WO2003004584A1 - Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de 2 fractions issues de charges provenant du procede fischer-tropsch - Google Patents

Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de 2 fractions issues de charges provenant du procede fischer-tropsch Download PDF

Info

Publication number
WO2003004584A1
WO2003004584A1 PCT/FR2002/002207 FR0202207W WO03004584A1 WO 2003004584 A1 WO2003004584 A1 WO 2003004584A1 FR 0202207 W FR0202207 W FR 0202207W WO 03004584 A1 WO03004584 A1 WO 03004584A1
Authority
WO
WIPO (PCT)
Prior art keywords
fraction
hydrocracking
catalyst
fractions
boiling
Prior art date
Application number
PCT/FR2002/002207
Other languages
English (en)
Inventor
Eric Benazzi
Christophe Gueret
Original Assignee
Institut Francais Du Petrole
Agip Petroli S.P.A.
Eni S.P.A.
Enitecnologie Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Francais Du Petrole, Agip Petroli S.P.A., Eni S.P.A., Enitecnologie Spa filed Critical Institut Francais Du Petrole
Priority to EP02755093A priority Critical patent/EP1421157B1/fr
Priority to US10/189,793 priority patent/US7156978B2/en
Publication of WO2003004584A1 publication Critical patent/WO2003004584A1/fr
Priority to NO20035837A priority patent/NO335525B1/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/62Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/14Inorganic carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/14Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/14Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S208/00Mineral oils: processes and products
    • Y10S208/95Processing of "fischer-tropsch" crude

Definitions

  • the present invention relates to a treatment process and installation with hydrocracking and hydroisomerization, of charges originating from the Fischer-Tropsch process, making it possible to obtain middle distillates (gas oil, kerosene).
  • the synthesis gas (CO + H 2 ) is catalytically transformed into oxygenated products and essentially linear hydrocarbons in gaseous, liquid or solid form.
  • oxygenated products are generally free from heteroatomic impurities such as, for example, sulfur, nitrogen or metals. They also contain practically little or no aromatics, naphthenes and more generally rings, in particular in the case of cobalt catalysts.
  • they can have a non-negligible content of oxygenated products which, expressed by weight of oxygen, is generally less than 5% by weight approximately and also a content of unsaturated (olefinic products in general) generally less than 10% by weight.
  • Patent EP-635, 557 describes a process for the production of middle distillates having good properties at low temperatures, from a feed which is an Fischer-Tropsch process effluent.
  • the process consists in separating said charge into at least a light fraction boiling below 260 ° C and a heavy fraction boiling above 260 ° C.
  • Light and heavy fractions are processed separately.
  • the light fraction is hydrotreated to remove the heteroatoms and then hydroisomerized.
  • the heavy fraction optionally undergoes hydrotreatment (but preferably, there is no hydrotreatment), then hydroisomerization of the fraction obtained by hydrotreatment.
  • the conversion of the products 371 ° C + to 371 ° C " is 35-80% by weight.
  • the present invention provides an alternative process for the production of middle distillates.
  • the invention relates to a process for the production of middle distillates from a paraffinic charge produced by Fischer-Tropsch synthesis, and comprising the following steps:
  • step a Fractionation (step a) of the charge into at least 3 fractions: - at least one intermediate fraction having an initial boiling point T1 between 120 and 200 ° C, and a final boiling point T2 greater than 300 ° C and less than 410 ° C,
  • step b Hydrotreatment of at least part of said intermediate fraction, then passage (step d) of at least part of the hydrotreated fraction over an amorphous hydroisomerization / hydrocracking catalyst.
  • step f Passage (step f) of at least part of said heavy fraction over an amorphous hydrocracking / hydroisomerization catalyst with a conversion of products 370 ° C + to products 370 ° C greater than 80% by weight. 4. Distillation (steps e and g) of at least part of the hydrocracked / hydroisomeric fractions to obtain middle distillates.
  • the paraffinic effluent from the Fischer-Tropsch synthesis unit is fractionated into at least three fractions:
  • a light fraction comprising the compounds having boiling points below a temperature T1 of between 120 and 200 ° C, and preferably between 130 and 180 ° C and for example around 150 ° C.
  • the cutting point T1 is located between 120 and 200 ° C.
  • An intermediate fraction comprising the compounds whose boiling points are between the cutting point T1, previously defined, and a temperature T2 greater than 300 ° C, even more preferably greater than 350 ° C and less than 410 ° C or better, at 370 ° C. -
  • a so-called heavy fraction comprising the compounds having boiling points higher than the cutting point T2 previously defined.
  • the intermediate and heavy fractions generally have paraffin contents of at least 50% by weight.
  • At least part (and preferably all) of the intermediate fraction is brought into contact with a hydrotreating catalyst, in the presence of hydrogen.
  • the water formed during the hydrotreatment step is eliminated at least in part and preferably entirely.
  • At least part (and preferably all) of the effluent from step (c) or (b) is brought into contact, in the presence of hydrogen and a hydroisomerization / hydrocracking catalyst in order to to produce at least one medium distillate cut (kerosene, diesel and preferably kerosene and diesel cut).
  • step (d) The effluent leaving step (d) is subjected to a separation step in a distillation train so as to separate the light products inevitably formed during step (d), for example gases (C ⁇ - C 4 ) and a petrol cut and also so as to distill at least one diesel cut and at least one kerosene cut. A part of these fractions can be recycled, jointly or separately, at the top of the hydroisomerization / hydrocracking reactor of step (d).
  • Said heavy fraction is brought into contact, in the presence of hydrogen, with a hydrocracking / hydroisomerization catalyst in order to produce middle distillates (kerosene, diesel), the conversion of the products 370 ° C + to 370 ° C " being greater than 80% wt.
  • step (f) The effluent leaving step (f) is subjected to a separation step in a distillation train so as to separate on the one hand the light products inevitably formed during step (f) for example the gas (CrC 4 ) and a petrol cut and also so as to distill at least one diesel cut and at least one kerosene cut, and also to distill the non-hydrocracked fraction whose compounds which constitute it have boiling points higher than those middle distillates (kerosene + diesel).
  • This non-hydrocracked fraction generally has an initial boiling point of at least 350 ° C, preferably greater than 370 ° C.
  • This fraction, called the residual fraction is advantageously recycled at the top of the hydroisomerization / hydrocracking reactor of step (f).
  • the yields of middle distillates (kerosene + diesel) from process according to the invention are higher than those of the prior art, in particular because the kerosene cut (generally initial boiling point from 150 to 160 ° C - final boiling point from 260 to 280 C C) could be optimized (and even maximized compared to the prior art EP-635, 557), and moreover, without being to the detriment of the diesel cut.
  • this kerosene cut unexpectedly exhibits excellent cold properties (freezing point for example).
  • the catalytic performances (activity, selectivity) and / or the cycle time of the hydrotreatment and hydroisomerization / hydrocracking catalysts used in the process according to the invention could be improved.
  • the effluent from the Fischer-Tropsch synthesis unit mainly contains paraffins but also contains olefins and oxygenated compounds such as alcohols. It also contains water, CO 2 , CO and unreacted hydrogen as well as light hydrocarbon compounds C1 to C4 in the form of gas.
  • the effluent from the Fischer-Tropsch synthesis unit arriving via line (1) is fractionated in a fractionation zone (2) into at least three fractions:
  • the cutting point is between 120 and 200 ° C.
  • At least one intermediate fraction comprising the compounds whose boiling points are between the cutting point T1, previously defined, and a temperature T2 greater than 300 ° C, even more preferably greater than 350 ° C and less than 410 ° C or better than 370 ° C.
  • line 5 at least one so-called heavy fraction (line 5) comprising the compounds having boiling points greater than the cutting point T2 previously defined.
  • a cut between a boiling point T1 between 120-200 ° C and T2 greater than 300 ° C and less than 370 ° C is preferred.
  • the 370 C cut is even more preferred, that is to say the heavy fraction is a 370 ° C + cut.
  • Cutting at 370 ° C makes it possible to separate at least 90% by weight of the oxygenates and olefins, and most often at least 95% by weight.
  • the heavy cut to be treated is then purified and elimination of heteroatoms or unsaturated by hydrotreating is then not necessary.
  • Fractionation is obtained here by distillation, but it can be carried out in one or more stages and by other means than distillation.
  • This fractionation can be carried out by methods well known to those skilled in the art such as flash, distillation, etc.
  • the effluent from the Fischer-Tropsch synthesis unit will be subjected to a flash, a decantation to remove the water and a distillation in order to obtain at least the 2 fractions described above.
  • the light fraction is not treated according to the process of the invention but can for example constitute a good charge for a petrochemical unit and more particularly for a steam cracker (installation 6 of steam cracking).
  • Said intermediate fraction is admitted via line (4), in the presence of hydrogen supplied by the pipe (7), in a hydrotreatment zone (8) containing a hydrotreatment catalyst.
  • the objective of this hydrotreatment is to reduce the content of olefinic and unsaturated compounds as well as to hydrotreat the oxygenated compounds (alcohols) present.
  • the catalysts used in this step (b) are non-cracking or slightly cracking hydrotreating catalysts comprising at least one metal from group VIII and / or group VI of the periodic table.
  • the catalyst comprises at least one metal from the group of metals formed by nickel, molybdenum, tungsten, cobalt, ruthenium, indium, palladium and platinum and comprising at least one support.
  • the hydro-dehydrogenating function is preferably provided by at least one metal or compound of group VIII metal such as nickel and cobalt in particular. It is possible to use a combination of at least one metal or compound of group VI metal (in particular molybdenum or tungsten) and of at least one metal or compound of group VIII metal (especially cobalt and nickel) of the classification of the elements.
  • the concentration of non-noble group VIII metal, when it is used, is 0.01-15% by weight relative to the finished catalyst.
  • At least one element chosen from P, B, Si is deposited on the support.
  • This catalyst may advantageously contain phosphorus; in fact, this compound brings two advantages to hydrotreatment catalysts: ease of preparation during, in particular, the impregnation of nickel and molybdenum solutions, and better hydrogenation activity.
  • the concentration of phosphorus oxide P205 will be less than 15% by weight and preferably less than 10% by weight. It is also possible to use a catalyst containing boron and phosphorus, advantageously boron and phosphorus are promoter elements deposited on the support, and for example the catalyst according to patent EP-297,949.
  • the sum of the amounts of boron and phosphorus, expressed respectively by weight of boron trioxide and phosphorus pentoxide, relative to the weight of support, is approximately 5 to 5% and the atomic ratio boron to phosphorus is approximately 1 : 1 to 2: 1 and at least 40% of the total pore volume of the finished catalyst is contained in pores with an average diameter greater than 13 nanometers.
  • the quantity of group VI metal such as molybdenum or tungsten is such that the phosphorus-to-metal atomic ratio of group VIB metal is approximately 0.5: 1 to 1.5: 1; the amounts of group VIB metal and group VIII metal, such as nickel or cobalt, are such that the group VIII metal to group VIB metal atomic ratio is approximately 0.3: 1 to 0.7 1.
  • the quantities of group VIB metal expressed by weight of metal relative to the weight of finished catalyst is approximately 2 to 30% and the quantity of group VIII metal expressed by weight of metal relative to the weight of finished catalyst is about 0.01 to 15%.
  • Another particularly advantageous catalyst contains promoter silicon deposited on the support.
  • An interesting catalyst contains BSi or PSi.
  • Ni alumina, NiMo on alumina, NiMo on alumina doped with boron and phosphorus and NiMo on silica-alumina are also preferred.
  • the metal content is between 0.05 and 3% by weight relative to the finished catalyst and preferably between 0.1 and 2% by weight of the catalyst.
  • These metals are deposited on a support which is preferably an alumina, but which can also be boron oxide, magnesia, zirconia, titanium oxide, clay or a combination of these oxides.
  • a support which is preferably an alumina, but which can also be boron oxide, magnesia, zirconia, titanium oxide, clay or a combination of these oxides.
  • These catalysts can be prepared by all the methods known to those skilled in the art or else can be acquired from companies specializing in the manufacture and sale of catalysts.
  • the charge is brought into contact in the presence of hydrogen and of the catalyst at operating temperatures and pressures making it possible to carry out the hydrodeoxygenation (HDO) of the alcohols and the hydrogenation of the olefins present in load.
  • the reaction temperatures used in the hydrotreatment reactor are between 100 and 350, preferably between 150 and 300 ° C, even more preferably between 150 and 275 ° C and better still between 175 and 250 ° C.
  • the total pressure range used varies from 5 to 150 bars, preferably between 10 and 100 bars and even more preferably between 10 and 90 bars.
  • the hydrogen which feeds the hydrotreatment reactor is introduced at a rate such that the hydrogen / hydrocarbon volume ratio is between 100 to 3000 Nl / l / h, preferably between 100 and 2000NI / l / h and even more preferred between 250 and 1500 Nl / l / h.
  • the charge flow rate is such that the hourly volume speed is between 0.1 and 10h "1 , preferably between 0.2 and 5h " 1 and even more preferably between 0.2 and 3h "1. Under these conditions , the content of unsaturated and oxygenated molecules is reduced to less than 0.5% and to approximately less than 0.1% in general.
  • the hydrotreatment step is carried out under conditions such as the conversion into products having dots 'Boiling greater than or equal to 370 ° C in products having boiling points less than 370 ° C is limited to 30% by weight, preferably is less than 20% and even more preferably is less than 10%.
  • the effluent from the hydrotreatment reactor is optionally introduced into a water removal zone (9) which aims to remove at least part of the water produced during the hydrotreatment reactions.
  • This elimination of water can be carried out with or without elimination of the gaseous fraction C less which is generally produced during the hydrotreatment step.
  • elimination of water is understood the elimination of the water produced by the hydrodeoxygenation (HDO) reactions of the alcohols, but it can also include the elimination at least in part of the water saturated with hydrocarbons.
  • Water removal can be achieved by all the methods and techniques known to those skilled in the art, for example by drying, passing over a desiccant, flash, decanting, etc.
  • the fraction thus optionally dried is then introduced (line 10), as well as possibly a stream of hydrogen, (line 11) in the zone (12) containing the hydroisomerization / hydrocracking catalyst.
  • Another possibility of the process also according to the invention consists in sending all the effluent leaving the hydrotreatment reactor (without drying) into the reactor containing the amorphous hydroisomerization / hydrocracking catalyst and preferably at the same time as 'a stream of hydrogen.
  • the pressure is maintained between 2 and 150 bars and preferably between 5 and 100 bars and advantageously from 10 to 90 bars, the space speed is between 0.1 h “1 and 10 h “ 1 and preferably between 0.2 and 7h '1 is advantageously between 0.5 and 5.0h "1.
  • the hydrogen rate is between 100 and 2000 Normal liters of hydrogen per liter of charge and per hour and preferably between 150 and 1500 liters of hydrogen per liter of charge.
  • the temperature used in this step is between 200 and 450 ° C and preferably from 250 ° C to 450 ° C advantageously from 300 to 450 ° C, and even more advantageously above 320 C C or for example between 320-420 ° C .
  • the two stages, hydrotreating and hydroisomerization-hydrocracking, can be carried out on the two types of catalyst in two or more different reactors, or / and in the same reactor.
  • step (d) of hydroisomerization and hydrocracking is carried out under conditions such as pass conversion to point products.
  • boiling point greater than or equal to 150 ° C. in products having boiling points below 150 ° C. is as low as possible, preferably less than 50%, even more preferably less than 30%, and allows d '' obtain middle distillates (diesel and kerosene) having cold properties (pour point and freezing point) good enough to meet the specifications in force for this type of fuel.
  • step (d) it is sought to favor hydroisomerization rather than hydrocracking.
  • Said heavy fraction is introduced via the line (5) into a zone (13) where it is brought into contact, in the presence of hydrogen (26).
  • an amorphous hydroisomerization / hydrocracking catalyst in order to produce a middle distillate cut (kerosene + diesel) having good cold properties.
  • the catalyst used in zone (13) of step (f) to carry out the hydrocracking and hydroisomerization reactions of the heavy fraction, defined according to the invention, is of the same type as that present in the reactor (12 ). However, it should be noted that the catalysts used in the reactors (12) and (13) may be the same or different.
  • the fraction entering the reactor undergoes, in contact with the catalyst and in the presence of hydrogen, essentially hydrocracking reactions which, accompanied by hydroisomerization reactions of n-paraffins, will make it possible to improve the quality of the products formed and more particularly the cold properties of kerosene and diesel, and also to obtain very good distillate yields.
  • the conversion into products with boiling points greater than or equal to 370 ° C. into products with boiling points less than 370 ° C. is greater than 80% by weight, often at least 85% and preferably greater than or equal to 88%.
  • conversions of products with a boiling point greater than or equal to 260 ° C into products with a boiling point below 260 ° C is at most 90% by weight, generally at most 70% or 80%, and preferably at most 60% by weight.
  • step (f) we will therefore seek to promote hydrocracking, but preferably by limiting the cracking of diesel.
  • the choice of operating conditions makes it possible to finely adjust the quality of the products (diesel, kerosene) and in particular the cold properties of kerosene, while retaining a good yield of diesel and / or kerosene.
  • the process according to the invention makes it entirely advantageous to produce both kerosene and diesel and which are of good quality.
  • step (d) is sent to a distillation train, which incorporates atmospheric distillation and possibly vacuum distillation, and which aims to separate light products on the one hand inevitably formed during step (d) for example the gases (C 1 -C 4 ) (line 14) and a gasoline cut (line 19), and to distill at least one gas oil (line 17) and kerosene cut (line 16) ).
  • the diesel and kerosene fractions can be partially recycled (line 25), jointly or separately, at the top of the hydroisomerization / hydrocracking reactor step (d).
  • the effluent leaving step (f) is subjected to a separation step in a distillation train so as to separate on the one hand the light products inevitably formed during step (f), for example gases (CC 4 ) (line 18) and a gasoline cut (line 19), to distill a diesel cut (line 21) and kerosene (line 20) and to distill the fraction (line 22) boiling over diesel, it that is to say, the compounds which constitute it have higher boiling points than those of middle distillates (kerosene + diesel).
  • This fraction, called the residual fraction generally has an initial boiling point of at least
  • step (f) It may also be advantageous to recycle part of the kerosene and / or diesel in step (d), step (f) or both. Preferably, at least one of the kerosene and / or diesel fractions is partially recycled (line 25) in step (d) (zone 12). We have seen that it is advantageous to recycle part of the kerosene to improve its cold properties.
  • the non-hydrocracked fraction is partially recycled in step (f) (zone 13).
  • the diesel fuel (s) obtained has a pour point of at most 0 ° C, generally less than -10 ° C and often less than -15 ° C.
  • the cetane number is greater than 60, generally greater than 65, often greater than 70.
  • the kerosene (s) obtained have a freezing point of at most -35 ° C., generally less than - 40 ° C.
  • the smoke point is more than 25 mm, generally more than 30 mm. In this process, the production of gasoline (not sought) is as low as possible. Fuel efficiency will always be
  • the invention also relates to a plant for the production of middle distillates comprising: at least one zone (2) for fractionating the charge coming from a Fischer-Tropsch synthesis unit having: - at least one tube (1) for the introduction of the load,
  • At least one hydrotreatment zone (8) provided with an inlet pipe for at least part of said intermediate fraction followed by at least one zone (12) containing a hydrocracking / hydroisomerization catalyst provided with a pipe for the introduction of at least part of said hydrotreated fraction,
  • At least one distillation column (23, 24) provided with at least one tube for the introduction of at least part of the hydrocracked fractions and at least one tube (16, 17, 20, 21) for the exit of the middle distillates.
  • it comprises a tube (23) for recycling part of at least one of the kerosene, diesel fractions obtained at the outlet of the column (s) (23, 24) for distilling the fractions hydrocracked, to at least one of the zones (12, 13) containing a hydrocracking / hydroisomerization catalyst.
  • the catalysts can be the same or different.
  • they will be chosen from the preferred catalysts described below.
  • the majority of the catalysts currently used in hydroisomerization / hydrocracking are of the bifunctional type combining an acid function with a hydrogenating function.
  • the acid function is provided by
  • the hydrogenating function is provided either by one or more metals from group VIII of the periodic table of elements, such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, or by a combination of at least one group VI metal such as chromium, molybdenum and tungsten and at least one group VIII metal.
  • group VIII of the periodic table of elements such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, or by a combination of at least one group VI metal such as chromium, molybdenum and tungsten and at least one group VIII metal.
  • the balance between the two acid and hydrogenating functions is the fundamental parameter which governs the activity and the selectivity of the catalyst.
  • a weak acid function and a strong hydrogenating function give catalysts which are not very active and selective towards isomerization whereas a strong acid function and a weak hydrogenating function give very active and selective catalysts towards cracking.
  • a third possibility is to use a strong acid function and a strong hydrogenating function in order to obtain a very active catalyst but also very selective towards isomerization. It is therefore possible, by judiciously choosing each of the functions, to adjust the activity / selectivity pair of the catalyst.
  • the hydroisomerization-hydrocracking catalysts are bifunctional catalysts comprising an amorphous acid support (preferably a silica-alumina) and a hydro-dehydrogenating metal function provided by at least one noble metal.
  • the support is said to be amorphous, that is to say devoid of molecular sieves, and in particular of zeolite, as well as the catalyst.
  • the amorphous acid support is advantageously a silica-alumina but other supports can be used.
  • the catalyst preferably does not contain any added halogen, other than that which could be introduced for the impregnation, of the noble metal for example. More generally and preferably, the catalyst does not contain any added halogen, for example fluorine.
  • the support has not been impregnated with a silicon compound.
  • a catalyst is used comprising a particular silica-alumina which makes it possible to obtain catalysts which are very active but also very selective in the isomerization of effluents from Fischer synthesis units. Tropsch.
  • the preferred catalyst comprises (and preferably consists essentially of) 0.05-10% by weight of at least one noble metal from group VIII deposited on an amorphous silica-alumina support (which preferably contains between 5 and 70% by weight of silica) which has a BET specific surface of 100-500m 2 / g and the catalyst has:
  • a pore volume of the pores whose diameter is between the mean diameter as defined previously decreased by 3 nm and the mean diameter as defined previously increased by 3 nm is greater than ⁇ 0% of the total pore volume
  • the preferred support used for the preparation of the catalyst is composed of silica SiO 2 and alumina AI 2 O 3 .
  • the silica content of the support is generally between 1 and 95%, advantageously even between 5 and 95% and preferably between 10 and 80% and even more preferably between 20 and 70% and between 22 and 45%. This silica content is perfectly measured using X-ray fluorescence.
  • the metallic function is provided by a noble metal from group VIII of the periodic table of the elements and more particularly platinum and / or palladium.
  • the noble metal content is between 0.05 to 10 and more preferably between 0.1 and 5.
  • the dispersion representing the fraction of metal accessible to the reagent relative to the total amount of metal in the catalyst, can be measured, for example, by H ⁇ / O tit titration.
  • the metal is reduced beforehand, that is to say it undergoes treatment under a stream of hydrogen at high temperature under conditions such that all of the platinum atoms accessible to hydrogen are transformed into metallic form. Then, a flow of oxygen is sent under suitable operating conditions so that all of the reduced platinum atoms accessible to oxygen are oxidized in PtO 2 form.
  • the dispersion is then equal to the ratio of the quantity of platinum accessible to oxygen to the total quantity of platinum in the catalyst. In our case, the dispersion is between 20% and 100% and preferably between 30% and 100%.
  • the distribution of the noble metal represents the distribution of the metal inside the catalyst grain, the metal being able to be well or badly dispersed.
  • platinum for example detected in a crown whose thickness is much less than the radius of the grain
  • all the platinum atoms, located in crown will be accessible to reagents.
  • the distribution of platinum is good, that is to say that the profile of platinum, measured according to the Castaing microprobe method, has a distribution coefficient greater than 0.1 and preferably greater than 0.2.
  • the BET surface of the support is between 100 m 2 / g and 500 m 2 / g and preferably between 250 m 2 / g and 450m 2 / g and for supports based on silica-alumina, even more preferably between 310 m 2 / g and 450 m / g.
  • the average pore diameter of the catalyst is measured from the porous distribution profile obtained using a mercury porosimeter.
  • the average pore diameter is defined as being the diameter corresponding to the cancellation of the derivative curve obtained from the mercury porosity curve.
  • the average pore diameter, thus defined is between 1 nm (1x10 "9 meters) and 12 nm (12x10 " 9 meters) and preferably between 1 nm (1x10 '9 meters) and 11 nm (11x10 ' 9 meters) ) and again more preferred between 3 nm (4x10 '9 meters) and 10.5 nm (10.5x10 ' 9 meters).
  • the preferred catalyst has a porous distribution such that the pore volume of the pores whose diameter is between the mean diameter as defined previously decreased by 3 nm and the mean diameter as defined previously increased by 3 nm (ie the mean diameter ⁇ 3 nm) is greater than 40% of the total pore volume and preferably between 50% and 90% of the total pore volume and more advantageously still between 50% and 70% of the total pore volume.
  • the preferred catalyst based on silica-alumina it is generally less than 1.0 ml / g and preferably between 0.3 and 0.9 ml / g and even more advantageously less than 0.85 ml / g.
  • the preparation and the shaping of the support, and in particular of the silica-alumina (in particular used in the preferred embodiment) is done by usual methods well known to those skilled in the art.
  • the support may undergo calcination such as for example a heat treatment at 300-750 ° C (600 ° C preferred) for 0.25-10 hours (2 hours preferred) under 0 -30% water vapor volume (for 7.5% alumina silica preferred).
  • the noble metal salt is introduced by one of the usual methods used to deposit the metal (preferably platinum and / or palladium, platinum being more preferred) on the surface of a support.
  • One of the preferred methods is dry impregnation which consists in introducing the metal salt into a volume of solution which is equal to the pore volume of the mass of catalyst to be impregnated.
  • the catalyst may undergo calcination, for example a treatment in dry air at 300-750 ° C (520 ° C preferred) for 0.25-10 hours (2 hours preferred).
  • the bifunctional catalyst comprises at least one noble metal deposited on an amorphous acid support, the dispersion in noble metal being less than 20%.
  • the fraction of the noble metal particles having a size less than 2 nm represents at most 2% by weight of the noble metal deposited on the catalyst.
  • noble metal particles have a size greater than 4 nm (% number).
  • the support is amorphous, it does not contain a molecular sieve; the catalyst also does not contain a molecular sieve.
  • the amorphous acid support is generally chosen from the group formed by a silica-alumina, a halogenated alumina (preferably fluorinated), an alumina doped with silicon (deposited silicon), an alumina titanium oxide mixture, a sulfated zirconia, a doped zirconia with tungsten, and their mixtures with each other or with at least one amorphous matrix chosen from the group formed by alumina, titanium oxide, silica, boron oxide, magnesia, zirconia, clay by example.
  • the support consists of an amorphous alumina silica.
  • a preferred catalyst comprises (preferably essentially consists of) 0.05 to 10% by weight of at least one noble metal from group VIII deposited on an amorphous support of silica-alumina.
  • the preferred support used for the preparation of the catalyst is composed of silica Si0 2 and alumina Al 2 0 3 from the synthesis.
  • the silica content of the support is generally between 1 and 95%, advantageously between 5 and 95% and preferably between 10 and 80% and even more preferably between 20 and 70% or even between 22 and 45%. This content is perfectly measured using X-ray fluorescence.
  • the metallic function is provided by at least one noble metal from group VIII of the periodic table of the elements and more particularly platinum and / or palladium.
  • the noble metal content expressed in% by weight of metal relative to the catalyst, is between 0.05 to 10 and more preferably between 0.1 and 5.
  • the dispersion (measured in the same way as above) is less than 20%, they are generally greater than 1% or better than 5%.
  • the catalyst sample is finely ground in an agate mortar and then it is dispersed in ethanol by ultrasound. Samples at different locations to ensure good size representativeness are taken and deposited on a copper grid covered with a thin carbon film. The grids are then air-dried under an infrared lamp before being introduced into the microscope for observation.
  • the average size of the noble metal particles several hundred measurements are made from several tens of photographs. All of these measurements make it possible to produce a histogram of particle size distribution. Thus, we can accurately estimate the proportion of particles corresponding to each particle size range.
  • the distribution of platinum is good, that is to say that the profile of platinum, measured according to the Castaing microprobe method, has a distribution coefficient greater than 0.1, advantageously greater than 0.2 and preferably greater than 0.5.
  • the BET surface of the support is generally between 100 m 2 / g and 500 m 2 / g and preferably between 250 m / g and 450 m 2 / g and for supports based on silica alumina, even more preferably between 310 m 2 / g.
  • the preparation and the shaping of the silica-alumina and of any support in general is done by usual methods well known to those skilled in the art.
  • the support may undergo calcination such as for example a heat treatment at 300-750 ° C (600 ° C preferred) for a period of between 0.25 and 10 hours (2 hours preferred) under 0-30% water vapor volume (about 7.5% preferred for silica-alumina).
  • the metal salt is introduced by one of the usual methods used to deposit the metal (preferably platinum) on the surface of a support.
  • One of the preferred methods is dry impregnation which consists in introducing the metal salt into a volume of solution which is equal to the pore volume of the mass of catalyst to be impregnated.
  • the catalyst undergoes calcination in humidified air at 300-750 ° C (550 ° C preferred) for 0.25-10 hours (2 hours preferred).
  • the partial pressure of H2O during calcination is for example 0.05 bar to 0.50 bar (0.15 bar preferred).
  • Other known treatment methods making it possible to obtain the dispersion of less than 20% are suitable in the context of the invention.
  • Another preferred catalyst for the invention comprises at least one hydro-dehydrogenating element (preferably deposited on the support) and a support comprising (or preferably consisting of) at least one silica-alumina, said silica-alumina having the following characteristics : a content by weight of silica SiO 2 of between 10 and 60% preferably between 20 and 60% and even more preferably between 20 and 50% by weight or
  • the porosity of said silica-alumina being as follows:
  • the volume of the mesopores whose diameter is between 40 ⁇ and 150 ⁇ , and whose average diameter varies between 80 and 120 ⁇ represents between 30 and 80% of the total pore volume previously defined and preferably between 40 and 70%.
  • the volume of macropores the diameter of which is greater than 500 ⁇ , and preferably between 1000 ⁇ and 10,000 ⁇ represents between 20 and 80% of the total pore volume and preferably between 30 and 60% of the total pore volume and way even more preferred the volume of the macropores represents at least 35% of the total pore volume.
  • the diffractograms of the silica-aluminas of the invention correspond to a mixture of the silica and the alumina with a certain evolution between the gamma alumina and the silica as a function of the Si0 2 content. some samples. In these silica-aluminas an alumina is observed which is less well crystallized compared to the alumina alone.
  • the 27 AI NMR spectra of the silica-aluminas show two distinct peak masses. Each massif can be broken down into at least two species. We observe a large dominance of species whose maximum resonates around 10 ppm and which extends between 10 and 60 ppm. The position of the maximum suggests that these species are essentially of the AI V ⁇ (octahedral) type. On all the spectra we observe a second type of species which resonates around 80-110 ppm. These species would correspond to the atoms of AI
  • the silicon silica-alumina environment studied by 29 Si NMR shows the chemical shifts of the different silicon species such as Q 4 (-105ppm to - 120 ppm), Q 3 (-90ppm to -102 ppm) and Q 2 (-75ppm to - 93 ppm).
  • the sites with a chemical shift at -102 ppm can be sites of type Q 3 or Q 4 , we call them in this work sites Q 3 "4.
  • the silica-aluminas of the invention are composed of silicon of types Q 2 , Q 3 , Q 3 "4 and Q 4 . Many species are said to be Q 2 , approximately in the range of 30 to 50%. The proportion of species Q 3 is also significant, approximately of the order of 10 to 30%.
  • sites Q 4 If linked to 4Si (or Al) sites
  • Q 3 If linked to 3 Si (or Al) and 1 OH sites
  • Q ⁇ If linked to 2 Si (or Al) and 2 OH;
  • the homogeneity of the supports was evaluated by Transmission Electron Microscopy. We seek by this method to verify the homogeneity of the distribution of Si and Al on the nanometric scale. The analyzes are carried out on ultra-thin sections of the supports, using different size probes, 50nm or 15nm. For each solid studied, 32 spectra are recorded, including 16 with 50nm probe and 16 with 15nm probe.
  • Si / Ai atomic ratios are then calculated, with the means of the ratios, the minimum ratio, the maximum ratio and the standard deviation of the series.
  • the average of the Si / Ai ratios measured by Transmission Electron Microscopy for the different silica-aluminas are close to the Si / Ai ratio obtained by
  • Fluorescence X The homogeneity criterion is evaluated on the value of the standard deviation.
  • silica-aluminas of the present invention can be considered to be heterogeneous since they have atomic Si / Ai ratios with standard deviations of the order of 30-40%.
  • the support can consist of pure silica-alumina or results from the mixture with said silica-alumina of a binder such as silica (Si0 2 ), alumina (Al 2 0 3 ), clays, titanium oxide (TiO 2 ), boron oxide (B 2 0 3 ) and zirconia (ZrO 2 ) and any mixture of the above-mentioned binders.
  • a binder such as silica (Si0 2 ), alumina (Al 2 0 3 ), clays, titanium oxide (TiO 2 ), boron oxide (B 2 0 3 ) and zirconia (ZrO 2 ) and any mixture of the above-mentioned binders.
  • the preferred binders are silica and alumina and even more preferably alumina in all of these forms known to those skilled in the art, for example gamma alumina.
  • the content by weight of binder in the catalyst support is between 0 and 40%, more particularly
  • the support can be prepared by shaping the silica-alumina in the presence or absence of a binder by any technique known to those skilled in the art.
  • the shaping can be carried out, for example, by extrusion, by tableting, by the oil-drop coagulation method, by granulation on a turntable or by any other method well known to those skilled in the art.
  • At least one calcination can be carried out after any of the stages of the preparation, it is usually carried out in air at a temperature of at least 150 ° C, preferably at least 300 ° C.
  • the catalyst is a bifunctional catalyst in which a noble metal is supported by a support essentially consisting of an amorphous and micro / mesoporous silica-alumina gel with a pore size controlled, having an area of at least 500 m / g and a SiO 2 / AI 2 O 3 molar ratio of between 30/1 and 500/1, preferably between 40/1 and 150/1.
  • the noble metal supported on the support can be chosen from the metals of groups 8, 9 and 10 of the periodic table, in particular Co, Ni, Pd and Pt. Palladium and platinum are preferably used.
  • the proportion of noble metals is normally between 0.05 and 5.0% by weight relative to the weight of the support. Particularly advantageous results have been obtained using palladium and platinum in proportions of between 0.2 and 1.0% by weight.
  • Said support is generally obtained from a mixture of tetraalkylated ammonium hydroxide, an aluminum compound which can be hydrolyzed to Al 2 0 3 , a silicon compound which can be hydrolyzed to SiO 2 and a sufficient amount of water to dissolve and hydrolyze these compounds, said tetraalkylated ammonium hydroxide having 2 to 6 carbon atoms in each alkyl residue, said hydrolyzable aluminum compound preferably being a trialkoxide of aluminum having 2 to 4 carbon atoms in each alkoxide residue and said hydrolyzable silicon compound being a tetraalkylorthosilicate having 1 to 5 carbon atoms for each alkyl residue.
  • the tetraalkylated ammonium hydroxide which can be used in the context of the present invention is for example chosen from hydroxides of tetraethylammonium, propylammonium, isopropylammonium, butylammonium, isobutylammonium, terbutylammonium and pentylammonium, and preferably among the hydroxides of tetrapropylammonium, tetra-isopropylammonium and tetrabutyl-ammonium.
  • the aluminum trialkoxide is for example chosen from triethoxide, propoxide, isopropoxide, butoxide, isobutoxide and aluminum terbutoxide, preferably from tripropoxide and aluminum tri-isopropoxide.
  • the tetra-alkylated orthosilicate is chosen for example from tetramethyl-, tetraethyl-, propyl-, isopropyl-, butyl-, isobutyl-, terbutyl- and pentyl-orthosilicate, tetraethyl- orthosilicate being used preferably.
  • an aqueous solution containing the tetraalkylated ammonium hydroxide and the aluminum trialkoxide is first prepared at a temperature sufficient to guarantee effective dissolution of the aluminum compound.
  • the tetraalkylated orthosilicate is added to said aqueous solution.
  • This mixture is brought to a temperature suitable for activating the hydrolysis reaction. This temperature depends on the composition of the reaction mixture (generally from 70 to 100 ° C).
  • the hydrolysis reaction is exothermic, which guarantees a self-sustaining reaction after activation.
  • the proportions of the constituents of the mixture are such that they respect the following molar ratios: Si0 2 / Al 2 O 3 from 30/1 to 500/1, tetraalkylated ammonium hydroxide / Si0 2 from 0.05 / 1 to 0.2 / 1, and H 2 0 / Si0 2 from 5/1 to 40/1.
  • the preferred values for these molar ratios are as follows: Si ⁇ 2 / AI 2 0 3 from 40/1 to 150/1, tetraalkylated ammonium hydroxide / SiO 2 from 0.05 / 1 to 0.2 / 1, and H 2 O / SiO 2 from 10/1 to 25/1.
  • the hydrolysis of the reagents and their gelation are carried out at a temperature equal to or higher than the boiling point, at atmospheric pressure, of any alcohol developed in the form of by-product of said hydrolysis reaction, without elimination or significant elimination. of these alcohols from the reaction medium.
  • the hydrolysis and gelation temperature is therefore critical and is appropriately maintained at values above about 65 ° C, in the range of about 110 ° C.
  • the hydrolysis and the gelling are carried out in the presence of an amount of alcohol greater than that developed in the form of by-product.
  • a free alcohol preferably ethanol, is added to the reaction mixture in a proportion which can range up to a maximum molar ratio of added alcohol / Si0 2 of 8/1.
  • the time required to carry out the hydrolysis and gelling under the conditions indicated above is normally between 10 minutes and 3 hours, preferably between 1 and 2 hours.
  • the alcohol is finally extracted from the gel which is then dried, preferably under reduced pressure (from 3 to 6 kPa for example), at a temperature of 110 ° C.
  • the dried gel is then subjected to a calcination process under an oxidizing atmosphere (normally in air), at a temperature between 500 and 700 ° C for 4 to 20 hours, preferably at 500-600 ° C for 6 to 10 hours.
  • the silica and alumina gel thus obtained has a composition which corresponds to that of the reactants used, if one considers that the reaction yields are practically complete.
  • the SiO 2 / AI 2 O 3 molar ratio is therefore between 30/1 and 500/1, preferably between 40/1 and 150/1, the preferred values being of the order of 100/1.
  • This gel is amorphous, when subjected to an X-ray powder diffraction analysis, it has an area of at least 500 m 2 / g, generally between 600 and 850 m 2 / g, and a pore volume of 0.4 to 0.8 cm 3 / g.
  • a metal chosen from the noble metals of groups 8, 9 or 10 of the periodic table is supported on the micro / mesoporous amorphous silica-alumina gel obtained as described above. As indicated above, this metal is preferably chosen from platinum or palladium, platinum being preferably used.
  • the proportion of noble metal, in particular platinum, within the catalyst thus supported is between 0.4 and 0.8%, preferably between 0.6 and 0.8% by weight relative to the weight of the support.
  • the porous support having the characteristics of the acid support (a) described above is brought into contact with an aqueous or alcohol solution of a compound of the desired metal for a sufficient time to allow a homogeneous distribution of the metal in the solid. This operation normally requires a few minutes to several hours, preferably with stirring.
  • H 2 PtF 6 , H 2 PtCI 6 , [Pt (NH 3 )] CI 2 , [Pt (NH 3 ) 4 ] (OH) 2 constitute, for example, soluble salts suitable for this purpose, as well as analogous palladium salts ; mixtures of salts of different metals are also used in the context of the invention. It is advantageous to use the minimum quantity of aqueous liquid (usually water or an aqueous mixture with a second inert liquid or with an acid in a proportion of less than 50% by weight) necessary to dissolve the salt and to impregnate uniformly said support, preferably with a solution / support ratio of between 1 and 3. The amount of metal used is chosen according to the desired concentration in the catalyst, all of the metal being fixed on the support.
  • the solution is evaporated and the solid obtained is dried and calcined under an inert or reducing atmosphere, under temperature and time conditions similar to those previously described for the calcination of the support.
  • Another method of impregnation is carried out by means of an ion exchange.
  • the support consisting of amorphous silica-alumina gel is brought into contact with an aqueous solution of a salt of the metal used, as in the previous case, but the deposition is carried out by ion exchange, under conditions made basic (pH between 8.5 and 11) by the addition of a sufficient amount of an alkaline compound, usually an ammonium hydroxide.
  • the suspended solid is then separated from the liquid by filtration or decantation, then dried and calcined as described above.
  • the salt of the transition metal can be included in the silica-alumina gel during the preparation phase, for example before hydrolysis for the formation of the wet gel, or before its calcination.
  • the latter method is advantageously easier to implement, the catalyst thus obtained is slightly less active and selective than that obtained with the two previous methods.
  • the supported catalyst described above can be used as it is during the hydrocracking step of the process according to the present invention, after activation according to one of the known methods and / or described below.
  • said supported catalyst is reinforced by the addition with mixing of an appropriate amount of an inert mineral solid capable of improving its mechanical properties.
  • the catalyst is preferably used in granular form rather than in powder form with a relatively tight particle distribution.
  • Extrusion and shaping methods are also known which use a suitable inert additive (or binder) capable of providing the properties mentioned above, for example, according to the methods described in European patent applications EP-A 550.922 and EP-A 665.055, the latter preferably being implemented, their content being mentioned here for reference.
  • a suitable inert additive or binder
  • a typical method for preparing the catalyst in extruded form comprises the following steps: (a) the solution of hydrolysable components obtained as described above is heated to cause hydrolysis and gelling of said solution and for obtain a mixture A having a viscosity of between 0.01 and 100 Pa.sec;
  • a binder belonging to the group of bohemites or pseudobohemites is first added to mixture A, in a weight ratio with mixture A of between 0.05 and 0.5, then a mineral or organic acid is added in a proportion between 0.5 and 8.0 g per 100 g of binder;
  • Plasticizers such as methylcellulose are also preferably added during step (b) in order to promote the formation of a homogeneous mixture which is easy to process.
  • a granular acid support comprising from 30 to 70% by weight of inert mineral binder is thus obtained, the remaining proportion consisting of amorphous silica-alumina having essentially the same characteristics of porosity, surface and structure as those described above for the same gel without binder.
  • the granules are advantageously in the form of pellets about 2-5 mm in diameter and 2-10 mm long.
  • the step of depositing the noble metal on the granular acid support is then carried out according to the same procedure as that described above.
  • the metal contained in the catalyst must be reduced.
  • One of the preferred methods for carrying out the reduction of the metal is the treatment under hydrogen at a temperature between 150 ° C and 650 ° C and a total pressure between 0.1 and 25 Mpa.
  • a reduction consists of a plateau at 150 ° C for 2 hours and then a temperature rise up to 450 C C at a rate of 1 ° C / min and then a stage of 2 hours at 450 ° C; during this entire reduction step, the hydrogen flow rate is 1000 l hydrogen / l catalyst.
  • any in situ or ex situ reduction method is suitable.
  • a typical method implements the procedure described below:
  • the pressure within the reactor is maintained between 30 and 80 atm.

Abstract

Le procédé comprend les étapes suivantes: fractionnement de la charge paraffinique produite par synthèse Fischer-Tropsch en au moins 3 fractions: une fraction intermédiaire bouillant entre T1-T2 avec T1 comprise entre 120 et 200 °C et T2 supérieur à 300 °C et inférieur à 410 °C, une fraction légère bouillant en-dessous et une fraction lourde bouillant au-dessus; la fraction intermédiaire est au moins en partie hydrotraitée puis, au moins en partie, est passée sur un catalyseur amorphe d'hydroisomérisation/hydrocraquage; la fraction lourde est passée sur un catalyseur amorphe d'hydromérisation/hydrocraquage avec une conversion des produits 370 °C+ en produits 370 °C- supérieure à 80 % poids; distillation des fractions hydrocraquée/hydroisomérisées pour obtenir des distillats moyens (kérosène, gazole). Une installation est également revendiquée.

Description

PROCEDE DE PRODUCTION DE DISTILLATS MOYENS PAR HYDROISOMERISATION ET HYDROCRAQUAGE DE 2 FRACTIONS ISSUES DE CHARGES PROVENANT DU PROCÉDÉ FISCHER-TROPSCH
La présente invention concerne un procédé et une installation de traitement avec hydrocraquage et hydroisomérisation, de charges issues du procédé Fischer- Tropsch, permettant d'obtenir des distillats moyens (gasole, kérosène).
Dans le procédé Fischer-Tropsch, le gaz de synthèse (CO+H2) est transformé catalytiquement en produits oxygénés et en hydrocarbures essentiellement linéaires sous forme gazeuse, liquide ou solide. Ces produits sont généralement exempts d'impuretés hétéroatomiques telles que, par exemple, le soufre, l'azote ou des métaux. Ils ne contiennent également pratiquement peu ou pas d'aromatiques, de naphtènes et plus généralement de cycles en particulier dans le cas de catalyseurs au cobalt. Par contre, ils peuvent présenter une teneur non négligeable en produits oxygénés qui, exprimée en poids d'oxygène, est généralement inférieure à 5% poids environ et également une teneur en insaturés (produits oléfiniques en général) généralement inférieure à 10% en poids. Cependant, ces produits, principalement constitués de normales de paraffines, ne peuvent être utilisés tels quels, notamment à cause de leurs propriétés de tenue à froid peu compatibles avec les utilisations habituelles des coupes pétrolières. Par exemple, le point d'écoulement d'un hydrocarbure linéaire contenant 20 atomes de carbone par molécule (température d'ébullition égale à 340°C environ c'est-à-dire souvent comprise dans la coupe distillât moyen) est de +37°C environ ce qui rend son utilisation impossible, la spécification étant de -15°C pour le gasoil. Les hydrocarbures issus du procédé Fischer-Tropsch comprennent majoritairement des n-paraffines doivent être transformés en produits plus valorisâmes tels que par exemple le gazole, kérosène, qui sont obtenus, par exemple, après des réactions catalytiques d'hydroisomérisation.
Le brevet EP-635, 557 décrit un procédé de production de distillats moyens ayant de bonnes propriétés à basses températures, à partir d'une charge qui est un effluent de procédé Fischer-Tropsch. Le procédé consiste à séparer ladite charge en au moins une fraction légère bouillant en dessous de 260°C et une fraction lourde bouillant au-dessus de 260°C. Les fractions légère et lourde sont traitées séparément. La fraction légère subit un hydrotraitement pour enlever les heteroatomes puis une hydroisomerisation. La fraction lourde subit éventuellement un hydrotraitement (mais de préférence, il n'y a pas d'hydrotraitement), puis une hydroisomerisation de la fraction obtenue par hydrotraitement. Lors de l'hydroisomérisation de la fraction lourde, la conversion des produits 371 °C+ en 371 °C" est de 35-80% poids.
La présente invention propose un procédé alternatif pour la production de distillats moyens.
Ce procédé permet :
- d'améliorer fortement les propriétés à froid des paraffines issues du procédé Fisher-Tropsch et ayant des points d'ébullition correspondants à ceux des fractions gazole et kérosène (encore appelées distillats moyens) et notamment d'améliorer le point de congélation des kérosènes,
- d'augmenter la quantité de distillats moyens disponibles par hydrocraquage des composés paraffiniques les plus lourds, présents dans l'effluent de sortie de l'unité Fischer-Tropsch, et qui ont des points d'ébullition supérieurs à ceux des coupes kérosène et gazole, par exemple la fraction 380°C+.
Plus précisément, l'invention concerne un procédé pour la production de distillats moyens à partir d'une charge paraffinique produite par synthèse Fischer-Tropsch, et comprenant les étapes suivantes :
1. Fractionnement (étape a) de la charge en au moins 3 fractions : - au moins une fraction intermédiaire ayant un point d'ébullition initial T1 compris entre 120 et 200°C, et un point d'ébullition final T2 supérieur à 300°C et inférieur à 410°C,
- au moins une fraction légère bouillant au-dessous de la fraction intermédiaire,
- au moins une fraction lourde bouillant au-dessus de la fraction intermédiaire. 2. Hydrotraitement (étape b) d'au moins une partie de ladite fraction intermédiaire, puis passage (étape d) d'au moins une partie de la fraction hydrotraitée sur un catalyseur amorphe d'hydroisomérisation/hydrocraquage.
3. Passage (étape f) d'une partie au moins de ladite fraction lourde sur un catalyseur amorphe d'hydrocraquage/hydroisomérisation avec une conversion des produits 370°C+ en produits 370°C supérieure à 80% pds. 4. Distillation (étapes e et g) d'au moins une partie des fractions hydrocraquées/hydroisomérées pour obtenir des distillats moyens.
D'une façon plus détaillée, les étapes sont les suivantes : a) L'effluent paraffinique issu de l'unité de synthèse Fischer-Tropsch est fractionné en au moins trois fractions :
Une fraction légère comportant les composés ayant des points d'ébullition inférieurs à une température T1 comprise entre 120 et 200°C, et de préférence entre 130 et 180°C et par exemple environ 150°C. En d'autres termes le point de coupe T1 est situé entre 120 et 200°C.
Une fraction intermédiaire comportant les composés dont les points d'ébullition sont compris entre le point de coupe T1 , précédemment défini, et une température T2 supérieure à 300°C, de manière encore plus préférée supérieure à 350°C et inférieure à 410°C ou mieux, à 370°C. - Une fraction dite lourde comportant les composés ayant des points d'ébullition supérieurs au point de coupe T2 précédemment défini.
Les fractions intermédiaires et lourdes présentent généralement des teneurs en paraffines d'au moins 50% poids.
b) Au moins une partie (et de préférence la totalité) de la fraction intermédiaire est mise en contact avec un catalyseur d'hydrotraitement, en présence d'hydrogène.
c) Eventuellement l'eau formée durant l'étape d'hydrotraitement est éliminée au moins en partie et de préférence en totalité.
d) Au moins une partie (et de préférence la totalité) de l'effluent issu de l'étape (c) ou (b) est mis au contact, en présence d'hydrogène et d'un catalyseur d'hydroisomérisation / hydrocraquage afin de produire au moins une coupe distillât moyen (kérosène, gazole et de préférence les coupes kérosène et gazole).
e) L'effluent en sortie de l'étape (d) est soumis à une étape de séparation dans un train de distillation de manière à séparer les produits légers inévitablement formés lors de l'étape (d) par exemple les gaz (Cι-C4) et une coupe essence et également de manière à distiller au moins une coupe gazole et au moins une coupe de kérosène. Une partie de ces fractions peuvent être recyclées, conjointement ou de façon séparée, en tête du réacteur d'hydroisomérisation /hydrocraquage de l'étape (d). f) Ladite fraction lourde est mise en contact, en présence d'hydrogène, avec un catalyseur d'hydrocraquage/hydroisomérisation afin de produire des distillats moyens (kérosène, gazole), la conversion des produits 370°C+ en 370°C" étant supérieure à 80% pds.
g) L'effluent en sortie de l'étape (f) est soumis à une étape de séparation dans un train de distillation de manière à séparer d'une part les produits légers inévitablement formés lors de l'étape (f) par exemple les gaz (CrC4) et une coupe essence et également de manière à distiller au moins une coupe gazole et au moins une coupe kérosène, et également à distiller la fraction non hydrocraquée dont les composés qui la constituent ont des points d'ébullition supérieurs à ceux des distillats moyens (kérosène + gazole). Cette fraction non hydrocraquée présente généralement un point d'ébullition initial d'au moins 350°C, de préférence supérieur à 370°C. Cette fraction, dite fraction résiduelle, est avantageusement recyclée en tête du réacteur d'hydroisomérisation/hydrocraquage de l'étape (f).
De façon inattendue, l'utilisation d'un procédé selon l'invention a révélé de nombreux avantages. En particulier, il a été trouvé qu'il est intéressant de ne pas traiter la fraction hydrocarbonée légère de l'effluent Fischer Tropsch, fraction légère qui comprend en termes de points d'ébullition une coupe essence (Cs à au plus 200°C et le plus souvent à environ 150°C).
En effet, de façon inattendue les résultats obtenus montrent qu'il est plus rentable d'envoyer ladite coupe essence (C5 à au plus 200°C) à un vapocraqueur pour en faire des olefines que de la traiter dans le procédé selon l'invention, où on a pu constater que la qualité de cette coupe n'est que peu améliorée. En particulier ses indices d'octane moteur et recherche restent trop bas pour que cette coupe puisse être intégrée au pool essence. Ainsi, le procédé selon l'invention permet la production de distillats moyens (kérosène, gazole) avec un minimum d'essence obtenue. Par ailleurs, les rendements en distillats moyens (kérosène + gazole) du procédé selon l'invention sont plus élevés que ceux de l'art antérieur, notamment du fait que la coupe kérosène (généralement point d'ébullition initial de 150 à 160°C - point d'ébullition finale de 260 à 280CC) a pu être optimisée (et même maximisée par rapport à l'art antérieur EP-635, 557), et de plus, sans que ce soit au détriment de la coupe gazole. Par ailleurs, cette coupe kérosène présente, de façon inattendue, d'excellentes propriétés à froid (point de congélation par exemple).
D'autre part, le fait de ne pas traiter la fraction légère de l'effluent Fischer-Tropsch permet de minimiser les volumes des catalyseurs d'hydrotraitement et d'hydroisomérisation / hydrocraquage à utiliser et ainsi de réduire la taille des réacteurs et donc des investissements.
Par ailleurs et de façon inattendue, les performances catalytiques (activité, sélectivité) et/ou la durée de cycle des catalyseurs d'hydrotraitement et hydroisomerisation / hydrocraquage utilisés dans le procédé selon l'invention ont pu être améliorées.
Description détaillée de l'invention La description sera faite en se référant à la figure 1 , sans que la figure limite l'interprétation.
Etape (a)
L'effluent issu de l'unité de synthèse Fischer-Tropsch comporte majoritairement des paraffines mais contient aussi des olefines et des composés oxygénés tels que des alcools. Il contient aussi de l'eau, du CO2, du CO et de l'hydrogène non réagi ainsi que des composés hydrocarbures légers C1 à C4 sous forme de gaz. L'effluent issu de l'unité de synthèse Fischer-Tropsch arrivant par la conduite (1 ) est fractionné dans un zone de fractionnement (2) en au moins trois fractions :
- au moins une fraction légère (sortant par la conduite 3) dont les composés constituants ont des points d'ébullition inférieurs à une température T1 comprise entre 120 et 200°C, et de préférence entre 130 et 180°C et de manière encore plus préférée à une température d'environ 150°C. En d'autres termes le point de coupe est situé entre 120 et 200°C.
au moins une fraction intermédiaire (conduite 4) comportant les composés dont les points d'ébullition sont compris entre le point de coupe T1 , précédemment défini, et une température T2 supérieure à 300°C, de manière encore plus préférée supérieure à 350°C et inférieure à 410°C ou mieux à 370°C.
au moins une fraction dite lourde (conduite 5) comportant les composés ayant des points d'ébullition supérieurs au point de coupe T2 précédemment défini.
Une coupe entre un point d'ébullition T1 comprise entre 120 - 200°C et T2 supérieure à 300°C et inférieure à 370°C est préférée. La coupe à 370CC est encore plus préférée c'est à dire la fraction lourde est une coupe 370°C+.
Le fait de couper à 370°C permet de séparer au moins 90% pds des oxygénés et des olefines, et le plus souvent au moins 95% pds. La coupe lourde à traiter est alors purifiée et une élimination des heteroatomes ou insaturés par hydrotraitement n'est alors pas nécessaire.
Le fractionnement est obtenu ici par distillation, mais il peut être réalisé en une ou plusieurs étapes et par d'autres moyens que la distillation.
Ce fractionnement peut être réalisé par des méthodes bien connues de l'homme du métier telles que le flash, la distillation etc.. A titre d'exemple non limitatif, l'effluent issu de l'unité de synthèse Fischer-Tropsch sera soumis à un flash, une décantation pour éliminer l'eau et une distillation afin d'obtenir au moins les 2 fractions décrites ci-dessus.
La fraction légère n'est pas traitée selon le procédé de l'invention mais peut par exemple constituer une bonne charge pour une unité pétrochimique et plus particulièrement pour un vapocraqueur (installation 6 de vapocraquage).
Les fractions plus lourdes précédemment décrites sont traitées selon le procédé de l'invention. Etape (b)
Ladite fraction intermédiaire est admise via la ligne (4), en présence d'hydrogène amené par la tubulure (7), dans une zone d'hydrotraitement (8) contenant un catalyseur d'hydrotraitement. L'objectif de cet hydrotraitement est de réduire la teneur en composés oléfiniques et insaturés ainsi que d'hydrotraiter les composés oxygénés (alcools) présents.
Les catalyseurs utilisés dans cette étape (b) sont des catalyseurs d'hydrotraitement non craquants ou peu craquants comportant au moins un métal du groupe VIII et/ou du groupe VI de la classification périodique des éléments. De préférence le catalyseur comprend au moins un métal du groupe de métaux formé par le nickel, le molybdène, le tungstène, le cobalt, le ruthénium, l'indium, le palladium et le platine et comportant au moins un support.
La fonction hydro-déshydrogénante est de préférence assurée par au moins un métal ou composé de métal du groupe VIII tels que le nickel et le cobalt notamment. On peut utiliser une combinaison d'au moins un métal ou composé de métal du groupe VI (notamment le molybdène ou le tungstène) et d'au moins un métal ou composé de métal du groupe VIII (notamment cobalt et le nickel) de la classification périodique des éléments. La concentration en métal du groupe VIII non noble, lorsque celui-ci est utilisé, est de 0,01-15% en poids par rapport au catalyseur fini.
Avantageusement, au moins un élément choisi parmi P, B, Si est déposé sur le support.
Ce catalyseur pourra contenir avantageusement du phosphore ; en effet, ce composé apporte deux avantages aux catalyseurs d'hydrotraitement : une facilité de préparation lors notamment de l'imprégnation des solutions de nickel et de molybdène, et une meilleure activité d'hydrogénation.
Dans un catalyseur préféré la concentration totale en métaux des groupes VI et
VIII, exprimée en oxydes de métaux, est comprise entre 5 et 40% en poids et de préférence entre 7 et 30% en poids et le rapport pondéral exprimé en oxyde de métal (ou de métaux) du groupe VI sur métal (ou métaux) du groupe VIII est compris entre 1.25 et 20 et de préférence entre 2 et 10. Avantageusement, s'il y a du phosphore, la concentration en oxyde de phosphore P205 sera inférieure à 15% en poids et de préférence inférieure à 10% en poids. On peut utiliser également un catalyseur contenant du bore et du phosphore avantageusement le bore et le phosphore sont des éléments promoteurs déposés sur le support, et par exemple le catalyseur selon le brevet EP-297,949. La somme des quantités de bore et de phosphore, exprimées respectivement en poids de trioxyde de bore et pentoxyde de phosphore, par rapport au poids de support, est d'environ 5 à 5% et le rapport atomique bore sur phosphore est d'environ 1 :1 à 2:1 et au moins 40% du volume poreux total du catalyseur fini est contenu dans des pores de diamètre moyen supérieur à 13 nanomètres. De façon préférée, la quantité de métal du groupe VI tel que le molybdène ou le tungstène, est telle que le rapport atomique phosphore sur métal du groupe VIB est d'environ 0,5:1 à 1 ,5:1 ; les quantités de métal du groupe VIB et de métal du groupe VIII, tel que le nickel ou le cobalt, sont telles que le rapport atomique métal du groupe VIII sur métal du groupe VIB est d'environ 0,3:1 à 0,7:1. Les quantités de métal du groupe VIB exprimées en poids de métal par rapport au poids de catalyseur fini est d'environ 2 à 30% et la quantité de métal du groupe VIII exprimée en poids de métal par rapport au poids de catalyseur fini est d'environ 0,01 à 15%.
Un autre catalyseur particulièrement avantageux contient du silicium promoteur déposé sur le support. Un catalyseur intéressant contient BSi ou PSi.
Les catalyseurs Ni alumine, NiMo sur alumine, NiMo sur alumine dopée avec du bore et du phosphore et NiMo sur silice-alumine sont également préférés. Avantageusement, on choisira de l'alumine éta ou gamma.
Dans le cas de l'emploi de métaux nobles (platine et/ou palladium) de préférence, la teneur en métal est comprise entre 0,05 et 3% poids par rapport au catalyseur fini et de préférence entre 0,1 et 2% poids du catalyseur.
Ces métaux sont déposés sur un support qui est de préférence une alumine, mais qui peut aussi être de l'oxyde de Bore, de la magnésie, de la zircone, de l'oxyde de titane, une argile ou une combinaison de ces oxydes. Ces catalyseurs peuvent être préparés par toutes les méthodes connues de l'homme de l'art ou bien peuvent être acquis auprès de sociétés spécialisées dans la fabrication et la vente de catalyseurs.
Dans le réacteur d'hydrotraitement (8), la charge est mise en contact en présence d'hydrogène et du catalyseur à des températures et des pressions opératoires permettant de réaliser l'hydrodeoxygénation (HDO) des alcools et l'hydrogénation des olefines présents dans la charge. Les températures réactionnelles utilisées dans le réacteur d'hydrotraitement sont comprises entre 100 et 350, de préférence entre 150 et 300°C, de façon encore plus préférée entre 150 et 275°C et mieux encore entre 175 et 250°C. La gamme de pression totale utilisée varie de 5 à 150 bars, de préférence entre 10 et 100 bars et de manière encore plus préférée entre 10 et 90 bars. L'hydrogène qui alimente le réacteur d'hydrotraitement est introduit à un débit tel que le rapport volumique hydrogène/hydrocarbures soit compris entre 100 à 3000 Nl/l/h, de préférence entre 100 et 2000NI/l/h et de façon encore plus préférée entre 250 et 1500 Nl/l/h. Le débit de charge est tel que la vitesse volumique horaire est comprises entre 0,1 et 10h"1, de préférence entre 0,2 et 5h"1 et de manière encore plus préférée entre 0,2 et 3h"1. Dans ces conditions, la teneur en molécules insaturées et oxygénées est réduite à moins de 0,5% et à environ moins de 0,1 % en général. L'étape d'hydrotraitement est conduite dans des conditions telles que la conversion en produits ayant des points d'ébullition supérieurs ou égaux à 370°C en des produits ayant des points d'ébullition inférieurs à 370°C est limitée à 30% pds, de préférence est inférieure à 20% et de façon encore plus préférée est inférieure à 10%.
Etape (c)
L'effluent issu du réacteur d'hydrotraitement est éventuellement introduit dans une zone (9) d'enlèvement d'eau qui a pour but d'éliminer au moins une partie de l'eau produite lors des réactions d'hydrotraitement. Cette élimination d'eau peut s'effectuer avec ou sans élimination de la fraction gazeuse C moins qui est généralement produite lors de l'étape d'hydrotraitement. On entend par élimination de l'eau, l'élimination de l'eau produite par les réactions d'hydrodeoxygénation (HDO) des alcools mais on peut aussi y inclure l'élimination au moins en partie de l'eau de saturation des hydrocarbures. L'élimination de l'eau peut être réalisée par toutes les méthodes et techniques connues de l'homme du métier, par exemple par séchage, passage sur un dessicant, flash, décantation....
Etape (à)
La fraction ainsi éventuellement séchée est alors introduite (conduite 10), ainsi qu'éventuellement un flux d'hydrogène, (conduite 11) dans la zone (12) contenant le catalyseur d'hydroisomérisation / d'hydrocraquage. Une autre éventualité du procédé aussi selon l'invention consiste à envoyer la totalité de l'effluent sortant du réacteur d'hydrotraitement (sans séchage) dans le réacteur contenant le catalyseur amorphe d'hydroisomérisation / d'hydrocraquage et de préférence en même temps qu'un flux d'hydrogène.
Les catalyseurs d'hydroisomérisation / hydrocraquage seront décrits plus loin en détail.
Les conditions opératoires dans lesquelles est effectuée cette étape (d) sont :
La pression est maintenue entre 2 et 150 bars et de préférence entre 5 et 100 bars et avantageusement de 10 à 90 bars, la vitesse spatiale est comprise entre 0,1 h"1 et 10 h"1 et de préférence entre 0,2 et 7h'1 est avantageusement entre 0,5 et 5,0h"1. Le taux d'hydrogène est compris entre 100 et 2000 Normaux litres d'hydrogène par litre de charge et par heure et préférentiellement entre 150 et 1500 litres d'hydrogène par litre de charge.
La température utilisée dans cette étape est comprise entre 200 et 450°C et préférentiellement de 250°C à 450°C avantageusement de 300 à 450°C, et encore plus avantageusement supérieure à 320CC ou par exemple entre 320-420°C.
Les deux étapes, hydrotraitement et hydroisomérisation-hydrocraquage, peuvent être réalisées sur les deux types de catalyseurs dans deux ou plusieurs réacteurs différents, ou/et dans un même réacteur.
L'étape (d) d'hydroisomérisation et d'hydrocraquage est avantageusement conduite dans des conditions telles que la conversion par passe en produits à points d'ébullition supérieurs ou égaux à 150°C en des produits ayant des points d'ébullition inférieurs à 150°C est la plus faible possible, de préférence inférieure à 50%, de manière encore plus préférée inférieure à 30%, et permet d'obtenir des distillats moyens (gazole et kérosène) ayant des propriétés à froid (point d'écoulement et de congélation) suffisamment bonnes pour satisfaire aux spécifications en vigueur pour ce type de carburant.
Ainsi dans cette étape (d), on cherche à favoriser l'hydroisomérisation plutôt que l'hydrocraquage.
Etape (f)
Ladite fraction lourde dont les points d'ébullition sont supérieurs au point de coupe T2, précédemment défini, est introduite via la ligne (5) dans une zone (13) où elle est mise, en présence d'hydrogène (26), au contact d'un catalyseur amorphe d'hydroisomérisation/hydrocraquage afin de produire une coupe distillât moyen (kérosène + gazole) présentant de bonnes propriétés à froid.
Le catalyseur utilisé dans la zone (13) de l'étape (f) pour réaliser les réactions d'hydrocraquage et d'hdydroisomerisation de la fraction lourde, définie selon l'invention, est du même type que celui présent dans le réacteur (12). Cependant, il est à noter que les catalyseurs mis en œuvre dans les réacteurs (12) et (13) peuvent être identiques ou différents.
Durant cette étape (f) la fraction entrant dans le réacteur subit au contact du catalyseur et en présence d'hydrogène essentiellement des réactions d'hydrocraquage qui, accompagnés de réactions d'hydroisomérisation des n- paraffines, vont permettre d'améliorer la qualité des produits formés et plus particulièrement les propriétés à froid du kérosène et du gazole, et également d'obtenir de très bons rendements en distillats. La conversion en produits ayant des points d'ébullition supérieurs ou égal à 370°C en produits à points d'ébullition inférieurs à 370°C est supérieure à 80% poids, souvent d'au moins 85% et de préférence supérieure ou égal à 88%. Par contre, les conversions des produits à point d'ébullition supérieurs ou égaux à 260°C en produits à points d'ébullition inférieurs à 260°C est d'au plus 90% poids, généralement d'au plus 70% ou 80%, et de préférence d'au plus 60% poids.
Dans cette étape (f), on cherchera donc à favoriser l'hydrocraquage, mais de préférence en limitant le craquage du gazole.
Le choix des conditions opératoires permet d'ajuster finement la qualité des produits (diesel, kérosène) et en particulier les propriétés à froid du kérosène, tout en conservant un bon rendement en diesel et/ou kérosène. Le procédé selon l'invention permet de façon tout à fait intéressante de produire à la fois du kérosène et du gasoil et qui sont de bonne qualité.
Etape (g)
L'effluent en sortie du réacteur (12), étape (d) est envoyé dans un train de distillation, qui intègre une distillation atmosphérique et éventuellement une distillation sous vide, et qui a pour but de séparer d'une part les produits légers inévitablement formés lors de l'étape (d) par exemple les gaz (C1-C4) (conduite 14) et une coupe essence (conduite 19), et de distiller au moins une coupe gazole (conduite 17) et kérosène (conduite 16). Les fractions gazole et kérosène peuvent être recyclées (conduite 25) en partie, conjointement ou de façon séparée, en tête du réacteur (12) d'hydroisomérisation /hydrocraquage étape (d).
L'effluent en sortie de l'étape (f), est soumis à une étape de séparation dans un train de distillation de manière à séparer d'une part les produits légers inévitablement formés lors de l'étape (f) par exemple les gaz (C C4) (conduite 18) et une coupe essence (conduite 19), à distiller une coupe gazole (conduite 21 ) et kérosène (conduite 20) et à distiller la fraction (conduite 22) bouillant au-dessus de gazole, c'est à dire dont les composés qui la constituent ont des points d'ébullition supérieurs à ceux des distillats moyens (kérosène + gazole). Cette fraction, dite fraction résiduelle, présente généralement un point d'ébullition initial d'au moins
350°C, de préférence supérieure à 370°C. Cette fraction non hydrocraquée est avantageusement recyclée en tête du réacteur (conduite 13) d'hydroisomérisation
/hydrocraquage étape (f). Il peut être également avantageux de recycler une partie du kérosène et/ou du gazole dans l'étape (d), l'étape (f) ou les deux. De façon préférée, l'une au moins des fractions kérosène et/ou gazole est recyclée en partie (conduite 25) dans l'étape (d) (zone 12). On a pu constater qu'il est avantageux de recycler une partie du kérosène pour améliorer ses propriétés à froid.
Avantageusement et dans le même temps, la fraction non hydrocraquée est recyclée en partie dans l'étape (f) (zone 13).
Il va sans dire que les coupes gazole et kérosène sont de préférence récupérées séparément, mais les points de coupe sont ajustés par l'exploitant en fonction de ses besoins.
Sur la figure 1, on a représenté 2 colonnes (23) et (24) de distillation, mais une seule peut être utilisée pour traiter l'ensemble des coupes issues de zones (12) et (13).
Sur la figure, on a représenté seulement le recyclage du kérosène sur le catalyseur du réacteur (12). Il va sans dire qu'on peut aussi bien recycler une partie du gazole (séparément ou avec le kérosène) et de préférence sur le même catalyseur que le kérosène. On peut également recycler une partie du kérosène et/ou du gazole produits dans les lignes (20) (21 ).
Les produits obtenus
Le(s) gazole(s) obtenu présente un point d'écoulement d'au plus 0°C, généralement inférieur à -10°C et souvent inférieur à -15°C. L'indice de cétane est supérieur à 60, généralement supérieur à 65, souvent supérieur à 70. Le(s) kérosène(s) obtenu(s) présente un point de congélation d'au plus -35°C, généralement inférieur à -40°C. Le point de fumée est supérieur à 25 mm, généralement supérieur à 30 mm. Dans ce procédé, la production d'essence (non recherchée) est la plus faible possible. Le rendement en essence sera toujours
inférieur à 50% pds, de préférence inférieur à 40% pds, avantageusement inférieur à 30% pds ou encore 20% pds ou même de 15% pds. L'invention concerne également une installation de production de distillats moyens comportant : au moins une zone (2) de fractionnement de la charge provenant d'une unité de synthèse Fischer-Tropsch ayant : - au moins une tubulure (1 ) pour l'introduction de la charge,
- au moins 3 tubulures pour la sortie des fractions séparées, l'une (3) pour la sortie d'une fraction légère bouillant au-dessous d'une fraction intermédiaire, une autre tubulure (4) pour la sortie d'une fraction intermédiaire à point d'ébullition initial de T1 , T1 étant compris entre 120 et 200°C, et à point d'ébullition final T2 supérieur à 300°C et inférieur à 410°C et une autre tubulure (5) pour la sortie d'une fraction lourde bouillant au-dessus de la fraction intermédiaire,
- au moins une zone (8) d'hydrotraitement munie d'une conduite d'entrée d'au moins une partie de ladite fraction intermédiaire suivie d'au moins une zone (12) contenant un catalyseur d'hydrocraquage / hydroisomerisation munie d'une conduite pour l'introduction d'au moins une partie de ladite fraction hydrotraitée,
- au moins une zone (13) contenant un catalyseur d'hydrocraquage / hydroisomerisation munie d'une tubulure pour l'entrée d'au moins une partie de ladite fraction lourde,
- au moins une colonne à distiller (23, 24) munie d'au moins une tubulure pour l'introduction d'au moins une partie des fractions hydrocraquées et au moins une tubulure (16, 17, 20, 21 ) pour la sortie des distillats moyens.
- au moins une tubulure (3) amenant au moins une partie de ladite fraction légère dans une installation de vapocraquage (6).
De façon préférée, elle comporte une tubulure (23) de recyclage d'une partie d'au moins l'une des fractions kérosène, gazole obtenues à la sortie de(s) colonne(s) (23, 24) à distiller les fractions hydrocraquées, vers au moins l'une des zones (12, 13) contenant un catalyseur d'hydrocraquage / hydroisomerisation.
Les catalyseurs des étapes (d) et (f) d'hydroisomérisation / hydrocraquage
Dans ces étapes, les catalyseurs peuvent être identiques ou différents. Avantageusement, ils seront choisis parmi les catalyseurs préférés décrits ci-après. La majorité des catalyseurs utilisés actuellement en hydroisomerisation / hydrocraquage sont du type bifonctionnels associant une fonction acide à une fonction hydrogenante. La fonction acide est apportée par des
2 -1 supports de grandes surfaces (150 a 800 m .g généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les alumines phosphorées, les combinaisons d'oxydes de bore et d'aluminium, les silices-alumines. La fonction hydrogenante est apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, tels que fer, cobalt, nickel, ruthénium, rhodium, palladium, osmium, iridium et platine, soit par une association d'au moins un métal du groupe VI tels que chrome, molybdène et tungstène et au moins un métal du groupe VIII.
L'équilibre entre les deux fonctions acide et hydrogenante est le paramètre fondamental qui régit l'activité et la sélectivité du catalyseur. Une* fonction acide faible et une fonction hydrogenante forte donnent des catalyseurs peu actifs et sélectifs envers l'isomérisation alors qu'une fonction acide forte et une fonction hydrogenante faible donnent des catalyseurs très actifs et sélectifs envers le craquage. Une troisième possibilité est d'utiliser une fonction acide forte et une fonction hydrogenante forte afin d'obtenir un catalyseur très actif mais également très sélectif envers l'isomérisation. Il est donc possible, en choisissant judicieusement chacune des fonctions d'ajuster le couple activité/sélectivité du catalyseur.
Plus précisément, les catalyseurs d'hydroisomérisation-hydrocraquage sont des catalyseurs bifonctionnels comportant un support acide amorphe (de préférence une silice-alumine) et une fonction métallique hydro-déshydrogénante assurée par au moins un métal noble.
Le support est dit amorphe, c'est-à-dire dépourvu de tamis moléculaire, et en particulier de zéolithe, ainsi que le catalyseur. Le support acide amorphe est avantageusement une silice-alumine mais d'autres supports sont utilisables. Lorsque il s'agit d'une silice-alumine, le catalyseur, de préférence, ne contient pas d'halogène ajouté, autre que celui qui pourrait être introduit pour l'imprégnation, du métal noble par exemple. De façon plus générale et de préférence, le catalyseur ne contient pas d'halogène ajouté, par exemple fluor. De façon générale et de préférence, le support n'a pas subi d'imprégnation par un composé de silicum. Dans un premier mode de réalisation préféré de l'invention, il est utilisé un catalyseur comprenant une silice-alumine particulière qui permet d'obtenir des catalyseurs très actifs mais aussi très sélectifs dans l'isomérisation d'effluents issus des unités de synthèse Fischer-Tropsch.
Plus précisément, le catalyseur préféré comprend (et de préférence est essentiellement constitué de) 0,05-10 % en poids d'au moins un métal noble du groupe VIII déposé sur un support amorphe de silice-alumine (qui de préférence contient entre 5 et 70 % en poids de silice) qui présente une surface spécifique BET de 100-500m2/g et le catalyseur présente :
- un diamètre moyen des mésopores compris entre 1-12 nm,
- un volume poreux des pores dont le diamètre est compris entre le diamètre moyen tel que défini précédemment diminué de 3 nm et le diamètre moyen tel que défini précédemment augmenté de 3 nm est supérieur à ^0 % du volume poreux total,
- une dispersion du métal noble comprise entre 20-100 %,
- un coefficient de répartition du métal noble supérieur à 0,1.
Les caractéristiques du catalyseur sont plus en détail
Le support préféré utilisé pour l'élaboration du catalyseur est composé de silice SiO2 et d'alumine AI2O3. La teneur en silice du support, exprimée en pourcentage poids, est généralement comprise entre 1 et 95 %, avantageusement voire entre 5 et 95 % et de manière préférée entre 10 et 80 % et de manière encore plus préférée entre 20 et 70 % et entre 22 et 45 %. Cette teneur en silice est parfaitement mesurée à l'aide de la fluorescence X.
Pour ce type particulier de réaction, la fonction métallique est apportée par un métal noble du groupe VIII de la classification périodique des éléments et plus particulièrement le platine et/ou du palladium.
La teneur en métal noble, exprimée en % poids de métal par rapport au catalyseur, est comprise entre 0,05 à 10 et plus préférentiellement comprise entre 0,1 et 5. La dispersion, représentant la fraction de métal accessible au réactif par rapport à la quantité totale de métal du catalyseur, peut être mesurée, par exemple, par titrage H/O. Le métal est préalablement réduit c'est-à-dire qu'il subit un traitement sous flux d'hydrogène à haute température dans des conditions telles que tous les atomes de platine accessibles à l'hydrogène soient transformés sous forme métallique. Ensuite, un flux d'oxygène est envoyé dans des conditions opératoires adéquates pour que tous les atomes de platine réduit accessibles à l'oxygène soit oxydés sous forme PtO2. En calculant la différence entre la quantité d'oxygène introduit et la quantité d'oxygène sortante, on accède à la quantité d'oxygène consommée ; ainsi, on peut alors déduire de cette dernière valeur la quantité de platine accessible à l'oxygène. La dispersion est alors égale au rapport quantité de platine accessible à l'oxygène sur quantité totale de platine du catalyseur. Dans notre cas, la dispersion est comprise entre 20 % et 100 % et de préférence entre 30 % et 100 %.
La répartition du métal noble représente la distribution du métal à l'intérieur du grain de catalyseur, le métal pouvant être bien ou mal dispersé. Ainsi, il est possible d'obtenir le platine mal réparti (par exemple détecté dans une couronne dont l'épaisseur est nettement inférieure au rayon du grain) mais bien dispersé c'est-à- dire que tous les atomes de platine, situés en couronne, seront accessibles aux réactifs. Dans notre cas, la répartition du platine est bonne c'est-à-dire que le profil du platine, mesuré d'après la méthode de la microsonde de Castaing, présente un coefficient de répartition supérieur à 0,1 et de préférence supérieur à 0,2.
La surface BET du support est comprise entre 100 m2/g et 500 m2/g et de préférence comprise entre 250 m2/g et 450m2/g et pour les supports à base de silice-alumine, de manière encore plus préférée entre 310 m2/g et 450 m /g.
Pour les catalyseurs préférés à base de silice-alumine le diamètre moyen des pores du catalyseur est mesuré à partir du profil de répartition poreuse obtenu à l'aide d'un porosimètre au mercure. Le diamètre moyen des pores est défini comme étant le diamètre correspondant à l'annulation de la courbe dérivée obtenue à partir de la courbe de porosité au mercure. Le diamètre moyen des pores, ainsi défini, est compris entre 1 nm (1x10"9 mètres) et 12 nm (12x10"9 mètres) et de préférence compris entre 1 nm (1x10'9 mètres) et 11 nm (11x10'9 mètres) et de manière encore plus préférée entre 3 nm (4x10'9 mètres) et 10,5 nm (10,5x10'9 mètres).
Le catalyseur préféré a une répartition poreuse telle que le volume poreux des pores dont le diamètre est compris entre le diamètre moyen tel que défini précédemment diminué de 3 nm et le diamètre moyen tel que défini précédemment augmenté de 3 nm (soit le diamètre moyen ± 3 nm) est supérieur à 40 % du volume poreux total et de manière préférée compris entre 50 % et 90 % du volume poreux total et plus avantageusement encore entre 50 % et 70 % du volume poreux total.
Pour le catalyseur préféré à base de silice-alumine il est généralement inférieur à 1 ,0 ml/g et de préférence compris entre 0,3 et 0,9 ml/g et encore plus avantageusement inférieur à 0,85 ml/g.
La préparation et la mise en forme du support, et en particulier de la silice-alumine (notamment utilisée dans le mode de réalisation préféré) est faite par des méthodes usuelles bien connues de l'homme de l'art. De façon avantageuse, préalablement à l'imprégnation du métal, le support pourra subir une calcination comme par exemple un traitement thermique à 300-750°C (600°C préféré) pendant 0,25-10 heures (2 heures préféré) sous 0-30 % volume de vapeur d'eau (pour la silice alumine 7,5 % préféré).
Le sel de métal noble est introduit par une des méthodes usuelles utilisées pour déposer le métal (de préférence du platine et/ou le palladium, la platine étant encore préféré) à la surface d'un support. Une des méthodes préférées est l'imprégnation à sec qui consiste en l'introduction du sel de métal dans un volume de solution qui est égal au volume poreux de la masse de catalyseur à imprégner. Avant l'opération de réduction, le catalyseur pourra subir une calcination comme par exemple un traitement sous air sec à 300-750°C (520°C préféré) pendant 0,25- 10 heures (2 heures préféré).
Dans un deuxième mode de réalisation préféré selon l'invention, le catalyseur bifonctionnel comporte au moins un métal noble déposé sur un support acide amorphe, la dispersion en métal noble étant inférieure à 20%. De préférence, la fraction des particules de métal noble ayant une taille inférieure à 2 nm représente au plus 2% pds du métal noble déposé sur le catalyseur.
Avantageusement, au moins 70% (de préférence au moins 80%, et mieux au moins 90%), des particules de métal noble présentent une taille supérieure à 4 nm (% nombre).
Le support est amorphe, il ne contient pas de tamis moléculaire ; le catalyseur ne contient pas non plus de tamis moléculaire. Le support acide amorphe est généralement choisi dans le groupe formé par une silice-alumine, une alumine halogénée (fluorée de préférence), une alumine dopée au silicium (silicium déposé), un mélange alumine oxyde de titane, une zircone sulfatée, une zircone dopée au tungstène, et leurs mélanges entre eux ou avec au moins une matrice amorphe choisie dans le groupe formé par l'alumine, l'oxyde de titane, la silice, l'oxyde de bore, la magnésie, la zircone, l'argile par exemple. De préférence, le support est constitué d'une silice alumine amorphe.
Un catalyseur préféré, comprend (de préférence est essentiellement constitué de ) 0,05 à 10% en poids d'au moins un métal noble du groupe VIII déposé sur un support amorphe de silice-alumine.
Les caractéristiques du catalyseur sont plus en détails :
Le support préféré utilisé pour l'élaboration du catalyseur est composé de silice Si02 et d'alumine Al203 dès la synthèse. La teneur en silice du support, exprimée en pourcentage poids, est généralement comprise entre 1 et 95%, avantageusement entre 5 et 95% et de manière préférée entre 10 et 80% et de manière encore plus préférée entre 20 et 70% voire entre 22 et 45%. Cette teneur est parfaitement mesurée à l'aide de la fluorescence X.
Pour ce type particulier de réaction, la fonction métallique est apportée par au moins un métal noble du groupe VIII de la classification périodique des éléments et plus particulièrement le platine et/ou le palladium.
La teneur en métal noble, exprimée en % poids de métal par rapport au catalyseur, est comprise entre 0,05 à 10 et plus préférentiellement comprise entre 0,1 et 5. La dispersion (mesurée de la même façon que précédemment) est inférieure à 20%, elles est généralement supérieure à 1 % ou mieux à 5%.
Afin de déterminer la taille et la répartition des particules de métal nous avons utilisé la Microscopie Electronique à Transmission. Après préparation, l'échantillon de catalyseur est finement broyé dans un mortier en agate puis il est dispersé dans de l'éthanol par ultrasons. Des prélèvements à différents endroits permettant d'assurer une bonne représentativité en taille sont réalisés et déposés sur une grille en cuivre recouverte d'un film de carbone mince. Les grilles sont ensuite séchées à l'air sous lampe infra-rouge avant d'être introduites dans le microscope pour l'observation. Afin d'estimer la taille moyenne des particules de métal noble, plusieurs centaines de mesures sont effectuées à partir de plusieurs dizaines de clichés. L'ensemble de ces mesures permet de réaliser un histogramme de répartition de la taille des particules. Ainsi, nous pouvons estimer précisément la proportion de particules correspondant à chaque domaine de taille des particules.
La répartition du platine est bonne c'est-à-dire que le profil du platine, mesuré d'après la méthode de la microsonde de Castaing, présente un coefficient de répartition supérieur à 0,1 avantageusement supérieur à 0,2 et de préférence supérieure à 0,5.
La surface BET du support est généralement comprise entre 100m2/g et 500m2/g et de préférence comprise entre 250 m /g et 450 m2/g et pour les supports à base de silice alumine, de manière encore plus préférée entre 310 m2/g.
Pour les supports à base de silice alumine, il est généralement inférieur à 1 ,2 ml/g et de préférence compris entre 0,3 et 1 ,1 ml/g et encore plus avantageusement inférieur à 1 ,05 ml/g.
La préparation et la mise en forme de la silice-alumine et de tout support en général est faite par des méthodes usuelles bien connues de l'homme de l'art. De façon avantageuse, préalablement à l'imprégnation du métal, le support pourra subir une calcination comme par exemple un traitement thermique à 300-750°C (600°C préféré) pendant une durée comprise entre 0,25 et 10 heures (2 heures préféré) sous 0-30% volume de vapeur d'eau (environ 7,5% préféré pour une silice- alumine).
Le sel de métal est introduit par une des méthodes usuelles utilisées pour déposer le métal (de préférence du platine) à la surface d'un support. Une des méthodes préférées est l'imprégnation à sec qui consiste en l'introduction du sel de métal dans un volume de solution qui est égal au volume poreux de la masse de catalyseur à imprégner. Avant l'opération de réduction et pour obtenir la répartition en taille des particules métalliques, le catalyseur subit une calcination sous air humidifié à 300-750°C (550°C préféré) pendant 0,25-10 heures (2 heures préféré). La pression partielle d'H20 lors de la calcination est par exemple 0,05 bar à 0,50 bar (0,15 bar préférée). D'autres méthodes de traitement connues permettant d'obtenir la dispersion inférieure à 20% conviennent dans le cadre de l'invention.
Un autre catalyseur préféré pour l'invention comporte au moins un élément hydro- déshydrogénant (de préférence déposé sur le support) et un support comprenant (ou de préférence constitué par) au moins une silice-alumine, ladite silice-alumine possédant les caractéristiques suivantes : une teneur pondérale en silice SiO2 comprise entre 10 et 60% de préférence entre 20 et 60% et de manière encore plus préférée entre 20 et 50% poids ou
30-50% poids.
- une teneur en Na inférieure à 300 ppm poids et de préférence inférieure à 200 ppm poids, un volume poreux total compris entre 0.5 et 1.2 ml/g mesuré par porosimétrie au mercure,
- la porosité de ladite silice-alumine étant la suivante :
i/ Le volume des mésopores dont le diamètre est compris entre 40Â et 150Â, et dont le diamètre moyen varie entre 80 et 120 Â représente entre 30 et 80% du volume poreux total précédemment défini et de préférence entre 40 et 70%.
ii/ Le volume des macropores, dont le diamètre est supérieur à 500 Â, et de préférence compris entre 1000 Â et 10000 Â représente entre 20 et 80% du volume poreux total et de préférence entre 30 et 60% du volume poreux total et de manière encore plus préférée le volume des macropores représente au moins 35% du volume poreux total.
- une surface spécifique supérieure à 200 m2/g et de préférence supérieure à 250 m2/g.
Les mesures suivantes ont également été effectuées sur la silice-alumine :
Les diffractogrammes des silice-alumines de l'invention, obtenus par diffraction aux rayons X, correspondent à un mélange de la silice et de l'alumine avec une certaine évolution entre l'alumine gamma et la silice en fonction de la teneur en Si02 des échantillons. Dans ces silice-alumines on observe une alumine moins bien cristallisée par rapport à l'alumine seule.
Les spectres du RMN de 27AI des silice-alumines montrent deux massifs de pics distincts. Chaque massif peut être décomposé en au moins deux espèces. Nous observons une large domination des espèces dont le maximum résonne vers 10 ppm et qui s'étend entre 10 et 60 ppm. La position du maximum suggère que ces espèces sont essentiellement de type AIVι (octaédrique). Sur tous les spectres nous observons un deuxième de type d'espèce qui résonne vers 80-110 ppm. Ces espèces correspondraient aux atomes d'AI|V (tétraédrique). Pour des teneurs en silice de la présente invention (entre 10 et 60%), les proportions des AI| tétraédriques sont proches et s'établissent autour de 20 à 40%, et de manière préférée entre 24 et 31 %.
L'environnement du silicium des silice-alumines étudié par la RMN de 29Si montrent les déplacements chimiques des différentes d'espèces de silicium telles que Q4 (-105ppm à - 120 ppm), Q3 (-90ppm à -102 ppm) et Q2 (-75ppm à - 93 ppm). Les sites avec un déplacement chimique à -102 ppm peuvent être des sites de type Q3 ou Q4, nous les appelons dans ce travail sites Q3"4. Les silice-alumines de l'invention sont composées de silicium de types Q2, Q3, Q3"4 et Q4. De nombreuses espèces seraient de type Q2, approximativement de l'ordre de 30 à 50 %. La proportion des espèces Q3 est également importante, approximativement de l'ordre de 10 à 30 %. Les définitions des sites sont les suivantes : sites Q4 : Si lié à 4Si(ou Al) sites Q3 : Si lié à 3 Si(ou Al) et 1 OH sites Q^ : Si lié à 2 Si(ou Al) et 2 OH; - L'homogénéité des supports a été évaluée par Microscopie Electronique à Transmission. Nous cherchons par cette méthode à vérifier l'homogénéité de la répartition de Si et Al à l'échelle nanométrique. Les analyses sont réalisées sur des coupes ultra-fines des supports, par des sondes de taille différente, 50nm ou 15nm. Pour chaque solide étudié, 32 spectres sont enregistrés, dont 16 avec sonde de 50nm et 16 avec sonde à 15nm. Pour chaque spectre, des rapports atomiques Si/Ai sont ensuite calculés, avec les moyennes des rapports, le rapport minimum, le rapport maximum et l'écart type de la série. La moyenne des rapports Si/Ai mesurée par Microscopie Electronique à Transmission pour les différentes silice-alumines sont proches du rapport Si/Ai obtenu par
Fluorescence X. L'évaluation du critère homogénéité se fait sur la valeur de l'écart type.
Suivant ces critères, un grand nombre de silice-alumines de la présente invention peuvent être considérées comme hétérogènes car elles présentent des rapports atomiques Si/Ai avec des écarts types de l'ordre de 30-40%.
Le support peut être constitué de silice-alumine pure ou résulte du mélange avec ladite silice-alumine d'un liant tel que la silice (Si02), l'alumine (Al203), les argiles, l'oxyde de titane (TiO2), l'oxyde de bore (B203) et la zircone (ZrO2) et tout mélange des liants précédemment cités. Les liants préférés sont la silice et l'alumine et de manière encore plus préférée l'alumine sous toutes ces formes connues de l'homme du métier, par exemple l'alumine gamma. La teneur pondérale en liant dans le support du catalyseur est comprise entre 0 et 40%, plus particulièrement entre 1 et 40% et de manière encore plus préférée entre 5% et 20%. Il en résulte que la teneur pondérale en silice-alumine est de 60 - 100 %. Cependant, les catalyseurs dont le support est constitué uniquement de silice-alumine sans aucun liant sont préférés.
Le support peut être préparé par mise en forme de la silice-alumine en présence ou en absence de liant par toute technique connue de l'homme du métier. La mise en forme peut être réalisée par exemple par extrusion, par pastillage, par la méthode de la coagulation en goutte (oil-drop), par granulation au plateau tournant ou par toute autre méthode bien connue de l'homme du métier. Au moins une calcination peut être effectuée après l'une quelconque des étapes de la préparation, elle est habituellement effectuée sous air à une température d'au moins 150°C, de préférence au moins 300°C.
Enfin, dans un quatrième mode de réalisation préféré de l'invention, le catalyseur est un catalyseur bifonctionnel dans lequel un métal noble est supporté par un support essentiellement constitué d'un gel de silice-alumine amorphe et micro/mésoporeux avec une taille des pores contrôlée, présentant une surface d'au moins 500 m /g et un rapport molaire SiO2/AI2O3 compris entre 30/1 et 500/1 , de préférence entre 40/1 et 150/1.
Le métal noble supporté sur le support peut être choisi parmi les métaux des groupes 8, 9 et 10 de la classification périodique, en particulier Co, Ni, Pd et Pt. Le palladium et le platine sont utilisés de préférence. La proportion de métaux nobles est normalement comprise entre 0,05 et 5,0 % en poids par rapport au poids du support. Des résultats particulièrement avantageux ont été obtenus en utilisant du palladium et du platine dans des proportions comprises entre 0,2 et 1 ,0 % en poids.
Ledit support est généralement obtenu à partir d'un mélange d'hydroxyde d'ammonium tétra-alkylé, d'un composé d'aluminium qui peut être hydrolyse en Al203, d'un composé de silicium qui peut être hydrolyse en SiO2 et d'une quantité suffisante d'eau pour dissoudre et hydrolyser ces composés, ledit hydroxyde d'ammonium tétra-alkylé comportant 2 à 6 atomes de carbone dans chaque résidu d'alkyle, ledit composé d'aluminium hydrolysable étant de préférence un trialkoxyde d'aluminium comportant 2 à 4 atomes de carbone dans chaque résidu d'alkoxyde et ledit composé de silicium hydrolysable étant un tétra-alkylorthosilicate comportant 1 à 5 atomes de carbone pour chaque résidu d'alkyle.
II existe diverses méthodes permettant d'obtenir différents supports présentant les caractéristiques mentionnées ci-dessus, par exemple selon les descriptions présentées dans les demandes de brevets européens EP-A 340.868, EP-A 659.478 et EP-A 812.804. En particulier, une solution aqueuse des composés mentionnés ci-avant est hydrolysée et gélifiée en la chauffant, soit en atmosphère confinée pour la porter au point d'ébullition ou à une valeur supérieure, soit à l'air libre, au-dessous de cette température. Le gel ainsi obtenu est ensuite séché et calciné. L'hydroxyde d'ammonium tétra-alkylé qui peut être utilisé dans le cadre de la présente invention est par exemple choisi parmi les hydroxydes de tétraéthylammonium, de propylammoπium, d'isopropylammonium, de butylammonium, d'isobutyl-ammonium, de terbutylammonium et de pentylammonium, et de préférence parmi les hydroxydes de tétrapropylammonium, de tétra-isopropylammonium et de tétrabutyl-ammonium. Le trialkoxyde d'aluminium est par exemple choisi parmi le triéthoxyde, le propoxyde, l'isopropoxyde, le butoxyde, l'isobutoxyde et le terbutoxyde d'aluminium, de préférence parmi le tripropoxyde et le tri-isopropoxyde d'aluminium. L'orthosilicate tétra-alkylé est choisi par exemple parmi le tétraméthyl-, le tétraéthyl-, le propyl-, l'isopropyl-, le butyl-, l'isobutyl-, le terbutyl- et le pentyl-orthosilicate, le tétraéthyl- orthosilicate étant utilisé de préférence.
Selon une procédure typique pour la préparation du support une solution aqueuse contenant l'hydroxyde d'ammonium tétra-alkylé et le trialkoxyde d'aluminium est préparée dans un premier temps à une température suffisante pour garantir une dissolution effective du composé d'aluminium. L'orthosilicate tétra-alkylé est ajouté à ladite solution aqueuse. Ce mélange est porté à une température appropriée pour l'activation de la réaction d'hydrolyse. Cette température dépend de la composition du mélange réactionnel (généralement de 70 à 100°C). La réaction d'hydrolyse est exothermique, ce qui garantit une réaction auto-entretenue après activation. De plus, les proportions des constituants du mélange sont telles qu'elles respectent les rapports molaires suivants : Si02/AI2O3 de 30/1 à 500/1 , hydroxyde d'ammonium tétra-alkylé/Si02 de 0,05/1 à 0,2/1 , et H20/Si02 de 5/1 à 40/1. Les valeurs préférées pour ces rapports molaires sont les suivantes : Siθ2/AI203 de 40/1 à 150/1 , hydroxyde d'ammonium tétra-alkylé/SiO2 de 0,05/1 à 0,2/1 , et H2O/SiO2 de 10/1 à 25/1.
L'hydrolyse des réactifs et leur gélification sont effectuées à une température égale ou supérieure au point d'ébullition, à la pression atmosphérique, de tout alcool développé sous la forme de sous-produit de ladite réaction d'hydrolyse, sans élimination ou élimination significative de ces alcools du milieu réactionnel. La température d'hydrolyse et de gélification est de ce fait critique et elle est maintenue de manière appropriée à des valeurs supérieures à environ 65°C, de l'ordre d'environ 1 10°C. De plus, afin de maintenir le développement de l'alcool dans le milieu réactionnel, il est possible d'opérer dans un autoclave à la pression autogène du système à la température présélectionnée (normalement de l'ordre de 0,1 1 -0,15 MPa abs.), ou à la pression atmosphérique dans un réacteur équipé d'un condenseur à reflux.
Selon un mode de réalisation particulier du procédé, l'hydrolyse et la gélification sont effectuées en présence d'une quantité d'alcool supérieure à celle développée sous forme de sous-produit. A cet effet, un alcool libre, de préférence de l'éthanol, est ajouté au mélange réactionnel dans une proportion pouvant aller jusqu'à un rapport molaire maximum alcool ajouté/Si02 de 8/1.
Le temps requis pour mener à bien l'hydrolyse et la gélification dans les conditions indiquées ci-avant est normalement compris entre 10 minutes et 3 heures, de préférence entre 1 et 2 heures.
On a en outre découvert qu'il pouvait être utile de soumettre le gel ainsi obtenu à un vieillissement en maintenant le mélange réactionnel en présence d'alcool et dans des conditions de température environnementales pendant une durée de l'ordre de 1 à 24 heures.
L'alcool est finalement extrait du gel qui est ensuite séché, de préférence sous une pression réduite (de 3 à 6 kPa par exemple), à une température de 110°C. Le gel séché est ensuite soumis à un processus de calcination sous atmosphère oxydante (normalement dans de l'air), à une température comprise entre 500 et 700°C pendant 4 à 20 heures, de préférence à 500-600°C pendant 6 à 10 heures.
Le gel de silice et d'alumine ainsi obtenu présente une composition qui correspond à celle des réactifs utilisés, si l'on considère que les rendements réactionnels sont pratiquement complets. Le rapport molaire SiO2/AI2O3 est de ce fait compris entre 30/1 et 500/1 , de préférence entre 40/1 et 150/1 , les valeurs préférentielles étant de l'ordre de 100/1. Ce gel est amorphe, lorsqu'il est soumis à une analyse par diffraction X de poudres, il présente une surface d'au moins 500 m2/g, généralement comprise entre 600 et 850 m2/g, et un volume de pores de 0,4 à 0,8 cm3/g.
Un métal choisi parmi les métaux nobles des groupes 8, 9 ou 10 de la classification périodique est supporté sur le gel silice-alumine amorphe micro/mésoporeux obtenu comme décrit ci-avant. Comme indiqué plus haut, ce métal est de préférence choisi parmi le platine ou le palladium, le platine étant utilisé de préférence.
La proportion de métal noble, notamment le platine, au sein du catalyseur ainsi supporté est comprise entre 0,4 et 0,8 %, de préférence entre 0,6 et 0,8 % en poids par rapport au poids du support.
Il est avantageux de répartir le métal de manière uniforme sur la surface poreuse du support afin de maximiser la surface catalytique effectivement active. Différentes méthodes peuvent être mises en œuvre à cet effet, telles que celles décrites, par exemple, dans la demande de brevet européen EP-A 582.347 dont le contenu est mentionné ici à titre de référence. En particulier, selon la technique d'imprégnation, le support poreux présentant les caractéristiques du support acide (a) décrit ci- dessus est mis en contact avec une solution aqueuse ou d'alcool d'un composé du métal souhaité pendant une durée suffisante pour permettre une répartition homogène du métal dans le solide. Cette opération nécessite normalement quelques minutes à plusieurs heures, de préférence sous agitation. H2PtF6, H2PtCI6, [Pt(NH3) ]CI2, [Pt(NH3)4](OH)2 constituent par exemple des sels solubles appropriés à cet effet, ainsi que les sels analogues de palladium ; des mélanges de sels de différents métaux sont également utilisés dans le cadre de l'invention. Il est avantageux d'utiliser la quantité minimale de liquide aqueux (habituellement de l'eau ou un mélange aqueux avec un second liquide inerte ou avec un acide dans une proportion inférieure à 50 % en poids) nécessaire pour dissoudre le sel et d'imprégner uniformément ledit support, de préférence avec un rapport solution/support compris entre 1 et 3. La quantité de métal mise en œuvre est choisie en fonction de la concentration souhaitée dans le catalyseur, la totalité du métal étant fixée sur le support.
A l'issue de l'imprégnation, la solution est évaporée et le solide obtenu est séché et calciné sous atmosphère inerte ou réductrice, dans des conditions de température et de temps analogues à celles précédemment décrites pour la calcination du support.
Une autre méthode d'imprégnation s'effectue au moyen d'un échange d'ions. A cet effet, le support constitué de gel silice-alumine amorphe est mis en contact avec une solution aqueuse d'un sel du métal utilisé, comme dans le cas précédent, mais le dépôt s'effectue par échange d'ions, dans des conditions rendues basiques (pH compris entre 8,5 et 11 ) par l'ajout d'une quantité suffisante d'un composé alcalin, généralement un hydroxyde d'ammonium. Le solide en suspension est ensuite séparé du liquide par filtratioπ ou décantation, puis séché et calciné comme décrit ci-avant.
Selon une autre méthode encore, le sel du métal de transition peut être inclus dans le gel silice-alumine au cours de la phase de préparation, par exemple avant hydrolyse pour la formation du gel humide, ou avant sa calcination. Bien que cette dernière méthode soit avantageusement plus facile à mettre en œuvre, le catalyseur ainsi obtenu est légèrement moins actif et sélectif que celui obtenu avec les deux méthodes précédentes.
Le catalyseur supporté décrit ci-dessus peut être utilisé tel quel au cours de l'étape d'hydrocraquage du procédé selon la présente invention, après activation selon l'une des méthodes connues et/ou décrites ci-dessous. Toutefois, selon un mode de réalisation préféré, ledit catalyseur supporté est renforcé par l'adjonction avec mélange d'une quantité appropriée d'un solide minéral inerte capable d'améliorer ses propriétés mécaniques. En fait, le catalyseur est utilisé de préférence sous forme granulaire plutôt que sous forme de poudre avec une distribution des particules relativement serrée. De plus, il est avantageux que le catalyseur présente une résistance mécanique à la compression et aux chocs suffisante pour prévenir un écrasement progressif au cours de l'étape d'hydrocraquage.
On connaît également des méthodes d'extrusion et de mise en forme qui utilisent un additif inerte approprié (ou liant) capable d'apporter les propriétés mentionnées ci-dessus, par exemple, selon les méthodes décrites dans les demandes de brevets européens EP-A 550.922 et EP-A 665.055, cette dernière étant mise en œuvre de préférence, leur contenu étant mentionné ici à titre de référence.
Une méthode typique de préparation du catalyseur sous forme extrudée (EP-A 665.055) comporte les étapes suivantes : (a) la solution de composants hydrolysables obtenue comme décrit ci-avant est chauffée pour provoquer l'hydrolyse et la gélification de ladite solution et pour obtenir un mélange A présentant une viscosité comprise entre 0,01 et 100 Pa.sec ;
(b) un liant appartenant au groupe des bohémites ou des pseudobohémites est d'abord ajouté au mélange A, dans un rapport pondéral avec le mélange A compris entre 0,05 et 0,5, puis un acide minéral ou organique est ajouté dans une proportion comprise entre 0,5 et 8,0 g pour 100 g de liant ;
(c) le mélange obtenu en (b) est porté sous agitation à une température comprise entre 40° et 90°C jusqu'à obtention d'une pâte homogène qui est ensuite soumise à une étape d'extrusion et de granulation ; (d) le produit extrudé est séché et calciné sous atmosphère oxydante.
Des plastifiants tels que de la méthylcellulose sont également de préférence ajoutés au cours de l'étape (b) afin de favoriser la formation d'un mélange homogène facile à traiter.
Un support acide granulaire comportant de 30 à 70 % en poids de liant minéral inerte est ainsi obtenu, la proportion restante étant constituée de silice-alumine amorphe présentant essentiellement les mêmes caractéristiques de porosité, de surface et de structure que celles décrites ci-avant pour le même gel sans liant. Les granules se présentent avantageusement sous la forme de pastilles d'environ 2-5 mm de diamètre et de 2-10 mm de long.
L'étape de dépôt du métal noble sur le support acide granulaire est ensuite effectuée selon la même procédure que celle décrite plus haut.
Après les préparations (par exemple celles décrites dans les modes de réalisation ci-dessus) et avant utilisation dans la réaction de conversion, le métal contenu dans le catalyseur doit être réduit. Une des méthodes préférées pour conduire la réduction du métal est le traitement sous hydrogène à une température comprise entre 150°C et 650°C et une pression totale comprise entre 0,1 et 25 Mpa. Par exemple, une réduction consiste en un palier à 150°C de 2 heures puis une montée en température jusqu'à 450CC à la vitesse de 1°C/min puis un palier de 2 heures à 450°C; durant toute cette étape de réduction, le débit d'hydrogène est de 1000 I hydrogène/l catalyseur. Notons que toute méthode de réduction in situ ou ex-situ est convenable. De préférence et en particulier pour le catalyseur du dernier mode de réalisation préférée une méthode typique met en œuvre la procédure décrite ci-dessous :
1 ) 2 heures à température ambiante sous un courant d'azote ;
2) 2 heures à 50°C sous un courant d'hydrogène ; 3) chauffage à 310-360°C avec une vitesse d'élévation de la température de 3°C/min sous un courant d'hydrogène ;
4) température constante à 310-360°C pendant 3 heures sous un courant d'hydrogène et refroidissement à 200°C.
Au cours de l'activation, la pression au sein du réacteur est maintenue entre 30 et 80 atm.

Claims

REVENDICATIONS
1. Procédé pour la production des distillats moyens à partir d'une charge paraffinique produite par synthèse Fischer-Tropsch, et comprenant les étapes suivantes :
1.) Fractionnement (étape a) de la charge en au moins 3 fractions : au moins une fraction intermédiaire ayant un point d'ébullition initial T1 compris entre 120 et 200°C, et un point d'ébullition final T2 supérieur à 300°C et inférieur à 410°C, - au moins une fraction légère bouillant au-dessous de la fraction intermédiaire, au moins une fraction lourde bouillant au-dessus de la fraction intermédiaire. 2.) Hydrotraitement (étape b) d'au moins une partie de ladite fraction intermédiaire, puis passage (étape d) d'au moins une partie de la fraction hydrotraitée sur un catalyseur amorphe d'hydroisomérisation/hydrocraquage. 3.) Passage (étape f) d'une partie au moins de ladite fraction lourde sur un catalyseur amorphe d'hydrocraquage/hydroisomérisation avec une conversion des produits 370°C+ en produits 370°C moins supérieure à
80% poids. 4.) Distillation (étapes e et g) d'au moins une partie des fractions hydrocraquées/hydroisomérisées pour obtenir des distillais moyens.
2. Procédé selon la revendication 1 dans lequel la température T2 est inférieure à 370°C et supérieure à 300°C.
Procédé selon l'une des revendications précédentes dans lequel ladite fraction légère est envoyée au vapocraquage.
Procédé selon l'une des revendications précédentes dans lequel au moins une partie de l'eau est éliminée après hydrotraitement (étape c).
Procédé selon l'une des revendications précédentes dans lequel les contacts avec les catalyseurs d'hydroisomérisation / hydrocraquage des étapes (d) et (f ) sont réalisés sous une pression de 2 à 150 bars, avec une vitesse spatiale de 0,1 à 10h"1, le taux d'hydrogène étant compris entre 100 et 2000 Nl/I de charge et par heure, et la température étant de 200 à 450°C.
6. Procédé selon l'une des revendications précédentes dans lequel pour l'étape (d), la conversion des produits ayant des points d'ébullition supérieurs ou égal à 150°C en produits à points d'ébullition inférieurs à 150°C est inférieure à 50% poids.
Procédé selon l'une des revendications précédentes dans lequel pour l'étape (f), la conversion des produits à points d'ébullition supérieurs ou égal à 260°C en produits à points d'ébullition inférieurs à 260°C est d'au plus 90% poids.
Procédé selon l'une des revendications précédents dans lequel lors de l'étape de distillation, la fraction résiduelle bouillant au-dessus du gazole est recyclée dans l'étape (f) pour passer sur le catalyseur d'hydrocraquage / hydroisomerisation.
9. Procédé selon l'une des revendications précédents dans lequel lors de l'étape de distillation, au moins l'une des fractions kérosène, gazole est recyclée en partie dans au moins l'une des étapes (d) ou (f) pour passer sur le(s) catalyseur(s) d'hydrocraquage / hydroisomerisation.
10. Procédé selon l'une des revendications précédents dans lequel les catalyseurs des étapes (d) (f) sont des catalyseurs comprenant au moins un métal noble et un support silice-alumine.
11. Procédé selon l'une des revendications précédents dans lequel l'hydrotraitement est réalisé sur un catalyseur supporté comprenant au moins un métal du groupe VIII et/ou du groupe VI et au moins un élément déposé sur le support et choisi parmi le phosphore, le bore et le silicum.
12. Installation de production de distillats moyens comportant :
- au moins une zone (2) de fractionnement de la charge provenant d'une unité de synthèse Fischer-Tropsch ayant :
- au moins une tubulure (1 ) pour l'introduction de la charge, - au moins 3 tubulures pour la sortie des fractions séparées, l'une (3) pour la sortie d'une fraction légère bouillant au-dessous d'une fraction intermédiaire, une autre tubulure (4) pour la sortie d'une fraction intermédiaire à point d'ébullition initial T1 étant compris entre 120 et 200°C, et à point d'ébullition final T2 supérieur à 300°C et inférieur à 410°C et une autre tubulure (5) pour la sortie d'une fraction lourde bouillant au-dessus de la fraction intermédiaire, au moins une zone (8) d'hydrotraitement munie d'une conduite d'entrée d'au moins une partie de ladite fraction intermédiaire suivie d'au moins une zone (12) contenant un catalyseur d'hydrocraquage / hydroisomerisation munie d'une conduite pour l'introduction d'au moins une partie de ladite fraction hydrotraitée, au moins une zone (13) contenant un catalyseur d'hydrocraquage / hydroisomerisation munie d'une tubulure pour l'entrée d'au moins une partie de ladite fraction lourde,
- au moins une colonne à distiller (23, 24) munie d'au moins une tubulure pour l'introduction d'au moins une partie des fractions hydrocraquées et au moins une tubulure (16, 17, 20, 21) pour la sortie des distillats moyens. au moins une tubulure (3) amenant au moins une partie de ladite fraction légère dans une installation de vapocraquage (6).
13. Installation selon la revendication 12 comportant une tubulure (23) de recyclage d'une partie d'au moins l'une des fractions kérosène, gazole obtenues à la sortie de(s) colonne(s) (23, 24) à distiller les fractions hydrocraquées, vers au moins l'une des zones (12, 13) contenant un catalyseur d'hydrocraquage / hydroisomerisation.
PCT/FR2002/002207 2001-07-06 2002-06-26 Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de 2 fractions issues de charges provenant du procede fischer-tropsch WO2003004584A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02755093A EP1421157B1 (fr) 2001-07-06 2002-06-26 Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de 2 fractions issues de charges provenant du procede fischer-tropsch
US10/189,793 US7156978B2 (en) 2001-07-06 2002-07-08 Process for the production of middle distillates by hydroisomerisation and hydrocracking of two fractions from feeds originating from the fischer-tropsch process
NO20035837A NO335525B1 (no) 2001-07-06 2003-12-29 Fremgangsmåte for fremstilling av mellomdestillater fra en parafinfødestrøm fremstilt av Fischer-Tropsch prosessen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0108971A FR2826973B1 (fr) 2001-07-06 2001-07-06 Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de 2 fractions issues de charges provenant du procede fischer-tropsch
FR01/08971 2001-07-06

Publications (1)

Publication Number Publication Date
WO2003004584A1 true WO2003004584A1 (fr) 2003-01-16

Family

ID=8865186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/002207 WO2003004584A1 (fr) 2001-07-06 2002-06-26 Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de 2 fractions issues de charges provenant du procede fischer-tropsch

Country Status (7)

Country Link
US (1) US7156978B2 (fr)
EP (1) EP1421157B1 (fr)
FR (1) FR2826973B1 (fr)
MY (1) MY141718A (fr)
NO (1) NO335525B1 (fr)
RU (1) RU2283858C2 (fr)
WO (1) WO2003004584A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2888584A1 (fr) * 2005-07-18 2007-01-19 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch utilisant un lit de garde multifonctionnel
WO2008043066A2 (fr) * 2006-10-05 2008-04-10 Syntroleum Corporation Procédé pour produire un distillat moyen
FR2917419A1 (fr) * 2007-06-12 2008-12-19 Inst Francais Du Petrole Procede de production de distilltats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
WO2009034045A1 (fr) * 2007-09-10 2009-03-19 Shell Internationale Research Maatschappij B.V. Procédé d'hydrocraquage et d'hydroisomérisation d'une charge de départ paraffinique
WO2010015737A1 (fr) * 2008-08-08 2010-02-11 Ifp Procede de production de distillats moyens par hydrocraquage de charges issues du procédé fischer-tropsch en presence d'un catalyseur comprenant un solide izm-2

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2826972B1 (fr) * 2001-07-06 2007-03-23 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent produit par le procede fischer-tropsch
FR2826971B1 (fr) * 2001-07-06 2003-09-26 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
US6949180B2 (en) * 2002-10-09 2005-09-27 Chevron U.S.A. Inc. Low toxicity Fischer-Tropsch derived fuel and process for making same
NL1026215C2 (nl) * 2003-05-19 2005-07-08 Sasol Tech Pty Ltd Koolwaterstofsamenstelling voor gebruik in CI motoren.
US7354507B2 (en) * 2004-03-17 2008-04-08 Conocophillips Company Hydroprocessing methods and apparatus for use in the preparation of liquid hydrocarbons
US7323100B2 (en) * 2004-07-16 2008-01-29 Conocophillips Company Combination of amorphous materials for hydrocracking catalysts
US20080194901A1 (en) * 2004-12-23 2008-08-14 Michiel Cramwinckel Process To Prepare Two Iso Paraffinic Products From A Fischer-Tropsch Derived Feed
DE102005035988B4 (de) * 2005-07-28 2009-01-02 Wolf, Bodo Max, Dr.-Ing. Verfahren zur Erzeugung von flüssigen Kohlenwasserstoffen aus Gas
WO2008124852A2 (fr) * 2007-04-10 2008-10-16 Sasol Technology (Pty) Ltd Procédé fischer-tropsch pour la production de carburéacteur
US20080260631A1 (en) 2007-04-18 2008-10-23 H2Gen Innovations, Inc. Hydrogen production process
KR102321624B1 (ko) * 2014-05-23 2021-11-04 에스케이이노베이션 주식회사 디젤 수율을 극대화할 수 있는 rfcc 공정용 접촉분해촉매 및 이의 제조방법
RU2692491C2 (ru) 2014-07-28 2019-06-25 Сэсол Текнолоджи Пропрайэтери Лимитед Получение промысловых углеводородов
US10472581B2 (en) * 2016-06-30 2019-11-12 Uop Llc Process and apparatus for hydrocracking and hydroisomerizing a hydrocarbon stream

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297949A1 (fr) * 1987-07-01 1989-01-04 Institut Français du Pétrole Catalyseur comprenant un support minéral, du phosphore et du bore, méthodes de préparation et utilisation en hydroraffinage de coupes pétrolières
EP0321303A2 (fr) * 1987-12-18 1989-06-21 Exxon Research And Engineering Company Procédé d'isomérisation de cires en vue de la production d'hydro-distillats moyens
EP0537815A1 (fr) * 1991-09-12 1993-04-21 Shell Internationale Researchmaatschappij B.V. Procédé de préparation de distillats moyens
US5378348A (en) * 1993-07-22 1995-01-03 Exxon Research And Engineering Company Distillate fuel production from Fischer-Tropsch wax
EP1048346A1 (fr) * 1999-04-29 2000-11-02 Institut Francais Du Petrole Catalyseur à base de métal noble faiblement dispersé et son utilisation pour la conversion de charges hydrocarbonées
EP1101813A1 (fr) * 1999-11-19 2001-05-23 AGIP PETROLI S.p.A. Procédé pour la préparation de distillats moyens à partir de paraffines linéaires

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832819A (en) * 1987-12-18 1989-05-23 Exxon Research And Engineering Company Process for the hydroisomerization and hydrocracking of Fisher-Tropsch waxes to produce a syncrude and upgraded hydrocarbon products
DK0583836T4 (da) * 1992-08-18 2002-03-11 Shell Int Research Fremgangsmåde til fremstilling af carbonhydridbrændstoffer
CA2104044C (fr) * 1992-08-25 2004-11-02 Johan W. Gosselink Procede pour la preparation d'olefines inferieures
DE69711348T2 (de) * 1996-12-17 2002-10-24 Inst Francais Du Petrole Bor und Silicium enthaltender Katalysator und Anwendung dieses in der Hydrobehandlung von Kohlenwasserstoffeinsätzen
US6113775A (en) * 1997-12-05 2000-09-05 Uop Llc Split end hydrocracking process
ES2219103T3 (es) * 1999-04-06 2004-11-16 Sasol Technology (Pty) Ltd Procedimiento para la produccion de carburante sintetico de nafta.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297949A1 (fr) * 1987-07-01 1989-01-04 Institut Français du Pétrole Catalyseur comprenant un support minéral, du phosphore et du bore, méthodes de préparation et utilisation en hydroraffinage de coupes pétrolières
EP0321303A2 (fr) * 1987-12-18 1989-06-21 Exxon Research And Engineering Company Procédé d'isomérisation de cires en vue de la production d'hydro-distillats moyens
EP0537815A1 (fr) * 1991-09-12 1993-04-21 Shell Internationale Researchmaatschappij B.V. Procédé de préparation de distillats moyens
US5378348A (en) * 1993-07-22 1995-01-03 Exxon Research And Engineering Company Distillate fuel production from Fischer-Tropsch wax
EP0635557A1 (fr) * 1993-07-22 1995-01-25 Exxon Research And Engineering Company Production d'huile combustible de distillation
EP1048346A1 (fr) * 1999-04-29 2000-11-02 Institut Francais Du Petrole Catalyseur à base de métal noble faiblement dispersé et son utilisation pour la conversion de charges hydrocarbonées
EP1101813A1 (fr) * 1999-11-19 2001-05-23 AGIP PETROLI S.p.A. Procédé pour la préparation de distillats moyens à partir de paraffines linéaires

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010126A3 (fr) * 2005-07-18 2007-03-15 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch utilisant un lit de garde multifonctionnel
FR2888584A1 (fr) * 2005-07-18 2007-01-19 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch utilisant un lit de garde multifonctionnel
US7658836B2 (en) 2005-07-18 2010-02-09 Institut Francais Du Petrole Process for producing middle distillates by hydroisomerizing and hydrocracking feeds from the Fischer-Tropsch process using a multifunctional guard bed
WO2008043066A2 (fr) * 2006-10-05 2008-04-10 Syntroleum Corporation Procédé pour produire un distillat moyen
WO2008043066A3 (fr) * 2006-10-05 2008-12-18 Syntroleum Corp Procédé pour produire un distillat moyen
US8709234B2 (en) 2007-06-12 2014-04-29 IFP Energies Nouvelles Process for producing middle distillates by hydroismerizing and hydrocracking a heavy fraction from a fischer-tropsch effluent
FR2917419A1 (fr) * 2007-06-12 2008-12-19 Inst Francais Du Petrole Procede de production de distilltats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
WO2009004179A3 (fr) * 2007-06-12 2009-02-19 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
WO2009034045A1 (fr) * 2007-09-10 2009-03-19 Shell Internationale Research Maatschappij B.V. Procédé d'hydrocraquage et d'hydroisomérisation d'une charge de départ paraffinique
AU2008297217B2 (en) * 2007-09-10 2011-04-28 Shell Internationale Research Maatschappij B.V. A process for hydrocracking and hydro-isomerisation of a paraffinic feedstock
US8142644B2 (en) 2007-09-10 2012-03-27 Shell Oil Company Process for hydrocracking and hydro-isomerisation of a paraffinic feedstock
FR2934794A1 (fr) * 2008-08-08 2010-02-12 Inst Francais Du Petrole Procede de production de distillats moyens par hydrocraquage de charges issues du procede fischer-trospch en presence d'un catalyseur comprenant un solide izm-2
WO2010015737A1 (fr) * 2008-08-08 2010-02-11 Ifp Procede de production de distillats moyens par hydrocraquage de charges issues du procédé fischer-tropsch en presence d'un catalyseur comprenant un solide izm-2
US9586828B2 (en) 2008-08-08 2017-03-07 Eni S.P.A. Process for producing middle distillates by hydrocracking of feedstocks obtained by the fischer-tropsch process in the presence of a catalyst comprising an IZM-2 solid

Also Published As

Publication number Publication date
EP1421157A1 (fr) 2004-05-26
FR2826973B1 (fr) 2005-09-09
NO335525B1 (no) 2014-12-22
MY141718A (en) 2010-06-15
RU2283858C2 (ru) 2006-09-20
US7156978B2 (en) 2007-01-02
NO20035837L (no) 2004-03-04
EP1421157B1 (fr) 2012-08-15
RU2004103463A (ru) 2005-08-10
FR2826973A1 (fr) 2003-01-10
US20030057133A1 (en) 2003-03-27

Similar Documents

Publication Publication Date Title
EP1406990B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage en 2 etapes de charges issues du procede fischer-tropsch
EP1406989B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent produit par le procede fischer-tropsch
EP1421157B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de 2 fractions issues de charges provenant du procede fischer-tropsch
EP1406988B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
EP1048346B1 (fr) Catalyseur à base de métal noble faiblement dispersé et son utilisation pour la conversion de charges hydrocarbonées
FR2718145A1 (fr) Procédé de traitement avec hydroisomérisation de charges issues du procédé fischer-tropsch.
EP0515256A1 (fr) Procédé d'hydromérisation de paraffines issues du procédé Fischer-Tropsch à l'aide de catalyseurs à base de zéolithe H.Y
FR2797883A1 (fr) Procede de production d'huiles ayant un indice de viscosite eleve
EP1346010B2 (fr) Procede flexible ameliore de production de bases huiles et de distillats par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique
FR2926087A1 (fr) Procede multietapes de production de distillats moyens par hydroisomerisation et hydrocraquage d'un effluent produit par le procede fischer-tropsch
FR2799202A1 (fr) Procede de production d'essences a indice d'octane ameliore
WO2009106704A2 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage sequences d'un effluent produit par le procede fischer-tropsch
EP1462168A1 (fr) Catalyseur et son utilistion pour l'amélioration du point d'écoulement de charges hydrocarbonnées
FR2989381A1 (fr) Production de distillats moyens a partir d'un effluent issu de la synthese fischer-tropsch comprenant une etape de reduction de la teneur en composes oxygenes
FR2805543A1 (fr) Procede flexible de production de bases huiles et distillats moyens avec une conversion-hydroisomerisation suivie d'un deparaffinage catalytique
WO2005012461A1 (fr) Procede d'amelioration du point d'ecoulement de charges hydrocarbonees issues du procede fischer-tropsch utilisant un catalyseur a base d'un melange de zeolithes
FR2805542A1 (fr) Procede flexible de production de bases huiles et de distillats par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique
FR2950896A1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch mettant en oeuvre un catalyseur a base de carbure de silicium
WO2005012460A1 (fr) Procede d'amelioration du point d'ecoulement de charges hydrocarbonees issues du procede fischer-tropsch, utilisant un catalyseur a base de zeolithe zbm-30
FR2792946A1 (fr) Procede de production de bases huiles et de distillats moyens a partir de charges hydrocarbonees par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique
EP1462166A1 (fr) Catalyseur et son utilisation pour l'amélioration du point d'écoulement de charges hydrocarbonnées
FR2792945A1 (fr) Procede de production de bases huiles et distillats moyens avec une conversion-hydroisomerisation suivie d'un deparaffinage catalytique
FR3084084A1 (fr) Procede de production d'olefines et de distillats moyens a partir d'un effluent hydrocarbone issu de la synhtese fischer-tropsch
FR2989380A1 (fr) Procede optimise de production de distillats moyens a partir d'une charge issue du procede fischer-tropsch contenant une quantite limitee de composes oxygenes
FR2797270A1 (fr) Procede et flexible de production de bases huiles et eventuellement de distillats moyens de tres haute qualite

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002755093

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002755093

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP