EP1362212A1 - Vorrichtung und verfahren zum pulverisieren von werkstoffen, insbesondere gläsern - Google Patents

Vorrichtung und verfahren zum pulverisieren von werkstoffen, insbesondere gläsern

Info

Publication number
EP1362212A1
EP1362212A1 EP02719848A EP02719848A EP1362212A1 EP 1362212 A1 EP1362212 A1 EP 1362212A1 EP 02719848 A EP02719848 A EP 02719848A EP 02719848 A EP02719848 A EP 02719848A EP 1362212 A1 EP1362212 A1 EP 1362212A1
Authority
EP
European Patent Office
Prior art keywords
melting
atomizing
atomization
melted
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02719848A
Other languages
English (en)
French (fr)
Inventor
Johannes Vetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Deutschland GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Publication of EP1362212A1 publication Critical patent/EP1362212A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • C03B19/1025Bead furnaces or burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/109Glass-melting furnaces specially adapted for making beads
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/12Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • F27B14/143Heating of the crucible by convection of combustion gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/0806Charging or discharging devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the invention relates to a device and a method for pulverizing materials.
  • gas or water atomization is used to produce metal powders (see, for example: HW Bergmann, G. Gross, J. Vetter in: gas formulation, 36, p.4 (1988).
  • a liquid metal jet is used in a atomization chamber
  • the fine melt droplets produced quickly solidify and hit the bottom of the atomizing chamber in the form of small solid particles.
  • Gas atomization is carried out with air or inert gases such as nitrogen, argon or helium
  • the powder is then sieved and / or filtered.
  • the atomization using a liquid as atomizing medium has the advantage of a higher quenching rate of the atomized particles, as a result of which metallurgical precipitation processes that take place during the cooling of the particles REJECT
  • water atomization has the disadvantage that the particles produced have to be separated from the water in a complex manner, and there is a risk that the atomized metal will be contaminated by oxides.
  • the spraying of molten metals with liquid nitrogen is particularly advantageous.
  • liquid nitrogen hits a liquid metal jet at a pressure of 600 bar and atomizes it into tiny droplets, which cool down immediately and solidify into powder. This technique enables the production of alloys from highly supersaturated mixed crystals.
  • the melt is supplied via one or more crucibles which, after the material has melted, are each connected to the atomization chamber and thereby enable the material to be atomized in batches.
  • a similar method used to produce a metal oxide powder is known from EP 0 467 194 A1.
  • the known processes have the disadvantage that the resulting powders are quite inhomogeneous in size, shape and composition.
  • the inhomogeneity stems, on the one hand, from the fact that the physical and chemical properties of the melts of different crucibles connected to the atomization chamber - and also the melt of an individual crucible during the melting process - vary to a greater or lesser extent.
  • the spraying of non-metallic melts, in particular glasses is not possible or only with an inadequate result, since these substances solidify very quickly after they have left the melting furnace.
  • Such materials are therefore usually pulverized in a very complex manner by mechanical treatment in the solid state. Glass powder, for example, is produced by grinding glass fibers.
  • the object of the present invention is therefore to provide an apparatus and a method for pulverizing materials, by means of which the homogeneity of the powders produced is improved.
  • a device for pulverizing materials is provided with a melting device and an atomizing device accommodated in a atomization chamber for atomizing a molten material supplied from the melting device by means of an atomizing medium, the melting device comprising a continuously operable melting furnace.
  • the melting furnace of the melting device has a melting unit for melting the material and a combustion chamber which is spatially separated from it, but is thermally connected, a predetermined temperature profile being adjustable over a longitudinal extension of the melting unit.
  • Such a melting furnace is previously known from WO 97/05440.
  • the device described therein comprises a melting unit in the form of a vertically arranged tube, which is provided with a gas-tight and fire-resistant jacket.
  • the - usually ceramic - material from which the jacket of the tube is made depends on the raw material to be melted down and is selected in such a way that reactions between the jacket material and the raw material to be melted down are reduced to a minimum.
  • the tube has an addition opening in its upper end face, in which the raw material is added. An outlet opening for discharging the melt is provided in a lower region.
  • the melting unit is housed concentrically in an insulated steel container.
  • the annular space between the insulation of the container and the ceramic tube forms the combustion chamber in which the heat required for the melting process is generated by burning a gas, preferably natural gas.
  • a gas preferably natural gas.
  • the material to be melted is thus fired indirectly.
  • the exhaust gases generated during the combustion process are discharged via an exhaust pipe leading from the combustion chamber and do not come into contact with the melt or the raw material.
  • the melt removed from the melting unit has a significantly reduced proportion of inorganic impurities compared to the melt of conventional bath melting processes, which further improves the homogeneity of the powder produced.
  • the melting furnace advantageously has an outlet opening into the atomization chamber for the melted material, which is provided with a heating device. With such an arrangement, cooling of the melt before the actual spraying is prevented, and it is it is also possible to atomize quickly solidifying materials such as glass.
  • the atomizer medium supplied to the atomizer device is adjustable in pressure and / or temperature.
  • the variation of the pressure leads to different shapes of the particles produced, the choice of temperature influences in particular the size of the particles.
  • a particularly advantageous atomizer device comprises one or more nozzles which are directed towards the liquid material present in the atomization chamber, for example in the form of a liquid jet of material.
  • the object of the invention is also achieved with a method for pulverizing materials with the features of claim 6.
  • the material is melted into a melt in a melting device and then the melted material is atomized by exposure to an atomizing medium, the material continuously being
  • the viscosity and / or the temperature of the melt as it emerges from the melting furnace is monitored continuously and / or at predetermined time intervals, and the temperature of the melt in the melting device and / or the pressure or the temperature of the atomizing medium are set in accordance with the measured parameters ,
  • the material is melted in a melting unit of the melting device.
  • fuel and oxygen are added within a range assigned to the melting unit Combustion chamber set a predetermined temperature profile that creates optimal conditions for the respective material or powder.
  • the temperature profile can be changed flexibly and quickly and adapted accordingly.
  • the atomizing device can expediently be operated with gas, liquid and / or liquid gas.
  • gas When used with gas, argon, nitrogen or helium in particular are considered as inert inert media; water, for example, can be used as the liquid atomizing medium.
  • liquid gas When using liquid gas as an atomizing medium, liquid nitrogen is recommended, which has good cooling properties and is also an inert gas.
  • the use of the device according to the invention and / or the method according to the invention for the production of glass powder is particularly advantageous.
  • the jetting of glass - if suitable parameters are selected in the melting device and / or the atomizing device - can be used to produce at least approximately spherical glass particles which are also very homogeneous in terms of their composition and size.
  • Such glass particles can be used particularly advantageously, for example, on reflective surfaces or colors.
  • FIG. 1 shows schematically the structure of a device according to the invention for pulverizing materials, in particular glass, in cross section.
  • the device 1 shown in FIG. 1 comprises a melting furnace 2 for melting glass, which, however, is fundamentally also suitable for melting other, metallic or non-metallic materials, as well as a spraying device 3.
  • the melting furnace 2 comprises an essentially tubular, vertically operated melting unit 4 which is essentially concentric inside one cylindrical combustion chamber 5 is added. On its upper end face, the melting unit 4 is provided with an addition opening 6 for feeding materials to be melted. In order to enable continuous operation of the melting furnace 2, a lock arrangement 7 is placed in front of the feed opening 6. Through the lock arrangement 7 new raw material 17 can be continuously supplied without the thermal or chemical conditions within the melting unit 4 by penetrating outside air and. the like. be disturbed sustainably.
  • the melting unit 4 has an outlet opening for draining off the melt produced in the melting unit 4.
  • an outlet nozzle 8 made of a highly thermally conductive and chemically inert material, such as platinum, which is thermally bonded to a heating device 9.
  • the wall 11 of the melting unit 4 consists of a heat-resistant and gas-tight, for example ceramic or metallic material.
  • the material used is determined by the type and composition of the substance to be melted down; in particular, the material of the wall 11 should be such that it does not react as much as possible with the melt formed in the interior of the melting unit 4.
  • the wall 13 of the combustion chamber 5 is at least on their
  • a fuel feed 14 for gaseous fuel, for example natural gas, and a plurality of injection nozzles 15 for oxygen are passed through the wall 13.
  • the injection nozzles 15 are arranged all around at regular angular intervals and in several rows one above the other.
  • a gas discharge line 16 is provided to discharge the exhaust gas formed during the combustion.
  • the fuel introduced through the fuel feed 14 is burned with the oxygen added through the injection nozzles 15.
  • the from the Injection nozzles 15 of a quantity of oxygen supplied can in each case be set separately, with an overall quantity of oxygen corresponding to the stoichiometric conditions being supplied. This procedure enables the setting of a temperature profile advantageous for the melting process over the height of the melting unit 4.
  • the atomization device 3 comprises a atomization chamber 22, within which an atomizer device 23 with a plurality of gas nozzles arranged concentrically around the longitudinal axis of the atomization chamber 22 is arranged.
  • the gas nozzles are fluidly connected via a feed line 24 to a gas supply, not shown here.
  • the gas stream flowing through the feed line 24 can be tempered by means of a heating device 25.
  • a material as raw material 17 is continuously fed to the melting unit 4 via the lock 7, which is melted up to the level of a melting level 19 by the heat generated in the combustion chamber 5.
  • the melting level is about 2/3 of the total height of the melting unit 4.
  • the head space 18 defined by the space between the addition opening 6 and the melting level 19 is completely or partially filled with raw material 17 which is in the state of melting, that is still solid components having.
  • the melted material is fed to the atomization device 3 and leaves the outlet nozzle 8 in the form of a liquid material flow which falls approximately along the longitudinal axis of the atomization chamber 22.
  • the material stream is acted upon by a gas stream flowing out of the concentrically arranged gas nozzles of the atomizing device 23 and thereby atomized into small liquid particles.
  • the atomization chamber 22, which is almost completely closed, ensures that the atomization process is largely external is kept free. In particular, the use of an inert gas is recommended when atomizing metals.
  • Atomization device 23 to be arranged spatially in the immediate vicinity of the outlet opening 8.
  • the toughness and temperature of the melt emerging from the outlet opening 8 is continuously measured by means of a measuring device 27 and, depending on these parameters, both the temperature profile along the melting unit and the temperature and / or the pressure of the gas supplied to the atomizing device 23 are adjusted in order to achieve the Powder manufacturing to maintain optimal conditions.
  • the suitable temperature profile for this is empirically determined in test series before starting production.
  • the particles produced in this way have an essentially spherical shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

Die nach dem Stande der Technik zur Herstellung von Pulvern eingesetzten Verdüsungsanlagen werden üblicherweise nacheinander aus einem oder mehreren Schmelztiegeln mit flüssigem Werkstoff zur Verdüsung beschickt. Aufgrund unterschiedlicher, während des Aufschmelzens oder Überführens der Schmelze innerhalb des Tiegels oder in unterschiedlichen Tiegeln herrschender Umgebungsbedingungen weist das entstehende Pulver sehr inhomogene Eigenschaften auf. Erfindungsgemäss ist einer Verdüsungsanlage eine Einrichtung zur kontinuierlichen Aufschmelzung eines Werkstoffes vorgeschaltet. Als eine solche Einrichtung kommt vorzugsweise die aus der WO 97/05440 bekannte Einrichtung in betracht. Durch die Erfindung kann die Homogenität des durch Verdüsung hergestellten Pulvers wesentlich verbessert werden. Die erfindungsgemässe Anlage ermöglicht neben der Verdüsung metallischer Werkstoff auch die Herstellung nichtmetallische Pulver, insbesondere Glaspulver.

Description

Vorrichtung und Verfahren zum Pulverisieren von Werkstoffen, insbesondere Gläsern
Die Erfindung betrifft eine Vorrichtung sowie ein Verfahren zum Pulverisieren von Werkstoffen.
Zur Herstellung von Metallpulvern kommt unter anderem die Technik der Gasoder Wasserverdüsung zum Einsatz (siehe z.B.: H.W. Bergmann, G. Groß, J. Vetter in: gas aktuell, 36, S.4 (1988). Dabei wird in einer Verdüsungskammer ein flüssiger Metallstrahl durch einen mit hoher Geschwindigkeit auftreffenden Gasoder Flüssigkeitsstrahl zerstäubt. Die hierdurch erzeugten feinen Schmelztröpfchen erstarren rasch und treffen im Bodenbereich des Verdüsungsraumes in Form kleiner fester Teilchen auf. Die Gasverdüsung wird mit Luft oder Inertgasen, wie Stickstoff, Argon oder Helium, durchgeführt. Um Teilchen einer definierten Größenordnung zu erhalten, wird das Pulver anschließend gesiebt und/oder gefiltert. Die Verdusung mittels einer Flüssigkeit als Zerstäubermedium weist gegenüber der Gasverdüsung den Vorteil einer höheren Abschreck- Geschwindigkeit der zerstäubten Teilchen auf, wodurch metallurgische Ausscheidungsprozesse, die während der Abkühlung der Teilchen ablaufen, unterdrückt werden können. Die Wasser-Verdüsung weist aber den Nachteil auf, dass die erzeugten Teilchen in aufwändiger Weise vom Wasser getrennt werden müssen, und es besteht die Gefahr, dass das zerstäubte Metall durch Oxide verunreinigt wird. Besonders vorteilhaft ist das Verdüsen schmelzflüssiger Metalle mit flüssigem Stickstoff. Dazu trifft flüssiger Stickstoff mit einem Druck von 600 bar auf einen flüssigen Metallstrahl und zerstäubt diesen in winzige Tröpfchen, die sofort abkühlen und zu Pulver erstarren. Diese Technik ermöglicht das Herstellen von Legierungen aus stark übersättigten Mischkristallen. Die Versorgung mit Schmelze erfolgt bei den vorbekannten Verdüsungsverfahren über einen oder mehrere Schmelztiegel, die nach Aufschmelzen des Werkstoffes jeweils mit den Verdüsungsraum verbunden werden und hierdurch eine chargenweise Verdusung des Werkstoffes ermöglichen.
Ein ähnliches, zur Herstellung eines Metalloxidpolvers eingesetztes Verfahren ist aus der EP 0 467 194 A1 bekannt. Dabei wird ein flüssiger Metallstrahl mit einem unter hohem Druck von 5 - 100 bar stehenden Sauerstoffstrom beaufschlagt, wodurch einerseits die Schmelze zerstäubt und andererseits das Metall oxidiert wird.
Die vorbekannten Verfahren haben den Nachteil, dass die resultierenden Pulver in Größe, Form und Zusammensetzung recht inhomogen sind. Die Inhomogenität rührt zum einen daher, dass die physikalischem und chemischen Eigenschaften der Schmelzen von verschiedenen, mit dem Verdüsungsraum verbundenen Schmelztiegeln - und auch der Schmelze eines einzelnen Tiegels im Verlauf eines Schmelzvorgangs - mehr oder weniger stark variieren. Zudem ist die Verdusung von nichtmetallischen Schmelzen, insbesondere von Gläsern, nicht oder nur mit einem unzureichenden Ergebnis möglich, da sich diese Stoffe nach dem Austritt aus dem Schmelzofen sehr rasch verfestigen. Derartige Materialien werden daher meist in sehr aufwand iger Weise durch mechanische Behandlung im festen Zustand pulverisiert. So werden etwa Glaspulver durch Zerreiben von Glasfasern hergestellt.
Aufgabe der vorliegenden Erfindung ist es somit, eine Vorrichtung sowie ein Verfahren um Pulverisieren von Werkstoffen zu schaffen, durch die/das die Homogenität der erzeugten Pulver verbessert wird.
Gelöst ist diese Aufgabe durch eine Vorrichtung zum Pulverisieren von Werkstoffen mit den Merkmalen des Patentanspruchs 1 sowie durch ein Verfahren zum Pulverisieren von Werkstoffen mit den Merkmalen des Patentanspruchs 6.
Erfindungsgemäß ist eine Vorrichtung zum Pulverisieren von Werkstoffen mit einer Schmelzvorrichtung und einer in einer Verdüsungskammer aufgenommenen Zerstäubervorrichtung zum Verdüsen eines aus der Schmelzvorrichtung zugeführten geschmolzenen Werkstoffes mittels eines Zerstäubermediums versehen, wobei die Schmelzvorrichtung einen kontinuierlich betreibbaren Schmelzofen umfasst. Durch die kontinuierliche Zuführung des flüssigen Werkstoffes in die Verdüsungskammer werden die aus dem Stand der Technik bekannten Inhomogenitäten deutlich reduziert. Bei einer bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung weist der Schmelzofen der Schmelzvorrichtung ein Schmelzaggregat zum Aufschmelzen des Werkstoffs und eine von diesem räumlich abgetrennte, jedoch thermisch verbundenen Brennkammer auf, wobei über eine Längserstreckung des Schmelzaggregats ein vorbestimmtes Temperaturprofil einstellbar ist.
Ein derartiger Schmelzofen ist aus der WO 97/05440 vorbekannt. Die dort beschriebene Vorrichtung umfasst ein Schmelzaggregat in Form einer senkrecht angeordneten Röhre, die mit einem gasdichten und feuerfesten Mantel versehen ist. Das - üblicherweise keramische - Material, aus dem der Mantel der Röhre gefertigt ist, bestimmt sich je nach dem einzuschmelzenden Rohmaterial und ist derart gewählt, dass Reaktionen zwischen dem Mantelmaterial und dem einzuschmelzenden Rohmaterial auf ein Minimum reduziert werden. Die Röhre weist in ihrer oberen Stirnseite eine Zugabeöffnung auf, in der das Rohmaterial zugegeben wird. In einem unteren Bereich ist eine Austrittsöffnung zum Abführen der Schmelze vorgesehen. Das Schmelzaggregat ist konzentrisch in einem isolierten Stahlbehälter aufgenommen. Der ringförmige Zwischenraum zwischen der Isolierung des Behälters und der Keramikröhre bildet den Verbrennungsraum, in dem die für den Schmelzprozess erforderliche Hitze durch Verbrennen eines Gases, bevorzugt Erdgas, erzeugt wird. Das einzuschmelzende Material wird somit indirekt befeuert. Die beim Verbrennungsprozess entstehenden Abgase werden über eine vom Verbrennungsraum abgehende Abgasleitung abgeführt und kommen nicht mit der Schmelze oder dem Rohmaterial in Berührung. Insofern weist die dem Schmelzaggregat entnommene Schmelze gegenüber der Schmelze konventioneller Wannenschmelzprozesse einen deutlich verringerten Anteil an anorganischen Verunreinigungen auf, wodurch die Homogenität des erzeugten Pulvers weiter verbessert wird.
Vorteilhafterweise weist der Schmelzofen eine in die Verdüsungskammer einmündende Austrittsöffnung für den aufgeschmolzenen Werkstoff auf, die mit einer Heizeinrichtung versehen ist. Mit einer solchen Anordnung wird eine Abkühlung der Schmelze vor der eigentlichen Verdusung verhindert, und es ist auch eine Verdusung von schnell sich verfestigenden Werkstoffen, wie Glas, möglich.
In einer zweckmäßigen Ausgestaltung der Erfindung ist das der Zerstäubervorrichtung zugeführte Zerstäubermedium in Druck und/oder Temperatur einstellbar. Die Variation des Drucks führt zu unterschiedlichen Formen der erzeugten Teilchen, die Wahl der Temperatur beeinflusst insbesondere die Größe der Teilchen.
Eine besonders vorteilhafte Zerstäubervorrichtung umfasst eine oder mehrere Düsen, die auf den in der Verdüsungskammer - beispielsweise in Form eines flüssigen Materialstrahls vorliegenden - flüssigen Werkstoffs gerichtet sind.
Die Aufgabe der Erfindung wird auch mit einem Verfahren zürn Pulverisieren von Werkstoffen mit den Merkmalen des Patentanspruchs 6 gelöst.
Beim erfindungsgemäßen Verfahren zum Pulverisieren von Werkstoffen wird der Werkstoff in einer Schmelzvorrichtung zu einer Schmelze aufgeschmolzen und anschließend der geschmolzene Werkstoff durch Beaufschlagen mit einem Zerstäubermedium zerstäubt, wobei der Werkstoff kontinuierlich der
Schmelzvorrichtung zugegeben, aufgeschmolzen und der Verdüsungskammer zugeführt wird. Hierdurch wird gegenüber Verfahren nach dem Stande der Technik eine höhere Homogenität des erzeugten Pulvers erreicht.
In einer bevorzugten Ausgestaltung wird kontinuierlich und/oder in vorbestimmten Zeitabständen die Zähigkeit und/oder die Temperatur der Schmelze beim Austreten aus dem Schmelzofen überwacht und entsprechend der gemessenen Parameter die Temperatur der Schmelze in der Schmelzvorrichtung und/oder der Druck oder die Temperatur des Zerstäubermediums eingestellt.
In einer weiterführenden Ausgestaltung ist der Werkstoff beim Aufschmelzen in einem Schmelzaggregat der Schmelzvorrichtung aufgenommen. Entlang der Längserstreckung des Schmelzaggregats wird durch gezielte Zugabe von Brennstoff und Sauerstoff innerhalb einer dem Schmelzaggregat zugeordneten Brennkammer ein vorgegebenes Temperaturprofil eingestellt, das für den jeweiligen Werkstoff bzw. das jeweilige Pulver optimale Bedingungen erzeugt. In Abhängigkeit von den jeweiligen Erfordernissen kann das Temperaturprofil flexibel und schnell verändert und entsprechend angepasst werden.
Die Zerstäubervorrichtung ist zweckmäßigerweise mit Gas, Flüssigkeit und/oder Flüssiggas betreibbar. Beim Einsatz mit Gas kommt insbesondere Argon, Stickstoff oder Helium als - inerte - Zerstäubermedien in Betracht; als flüssiges Zerstäubermedium kann beispielsweise Wasser verwendet werden. Bei Verwendung von Flüssiggas als Zerstäubermedium empfiehlt sich flüssiger Stickstoff, der sich durch gute Kühleigenschaften auszeichnet und zugleich ein Inertgas ist.
Besonders vorteilhaft ist die Verwendung der erfindungsgemäßen Vorrichtung und/oder des erfindungsgemäßen Verfahrens zur Herstellung von Glaspulver. Die Verdusung von Glas kann - bei Wahl geeigneter Parameter in der Schmelzvorrichtung und/oder der Zerstäubungsvorrichtung - zur Herstellung von zumindest annähernd sphärischen Glasteilchen genutzt werden, die zudem hinsichtlich ihrer Zusammensetzung und Größe sehr homogen sind. Derartige Glasteilchen sind besonders vorteilhaft beispielsweise bei reflektierenden Oberflächen oder Farben einsetzbar.
Anhand der Zeichnung soll nachfolgend ein Ausführungsbeispiel der Erfindung näher erläutert werden. Die einzige Zeichnung (Fig. 1) zeigt schematisch den Aufbau einer erfindungsgemäßen Vorrichtung zum Pulverisieren von Werkstoffen, insbesondere von Glas, im Querschnitt.
Der in Fig. 1 dargestellte Vorrichtung 1 umfaßt einen Schmelzofen 2 zum Einschmelzen von Glas, der jedoch grundsätzlich auch zum Einschmelzen anderer, metallischer oder nichtmetallischer Werkstoffe geeignet ist, sowie eine Verdüsungseinrichtung 3.
Der Schmelzofen 2 umfasst ein im wesentlichen rohrförmiges, vertikal betriebenes Schmelzaggregat 4, das konzentrisch im Innern einer im wesentlichen zylinderförmigen Brennkammer 5 aufgenommen ist. An seiner oberen Stirnseite ist das Schmelzaggregat 4 mit einer Zugabeöffnung 6 zum Zuführen von zu schmelzenden Werkstoffen versehen. Um einen kontinuierlichen Betrieb des Schmelzofens 2 zu ermöglichen, ist der Zugabeöffnung 6 eine Schleusenanordnung 7 vorgesetzt. Durch die Schleusenanordnung 7 kann laufend neues Rohmaterial 17 zugeführt werden, ohne dass die thermischen oder chemischen Verhältnisse innerhalb des Schmelzaggregats 4 durch eindringende Außenluft u. dergl. nachhaltig gestört werden.
An ihrem unteren Abschnitt weist das Schmelzaggregat 4 eine Austrittsöffnung zum Ablassen der im Schmelzaggregat 4 entstehenden Schmelze auf. An der Austrittsöffnung ist eine Austrittsdüse 8 aus einem gut wärmeleitfähigen und chemisch reaktionsträgen Material, wie etwa Platin, angeordnet, die mit einer Heizeinrichtung 9 thermisch verbünden ist. Durch Heizen der Aύstrittsdüse 8' wird sichergestellt, dass sich der innerhalb der Austrittsdüse 8 befindliche Werkstoff in einem für die anschließende Zerstäubung hinreichend flüssigen Zustand befindet.
Die Wandung 11 des Schmelzaggregats 4 besteht aus einem hitzebeständigen und gasdichten, beispielsweise keramischen oder metallischen Material. Das dabei eingesetzte Material bestimmt sich nach der Art und der Zusammensetzung des einzuschmelzenden Stoffe; insbesondere soll das Material der Wandung 11 so beschaffen sein, dass es mit der im Innern des Schmelzaggregats 4 entstehenden Schmelze möglichst keine Reaktion eingeht.
Die Wandung 13 der Brennkammer 5 ist zumindest an ihren
Zylindermantelflächen und an ihrer oberen Stirnseite außenseitig mit einer Isolierschicht 12 versehen. Durch die Wandung 13 ist eine Brennstoffzuführung 14 für gasförmigen Brennstoff, beispielsweise Erdgas, sowie eine Vielzahl von Injektionsdüsen 15 für Sauerstoff hindurchgeführt. Die Injektionsdüsen 15 sind ringsum in gleichmäßigen Winkelabständen und in mehreren Reihen übereinander beabstandet angeordnet. Zum Ableiten des bei der Verbrennung entstehenden Abgases ist eine Gasableitung 16 vorgesehen. Der durch die Brennstoffzuführung 14 eingeleitete Brennstoff wird mit dem durch die Injektionsdüsen 15 zugegebenen Sauerstoff verbrannt. Die aus den Injektionsdüsen 15 einer Reihe zugeführte Sauerstoffmenge ist dabei jeweils separat einstellbar, wobei insgesamt eine den stöchiometrischen Verhältnissen entsprechende Sauerstoffmenge zugeführt wird. Diese Vorgehensweise ermöglicht die Einstellung eines für den Schmelzprozess vorteilhaften Temperaturprofils über die Höhe des Schmelzaggregats 4.
Die Verdüsungsvorrichtung 3 umfasst eine Verdüsungskammer 22, innerhalb der eine Zerstäubervorrichtung 23 mit mehreren konzentrisch um die Längsachse der Verdüsungskammer 22 angeordneten Gasdüsen angeordnet ist. Die Gasdüsen sind über eine Zuleitung 24 mit einer hier nicht gezeigten Gasversorgung strömungsverbunden. Der durch die Zuleitung 24 strömende Gasstrom kann mittels einer Heizeinrichtung 25 temperiert werden. Im unteren Bereich weist die Verdüsungsvorrichtung 3 einen Auffangtrichter 26 auf, der in hier nicht gezeigter Weise mit einem Filter, einem Sieb oder einer sonstigen Einrichtung zur Klassierung der erzeugten festen Partikel verbunden ist.
Beim Betrieb der Vorrichtung 1 wird dem Schmelzaggregat 4 kontinuierlich ein Werkstoff als Rohmaterial 17 über die Schleuse 7 zugeführt, das durch die in der Brennkammer 5 erzeugte Wärme bis zur Höhe eines Schmelzspiegels 19 aufgeschmolzen wird. Idealerweise liegt der Schmelzspiegel bei etwa 2/3 der Gesamthöhe des Schmelzaggregats 4. Der durch den Raum zwischen Zugabeöffnung 6 und Schmelzspiegel 19 definierte Kopfraum 18 ist dabei ganz oder teilweise mit Rohmaterial 17 gefüllt, das sich im Zustand des Aufschmelzens befindet, also noch feste Bestandteile aufweist.
Der aufgeschmolzene Werkstoff wird der Verdüsungsvorrichtung 3 zugeführt und verlässt die Austrittsdüse 8 in Form eines flüssigen Materialstromes, der ungefähr entlang der Längsachse der Verdüsungskammer 22 nach unten fällt. Im Bereich der Zerstäubungsvorrichtung 23 wird der Materialstrom mit einem den konzentrisch angeordneten Gasdüsen der Zerstäubungsvorrichtung 23 entströmenden Gasstrom beaufschlagt und dadurch in kleine Flüssigkeitsteilchen zerstäubt. Durch die fast völlig abgeschlossene Verdüsungskammer 22 wird gewährleistet, dass der Zerstäubungsprozess weitestgehend von Außeneinflüssen freigehalten wird. Insbesondere bei der Zerstäubung von Metallen empfiehlt sich zudem der Einsatz eines Inertgases.
Die im weiteren Verlauf allmählich nach unten sinkenden Flüssigkeitsteilchen verfestigen sich und werden vom Auffangtrichter 26 in Form kleiner fester Partikel aufgefangen. Vom Auffangtrichter 26 werden die Partikel einem hier nicht gezeigten und weiter nicht interessierenden Verfahren zu Klassierung unterzogen, um Partikel einer gleichmäßigen Größenordnung zu erhalten. Um zu gewährleisten, dass sich der Werkstoff zum Zeitpunkt der Zerstäubung noch in einem hinreichen flüssigen Zustand befindet, erweist es sich als sinnvoll, die
Zerstäubungsvorrichtung 23 räumlich in unmittelbarer Nähe zur Austrittsöffnung 8 anzuordnen.
Die Zähigkeit und Temperatur der aus der Austrittsöffnung 8 tretenden Schmelze wird laufend mittels einer Messeinrichtung 27 gemessen und in Abhängigkeit dieser Parameter sowohl das Temperaturprofil entlang dem Schmelzaggregat, als auch die Temperatur und/oder der Druck des der Zerstäubungsvorrichtung 23 zugeführten Gases eingestellt, um die zur Pulverherstellung optimalen Bedingungen zu erhalten. Das hierfür geeignete Temperaturprofil wird vor Aufnahme der Produktion in Testreihen empirisch festgestellt.
Im Unterschied zu auf herkömmlichem, mechanischem Wege hergestellten Pulvern, insbesondere Glaspulvern, weisen die so erzeugten Partikel im wesentlichen Sphärenform auf.
Bezuqszeichenliste
1. Vorrichtung
2. Schmelzofen
3. Verdüsungsvorrichtung
4. Schmelzaggregat
5. Brennkammer
6. Zugabeöffnung
7. Schleusenanordnung
8. Austrittsöffnung
9. Heizeinrichtung
10. -
11. Wandung (des Schmelzaggregats)
12. Isolierschicht
13. Wandung (der Brennkammer)
14. Brennstoffzuführung
15. Injektionsdüse
16. Gasableitung
17. Rohmaterial
18. Kopfraum
19. Schmelzspiegel
20. -
21. -
22. Verdüsungskammer
23. Zerstäubungsvorrichtung
24. Zuleitung
25. Heizeinrichtung
26. Auffangtrichter
27. Messeinrichtung

Claims

Patentansprüche
1. Vorrichtung zum Pulverisieren von Werkstoffen, mit einer Schmelzvorrichtung (2) und einer in einer Verdüsungskammer (22) aufgenommenen Zerstäubervorrichtung (23) zum Verdüsen eines aus der Schmelzvorrichtung (2) zugeführten geschmolzenen Werkstoffes mittels eines Zerstäubermediums, dadurch gekennzeichnet, dass die Schmelzvorrichtung einen kontinuierlich betreibbaren Schmelzofen (2) umfasst.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der Schmelzofen (2) ein Schmelzaggregat (4) zum Aufschmelzen des Werkstoffs und eine von diesem räumlich abgetrennte, jedoch thermisch verbundenen Brennkammer (5) umfasst. . .. . .. - - . . .
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Schmelzofen (2) eine in die Verdüsungskammer (22) einmündende Austrittsöffnung (8) aufweist, die mit einer Heizeinrichtung (9) versehen ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Druck und/oder Temperatur des der Zerstäubervorrichtung (23) zugeführten Zerstäubermediums einstellbar ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zerstäubervorrichtung (23) eine oder mehrere auf den geschmolzenen Werkstoff in der Verdüsungskammer gerichtete Düsen aufweist.
6. Verfahren zum Pulverisieren von Werkstoffen, bei dem der Werkstoff in einer Schmelzvorrichtung (2) zu einer Schmelze aufgeschmolzen und anschließend der geschmolzene Werkstoff durch Beaufschlagen mit einem Zerstäubermedium zerstäubt wird, dadurch gekennzeichnet, dass der Werkstoff kontinuierlich der Schmelzvorrichtung (2) zugegeben, aufgeschmolzen und einer Verdüsungseinrichtung (3) zum Zerstäuben zugeführt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass kontinuierlich und/oder in vorbestimmten Zeitabständen die Zähigkeit und/oder die Temperatur der Schmelze beim Austreten aus der Schmelzvorrichtung überwacht und entsprechend der gemessenen Parameter die Temperatur der Schmelze in der Schmelzvorrichtung (2) und/oder der Druck oder die Temperatur des Zerstäubermediums eingestellt wird.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Werkstoff beim Aufschmelzen in einem Schmelzaggregat (4) der Schmelzvorrichtung (2) aufgenommen ist, über deren Längserstreckuήg ein vorbestimmtes Temperaturprofil eingestellt wird.
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass als Zerstäubermedium Gas, Flüssigkeit und/oder Flüssiggas eingesetzt wird.
10. Vorrichtung nach einem der Ansprüche 1 bis 5 oder Verfahren nach einem der Ansprüche 6 bis 9, gekennzeichnet durch die Verwendung zur Herstellung von Glaspulver.
EP02719848A 2001-02-17 2002-02-15 Vorrichtung und verfahren zum pulverisieren von werkstoffen, insbesondere gläsern Withdrawn EP1362212A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10107553A DE10107553A1 (de) 2001-02-17 2001-02-17 Vorrichtung und Verfahren zum Pulverisieren von Werkstoffen, insbesondere Gläsern
DE10107553 2001-02-17
PCT/EP2002/001626 WO2002066914A1 (de) 2001-02-17 2002-02-15 Vorrichtung und verfahren zum pulverisieren von werkstoffen, insbesondere gläsern

Publications (1)

Publication Number Publication Date
EP1362212A1 true EP1362212A1 (de) 2003-11-19

Family

ID=7674454

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02719848A Withdrawn EP1362212A1 (de) 2001-02-17 2002-02-15 Vorrichtung und verfahren zum pulverisieren von werkstoffen, insbesondere gläsern

Country Status (4)

Country Link
US (1) US20040140380A1 (de)
EP (1) EP1362212A1 (de)
DE (1) DE10107553A1 (de)
WO (1) WO2002066914A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10353410A1 (de) * 2003-11-15 2005-06-23 Air Liquide Deutschland Gmbh Schmelzvorrichtung
CN110919018B (zh) * 2019-12-23 2023-02-28 安徽旭晶粉体新材料科技有限公司 一种用于铜合金粉生产用净水雾化装置
CN113830999A (zh) * 2021-09-29 2021-12-24 苏州大学 一种合成球形石英粉的装置和方法
CN115837468B (zh) * 2023-02-23 2023-05-05 天津市生态环境科学研究院(天津市环境规划院、天津市低碳发展研究中心) 一种快速凝固金属粉末的生产设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2303657A (en) * 1940-04-15 1942-12-01 United States Gypsum Co Cupola
US3294511A (en) * 1959-04-06 1966-12-27 Selas Corp Of America Apparatus for forming glass beads
JPS5857374B2 (ja) * 1975-08-20 1983-12-20 日本板硝子株式会社 繊維の製造方法
US5263689A (en) * 1983-06-23 1993-11-23 General Electric Company Apparatus for making alloy power
US5120352A (en) * 1983-06-23 1992-06-09 General Electric Company Method and apparatus for making alloy powder
US4770718A (en) * 1987-10-23 1988-09-13 Iowa State University Research Foundation, Inc. Method of preparing copper-dendritic composite alloys for mechanical reduction
US4877436A (en) * 1989-03-13 1989-10-31 Sheinkop Isac Continuous viscosity monitoring of glass
US4999051A (en) * 1989-09-27 1991-03-12 Crucible Materials Corporation System and method for atomizing a titanium-based material
US5366206A (en) * 1993-12-17 1994-11-22 General Electric Company Molten metal spray forming atomizer
US5480097A (en) * 1994-03-25 1996-01-02 General Electric Company Gas atomizer with reduced backflow
US5599182A (en) * 1995-07-26 1997-02-04 Xothermic, Inc. Adjustable thermal profile heated crucible method and apparatus
JPH1029830A (ja) * 1996-07-15 1998-02-03 Kubota Corp 細片状鉱物質原料の製造方法
US6773246B2 (en) * 1996-11-19 2004-08-10 Tsao Chi-Yuan A. Atomizing apparatus and process
AT408437B (de) * 2000-02-22 2001-11-26 Holderbank Financ Glarus Einrichtung zum zerstäuben von flüssigen schmelzen
AT408881B (de) * 2000-07-07 2002-03-25 Tribovent Verfahrensentwicklg Vorrichtung zum zerstäuben und granulieren von flüssigen schlacken

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02066914A1 *

Also Published As

Publication number Publication date
WO2002066914A1 (de) 2002-08-29
DE10107553A1 (de) 2002-09-05
US20040140380A1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
DE3533964C1 (de) Verfahren und Vorrichtung zum Herstellen von Feinstpulver in Kugelform
DE3505660A1 (de) Vorrichtung und verfahren zum zerstaeuben instabiler schmelzstroeme
DE4102101C2 (de) Einrichtung zum Herstellen von Pulvern aus Metallen
DE3505659A1 (de) Schmelz-zerstaeubung mit reduzierter gasstroemung sowie vorrichtung zum zerstaeuben
DE3306142C2 (de) Verfahren zur Herstellung eines zweiphasigen oder mehrphasigen metallischen Materials
DE3730147A1 (de) Verfahren zur herstellung von pulvern aus geschmolzenen stoffen
EP2391431B1 (de) Verfahren und vorrichtung zur kontinuierlichen reinigung eines feststoffgemisches durch fraktionierte sublimation/desublimation
EP1203102B1 (de) Einrichtung zum zerstäuben von flüssigen schmelzen
DE2924896C2 (de)
DE19928392A1 (de) Sprühpyrolyse- oder Sprühtrocknungsverfahren sowie Vorrichtung zur Durchführung
EP1042093A1 (de) Verfahren und vorrichtung zur herstellung feiner pulver durch zerstäubung von schmelzen mit gasen
EP1362212A1 (de) Vorrichtung und verfahren zum pulverisieren von werkstoffen, insbesondere gläsern
DE3638016C2 (de)
DE3211861A1 (de) Verfahren und vorrichtung zur herstellung von hochreinen keramikfreien metallpulvern
EP1239983B1 (de) Herstellung eines pulvers aus geschmolzenem metall durch zerstäubung mit reaktivem gas
DE10001968B4 (de) Verfahren zur Herstellung eines Pulvers
EP1222147B1 (de) Verfahren und vorrichtung zur herstellung von aus im wesentlichen sphärischen partikeln gebildeten pulvern
EP1356882A1 (de) Vorrichtung zur Herstellung von Pulvermetall
DE1261857B (de) Verfahren zur Herstellung von Melamin
EP4045213A1 (de) Verfahren und vorrichtung zur herstellung eines metallpulvers
DE3737130C2 (de) Verfahren und Vorrichtung zum Herstellen von Feinstpulver
DE1176976B (de) Einrichtung zum Herstellen von Vorspruenge und Einbuchtungen aufweisendem Pulver aus verhaelt-nismaessig leicht schmelzbaren Metallen
AT242257B (de) Verfahren und Vorrichtung zur Herstellung hochfeinteiliger Bleioxyde, insbesondere Bleiglätte
DE3104003C2 (de)
DE10039320A1 (de) Verfahren zur Herstellung von Hohlkugeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIR LIQUIDE DEUTSCHLAND GMBH

17Q First examination report despatched

Effective date: 20060418

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071113