WO2003004182A2 - Procede et dispositif pour accelerer la decomposition de la matiere organique biogene dans des decharges a ordures - Google Patents

Procede et dispositif pour accelerer la decomposition de la matiere organique biogene dans des decharges a ordures Download PDF

Info

Publication number
WO2003004182A2
WO2003004182A2 PCT/DE2002/002331 DE0202331W WO03004182A2 WO 2003004182 A2 WO2003004182 A2 WO 2003004182A2 DE 0202331 W DE0202331 W DE 0202331W WO 03004182 A2 WO03004182 A2 WO 03004182A2
Authority
WO
WIPO (PCT)
Prior art keywords
suction
gas
landfill
area
decomposition
Prior art date
Application number
PCT/DE2002/002331
Other languages
German (de)
English (en)
Other versions
WO2003004182A3 (fr
Inventor
Jürgen Kanitz
Jürgen FORSTING
Original Assignee
A3-Abfall, Abwasser-Anlagentechnik Gmbh
Stadtreinigung Hamburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A3-Abfall, Abwasser-Anlagentechnik Gmbh, Stadtreinigung Hamburg filed Critical A3-Abfall, Abwasser-Anlagentechnik Gmbh
Priority to AT02745151T priority Critical patent/ATE464955T1/de
Priority to EP02745151A priority patent/EP1399275B1/fr
Priority to US10/480,860 priority patent/US7364387B2/en
Priority to DE50214388T priority patent/DE50214388D1/de
Priority to JP2003510186A priority patent/JP2004532736A/ja
Priority to DK02745151T priority patent/DK1399275T3/da
Publication of WO2003004182A2 publication Critical patent/WO2003004182A2/fr
Publication of WO2003004182A3 publication Critical patent/WO2003004182A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B1/00Dumping solid waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B1/00Dumping solid waste
    • B09B1/006Shafts or wells in waste dumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/90Apparatus therefor
    • C05F17/964Constructional parts, e.g. floors, covers or doors
    • C05F17/971Constructional parts, e.g. floors, covers or doors for feeding or discharging materials to be treated; for feeding or discharging other material
    • C05F17/979Constructional parts, e.g. floors, covers or doors for feeding or discharging materials to be treated; for feeding or discharging other material the other material being gaseous
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/18Open ponds; Greenhouse type or underground installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the invention relates to a method for accelerating the degradation of biogenic organics in landfills, in which the waste is stored in a heap piled up on a landfill site, into which at least one suction line is drawn, via which landfill gases produced in the heap are sucked off.
  • the invention further relates to a device for performing the aforementioned method, with at least one suction line drawn into the heap and extending to the landfill base area, at least one sensor for analyzing and measuring the concentration of the gases generated in the heap and a control device for adjusting the suction power, namely the flow rate of the extracted gases in the suction line (s) as a function of the gases detected via the sensor (s) and their concentrations.
  • Waste is understood to mean mixtures which consist of household waste or commercial waste similar to household waste and which, in addition to non-decomposable inorganic constituents, have organic constituents which decompose aerobically in the presence of oxygen and sufficient moisture and anaerobically in the absence of oxygen.
  • landfill gas extraction In order to minimize this danger, landfill gas extraction must be carried out for several years according to the state of the art.
  • landfill gas exhausts are carried out over existing suction pipes, wells or the like over the entire height of the heap, with the suction power being regulated according to the amount of landfill gas produced.
  • the runtime until the biodegradable organics are almost completely broken down should be significantly reduced, usually less than 10 years.
  • the main idea of the present invention is based on the fact that aerobic conditions are set in the pile under which the biological degradation processes take place much faster than under anaerobic conditions.
  • aerobic conditions are forcibly established in the stacked pile after some time. Oxygen is sucked in through the outside air through the landfill jacket.
  • the suction takes place in the lower landfill area, preferably in the lower third instead, ie preferably in a zone that is generally up to a height of 6 m above the landfill bottom in the gas-filled area.
  • the suction should be close to the base and - as far as possible - not be extended upwards over the range mentioned.
  • the height of the extraction zone also depends on the height of the stacked pile.
  • the landfill is suctioned over, with a few suction levels being arranged in the central area of the landfill in such a way that an approximately constant vacuum is applied to the landfill through suction.
  • the landfill is sucked over in such a way that the flow velocity in the landfill decreases significantly from the suction levels to the outside areas in which outside air flows in. Due to the low flow velocity in large areas, there is no local overheating, the formation of shrinkage cracks or other channels through which air preferably flows.
  • the method according to the invention can then also be combined with previously practiced methane gas extraction measures if, in the case of existing suction lines or wells, the filter and suction area is converted to the lowest area, preferably the lower third, by suitable technical measures.
  • Landfill gas with a correspondingly high methane content is then pumped out until the methane content in the gas drops to a value above which economic use of the methane, e.g. due to combustion in a combined heat and power plant, no longer exists.
  • filters should remain in the well (multilevel well) at different heights, but outside the retracted pipe, these filter cartridges are arranged in a bed of filter gravel. Clay barriers are provided between these filter gravel beds or the filter candles, so that it is ensured that the landfill gas development can be controlled by gas sampling at different landfill heights using these sensors. The landfill gas development and its composition then indicate whether the desired extraction power has been selected large enough to adequately ventilate the landfill mover over the entire volume.
  • the gas suction is carried out exclusively in the area of the landfill base, preferably in the lower third of the pile and / or in a zone in the gas-filled area (unsaturated area) which preferably extends up to a maximum of 6 m above the landfill base. At least essentially no gas extraction should take place above the predefined zone, unless it is a matter of smaller gas samples taken via filter candles, with which the gas composition is examined depending on the height of the pile in order to subsequently increase or increase the extraction capacity in the lower landfill area humiliate.
  • the gas extraction is preferably carried out at a plurality of locations which are arranged in the basic landfill area and which are preferably preferably equidistant from one another. This takes into account the fact that landfills usually extend over a large area, so that a correspondingly large number of suction lines or wells are appropriate.
  • the gas composition is measured at different heights in the heap at different locations, the measurement is evaluated and the suction power is controlled as a function of this, so that an oxygen content necessary for aerobic decomposition occurs at every location in the heap.
  • the flow rates of the extracted landfill gas can be varied individually in each suction line or in each well in order to ventilate areas with even more anaerobic decomposition and to optimize the aerobic decomposition.
  • the described method is carried out by means of the device according to claim 5, which according to the invention is characterized in that the suction opening of the suction line (s) is / are arranged in the area of the landfill base, preferably in an area which is in the lower third of the pile or in an area that extends from the landfill site to a maximum of 6 m above the landfill site.
  • the suction opening of the suction line (s) is / are arranged in the area of the landfill base, preferably in an area which is in the lower third of the pile or in an area that extends from the landfill site to a maximum of 6 m above the landfill site.
  • several suction lines in particular equidistantly arranged, are drawn into the pile.
  • a plurality of suction lines are installed in such a way that their position, distance and suction power are selected such that the effective suction areas at least touch, preferably slightly overlap.
  • the suction power can be regulated individually in each suction line, preferably controllable as a function of the gas concentration measured in its relevant effective range.
  • the upper part of the suction lines (in which no landfill gas is to be extracted) has a gas-tight jacket and an external sound barrier to prevent a gas short circuit parallel to the unslit suction pipe.
  • Fig. 1 shows a cross section through a pit
  • Fig. 2 shows a partial cross section through a multilevel fountain
  • waste is piled up in a pit (10) to form a heap (11) (landfill), which is closed at the top by a natural cover (12), for example in the form of a landfill green.
  • a heap (11) (landfill), which is closed at the top by a natural cover (12), for example in the form of a landfill green.
  • two bores (13) and (14) are provided, into each of which tubes (16) with a closed jacket are drawn.
  • two filter tubes (17) are also provided, around which a gas-permeable gravel bed (18) is arranged.
  • Clay barriers (19) located above or in between are intended to prevent gas from bypassing the landfill past the full pipe or through the filter gravel layer is sucked directly into the suction well and thus the effectiveness of the suction well (suction regions) is reduced.
  • gas can only be drawn off through the gravel filters and with the corresponding filter and the corresponding full-casing pipes (16) and (17) by means of a motor-driven pump (20).
  • a motor-driven pump (20) In order to ensure that gas flows through the landfill close to the base, it must be ensured that only the lower filter section / gravel bed, under which the clay barrier separating the two gravel layers, is extracted.
  • This can be achieved by lining the upper filter section with a liner.
  • the liner can be arranged to be height-adjustable (FIG. 1). This is advantageous because, for example, an upper filter layer (18) can be closed off and the suction can be moved even further into the depth.
  • the wells can extend below the groundwater level so that groundwater samples can be taken using appropriate additional suction lines or pressure pumps.
  • the two wells (13) and (14) extend below the bottom of the landfill and can end below the water table in order to be able to take water samples using suitable pumps.
  • wells (13, 14) or suction lines which are connected to a single or more suction systems, are evenly distributed over the entire landfill area, which can be several hectares.
  • the suction power of the entire system is achieved via suction motors controlled by frequency converters.
  • the gas flow can be controlled in such a way that an approximately uniform vacuum is established in the heap (11). This is achieved by selecting the suction power so high that more gas is demanded than is generated by decomposition processes. So far, suction power has been achieved that was approximately 30 times higher than the gas formation rates measured before the start of aerobization under anaerobic conditions.
  • air permeability of the cover (12) air, and thus oxygen as a component thereof, flows into the heap (11) from the external environment of the landfill. This air must pass through the landfill material so that - apart from small-volume sampling - the gas extraction is locally limited to the area above the landfill site (21), for example the lower third of the layer height. Controlled gas exchange can be achieved in large parts of the landfill body by regulating the flow rate in each suction line.
  • the gas samples taken via the filter candles (22) preferably in each of the existing wells or from the extracted gas at the top of the well head or preferably from separately constructed multi-level wells (FIG. 2) can be used to determine the gas composition and the amount of landfill gas generated per unit of time Determine spatial aspects, so that in the event of any deviations from the desired optimal state, the amount of landfill gas extracted can be increased or decreased locally.
  • the measuring sensors (22) or filter candles thus supply the respective manipulated variable for the pump power to be used.
  • a height-adjustable solid jacket pipe can be slidably arranged in a suction well, with which gas suction in the area of the upper gravel fill (18) can be excluded and suction on the lower gravel fill (18) is limited.
  • a displaceable pipe is provided or at what height above the landfill base (21) the essentially only relevant gas extraction is carried out depends essentially on the gas permeability of the heap (11), the maximum possible extraction capacity and the type of decomposition can still run anaerobically and / or aerobically.
  • the aim is in any case as uniform as possible aerobic decomposition, in which the decomposition proceeds many times faster than in the case of anaerobic decomposition.
  • the gas composition and the negative pressure in the landfill body which is set up at different depths are recorded using separate multilevel wells (FIG. 2).
  • Gravel (18) and cohesive clay (19) are placed in layers in a non-cased bore, preferably in 1-meter layers.
  • a filter candle with a measuring gas hose is installed in the gravel layers up to the top of the site during the graveling. Due to the layers of clay, the individual layers of gravel are pneumatically separated.
  • Gas can be drawn off from the individual, discrete layers for analysis via the individual sample gas hoses.
  • the negative pressure in the individual layers can be recorded.
  • the gas formation rate under anaerobic conditions was approximately 30 m3 / h.
  • the methane concentration was approx. 30 vol%.
  • the gas was extracted from an extraction system with 28 gas wells.
  • the reduction in methane content is based, on the one hand, on the transfer of areas through which atmospheric oxygen flows, from the anaerobic to the aerobic state and thus the reduction in methane formation, and on the other hand, a dilution effect also comes into play.
  • the C02 concentration is largely based on the implementation of biogenic organics with the registered atmospheric oxygen.
  • the aim of this aerobization measure is to convert the anaerobic conversion of the organics, which is accompanied by methane formation, into a much faster and more intensive aerobic conversion, which is accompanied by carbon dioxide.
  • Critical emission paths are prevented by, on the one hand, preventing the risk of explosion from methane and, on the other hand, by rapidly reducing aerobic degradation, the carbon in the leachate, measured as COD, is greatly reduced.
  • the measures described are suitable for pit dumps as well as for dump sites.
  • the present invention also encompasses those areas of application in which, particularly in the case of landfills with a high (pile) height, the landfill is divided into several “horizontal areas” by intermediate layers of cohesive material (clay, clay or similar substances). In such cases, each horizontal area must be viewed as a "separate landfill". The individual horizontal areas are then determined by preliminary tests, in which gas suction is carried out and specific gas concentration measurements are carried out, in which gas suctionings are then carried out in accordance with the procedure according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

L'invention concerne un procédé et un dispositif permettant d'accélérer la décomposition de matière organique biogène dans des décharges à ordures. Selon ce procédé, au moins une conduite d'aspiration est introduite dans les déchets d'une décharge, conduite par l'intermédiaire de laquelle les gaz dégagés par les déchets de la décharge sont aspirés. Selon l'invention, le volume de gaz aspiré dans la zone du fond de la décharge doit être supérieur au volume de gaz dégagés dans cette zone par décomposition, de sorte que de l'oxygène entre dans les déchets par l'intermédiaire de l'air extérieur et que le processus de décomposition soit changé en une décomposition dans une large mesure aérobie.
PCT/DE2002/002331 2001-06-29 2002-06-26 Procede et dispositif pour accelerer la decomposition de la matiere organique biogene dans des decharges a ordures WO2003004182A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT02745151T ATE464955T1 (de) 2001-06-29 2002-06-26 Verfahren und vorrichtung zur beschleunigung des abbaus biogener organik in abfalldeponien
EP02745151A EP1399275B1 (fr) 2001-06-29 2002-06-26 Procede et dispositif pour accelerer la decomposition de la matiere organique biogene dans des decharges a ordures
US10/480,860 US7364387B2 (en) 2001-06-29 2002-06-26 Method and device for accelerating the decomposition of biogenic organic matter in refuse disposal sites
DE50214388T DE50214388D1 (de) 2001-06-29 2002-06-26 Verfahren und vorrichtung zur beschleunigung des abbaus biogener organik in abfalldeponien
JP2003510186A JP2004532736A (ja) 2001-06-29 2002-06-26 廃棄物処分場における生物源有機物の分解を促進するための方法および装置
DK02745151T DK1399275T3 (da) 2001-06-29 2002-06-26 Fremgangsmåde og indretning til acceleration af nedbrydningen af biogent organisk materiale i affaldsdepoter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10131026.9 2001-06-29
DE10131026A DE10131026A1 (de) 2001-06-29 2001-06-29 Verfahren und Vorrichtung zur Beschleunigung des Abbaus biogener Organik in Abfalldeponien

Publications (2)

Publication Number Publication Date
WO2003004182A2 true WO2003004182A2 (fr) 2003-01-16
WO2003004182A3 WO2003004182A3 (fr) 2003-07-31

Family

ID=7689659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002331 WO2003004182A2 (fr) 2001-06-29 2002-06-26 Procede et dispositif pour accelerer la decomposition de la matiere organique biogene dans des decharges a ordures

Country Status (10)

Country Link
US (1) US7364387B2 (fr)
EP (1) EP1399275B1 (fr)
JP (1) JP2004532736A (fr)
AT (1) ATE464955T1 (fr)
CY (1) CY1110203T1 (fr)
DE (2) DE10131026A1 (fr)
DK (1) DK1399275T3 (fr)
ES (1) ES2344053T3 (fr)
PT (1) PT1399275E (fr)
WO (1) WO2003004182A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110631A1 (fr) * 2004-05-11 2005-11-24 Cdm Consult Gmbh Fontaines de gaz et procede pour ameliorer des fontaines de gaz situees dans des decharges
JP2006061793A (ja) * 2004-08-25 2006-03-09 Taisei Corp 廃棄物最終処分場
EP2933029A1 (fr) 2014-04-17 2015-10-21 Jürgen Kanitz Procédé pour rendre étanche des zones particulières d'un puits d'aspiration dans une décharge.

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7623115B2 (en) * 2002-07-27 2009-11-24 Sony Computer Entertainment Inc. Method and apparatus for light input device
CN1332769C (zh) * 2005-01-12 2007-08-22 北京煜立晟科技有限公司 快速降解固体垃圾的方法
JP4649657B2 (ja) * 2005-06-02 2011-03-16 学校法人福岡大学 廃棄物の埋立処分方法、及び廃棄物埋立構造
US8329455B2 (en) 2011-07-08 2012-12-11 Aikan North America, Inc. Systems and methods for digestion of solid waste
DE112011105494A5 (de) * 2011-08-01 2014-05-22 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Anordnung zur in situ Messung mindestens des Sauerstoffgehalts innerhalb einer Feststoffhalde
EP2705909B1 (fr) * 2012-09-05 2018-08-08 Joachim Lehner Procédé de dégradation du potentiel de réaction organique par aspiration contrôlée de gaz de décharge
DE102022001688A1 (de) 2022-05-13 2023-11-16 DEPOSERV lngenieurgesellschaft mbH Verfahren zur Absaugung von Deponiegas mittels Übersaugung und Vorrichtung zur Durchführung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837153A (en) * 1984-08-22 1989-06-06 Laurenson Jr John G Compost air injection and evacuation system with improved air control
US5632798A (en) * 1993-12-09 1997-05-27 Compost Technologies, Inc. Method for accelerated aerobic decomposition of vegetative organic waste material
US6024513A (en) * 1996-11-14 2000-02-15 American Technologies Inc Aerobic landfill bioreactor
DE10005243A1 (de) * 2000-02-05 2001-08-23 Rainer Stegmann Verfahren zur abgestuften beschleunigten in situ-Stabilisierung von Deponien und Altablagerungen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3513852C2 (de) * 1985-04-17 1997-03-06 Von Ludowig Gmbh Verfahren zum Entsorgen von organischen Abfällen
GB9106191D0 (en) * 1991-03-22 1991-05-08 Westpile Int Uk Ltd Improvements in venting of landfill and control of leachate
DE4110026A1 (de) * 1991-03-27 1992-10-01 Peter Ueberall Biologische klaeranlage mit biologisch inertem gasumlauf
DE4211667A1 (de) * 1992-04-07 1993-10-14 Dyckerhoff & Widmann Ag Verfahren zur Behandlung von Abfall, insbesondere Hausmüll, in einem zumindest teilweise umschlossenen Abfallkörper, z. B. einer Deponie
AT403480B (de) * 1995-01-24 1998-02-25 Porr Umwelttechnik Verfahren zum mikrobiologischen abbau und/oder stabilisieren von zumindest zeitweise anaerob fermentierten gemischen
US5642630A (en) * 1996-01-16 1997-07-01 Abdelmalek; Fawzy T. Process for solids waste landfill gas treatment and separation of methane and carbon dioxide
DE19721412C2 (de) * 1997-05-22 2000-05-04 U T G Ges Fuer Umwelttechnik M Reaktor zur Verrottung und Trocknung feuchter Abfälle
DE19959635A1 (de) * 1998-12-11 2000-06-15 Pangas Kriens Verfahren zur Behandlung von Mülldeponien durch Eintrag eines sauerstoffhaltigen Gases
AT408444B (de) * 2000-03-24 2001-11-26 Porr Umwelttechnik Gmbh Vorrichtung zur aeroben fermentation von biologischen substanzen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837153A (en) * 1984-08-22 1989-06-06 Laurenson Jr John G Compost air injection and evacuation system with improved air control
US5632798A (en) * 1993-12-09 1997-05-27 Compost Technologies, Inc. Method for accelerated aerobic decomposition of vegetative organic waste material
US6024513A (en) * 1996-11-14 2000-02-15 American Technologies Inc Aerobic landfill bioreactor
DE10005243A1 (de) * 2000-02-05 2001-08-23 Rainer Stegmann Verfahren zur abgestuften beschleunigten in situ-Stabilisierung von Deponien und Altablagerungen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KNAUF S ET AL: "KOMPOSTMIETEN - GEGENUEBERSTELLUNG VERSCHIEDENER BELUEFTUNGSVARIANTEN" KORRESPONDENZ ABWASSER, ABWASSERTECHNISCHE VEREINIGUNG, ST. AUGUSTIN, DE, Bd. 43, Nr. 3, 1. März 1996 (1996-03-01), Seiten 428-432,434-435, XP000692899 ISSN: 0341-1540 *
See also references of EP1399275A2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110631A1 (fr) * 2004-05-11 2005-11-24 Cdm Consult Gmbh Fontaines de gaz et procede pour ameliorer des fontaines de gaz situees dans des decharges
JP2006061793A (ja) * 2004-08-25 2006-03-09 Taisei Corp 廃棄物最終処分場
EP2933029A1 (fr) 2014-04-17 2015-10-21 Jürgen Kanitz Procédé pour rendre étanche des zones particulières d'un puits d'aspiration dans une décharge.
DE102014005736A1 (de) 2014-04-17 2015-10-22 Jürgen Kanitz Verfahren zum Abdichten von einzelnen Bereichen eines in einer Deponie angeordneten Gasbrunnens

Also Published As

Publication number Publication date
CY1110203T1 (el) 2015-01-14
US20040175819A1 (en) 2004-09-09
ATE464955T1 (de) 2010-05-15
DE10131026A1 (de) 2003-01-09
JP2004532736A (ja) 2004-10-28
PT1399275E (pt) 2010-07-09
EP1399275A2 (fr) 2004-03-24
WO2003004182A3 (fr) 2003-07-31
US7364387B2 (en) 2008-04-29
EP1399275B1 (fr) 2010-04-21
ES2344053T3 (es) 2010-08-17
DK1399275T3 (da) 2010-07-19
DE50214388D1 (de) 2010-06-02

Similar Documents

Publication Publication Date Title
DE69220351T2 (de) Mobile Vorrichtung zur Dekontaminierung von Material
DE69125867T2 (de) Verfahren und Vorrichtung zur In-Situ-Bodensanierung
CA2320542C (fr) Fonctionnement sequentiel aerobie/anaerobie d'une decharge pour dechets solides
US6481929B1 (en) Aerobic bioreduction of municipal solid waste landfill mass
EP1399275B1 (fr) Procede et dispositif pour accelerer la decomposition de la matiere organique biogene dans des decharges a ordures
EP2705909B1 (fr) Procédé de dégradation du potentiel de réaction organique par aspiration contrôlée de gaz de décharge
EP1744841B1 (fr) Fontaine de gaz et procede pour ameliorer des fontaines de gaz situees dans des decharges
CN109248914A (zh) 一种有机污染土壤的生物修复方法和装置
DE4211667A1 (de) Verfahren zur Behandlung von Abfall, insbesondere Hausmüll, in einem zumindest teilweise umschlossenen Abfallkörper, z. B. einer Deponie
DE60006696T2 (de) Behandlung von oxidierbarem deponiegas
DE4131216C2 (de) Verfahren zur Vermeidung einer Explosions- oder Vergiftungsgefahr bei der Entfernung eines im Boden über oder an einer Grundwasseroberfläche enthaltenen Schadstoffes
DE19959635A1 (de) Verfahren zur Behandlung von Mülldeponien durch Eintrag eines sauerstoffhaltigen Gases
DE3880148T2 (de) Verfahren zur in situ-biodegradierung von mit kohlenwasserstoffen verseuchtem boden.
DE3535328A1 (de) Sanierung von deponien
DE2317441A1 (de) Verfahren und vorrichtung zum verhindern der umweltverschmutzung
EP0564434B2 (fr) Agencement et procédure pour la stabilisation de l'odeur de décharges
EP1219361A2 (fr) Procédé de traitement d' une décharge par introduction d' un gaz contenant de l' oxygène
DE4339456A1 (de) Verfahren und Einrichtung zum Konditionieren von Biomieten
EP1103314B1 (fr) Procédé et dispositif pour assainir une nappe aquifère contaminée
EP0370409A1 (fr) Procédé pour la décontamination du sol
AT403480B (de) Verfahren zum mikrobiologischen abbau und/oder stabilisieren von zumindest zeitweise anaerob fermentierten gemischen
DE10064013A1 (de) Verfahren zur Behandlung von Mülldeponien durch Eintrag einer mit Sauerstoff angereicherten Flüssigkeit
AT390604B (de) Verfahren zur entsorgung von erdoelhaltigen abfaellen unter verwendung von kommunalen abfaellen
DE10005243C2 (de) Verfahren zur abgestuften beschleunigten in situ-Stabilisierung von Deponien und Altablagerungen
DE4240969A1 (de) Verfahren und Anordnung zur Sanierung von kontaminiertem Erdreich

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002745151

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10480860

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003510186

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002745151

Country of ref document: EP