斜型回折格子素子 2は、各屈折率変調部 2 3 nの偏角面 Mnが光軸の周り に 3 6 0度 /Nずつずれている点に特徴を有する。 なお、 図では、 N = 4として いる。 この場合、 偏角面が互いに 1 8 0度だけ異なる屈折率変調部 2 3 2 3 3 それぞれが有する非軸対称性に因る複屈折性が相殺され、 また、 偏角面が互いに 1 8 0度だけ異なる屈折率変調部 2 3 3 , 2 3 4それぞれが有する非軸対称性に因 る複屈折性が相殺されるので、 このことによつても、 光導波路型回折格子素子 2 は、 更に偏波依存損失が効率よく低減されたものとなる。 なお^ここで言う非軸 対称性とは、 光ファイバ 2 0に対して屈折率変化誘起光が照射されて形成された 屈折率変調部 2 3 において、 屈折率変化誘起光の入射側において屈折率上昇が 大きくなつていることを言う。 そこで、 光ファイバ 2 0に対して屈折率変化誘起 光が互いに逆の方向それぞれから照射されて屈折率変調部 2 3 l r 2 3 3が形成さ れることにより、 各々の非軸対称性に因る複屈折性が相殺される。
この傾斜型回折格子素子 2も、 透過損失が最大となる波長において、 偏波依存 損失が透過損失最大値の 1 / 1 0以下であるのが好適である。 このような傾斜型 回折格子素子 2も、 光通信の分野で偏波依存損失が小さいことが要求される光学 装置 (またはその一部) として好適に用いられ、 例えば光ファイバ増幅器の利得 を等化する利得等化器として好適に用いられ得る。
図 9A〜図 1 1 Bそれぞれは、 3種類の傾斜型 [II折格子素子の透過率 Tおよび偏 波依存損失 P D Lそれぞれの波長依存性を示すグラフである。 図 9 A及び図 9 B は、 1方向のみから屈折率変化誘起光が照射されて 1つの屈折率変調部が形成さ れた ί頃斜型回折格子素子について示す。 図 9 Α及び図 9 Bは、 互いに 9 0度だけ 異なる 2方向から屈折率変化誘起光が照射されて 2つの屈折率変調部が形成され た傾斜型回折格子素子 1について示す。 図 1 1 A及び図 1 1 Bは、 互いに 9 0度 ずつ異なる 4方向から屈折率変化誘起光が照射されて 4つの屈折率変調部が形成 された傾斜型回折格子素子 2について示す。
傾斜型回折格子素子 1および傾斜型回折格子素子 2それぞれでは、 各屈折率変調
4 部は重ねて形成された。
図 9A, 図 1 OAおよび図 1 1Aを比較して判るように、 3種類の傾斜型回折格 子素子それぞれの透過率 Tの波長依存性は略同様のものであった。一方、図 9B, 図 1 0Bおよび図 1 IBを比較して判るように、 1つの屈折率変調部が形成され た傾斜型回折格子素子の偏波依存損失 PDLは 0. 127 dBにも達したのに対 して、 傾斜型回折格子素子 1の偏波依存損失 PDLは 0. 023 dBと小さく、 傾斜型回折格子素子 2の偏波依存損失 PDLは 0.016 dBと更に小さかった。 産業上の利用可能性
以上、 詳細に説明したとおり、 本 明によれば、 N (Nは 2以上の整数) 個の 屈折率変調部が形成されていて、 各屈折率変調部の屈折率等位面に垂直な直線が 光導波路の光軸と平行でなく、各屈折率変調部の偏角面が互いに一致しておらず、 何れか 2つの屈折率変調部それぞれの形成領域が互いに少なくとも一部が重なつ ている。 このように構成される光導波路型回折格子素子は、 短尺であって、 偏波 依存損失が低減されたものとなる。

Claims

請求の範囲
1 . 光導波路の長手方向に沿って N (Nは 2以上の整数) 個の屈折率変調部が 形成されており、
前記 N個の屈折率変調部それぞれの屈折率等位面に垂直な直線が前記光導波路 の光軸と平行でなく、
前記 N個の屈折率変調部それぞれの屈折率等位面に垂直な直線と前記光導波路 の光軸とがなす偏角面が互いに一致しておらず、
前記 N個の屈折率変調部のうちの何れか 2つの屈折率変調部それぞれの形成領 域が互いに少なくとも一部が重なっている
ことを特徴とする光導波路型回折格子素子。
2 . 前記 N個の屈折率変調部それぞれの偏角面が前記光導波路の光軸の回りに 1 8 0度/ Nずつずれていることを特徴とする請求項 1記載の光導波路型回折格 子素子。
3 . 前記 N個の屈折率変調部それぞれの偏角面が前記光導波路の光軸の回りに 3 6 0度 ZNずつずれていることを特徴とする請求項 1記載の光導波路型回折格 子素子。
4 . 前記 N個の屈折率変調部それぞれは、 屈折率等位面に垂直な直線と前記光 導波路の光軸とがなす角度が互いに同一であり、 前記光導波路の長手方向に沿つ た形成領域の長さが互いに同一であり、 屈折率変調周期が互いに同一であり、 屈 折率変調振幅が互いに同一であることを特徴とする請求項 1記載の光導波路型回 折格子素子。
5 . 透過損失が最大となる波長において偏波依存損失が透過損失最大値の 1 Z 1 0以下であることを特徴とする請求項 1記載の光導波路型回折格子素子。
6 . 光導波路の長手方向に沿って N (Nは 2以上の整数)個の屈折率変調部を、 屈折率等位面に垂直な直線が前記光導波路の光軸と平行とならないようにして順 次に形成するとともに、 第 n ( nは 2以上 N以下の整数) 番目の屈折率変調部を形成する際に、 屈折率 等位面に垂直な直線と前記光導波路の光軸とがなす偏角面が、 既に形成した第 1 番目〜第(n— 1 )番目の屈折率変調部それぞれの偏角面の何れとも一致しない ようにし、
前記 N個の屈折率変調部のうちの何れか 2つの屈折率変調部それぞれの形成領 域が互いに少なくとも一部が重なるようにして、
光導波路型回折格子素子を製造することを特徴とする光導波路型回折格子素子 製造方法。
7 . 前記 N個の屈折率変調部それぞれの偏角面を前記光導波路の光軸の回りに 1 8 0度 ZNずつずらすことを特徴とする請求項 6記載の光導波路型回折格子素 子製造方法。
8 . 前記 N個の屈折率変調部それぞれの偏角面を前記光導波路の光軸の回りに 3 6 0度 ZNずつずらすことを特徴とする請求項 6記載の光導波路型回折格子素 子製造方法。
9 . 前記 N個の屈折率変調部それぞれを形成する際に、 屈折率等位面に垂直な 直線と前記光導波路の光軸とがなす角度を互いに同一にし、 前記光導波路の長手 方向に沿った形成領域の長さを互いに同一し、屈折率変調周期を互いに同一にし、 屈折率変調振幅を互いに同一にすることを特徴とする請求項 6記載の光導波路型 回折格子素子製造方法。
1 0 . 透過損失をモニタしながら前記 N個の屈折率変調部それぞれを形成する ことを特徴とする請求項 6記載の光導波路型回折格子素子製造方法。
1 1 . 偏波依存損失をモニタしながら前記 N個の屈折率変調部それぞれを形成 することを特徴とする請求項 6記載の光導波路型回折格子素子製造方法。
PCT/JP2002/006868 2001-07-10 2002-07-05 Dispositif a reseau de diffraction de guide d'ondes optiques et procede de fabrication correspondant WO2003007032A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2003-7003393A KR20030026364A (ko) 2001-07-10 2002-07-05 광도파로형 회절 격자 소자 및 그 제조방법
EP02741421A EP1406098A4 (en) 2001-07-10 2002-07-05 OPTICAL SHAFT BENDING GRILLE ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
JP2003512743A JPWO2003007032A1 (ja) 2001-07-10 2002-07-05 光導波路型回折格子素子およびその製造方法
CA002453533A CA2453533A1 (en) 2001-07-10 2002-07-05 Optical waveguide diffraction grating device and its fabrication method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-209826 2001-07-10
JP2001209826 2001-07-10
JP2002-012017 2002-01-21
JP2002012017 2002-01-21

Publications (1)

Publication Number Publication Date
WO2003007032A1 true WO2003007032A1 (fr) 2003-01-23

Family

ID=26618465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006868 WO2003007032A1 (fr) 2001-07-10 2002-07-05 Dispositif a reseau de diffraction de guide d'ondes optiques et procede de fabrication correspondant

Country Status (7)

Country Link
EP (1) EP1406098A4 (ja)
JP (1) JPWO2003007032A1 (ja)
KR (1) KR20030026364A (ja)
CN (1) CN1526079A (ja)
CA (1) CA2453533A1 (ja)
TW (1) TW550400B (ja)
WO (1) WO2003007032A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946137B2 (en) 2002-01-02 2011-05-24 United Technologies Corporation Long period fiber Bragg gratings written with alternate side IR laser illumination
CN112601990A (zh) * 2018-03-13 2021-04-02 交互数字Ce专利控股公司 包括双材料结构的衍射光栅
US11604363B2 (en) 2018-03-13 2023-03-14 Interdigital Ce Patent Holdings Image sensor comprising a color splitter with two different refractive indexes
US11972508B2 (en) 2018-07-02 2024-04-30 Interdigital Ce Patent Holdings, Sas Image sensor comprising a color splitter with two different refractive indexes, and different height

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183488B (zh) * 2011-03-04 2013-06-19 北京交通大学 基于闪耀长周期光纤光栅的折射率传感器
JP6460637B2 (ja) * 2014-03-31 2019-01-30 富士通株式会社 半導体光導波路装置
CN104777535B (zh) * 2015-03-25 2017-05-24 东南大学 一种复用体全息光栅

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672922A2 (en) * 1994-02-17 1995-09-20 AT&T Corp. Method of controlling polarization properties of a photo-induced device in an optical waveguide and method of investigating structure of an optical waveguide
JPH1184117A (ja) * 1997-09-09 1999-03-26 Fujikura Ltd 反射型光導波路グレーティング
JP2000266945A (ja) * 1999-01-25 2000-09-29 Alcatel 傾斜および線形チャープを有するフィルタ光導波路
JP2001021738A (ja) * 1999-07-12 2001-01-26 Sumitomo Electric Ind Ltd 光導波路型フィルタ及びその製造方法並びに光ファイバ増幅器
EP1111415A1 (en) * 1999-12-21 2001-06-27 Agilent Technologies, Inc., a corporation of the State of Delaware Process and device for making gratings in optical fibres

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672922A2 (en) * 1994-02-17 1995-09-20 AT&T Corp. Method of controlling polarization properties of a photo-induced device in an optical waveguide and method of investigating structure of an optical waveguide
JPH1184117A (ja) * 1997-09-09 1999-03-26 Fujikura Ltd 反射型光導波路グレーティング
JP2000266945A (ja) * 1999-01-25 2000-09-29 Alcatel 傾斜および線形チャープを有するフィルタ光導波路
JP2001021738A (ja) * 1999-07-12 2001-01-26 Sumitomo Electric Ind Ltd 光導波路型フィルタ及びその製造方法並びに光ファイバ増幅器
EP1111415A1 (en) * 1999-12-21 2001-06-27 Agilent Technologies, Inc., a corporation of the State of Delaware Process and device for making gratings in optical fibres

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOLMES M.J. ET AL.: "Ultra narrow-band optical fibre sidetap filters", 24TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION, vol. 1, 20 September 1998 (1998-09-20) - 24 September 1998 (1998-09-24), MADRID, SPAIN, pages 137 - 138, XP000858670 *
See also references of EP1406098A4 *
WESTBROOK P.S., STRASSER T.A., ERDOGAN T.: "In-line polarimeter using blazed fiber gratings", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 12, no. 10, October 2000 (2000-10-01), pages 1352 - 1354, XP000970132 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946137B2 (en) 2002-01-02 2011-05-24 United Technologies Corporation Long period fiber Bragg gratings written with alternate side IR laser illumination
CN112601990A (zh) * 2018-03-13 2021-04-02 交互数字Ce专利控股公司 包括双材料结构的衍射光栅
US11573356B2 (en) 2018-03-13 2023-02-07 Interdigital Ce Patent Holdings Diffraction grating comprising double-materials structures
US11604363B2 (en) 2018-03-13 2023-03-14 Interdigital Ce Patent Holdings Image sensor comprising a color splitter with two different refractive indexes
US11972508B2 (en) 2018-07-02 2024-04-30 Interdigital Ce Patent Holdings, Sas Image sensor comprising a color splitter with two different refractive indexes, and different height

Also Published As

Publication number Publication date
TW550400B (en) 2003-09-01
KR20030026364A (ko) 2003-03-31
JPWO2003007032A1 (ja) 2004-11-04
EP1406098A1 (en) 2004-04-07
CA2453533A1 (en) 2003-01-23
EP1406098A4 (en) 2005-09-21
CN1526079A (zh) 2004-09-01

Similar Documents

Publication Publication Date Title
JP3377728B2 (ja) 光導波路からなる装置
US6430342B1 (en) Fiber grating and fiber optic devices using the same
US7376307B2 (en) Multimode long period fiber bragg grating machined by ultrafast laser direct writing
US7340132B2 (en) Polarization insensitive microbend fiber gratings and devices using the same
US7515803B2 (en) Optical element, manufacturing method thereof, and optical device
US9696476B1 (en) Volume Moiré Bragg gratings in a photosensitive material
CA2240903A1 (en) Multi-path interference filter
EP1195633B1 (en) Optical transmission module and optical communication system using the same
WO2003007032A1 (fr) Dispositif a reseau de diffraction de guide d'ondes optiques et procede de fabrication correspondant
US6411755B1 (en) Cladding-assisted single-mode fiber coupler
JP2002169028A (ja) 光損失フィルタ
EP2224269A1 (en) Optical waveguide-type wavelength dispersion compensation device and manufacturing method thereof
JPH1184117A (ja) 反射型光導波路グレーティング
US6278817B1 (en) Asymmetric low dispersion bragg grating filter
JP2002530691A (ja) 光デバイスおよび方法
TW569041B (en) Reflection-grid optical waveguide-path type and its production method
JPH1090546A (ja) 平面導波路の製造方法及び平面導波路
JP3011140B2 (ja) ファイバ型光アイソレータ及びその製造方法
WO2022130515A1 (ja) 三次元ハイブリッド光導波路およびその製造方法
AU777481B2 (en) Optical waveguide structure
JP4437951B2 (ja) 光ファイバグレーティングの製造装置および製造方法
US20040252944A1 (en) Apparatus and method of manufacturing optical waveguide type diffraction grating device
CN115248473A (zh) 基于飞秒激光刻写技术的可调谐光纤布拉格光栅的制备方法
JP2001051134A (ja) 光導波路型フィルタおよび光ファイバ増幅器
JP2002169048A (ja) 自己導波光回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

WWE Wipo information: entry into national phase

Ref document number: 1020037003393

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020037003393

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002741421

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003512743

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028137426

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002315792

Country of ref document: AU

Ref document number: 2453533

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2002741421

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002741421

Country of ref document: EP