WO2003006906A1 - Vorrichtung und verfahren zum einschmelzen und/oder verglasen von filtersäuben - Google Patents

Vorrichtung und verfahren zum einschmelzen und/oder verglasen von filtersäuben Download PDF

Info

Publication number
WO2003006906A1
WO2003006906A1 PCT/EP2002/006712 EP0206712W WO03006906A1 WO 2003006906 A1 WO2003006906 A1 WO 2003006906A1 EP 0206712 W EP0206712 W EP 0206712W WO 03006906 A1 WO03006906 A1 WO 03006906A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
melting
melting unit
head space
melted
Prior art date
Application number
PCT/EP2002/006712
Other languages
English (en)
French (fr)
Inventor
Heinz-Dieter Forjahn
Johannes Vetter
Original Assignee
Messer Griesheim Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim Gmbh filed Critical Messer Griesheim Gmbh
Priority to US10/471,930 priority Critical patent/US20070277556A1/en
Priority to EP02760185A priority patent/EP1407209A1/de
Publication of WO2003006906A1 publication Critical patent/WO2003006906A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0073Seals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/12Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in shaft furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/30Solid combustion residues, e.g. bottom or flyash
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/12Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity with special arrangements for preheating or cooling the charge
    • F27B2009/124Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/08Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated heated through chamber walls
    • F27B9/082Muffle furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to a device and a method for melting filter dusts.
  • the object of the present invention is therefore to create a possibility for melting filter dusts in which the unintentional leakage of filter dust is largely avoided.
  • the invention makes use of the construction principle of a device for melting glass known from WO 97/05440.
  • This device comprises a melting unit in the form of a tube, which is provided with a gas-tight and fireproof jacket.
  • the - usually ceramic - material from which the jacket of the tube is made depends on the raw material to be melted down, and is selected in such a way that reactions between the jacket material and the raw material to be melted down are reduced to a minimum.
  • the tube has one in its upper face Add opening in which the raw material is added. An outlet opening for discharging the melt is provided in a lower region.
  • the known melting unit is housed concentrically in an insulated steel container.
  • the annular space between the insulation of the container and the ceramic tube forms the combustion chamber in which the heat required for the melting process is generated by burning a gas, preferably natural gas.
  • a gas preferably natural gas.
  • the material to be melted is thus fired indirectly.
  • the exhaust gases generated during the combustion process are discharged via an exhaust pipe leading from the combustion chamber and do not come into contact with the melt or the raw material.
  • a dustproof, lockable head space is also placed on the addition opening of the essentially vertically arranged melting unit, into which the dusty additives to be melted are introduced. Under the influence of gravity, the dust particles gradually sink into the melting unit and are melted. The melt gradually sinks into the lower area of the melting unit until it is discharged at the outlet opening. Even light dust particles sink into the melting unit after a certain period of time and do not enter the surrounding atmosphere.
  • a preferred embodiment of the invention provides for the melting unit to be conical, the melting unit tapering towards the outlet opening.
  • This embodiment is particularly recommended because the volume of the particles added decreases with increasing melting.
  • it is expedient to make the head space conical or funnel-shaped, it tapering towards the addition opening. As a result, a larger amount of material to be fused can be taken up.
  • a lock arrangement upstream of the head space through which the dust-like additives are introduced can be, for example, a correspondingly sealed screw.
  • a particularly reliable sealing and therefore preferred lock arrangement is a cellular wheel lock.
  • the object of the invention is also achieved with a method for melting filter dusts with the features of claim 6.
  • dust-like additives which are fed to a melting unit and melted by the action of heat from a heating device which is thermally connected to the melting unit are, before melting, fed to a dust-proof head space placed on the melting unit, in which the dusty additives collect and finally under the effect of gravity sink into the melting unit.
  • the additives in the headspace are advantageously subjected to a pressure which is greater than the ambient pressure at the outlet opening of the melting unit. There is a pressure drop along the melting unit, which additionally supports the process of gravity lowering and compression of the particles.
  • the excess pressure can be built up mechanically, for example by a press built into the head space or by supplying a gas under pressure into the head space. Typical pressure values are between about 100 mbar and a few bar.
  • an inert gas for example nitrogen, before or during the addition of the addition substances.
  • the inert gas can also be used to build up the above-mentioned excess pressure in the head space.
  • the simultaneous addition of glass formers, for example SiO 2 , into the head space is particularly advantageous.
  • the glass former - expediently likewise used in the form of small particles - mixes with the dust-like additives. After the melt solidifies, a glass is formed in which the added substances are enclosed. This embodiment of the method according to the invention is particularly advantageous for the disposal of contaminated filter dusts.
  • FIG. 1 shows schematically the structure of a device according to the invention for melting and / or glazing filter dusts in cross section.
  • the melting furnace 1 shown in FIG. 1 comprises an essentially tubular, vertically operated melting unit 2, which is accommodated concentrically in the interior of an essentially cylindrical combustion chamber 3. On its upper end face, the melting unit 2 is provided with an addition opening 4 for feeding raw material to be melted. The addition opening 4 is preceded by a funnel-shaped head space 5 for receiving the dust-like additives to be melted. The head space 5 is sealed against dust and pressure in relation to the ambient atmosphere. New addition substances are continuously fed into the melting unit 2 from the head space 5 without the thermal or chemical conditions inside the melting unit 2 being caused by penetrating outside air and the like. the like. be disturbed sustainably.
  • the melting unit 2 has an outlet opening 6 for discharging the melt formed in the melting unit 2.
  • an outlet nozzle 8 Arranged at the outlet opening 6 is an outlet nozzle 8 made of a material which is highly thermally conductive and chemically inert, such as platinum, and which is thermally connected to a heating device 7. By heating the outlet nozzle 8 can ensure that the material located within the outlet nozzle 8 is in the molten, ie flowable state.
  • the wall 9 of the melting unit 2 consists of a heat-resistant and gas-tight, for example ceramic or metallic material.
  • the material used depends on the type and composition of the substance to be melted down. In particular, the material of the wall 9 should be such that it does not react as much as possible with the melt formed in the interior of the melting unit 2.
  • a fuel feed 12 for gaseous fuel, for example natural gas, and a multiplicity of injection nozzles 13 for oxygen are passed through the wall 11 of the combustion chamber 3 provided with an insulating layer 10.
  • the injection nozzles 13 are arranged all around at regular angular intervals and in several rows one above the other.
  • a gas discharge line 14 is provided to discharge the exhaust gas formed during the combustion.
  • the fuel introduced through the fuel supply 12 is burned with the oxygen added through the injection nozzles 13.
  • the amount of oxygen supplied from the injection nozzles 13 to a row can be set separately, a total amount of oxygen corresponding to the stoichiometric conditions being supplied. This procedure enables the setting of a temperature profile advantageous for the melting process over the height of the melting unit 2.
  • the dust-like addition substances intended for melting and / or glazing are supplied to the head space 5 via the feed line 15 and a lock arrangement 14.
  • the lock arrangement 16 is preferably a cellular wheel lock which can be sealed very well. If the glazing of the dust-like additives is intended, a glass former is also added, either via the feed line 15 or via a separate opening (not shown here) provided with a dust-tight lock.
  • the dust-like additives introduced into the head space 5 sink to the addition opening 4 after a certain time and thus reach the melting unit 2, in which they pass through the combustion chamber 3 generated heat are melted up to the level of a melting mirror 17. Above the melting level, the added substances are still in a solid form, ie in dust form.
  • the head space 4 via the pressure line 18 with a compressed gas supply for an inert gas, for example nitrogen, in flow connection.
  • an inert gas for example nitrogen
  • Melting unit 2 an additional pressure drop of 100 to 3000 mbar, which on the one hand compresses the still solid dust particles, and on the other hand increases the speed when the additives to be melted pass through the melting unit 2.
  • the melted addition substances emerge in liquid form at the outlet nozzle 6, the heating device 7 preventing premature solidification in the interior of the outlet nozzle. After it has solidified, the melted material has a volume which is considerably less than the volume of its dust form and can be disposed of more easily or recycled. If glass formers have been added to the dust-like additives, a glass is formed after the melt has solidified, in which the additives are enclosed.
  • the melting furnace 1 is compact and flexible in use and is characterized by a high level of economy compared to conventional crucible furnaces. By separating the melting and combustion chamber for the
  • Insulating layer 10 of the combustion chamber 3 a simple and inexpensive insulating compound can be selected. Since the exhaust gas from the combustion chamber 3 does not come into contact with the melt in the melting unit 2, it consists of approximately 100% carbon dioxide and water vapor when natural gas is burned.
  • the melting furnace 1 can be used both continuously and in batch mode. LIST OF REFERENCES

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Beim Einschmelzen von feinen Filterstäuben in konventionellen Tiegel- und Induktionsöfen kommt es zu hohen Wiederverstaubungen. Eine Verpressung der Stäube ist mit hohem Aufwand verbunden und nicht immer möglich. Erfindungsgemäss werden die Filterstäube vor d er Zugabeöffnung eines mit einer Brennkammer thermisch verbundenen Schmelzaggregats in einem staubdichten Kopfraum aufgefangen. Im Kopfraum sinken die Staubteilchen unter der Wirkung der Schwerkraft in das Schmelzaggregat und werden dort aufgeschmolzen. Der Vorgang kann durch Erzeugung eines zusätzlichen Druckgefälles längs des Schmelzaggregats unterstützt werden. Ein Austragen von Staub wird weitgehend vermieden. Das Verfahren eignet sich auch zur Verglasung von insbesondere kontaminierten Stäuben.

Description

Vorrichtung und Verfahren zum Einschmelzen und/oder Verglasen von
Filterstäuben
Die Erfindung betrifft eine Vorrichtung sowie ein Verfahren zum Einschmelzen von Filterstäuben.
Um das Volumen von als Filterstaub anfallenden Abfallstoffen zu vermindern, ist es zweckmäßig, die Filterstäube aufzuschmelzen. Beim Aufschmelzen werden die zwischen den einzelnen Staubpartikeln vorhandenen Zwischenräume entfernt und das Gesamtvolumen somit deutlich reduziert. Zudem ist die Schmelze, insbesondere von kontaminierten Filterstäuben, leichter zu handhaben als die Stäube selbst. Beim Einschmelzen von feinen Filterstäuben in konventionellen Tiegel- oder Induktionsöfen kommt es jedoch zu einer hohen Wiederverstaubung. Aus diesem Grunde müssen die Filterstäube vor dem Schmelzvorgang in aufwendiger Weise verpresst werden. Eine solche Verpressung ist jedoch in vielen Fällen nicht möglich.
Aufgabe der vorliegenden Erfindung ist es daher, eine Möglichkeit zum Einschmelzen von Filterstäuben zu schaffen, bei der der unbeabsichtigte Austritt von Filterstaub weitgehend vermieden wird.
Gelöst ist diese Aufgabe durch eine Vorrichtung zum Einschmelzen und/oder Verglasen von Filterstäuben mit den Merkmalen des Patentanspruchs 1 sowie durch ein Verfahren zum Einschmelzen von Filterstäuben mit den Merkmalen des Patentanspruchs 6.
Die Erfindung macht vom Aufbauprinzip einer aus der WO 97/05440 bekannten Vorrichtung zum Einschmelzen von Glas Gebrauch. Diese Vorrichtung umfasst ein Schmelzaggregat in Form einer Röhre, die mit einem gasdichten und feuerfesten Mantel versehen ist. Das - üblicherweise keramische - Material, aus dem der Mantel der Röhre gefertigt ist, bestimmt sich je nach dem einzuschmelzenden Rohmaterial, und ist derart gewählt, dass Reaktionen zwischen dem Mantelmaterial und dem einzuschmelzenden Rohmaterial auf ein Minimum reduziert werden. Die Röhre weist in ihrer oberen Stirnseite eine Zugabeöffnung auf, in der das Rohmaterial zugegeben wird. In einem unteren Bereich ist eine Austrittsöffnung zum Abführen der Schmelze vorgesehen. Das vorbekannte Schmelzaggregat ist konzentrisch in einem isolierten Stahlbehälter aufgenommen. Der ringförmige Zwischenraum zwischen der Isolierung des Behälters und der Keramikröhre bildet den Verbrennungsraum, in dem die für den Schmelzprozess erforderliche Hitze durch Verbrennen eines Gases, bevorzugt Erdgas, erzeugt wird. Das einzuschmelzende Material wird somit indirekt befeuert. Die beim Verbrennungsprozess entstehenden Abgase werden über eine vom Verbrennungsraum abgehende Abgasleitung abgeführt und kommen nicht mit der Schmelze oder dem Rohmaterial in Berührung.
Bei Glasschmelzöfen besteht in der Regel nicht das Problem einer Verstaubung der Umgebung durch das einzuschmelzende Material. Für die Erfindung ist jedoch die strenge Trennung von Schmelzbereich und Verbrennungsbereich, die kennzeichnend für den vorgenannten Gegenstand ist, besonders vorteilhaft, weil das einzuschmelzende Material stets vom Verbrennungsraum abgetrennt ist. Eine Kontamination der Verbrennungsabgase durch die einzuschmelzenden Filterstäube wird so zuverlässig vermieden. Bei der erfindungsgemäßen Vorrichtung ist zudem der Zugabeöffnung des im wesentlichen vertikal angeordneten Schmelzaggregats ein staubdicht abschiießbarer Kopfraum aufgesetzt, in den die einzuschmelzenden staubförmigen Zugabestoffe eingeführt werden. Unter der Wirkung der Schwerkraft sinken die Staubteilchen allmählich in das Schmelzaggregat hinein und werden aufgeschmolzen. Die Schmelze sinkt allmählich in den unteren Bereich des Schmelzaggregats, bis sie an der Austrittsöffnung abgelassen wird. Auch leichte Staubteilchen sinken nach einer gewissen Zeitdauer in das Schmelzaggregat und treten nicht in die Umgebungsatmosphäre ein.
Eine bevorzugte Ausführungsform der Erfindung sieht vor, das Schmelzaggregat konisch auszubilden, wobei sich das Schmelzaggregat zur Austrittsöffnung hin verjüngt. Diese Ausführungsform ist insbesondere deshalb empfehlenswert, weil das Volumen der zugegebenen Teilchen mit zunehmender Aufschmelzung verkleinert. Um die Kapazität der Vorrichtung zu erhöhen, ist es zweckmäßig, den Kopfraum konisch oder trichterförmig auszugestalten, wobei er sieh zur Zugabeöffnung hin verjüngt. Hierdurch kann eine größere Menge an zu verschmelzenden Material aufgenommen werden.
Um das Eindringen von Staub aus dem Kopfraum in den Umgebungsbereich zuverlässig zu unterbinden und um einen kontinuierlichen Betrieb der erfindungsgemäßen Vorrichtung zu ermöglichen, ist es vorteilhaft, dem Kopfraum eine Schleusenanordnung vorzuschalten, durch die die staubförmigen Zusatzstoffe eingeführt werden. Bei dieser Schleusenanordnung kann es sich beispielsweise um eine entsprechend abgedichtete Schnecke handeln. Eine besonders zuverlässig abdichtende und daher bevorzugte Schleusenanordnung ist eine Zellenradschleuse.
Die Aufgabe der Erfindung wird auch mit einem Verfahren zum Einschmelzen von Filterstäuben mit den Merkmalen des Patentanspruchs 6 gelöst.
Beim erfindungsgemäßen Verfahren werden also staubförmige Zugabestoffe, die einem Schmelzaggregat zugeführt und durch Wärmeeinwirkung einer mit dem Schmelzaggregat thermisch verbundenen Heizeinrichtung aufgeschmolzen werden, vor dem Aufschmelzen einem dem Schmelzaggregat aufgesetzten staubdichten Kopfraum zugeführt, in dem sich die staubförmigen Zusatzstoffe sammeln und unter der Wirkung der Schwerkraft schließlich in das Schmelzaggregat hinein absinken.
Vorteilhafterweise werden die Zugabestoffe im Kopfraum dabei mit einem Druck beaufschlagt, der größer ist als der Umgebungsdruck an der Austrittsöffnung des Schmelzaggregats. Längs des Schmelzaggregats besteht so ein Druckgefälle, das den durch die Schwerkraft verursachten Vorgang des Absinkens und Verdichtens der Teilchen zusätzlich unterstützt. Der Überdruck kann dabei auf mechanischem Wege, etwa durch eine in dem Kopfraum eingebauten Presse oder durch Zuführung eines Gases unter Druck in den Kopfraum aufgebaut werden. Typische Druckwerte liegen dabei zwischen etwa 100 mbar und einigen bar. Um unerwünschte chemische Reaktionen zu vermeiden, erweist es sich als vorteilhaft, den Kopfraum vor oder während der Zugabe der Zugabestoffe mit einem Inertgas, beispielsweise Stickstoff zu befüllen. Das Inertgas kann auch zum Aufbau des vorgenannten Überdrucks im Kopfraum eingesetzt werden.
Besonders vorteilhaft ist die gleichzeitige Zugabe von Glasbildnern, beispielsweise Si02, in den Kopfraum. Der - zweckmäßigerweise gleichfalls Form kleiner Partikel eingebrauchte - Glasbildner vermischt sich mit den staubförmigen Zugabestoffen. Nach Erstarren der Schmelze entsteht ein Glas, in das die Zugabestoffe eingeschlossen sind. Diese Ausführungsform des erfindungsgemäßen Verfahrens ist besonders vorteilhaft für die Entsorgung kontaminierter Filterstäuben.
Anhand der Zeichnung soll nachfolgend ein Ausführungsbeispiel der Erfindung näher erläutert werden. Die einzige Zeichnung (Fig. 1) zeigt schematisch den Aufbau einer erfindungsgemäßen Vorrichtung zum Einschmelzen und/oder Verglasen von Filterstäuben im Querschnitt.
Der in Fig. 1 dargestellte Schmelzofen 1 umfasst ein im wesentlichen rohrförmiges, vertikal betriebenes Schmelzaggregat 2, das konzentrisch im Innern einer im wesentlichen zylinderförmigen Brennkammer 3 aufgenommen ist. An seiner oberen Stirnseite ist das Schmelzaggregat 2 mit einer Zugabeöffnung 4 zum Zuführen von zu schmelzendem Rohmaterial versehen. Der Zugabeöffnung 4 ist ein trichterförmiger Kopfraum 5 zum Aufnehmen der zu schmelzenden staubförmigen Zusatzstoffe vorgesetzt. Der Kopfraum 5 ist staub- und druckdicht gegenüber der Umgebungsatmosphäre abgeschlossen. Aus dem Kopfraum 5 werden laufend neue Zugabestoffe in das Schmelzaggregat 2 zugeführt, ohne dass die thermischen oder chemischen Verhältnisse innerhalb des Schmelzaggregats 2 durch eindringende Außenluft u. dergl. nachhaltig gestört werden.
An ihrem unteren Abschnitt weist das Schmelzaggregat 2 eine Austrittsöffnung 6 zum Ablassen der im Schmelzaggregat 2 entstehenden Schmelze auf. An der Austrittsöffnung 6 ist eine Austrittsdüse 8 aus einem gut wärmeleitfähigen und chemisch reaktionsträgen Material, wie etwa Platin, angeordnet, die mit einer Heizeinrichtung 7 thermisch verbunden ist. Durch Heizen der Austrittsdüse 8 kann sichergestellt werden, dass sich das innerhalb der Austrittsdüse 8 befindliche Material im geschmolzenem, also fließfähigen Zustand befindet.
Die Wandung 9 des Schmelzaggregats 2 besteht aus einem hitzebeständigen und gasdichten, beispielsweise keramischen oder metallischen Material. Das dabei eingesetzte Material bestimmt sich nach der Art und der Zusammensetzung des einzuschmelzenden Stoffe. Insbesondere soll das Material der Wandung 9 so beschaffen sein, dass es mit der im Innern des Schmelzaggregats 2 entstehenden Schmelze möglichst keine Reaktion eingeht.
Durch die mit einer Isolierschicht 10 versehene Wandung 11 der Brennkammer 3 ist eine Brennstoffzuführung 12 für gasförmigen Brennstoff, beispielsweise Erdgas, sowie eine Vielzahl von Injektionsdüsen 13 für Sauerstoff hindurchgeführt. Die Injektionsdüsen 13 sind ringsum in gleichmäßigen Winkelabständen und in mehreren Reihen übereinander beabstandet angeordnet. Zum Ableiten des bei der Verbrennung entstehenden Abgases ist eine Gasableitung 14 vorgesehen. Der durch die Brennstoffzuführung 12 eingeleitete Brennstoff wird mit dem durch die Injektionsdüsen 13 zugegebenen Sauerstoff verbrannt. Die aus den Injektionsdüsen 13 einer Reihe zugeführte Sauerstoffmenge ist dabei jeweils separat einstellbar, wobei insgesamt eine den stöchiometrischen Verhältnissen entsprechende Sauerstoffmenge zugeführt wird. Diese Vorgehensweise ermöglicht die Einstellung eines für den Schmelzprozess vorteilhaften Temperaturprofils über die Höhe des Schmelzaggregats 2.
Beim Betrieb des Schmelzofens 1 werden die zum Einschmelzen und/oder Verglasen bestimmten staubförmigen Zugabestoffe über die Zuleitung 15 und einer Schleusenanordnung 14 den Kopfraum 5 zugeführt. Bei der Schleusenanordnung 16 handelt es sich bevorzugt um eine Zellenradschleuse, die sehr gut abzudichten ist. Ist die Verglasung der staubförmigen Zugabestoffe beabsichtigt, wird zusätzlich ein Glasbildner zugegeben, entweder gleichfalls über die Zuleitung 15 oder über eine hier nicht gezeigte separate, mit einer staubdichten Schleuse versehenen Öffnung. Die in den Kopfraum 5 eingeführten staubförmigen Zugabestoffe sinken nach einer gewissen Zeit zur Zugabeöffnung 4 und gelangen so in das Schmelzaggregat 2, in dem sie durch die in der Brennkammer 3 erzeugte Wärme bis zur Höhe eines Schmelzspiegels 17 aufgeschmolzen werden. Oberhalb des Schmelzspiegels liegen die Zugabestoffe noch in fester Form, d.h. staubförmig vor. Der staubdichte Abschluss des Kopfraumes sowie die räumliche Trennung des Schmelzbereiches im Schmelzaggregat 2 von der Brennkammer 3 verhindern das unbeabsichtigte Austreten von Stäuben aus der Vorrichtung 1. Um den Aufschmelzungsprozess zu beschleunigen, steht der Kopfraum 4 über die Druckleitung 18 mit einem Druckgasvorrat für ein Inertgas, beispielsweise Stickstoff, in Strömungsverbindung. Durch Einleiten des unter Druck stehenden Inertgases wird im Innern des Kopfraums 4 ein Überdruck gegenüber dem Umgebungsdruck erzeugt. Es besteht somit längs des
Schmelzaggregats 2 ein zusätzliches Druckgefälle von 100 bis 3000 mbar, das zum einen die noch festen Staubteilchen zusammenpresst, zum anderen die Geschwindigkeit beim Durchgang der aufzuschmelzenden Zugabestoffe durch das Schmelzaggregat 2 erhöht. Die aufgeschmolzenen Zugabestoffe treten an der Austrittsdüse 6 in flüssiger Form aus, wobei die Heizeinrichtung 7 eine vorzeitige Verfestigung im Innern der Austrittsdüse verhindert. Das aufgeschmolzene Material weist nach seiner Verfestigung ein erheblich geringeres Volumen als das Volumen seiner Staubform auf und kann leichter entsorgt oder einer Weiterverwertung zugeführt werden. Wurden den staubförmigen Zugabestoffen Glasbildner beigemischt, entsteht nach der Verfestigung der Schmelze ein Glas, in dem die Zugabestoffe eingeschlossen sind.
Der Schmelzofen 1 ist kompakt und flexibel einsetzbar und zeichnet sich gegenüber konventionellen Tiegelöfen durch eine hohe Wirtschaftlichkeit aus. Durch die Trennung von Schmelz- und Verbrennungsraum kann für die
Isolierschicht 10 der Brennkammer 3 eine einfache und preiswerte Isoliermasse gewählt werden. Da auch das Abgas aus der Brennkammer 3 nicht mit der Schmelze im Schmelzaggregat 2 in Berührung kommt, besteht es - bei Verbrennung von Erdgas - zu annähernd 100% aus Kohlendioxid und Wasserdampf. Der Schmelzofen 1 kann sowohl kontinuierlich als auch im Batch - Betrieb eingesetzt werden. Bezuqszeichenliste
1. Schmelzofen
2. Schmelzaggregat
3. Brennkammer
4. Zugabeöffnung
5. Kopfraum
6. Austrittsöffnung
7. Heizeinrichtung
8. Austrittsdüse
9. Wandung (des Schmelzaggregats)
10. Isolierschicht
11. Wandung (der Brennkammer)
12. Brennstoffzuführung
13. Injektionsdüse
14. Gasableitung
15. Zuleitung
16. Schleusenanordnung
17. Schmelzspiegel
18. Druckleitung

Claims

Patentansprüche
1. Vorrichtung zum Einschmelzen und/oder Verglasen von Filterstäuben, bei dem ein mit einem Verbrennungsraum (3) thermisch verbundenes Schmelzaggregat (2) mit einer Zugabeöffnung (4) zum Zuführen von zu schmelzenden Teilen sowie mit einer Austrittsöffnung (6) für geschmolzenes Material versehen ist, wobei dem im wesentlichen vertikal angeordnete Schmelzaggregat (2) ein sich an die Zugabeöffnung (4) anschließender, gegenüber der Außenatmosphäre staubdicht abschließbarer Kopfraum (5) aufgesetzt ist.
2. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass das Schmelzaggregat (2) konisch, sich zur Austrittsöffnung hin verjüngend, ausgebildet ist.
3. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Kopfraum (5) konisch oder trichterförmig, dabei sich zur Zugabeöffnung (4) hin verjüngend, ausgebildet ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Kopfraum (5) eine Schleusenanordnung (16) vorgeschaltet ist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass als Schleusenanordnung (16) eine Zellenradschleuse vorgesehen ist.
6. Verfahren zum Einschmelzen von Filterstäuben, bei dem staubförmige Zugabestoffe einem Schmelzaggregat (2) zugeführt, durch Wärmeeinwirkung eines mit dem Schmelzaggregat (2) thermisch verbundenen Heizeinrichtung, etwa ein Verbrennungsraum (3) oder einer elektrischen Heizeinrichtung, aufgeschmolzen und in flüssiger Form einer Austrittsöffnung (6) zwecks
Weiterverarbeitung zugeführt wird, wobei die staubförmigen Zugabestoffe vor dem Aufschmelzen im Schmelzaggregat (2) einem auf das Schmelzaggregat (2) aufgesetzten staubdichten Kopfraum (5) zugeführt werden, aus welchem sie unter der Wirkung der Schwerkraft in das Schmelzaggregat (2) absinken.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Zugabestoffe im Kopfraum (5) mit einem gegenüber dem Umgebungsdruck an der Austrittsöffnung (6) erhöhten Druck beaufschlagt werden.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass vor und/oder während der Zuführung der staubförmigen Zugabestoffe der Kopfraum (5) mit einem Inertgas, beispielsweise Stickstoff, befüllt wird.
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass in den Kopfraum (5) zwecks Verglasung der Zugabestoffe Glasbildner, beispielsweise Si02 zugegeben werden wird.
PCT/EP2002/006712 2001-07-07 2002-06-18 Vorrichtung und verfahren zum einschmelzen und/oder verglasen von filtersäuben WO2003006906A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/471,930 US20070277556A1 (en) 2001-07-07 2002-06-18 Device and method for melting and/or vitrifying filter gas
EP02760185A EP1407209A1 (de) 2001-07-07 2002-06-18 Vorrichtung und verfahren zum einschmelzen und/oder verglasen von filtersäuben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10133056.1 2001-07-07
DE10133056A DE10133056B4 (de) 2001-07-07 2001-07-07 Verfahren zum Einschmelzen und/oder Verglasen von Filterstäuben und Verwendung einer Vorrichtung dafür

Publications (1)

Publication Number Publication Date
WO2003006906A1 true WO2003006906A1 (de) 2003-01-23

Family

ID=7691008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/006712 WO2003006906A1 (de) 2001-07-07 2002-06-18 Vorrichtung und verfahren zum einschmelzen und/oder verglasen von filtersäuben

Country Status (4)

Country Link
US (1) US20070277556A1 (de)
EP (1) EP1407209A1 (de)
DE (1) DE10133056B4 (de)
WO (1) WO2003006906A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11358895B2 (en) 2018-11-15 2022-06-14 Owens-Brockway Glass Container Inc. Batch charger for a melting chamber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1226751B (de) * 1962-01-29 1966-10-13 Glaverbel Verfahren und Ofen zum Schmelzen von Glas oder aehnlichen Produkten
US3320045A (en) * 1962-06-25 1967-05-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Furnace for the manufacture of fused quartz
WO1983000685A1 (en) * 1981-08-24 1983-03-03 Carman, Justice, N. Glass making furnace apparatus
DE19846805A1 (de) * 1998-10-10 2000-04-13 Clemens Kiefer Verfahren und Vorrichtung zur Vergasung und Verbrennung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3656924A (en) * 1969-11-17 1972-04-18 Owens Illinois Inc Apparatus and methods for melting glass compositions for glass laser rods
US4430109A (en) * 1981-03-16 1984-02-07 Corning Glass Works Method of regulating fuel and air flow to a glass melting furnace
DE3613894A1 (de) * 1986-04-24 1987-10-29 Fuji Electric Co Ltd Giessofen der tiegelbauart und giessverfahren
DE4112162C1 (de) * 1991-04-13 1992-07-30 Beteiligungen Sorg Gmbh & Co Kg, 8770 Lohr, De
US5599182A (en) * 1995-07-26 1997-02-04 Xothermic, Inc. Adjustable thermal profile heated crucible method and apparatus
IT1304475B1 (it) * 1998-08-06 2001-03-19 Sacmi Procedimento ed impianto per la produzione di vetro ed in particolaredi fritte ceramiche.
DE10060729A1 (de) * 2000-12-07 2002-06-20 Messer Griesheim Gmbh Schmelzofen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1226751B (de) * 1962-01-29 1966-10-13 Glaverbel Verfahren und Ofen zum Schmelzen von Glas oder aehnlichen Produkten
US3320045A (en) * 1962-06-25 1967-05-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Furnace for the manufacture of fused quartz
WO1983000685A1 (en) * 1981-08-24 1983-03-03 Carman, Justice, N. Glass making furnace apparatus
DE19846805A1 (de) * 1998-10-10 2000-04-13 Clemens Kiefer Verfahren und Vorrichtung zur Vergasung und Verbrennung

Also Published As

Publication number Publication date
DE10133056B4 (de) 2009-09-10
DE10133056A1 (de) 2003-01-23
US20070277556A1 (en) 2007-12-06
EP1407209A1 (de) 2004-04-14

Similar Documents

Publication Publication Date Title
DE3101455C2 (de)
DE102008061871B4 (de) Schmelztiegel für den Einsatz in einem Tiegelziehverfahren für Quarzglas
DE3906270C2 (de) Verfahren und Vorrichtung zum Schmelzen von Glas
DE60129376T3 (de) Verfahren und Vorrichtung zur Herstellung von Quarzglaskörpern
DE2053420A1 (de) Verfahren und Vorrichtung zur Formung von feuerfesten Massen, insbe sondere fur die Reparatur von warmen, feuerfesten Massen in einem Ofen
DE69629111T2 (de) Verfahren zur herstellung eines synthetischen quarzpulvers und geformtem quarzglas
EP2072474B1 (de) Verfahren und Vorrichtung zum Recycling von organische Bestandteile enthaltendem Mineralwolleabfall
EP4096806A1 (de) Verfahren zur trockenfiltration eines fremdkörper mitführenden gasstroms, und filtervorrichtung zur reinigung von fremdkörper mitführendem rohgas
DE102010024010A1 (de) Verfahren und Vorrichtung zum Herstellen von polykristallinen Siliziumblöcken
EP0186042B1 (de) Verfahren und Vorrichtung zur Herstellung von keramischen Pulvern auf Basis von ein- und/oder mehrkomponentigen Metalloxiden sowie deren Gemischen
DE1189832B (de) Verfahren zum Sintern von Presslingen aus Metall- oder Metalloxydpulver
WO2021094075A1 (de) Filtervorrichtung, verwendung und verfahren zur trockenfiltration mit siliziumdioxid als filtrationshilfsstoff
DE2110274C2 (de) Vorrichtung zum Einschmelzen von Metallschwamm durch inerte Gasplasmen
WO2012126595A1 (de) Wanderbettreaktor
DE2147897C3 (de)
DE2509696A1 (de) Verfahren zum herstellen von sinterkeramik
DE112021005112T5 (de) Beschickungsvorrichtungsalkoven und Gemengebeschickungseinrichtung für eine Schmelzwanne
DE2147897B2 (de)
WO2003006906A1 (de) Vorrichtung und verfahren zum einschmelzen und/oder verglasen von filtersäuben
EP1349815B1 (de) Vorrichtung und verfahren zum einschmelzen von glas
WO2002046672A1 (de) Schmelzofen
DE4433373A1 (de) Ofen zum Brennen und/oder Gießen von zahnprothetischen Produkten
EP1362212A1 (de) Vorrichtung und verfahren zum pulverisieren von werkstoffen, insbesondere gläsern
DE3824829A1 (de) Glasschmelzofen fuer hohe schmelz- und laeutertemperaturen
DE3036516A1 (de) Verfahren zur kontinuierlichen herstellung von aufgeschaeumten mineralstoffen, insbesondere von schaumglas und vorrichtung zur durchfuehrung des verfahrens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG US

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002760185

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10471930

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002760185

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002760185

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10471930

Country of ref document: US