WO2002100607A1 - Two-leg walking humanoid robot - Google Patents

Two-leg walking humanoid robot Download PDF

Info

Publication number
WO2002100607A1
WO2002100607A1 PCT/JP2002/005423 JP0205423W WO02100607A1 WO 2002100607 A1 WO2002100607 A1 WO 2002100607A1 JP 0205423 W JP0205423 W JP 0205423W WO 02100607 A1 WO02100607 A1 WO 02100607A1
Authority
WO
WIPO (PCT)
Prior art keywords
humanoid robot
arm
torso
thigh
foot
Prior art date
Application number
PCT/JP2002/005423
Other languages
English (en)
French (fr)
Inventor
Takayuki Furuta
Ken Tomiyama
Hiroaki Kitano
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to EP02733274A priority Critical patent/EP1393867B1/en
Priority to DE60231300T priority patent/DE60231300D1/de
Priority to US10/466,316 priority patent/US6902015B2/en
Priority to KR10-2003-7000965A priority patent/KR100515276B1/ko
Publication of WO2002100607A1 publication Critical patent/WO2002100607A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers

Definitions

  • the present invention relates to a biped walking humanoid robot, and more particularly to a biped walking humanoid mouth robot capable of reducing the impact acting on each part when the robot falls down and detecting the falling state. It is. Background art
  • a so-called biped walking humanoid robot generates a previously set walking pattern (hereinafter referred to as a gait) data, and performs gait control according to the gait data. Walking,. By moving the legs in turns, biped walking is realized.
  • a gait previously set walking pattern
  • the conventional biped humanoid robot is designed not to fall down as much as possible, but it is not designed to perform passive movement when falling down or to get up from the fall-down state. That is, the conventional biped walking humanoid robot is not designed to reduce the impact acting on each part or detect the falling state when falling.
  • the exterior surface of the torso, legs, and arms is composed of relatively flat surfaces, so that the robot can perform a rising motion when falling. Even so, it was difficult to achieve dynamic and smooth operation transition.
  • there is a similar problem when a biped walking humanoid robot performs an exercise on the floor such as forward rotation.
  • a torso a leg attached to both lower sides of the torso, an arm attached to both upper sides of the torso, and an upper end of the torso are provided.
  • a head attached to the torso, wherein the legs are attached to the torso so as to be pivotable in three axial directions, and the lower end of each thigh is uniaxial.
  • a lower body attached to the lower leg of each of the lower legs, and a foot movably mounted in two axial directions with respect to a lower end of each lower leg.
  • Driving means for swinging the foot, lower leg, thigh, and upper arm of the leg, lower arm, upper arm, and forward bending, respectively,
  • a bipedal humanoid mouthboat having a control unit for controlling driving of each of the driving means, an elbow outside between the upper arm and the lower arm of each of the arms, An outer wrist between the lower arm and the hand, a lower toe of the foot, a lower heel of the foot, an outer knee between the thigh and lower thigh of the foot,
  • the butt and back of the torso are each provided with a contact detection unit.
  • Each of the contact detection units includes an exterior portion forming an exterior surface, a pressure sensor that detects pressure acting on the exterior portion, And a shock absorbing material for mitigating the shock acting on the external part.
  • the pressure sensor and the shock absorbing material in each of the contact detection units are integrally formed, and more preferably, the exterior unit, the pressure, and the pressure in each of the contact detection units.
  • the sensor and the shock absorbing material are integrally formed.
  • the exterior part in each of the contact detection units is disposed on the outermost side, or the pressure sensor in each of the contact detection units is disposed on the outermost side.
  • the shock-absorbing material in each of the above-mentioned contact detection sections is arranged on the outermost side.
  • the bipedal walking humanoid robot according to the present invention is preferably configured such that the humanoid robot is provided on the torso and the arm.
  • the arm, the lower arm, the thighs of the legs, and the lower thigh have exterior surfaces formed of a convex curved surface.
  • the foot can swing in an angle range of ⁇ 20 to +20 degrees or more with respect to the lower leg in the front-rear direction.
  • the thigh is swingable with respect to the thigh in an angle range of 0 to +60 degrees or more in the front-rear direction, and the thigh is 0 to + in the front-rear direction with respect to the trunk.
  • the body can swing in an angle range of 45 degrees or more, and the body can bend forward in an angle range of 0 to +30 degrees or more with respect to the front-rear direction.
  • the driving means for swinging the foot, the lower leg, and the thigh of the leg, respectively comprises a foot, a lower leg, and a thigh. Are arranged obliquely with respect to each other so as not to hinder the rocking motion.
  • the bipedal humanoid robot falls down, or when performing exercise on the floor surface such as forward rotation, a portion that can collide with the floor surface, that is, the upper arm of each arm portion Outside of the elbow between the lower arm and the lower arm, outer wrist between the lower arm of each arm and the hand, lower toe of the foot, lower of the heel of the foot, and the foot
  • the contact detection units are provided on the outside of the knee between the thighs and lower thighs, and on the buttocks and back of the torso, these parts collided with the floor, etc.
  • the impact due to the collision is absorbed by the impact absorbing material of the contact detection unit. Therefore, the impact on the internal structure of each part of the biped walking humanoid robot at the time of a fall, etc. is reduced, and each part is not damaged at the time of a fall.
  • the pressure sensor of the contact detection part of the part that is in contact with the floor or the like among the above-mentioned parts detects the pressure
  • the control unit detects the pressure.
  • the falling state of the walking humanoid robot is grasped. Therefore, the control unit drives and controls the driving means based on the current falling state, and operates the arms and legs appropriately, thereby performing a passive movement when falling or a rising movement. Therefore, it is possible to move to a state of standing on two legs.
  • each contact detecting portion has a simple configuration. Easy to assemble. When the exterior part of each of the contact detection units is located at the outermost position, even if each of the contact detection units collides with the floor or the like when the two-legged walking humanoid robot falls, the exterior unit Can be directly contacted by the floor, etc., and the inner pressure sensor, shock absorber, and internal structure can be protected from impact.
  • the pressure sensors in each contact detection section come in direct contact with the floor, etc., when the biped walking humanoid robot falls.
  • the pressure sensor can reliably detect contact with the floor or the like.
  • the shock absorbing material in each of the contact detection units is arranged on the outermost side, even if each of the contact detection units collides with the floor or the like when the biped humanoid robot falls down, the shock absorption material is not absorbed. The impact is reliably absorbed by the material coming into direct contact with the floor or the like, and the inner exterior part, pressure sensor, and internal structure can be protected from the impact.
  • a biped walking humanoid robot At the time of the rising operation from the falling state of the bird, these curved outer surfaces come into contact with the floor surface and the like, and the rising operation can be performed smoothly.
  • the foot can swing in an angle range of ⁇ 10 to +20 degrees or more with respect to the lower leg in the front-rear direction, and the lower leg can move in the front-rear direction with respect to the thigh.
  • the thigh can swing in an angle range of 0 to +45 degrees or more with respect to the front-rear direction with respect to the torso.
  • the torso can bend forward in an angle range of 0 to +30 degrees or more with respect to the front-rear direction
  • the rising operation can be reliably performed by the above-described operation range.
  • Driving means for swinging the foot, lower leg, and thigh of the leg, respectively, are inclined with respect to each other so as not to hinder the swing of the foot, lower leg, and thigh.
  • the legs, lower legs and thighs can swing without interfering with each other when the biped walking humanoid robot rises up from a fall. Therefore, it is possible to surely perform the rising operation.
  • FIG. 1 shows an appearance of an embodiment of a biped humanoid robot according to the present invention.
  • (A) is a schematic front view
  • (B) is a schematic side view.
  • FIG. 2 is a schematic diagram showing a mechanical configuration of the biped walking humanoid robot of FIG.
  • FIG. 3 is an enlarged exploded perspective view showing a configuration of a contact detection unit of the biped humanoid robot of FIG.
  • FIG. 4 is a schematic diagram showing a forward swinging limit of each joint of a forward bending portion and a leg of the biped humanoid robot of FIG.
  • FIG. 5 is a schematic diagram showing a forward swing limit of each joint of the forward bending portion and the leg of the biped walking humanoid robot of FIG.
  • FIGS. 6A and 6B show the arrangement of the motors for driving the joints on the legs of the bipedal walking humanoid robot of FIG. 1, wherein FIG. 6A is a schematic view when the robot is upright and FIG.
  • FIG. 7 is a block diagram of an electric configuration of the biped humanoid robot shown in FIG. Fig. 8 shows the passive movement of the biped humanoid robot of Fig. 1 when falling forward. (A) is before falling, (B) is when falling, and (C) is when falling.
  • FIG. 4 is a schematic diagram showing a passive operation.
  • Fig. 9 is a schematic diagram showing (A) before falling, (B) falling, and (C) passive behavior when the biped humanoid robot of Fig. 1 falls backward.
  • a bipedal walking humanoid robot 10 has a torso 11, legs 12 L and 12 R attached to lower sides of the torso 11, and upper sides of the torso. And a head 14 attached to the upper end of the torso.
  • the body 11 is divided into an upper part 11a and a lower part 11b, and the upper part 1la can swing forward and backward with respect to the lower part 11b at the forward bending part 11c. In particular, it is supported to bend forward. Further, a control unit described later is built in the body unit 11.
  • the forward bending portion 11c is composed of a joint drive module (see Fig. 2).
  • the legs 12 L and 12 R are composed of a thigh 15 L and 15 R, a lower leg 16 L and 16 R, and a foot 17 L and 17 R, respectively. I have.
  • the legs 12 L and 12 R are each provided with six joints, that is, joints 18 for turning the waist legs relative to the body 11 in order from the top.
  • Each of the joints 18L, 18R to 24L, 24R is constituted by a joint driving motor.
  • the hip joint is composed of the above-mentioned self-joint parts 18 L, 18 R, 19 L, 19 R, 20 L, 2 OR, and the ankle joint is the joint parts 23 L, 2 It consists of 3 R, 24 L, and 24 R.
  • the left and right legs 12 L and 12 R of the bipedal walking humanoid robot 10 are given 6 degrees of freedom, respectively.
  • a desired motion is given to the entire leg 12L, 12R, and the user can walk in a three-dimensional space arbitrarily.
  • the arms 13 L and 13 R are composed of an upper arm 25 L and 25 R, a lower arm 26 L and 26 [ ⁇ and a hand 27 and 27 R, respectively.
  • the upper arm portions 25 L, 25 R, the lower arm portions 26 L, 26 R and the hand portions 27 L, 27 R of the above-mentioned arm portions 13 L, 13 R are the leg portions described above.
  • 12 L and 12 R one axis by joint Each joint is constituted by a joint driving motor. In this way, the arms 13 L and 13 R on both the left and right sides of the biped humanoid robot 10 perform various operations with appropriate degrees of freedom.
  • the head 14 is attached to the upper end of the upper part 11a of the body 11 and, for example, is equipped with a camera for vision and a microphone for hearing.
  • the bipedal walking humanoid robot 10 according to the embodiment of the present invention is different in the following points. I have.
  • the bipedal walking humanoid robot 10 has the upper body P 1 1a, the lower body 1 1b, and the footsteps [ ⁇ 2 L, 12 R] of the body 11 described above.
  • Thigh 15 L, 15 R, lower leg 16 L, 1613 ⁇ 4 and arm 13, 1 31 3 ⁇ 4 upper arm 25, 25 R, lower arm 26 L, 26 R Each has an exterior surface having a convex curved shape formed of an impact-resistant material such as styrene foam.
  • the bipedal walking humanoid robot 10 has a portion that can collide with a floor or the like when it falls, that is, the upper arms 25 L, 25 R and the lower arms of the above-mentioned arms 13 L, 13 R.
  • elbow part 28 L, 28 R between 26 L, 26 R, lower arm part 26 L, 26 R and hand part 27 L, 2 of each above-mentioned arm part 13 L, 13 R
  • wrists 29 L, 29 R between the 7 Rs, the center of the lower surface of the above-mentioned feet 17 L, 17 R, the lower part of the toes 30 L, 30 R, the heels 31 L, 31
  • the lower part of R and the outside of the knees 2 1 L, 21 R, the buttocks 3 2 behind the lower part 11 b of the torso 11 and the back part 3 behind the upper part 11 a 3 and 4 each have a contact detection unit 40.
  • the contact detection section 40 includes an exterior section 41 constituting an exterior surface, a pressure sensor 42 disposed
  • the exterior part 41 is made of, for example, an impact-resistant material such as styrene foam, and has a convex curved surface shape like the above-described parts.
  • the pressure sensor 42 detects a contact pressure when the contact detection unit 40 is in contact with a floor surface or the like when the bipedal walking humanoid robot 10 falls, etc., and outputs the detection signal as described below. Output to the control unit.
  • the shock absorbing material 43 is made of, for example, sorbosein, and when the contact detection unit 40 collides with a floor surface or the like when the two-legged walking humanoid robot 10 falls down, the impact is reduced. It is designed to absorb.
  • the contact detection section 40 includes the exterior part 41, the pressure sensor 42, and the shock absorbing material 43 in order from the outside, but is not limited thereto, and may be arranged in any order. .
  • the exterior part 41 is arranged on the outermost side, the bipedal humanoid robot
  • the shock absorber 4 3 Furthermore, the internal structure can be protected from impact. Also, if the pressure sensor 42 is arranged at the outermost position, when the bipedal walking humanoid robot 10 falls, the pressure sensor 42 directly contacts the floor surface, etc. The contact can be reliably detected. Furthermore, if the shock absorbing material 43 is arranged at the outermost position, even if each of the contact detection units 40 collides with the floor or the like when the bipedal walking humanoid robot 10 falls down, the shock absorbing material 43 is absorbed. The material 43 comes into direct contact with the floor or the like, and the impact can be reliably absorbed.
  • the contact detection section 40 includes an exterior section 41, a pressure sensor 42, and a shock absorber 4.
  • the exterior part 41, the pressure sensor 42, and the shock absorbing material 43 may be integrally formed with each other.
  • the 20 R, the knee joints 22 L, 22 R, and the ankle joints 23 L, 23 R are swingably supported in the angle ranges shown in FIGS. 4 and 5. That is, the ankle joint 2
  • 3 L and 23 R can swing in an angle range where the swing angle ⁇ 1 is ⁇ 10 to +20 degrees or more.
  • knee joints 22 L and 22 R can swing in an angle range of 0 to +60 degrees or more.
  • the joints 20 L and 2OR of the hip joint can swing in an angle range where the swing angle ⁇ 3 is 0 to +45 degrees or more.
  • the forward bending portion 1 1c of the body 11 has a swing angle ⁇ 4 of 0 to +30 degrees or less. It can swing in the upper angle range.
  • the forward bending portion 1 1 c The joint driving motors of the joints 20 L, 2 OR, 22 L, 22 R, 23 L, and 23 R are arranged as shown in FIG. That is, in FIG. 6, the joint drive motors M 2, M 3, of the forward bending portion 1 1 c and the joints 20 L, 20 R, 22 L, 22 R, 23 L, and 23 R are shown. In M4, the drive shaft of the motor is driven by the output shafts G2a, G3a, and G4a via the speed reducers G2, G3, and G4, respectively.
  • the motors M2, M3, and M4, including the speed reducers G2, G3, and G4, have a forward bending portion 1 1c and joints 20L, 20R, 22L, and 22R. As shown in Fig. 6 (A), they are arranged at an angle to each other so as not to hinder the swing of the and.
  • motor Ml is a joint drive motor for joints P24L and 24R
  • motor M5 is a joint drive motor for joints 19L and 19R. is there.
  • FIG. 7 shows an electrical configuration of the bipedal walking humanoid robot 10 shown in FIGS.
  • the bipedal walking humanoid robot 10 has driving means, that is, the above-mentioned forward bending portion 11c, and each joint, that is, a joint driving motor 18L, 18R to 24L, It has a walking control device 50 that drives and controls 24 R.
  • the walking control section 50 includes a control section 51 and a motor control unit 52.
  • the control section 51 generates a control signal for each joint driving motor based on a predetermined operation pattern.
  • the motor control unit 52 drives and controls each joint driving motor according to a control signal from the control unit 51. I'm swelling.
  • the control unit 51 determines the falling state, that is, the falling state (based on the detection signal from the pressure sensor 42 of each contact detection unit 40).
  • Each of the joints is driven based on a predetermined motion pattern so that the passive motion when falling and the rising motion after falling are performed based on the motion pattern for this falling posture. Generates motor control signals.
  • the bipedal walking humanoid robot 10 is configured as described above, and the normal walking operation is performed by the control unit 51 of the walking control device 50 by the predetermined walking operation. A control signal is generated based on the pattern and output to the motor control unit 52. As a result, the motor control unit 52 drives and controls the joint driving motors of the forward bending portion 11c and the joints 18L, 18R to 24L, 24R. In this way, the biped humanoid robot 10 performs a walking motion.
  • the pressure sensor of the contact detection unit 40 provided near the center of the lower surface detects the pressure, and outputs a detection signal to the control unit 51. Thereby, the control unit 51 determines that the walking state is stable and continues the normal walking operation.
  • the bipedal walking humanoid robot 10 falls to the front as shown in Fig. 8 ( ⁇ )
  • one arm 13L or 13R wrist 29L , 29 R provided in the contact detection unit 40 detects the pressure, and outputs a detection signal to the control unit 51.
  • the control unit 51 determines that the bipedal walking humanoid robot 10 has fallen forward based on the detection signals from the pressure sensors 42 of the wrists 29 L and 29 R.
  • a control signal is output to the motor control unit 52 so as to perform a passive operation. Therefore, as shown in FIG. 8 (C), the biped walking humanoid robot 10 moves both elbows 28 L and 28 R and both knees 21 L and 21 R by passive movement. It is in a state of being attached to the surface.
  • both elbows 28 L, 28 R and both knees 21 L, 21 R are provided with contact detection sections 40, respectively, so that both elbows 28 L, 28 R
  • the impact absorbing material 43 of the contact detection unit 40 absorbs the impact due to the collision.
  • the control unit 51 includes two elbows 28 L and 28 R, two knees 21 L and 21 R, and one toe 17 L or 17 R of the toe.
  • control unit 51 outputs a control signal to the motor control unit 52 so as to perform a rising operation from the overturned state. Accordingly, the bipedal walking humanoid robot 10 can perform a rising motion and shift to a state of standing up on the bipod. At this time, since the exterior surface of each part has an exterior surface having a convex curved shape, the rising operation can be performed smoothly.
  • the legs 17L, 1 The pressure sensor of the contact detection unit 40 provided near the center of the lower surface of 7R detects the pressure, and outputs a detection signal to the control unit 51. Thereby, the control unit 51 determines that the walking state is stable and continues the normal walking operation.
  • the control unit 51 determines that the bipedal walking humanoid robot 10 has fallen backward based on the detection signals from the pressure sensors 42 of the heel parts 31 L and 31 R. Then, a control signal is output to the motor control unit 52 so as to perform a passive operation. Therefore, as shown in FIG. 9 (B), one foot 17 L or the heel 31 L of the 17 R.
  • the pressure sensor 42 of the contact detection unit 40 provided in the 31 R detects the pressure, and outputs a detection signal to the control unit 51. Accordingly, the control unit 51 determines that the bipedal walking humanoid robot 10 has fallen backward based on the detection signals from the pressure sensors 42 of the heel parts 31 L and 31 R. Then, a control signal is output to the motor control unit 52 so as to perform a passive operation. Therefore, as shown in FIG.
  • the biped walking humanoid robot 10 moves the buttocks 32, the back 33, and the both elbows 28L and 28R to the floor surface by passive movement. It is in the state attached to. In this case, buttocks 3 2, back 3 3 and both elbows 2 8 L,
  • the impact absorbing material 43 of the contact detection unit 40 absorbs the impact due to the collision.
  • control unit 51 receives detection signals from the contact detection units 40 provided on the buttocks 32, the back 33, and the two elbows 28L, 8R.
  • control The unit 51 outputs a control signal to the motor control unit 52 to perform a rising operation from the overturned state.
  • the bipedal walking humanoid robot 10 can perform a rising motion and shift to a state of standing up on the bipod.
  • the exterior surface of each part has an exterior surface having a convex curved shape, the rising operation can be performed smoothly.
  • the two elbows 28 L and 28 R, the wrists 29 L and 29 R, and the two knees 21 L , 21 R, feet 17 L, 17 R Falling posture by contact detection unit 40 provided at the center of the lower surface of heel, 31 L, 31 R and toes 30 L, 30 R Therefore, when the biped walking humanoid robot 10 falls, it is possible to perform a passive movement corresponding to the falling posture, and to perform a rising movement according to the falling posture. It is possible to smoothly transition to a state of standing with the legs.
  • the falling state (falling posture) can be grasped, for example, movements such as forward rotation and backward rotation on the floor surface can be performed. It is also possible to do.
  • the arms 13 L and 13 R operate during the passive operation and the rising operation is not described. It may be operated. Industrial applicability
  • ADVANTAGE OF THE INVENTION when a biped walking humanoid robot falls down, or when performing exercise
  • the control unit controls the driving of the driving means based on the current falling state, and operates the arms and legs appropriately, thereby performing a passive operation when falling or a bipedal movement when standing up. The state can be shifted to a standing state.
  • an extremely excellent bipedal walking humanoid robot capable of reducing the impact acting on each part at the time of falling or the like and detecting the falling state.

Description

明 細 書 二脚歩行式人型ロボッ ト 技術分野
本発明は二脚歩行式人型ロボッ ト、 とくに、 ロボッ トの転倒時等に各部に作用 する衝撃を緩和させると共に、 転倒状態を検出するようにした二脚歩行式人型口 ボッ卜に関するものである。 背景技術
従来、 所謂二脚歩行式人型ロボットは、 前もづて設定された歩行パターン (以 下、 歩容という) データを生成して、 この歩容デ一夕に従って歩行制御を行なつ て、 所定の歩行 、。ターンで脚部を動作させることにより二脚歩行を実現するよう にしている。
ところで、 このような二脚歩行式人型ロボットは、 例えば床面状況, ロボット 自体の物理パラメ一夕の誤差等によつて歩行の際の姿勢が不安定になりやすく、 場合によっては転倒してしまうことがある。
しかしながら、 従来の二脚歩行式人型ロボットは、 できるだけ転倒しないよう に設計はしてあるが、 転倒時に受け身動作を行なつたり転倒した状態から起き上 がるようには設計されていない。 即ち、 従来の二脚歩行式人型ロボットは、 転倒 時に、 各部に作用する衝撃を緩和させたり、 転倒した状態を検出するようには設 計されていない。 また、 従来の二脚歩行式人型ロボッ 卜は、 胴体部や脚部, 腕部 の外装表面が比較的平坦な面により構成されていることから、 転倒時の起き上が り動作を行なわせようとしても、 動的且つ円滑な動作遷移を実現することは困難 であった。 さらに、 二脚歩行式人型ロボッ 卜に前転等の床面上での運動を行なわ せる場合にも、 同様の問題があった。
本発明は、 以上の点にかんがみて、 転倒時等に各部に作用する衝撃を緩和させ ると共に、 転倒状態を検出するようにした二脚歩行式人型ロボッ トを提供するこ とを目的としている。 発明の開示
上記目的を達成するため、本発明では、 胴体部と、 胴体部の下部両側に取り付 けられた脚部と、胴体部の上部両側に取り付けられた腕部と、 胴体部の上端に取 り付けられた頭部とを備えており、 上記脚部が、 胴体部に対して三軸方向に揺動 可能に取り付けられた二つの大腿部と、 各大腿部の下端に対してそれぞれ一軸方 向に揺動可能に取り付けられた下腿部と、 各下腿部の下端に対して二軸方向に摇 動可能に取り付けられた足部とを含んでいて、 上記腕部が、 胴体部に対して二軸 方向に揺動可能に取り付けられた二つの上腕部と、 各上腕部に対してそれぞれ一 軸方向に揺動可能に取り付けられた下腕部と、 各下腕部に対して二軸方向に揺動 可能に取り付けられた手部とを含んでおり、 また上記胴体部が途中の前屈部にて 前屈可能に構成されていて、 さらに、 上記脚部の足部, 下腿部, 大腿部そして上 記腕部の手, 下腕部及び上腕部そして前屈部をそれぞれ揺動させる駆動手段と、 各駆動手段をそれぞれ駆動制御する制御部とを有している二脚歩行式人型口ボッ 卜において、 上記各腕部の上腕部及び下腕部の間の肘部外側と、上記各腕部の下 腕部と手部の間の手首部外側と、 上記足部の爪先部下側と、 上記足部の踵部下側 と、 上記足部の大腿部及び下腿部の間の膝部外側と、 上記胴体部の尻部, 背中部 と、 にそれぞれ接触検知部を備えており、 各接触検知部が、 それぞれ外装表面を 構成する外装部と、 この外装部に作用する圧力を検知する圧力センサと、 この外 装部に作用する衝撃を緩和する衝撃吸収材と、 から構成されたことを特徴とする ものである。
本発明による二脚歩行式人型ロボットは、好ましくは、 上記各接触検知部にお ける圧力センサ及び衝撃吸収材が一体に構成され、 さらに好ましくは、 上記各接 触検知部における外装部, 圧力センサ及び衝擊吸収材が一体に構成されている。 本発明による二脚歩行式人型ロボットは、 好ましくは、上記各接触検知部におけ る外装部が最も外側に配置されているか、 或いは、 上記各接触検知部における圧 力センサが最も外側に配置されているか、 又は、 上記各接触検知部における衝撃 吸収材が最も外側に配置されている。
本発明による二脚歩行式人型ロボットは、 好ましくは、 上記胴体部, 腕部の上 腕部, 下腕部, 脚部の大腿部, 下腿部が、 凸状の曲面形状から成る外装表面を有 している。
本発明による二脚歩行式人型ロボットは、 好ましくは、 上記足部が、 下腿部に 対して前後方向に関して— 2 0乃至 + 2 0度以上の角度範囲で揺動可能であり、 上記下腿部が、 大腿部に対して前後方向に関して 0乃至 + 6 0度以上の角度範囲 で揺動可能であって、 また、 上記大腿部が、 胴体部に対して前後方向に関して 0 乃至 + 4 5度以上の角度範囲で揺動可能であり、 さらに、 上記胴体部が、 前後方 向に関して 0乃至 + 3 0度以上の角度範囲で前屈可能である。
本発明による二脚歩行式人型ロボットは、 好ましくは、 上記脚部の足部, 下腿 部, 大腿部をそれぞれ揺動させるための駆動手段が、 互いに足部, 下腿部及び大 腿部の揺動を妨げないように、相互に斜めに配置されている。
上記構成によれば、 二脚歩行式人型ロボッ卜が転倒する際、 あるいは前転等の 床面上での運動を行なう場合に、 床面等に衝突し得る部分、 即ち各腕部の上腕部 及び下腕部の間の肘部外側と、 上記各腕部の下腕部と手部の間の手首部外側と、 上記足部の爪先部下側と、 上記足部の踵部下側と、 上記足部の大腿部及び下腿部 の間の膝部外側と、 上記胴体部の尻部, 背中部と、 にそれぞれ接触検知部が備え られているので、 これらの部分が床面等に衝突したとしても、 接触検知部の衝撃 吸収材によって衝突による衝撃が吸収される。 従って、 転倒時等における二脚歩 行式人型ロボッ卜の各部における内部構造に対する衝撃が緩和され、転倒時等に 各部が破損するようなことはない。
そして、 二脚歩行式人型ロボッ卜の転倒時に、 上記各部のうち床面等に接触し ている部分の接触検知部の圧力センサが圧力を検知することによつて制御部によ り二脚歩行式人型ロボッ卜の転倒状態が把握される。 従って、 制御部が、 現在の 転倒状態に基づいて、駆動手段を駆動制御して、 腕部及び脚部を適宜に動作させ ることにより、 転倒するときに受け身動作を行なったり、 起き上がり動作によつ て、 二脚で立ち上がった状態に移行することができる。
上記各接触検知部における圧力センサ及び衝撃吸収材を一体に構成すると、 ま たは上記各接触検知部における外装部, 圧力センサ及び衝撃吸収材を一体に構成 すると、 各接触検知部が簡単な構成で容易に組み立てられる。 上記各接触検知部における外装部が最も外側に配置されている場合には、 二脚 歩行式人型ロボッ卜の転倒の際に各接触検知部が床面等に衝突したとしても、 外 装部が直接に床面等により接触し、 内側の圧力センサ, 衝撃吸収材さらに内部構 造を衝撃から保護することができる。
上記各接触検知部における圧力センサが最も外側に配置されている場合には、 二脚歩行式人型ロボッ卜の転倒の際に、 各接触検知部の圧力センサが床面等に直 接に接触し、圧力センサが床面等への接触を確実に検出することができる。 上記各接触検知部における衝撃吸収材が最も外側に配置されている場合には、 二脚歩行式人型ロボッ卜の転倒の際に各接触検知部が床面等に衝突したとしても 、 衝撃吸収材が直接に床面等により接触して衝撃が確実に吸収され、 内側の外装 部, 圧力センサ及び内部構造を衝撃から保護することができる。
上記胴体部, 腕部の上腕部, 下腕部, 脚部の大腿部, 下腿部が凸状の曲面形状 から成る外装表面を有している場合には、 二脚歩行式人型ロボッ卜の転倒状態か らの起き上がり動作の際に、 これらの曲面形状の外装表面が床面等に接触し、 起 き上がり動作を円滑に行なうことができる。
また、 上記足部が、 下腿部に対して前後方向に関して— 1 0乃至 + 2 0度以上 の角度範囲で揺動可能であり、上記下腿部が、大腿部に対して前後方向に関して 0乃至 + 6 0度以上の角度範囲で揺動可能であって、 また、 上記大腿部が、 胴体 部に対して前後方向に関して 0乃至 + 4 5度以上の角度範囲で揺動可能であり、 さらに、 上記胴体部が、前後方向に関して 0乃至 + 3 0度以上の角度範囲で前屈 可能である場合には、 二脚歩行式人型ロボッ卜の転倒状態からの起き上がり動作 の際に、 上述した動作範囲により確実に起き上がり動作を行なうことができる。 上記脚部の足部, 下腿部, 大腿部をそれぞれ揺動させるための駆動手段が、 互 いに足部, 下腿部及び大腿部の揺動を妨げないように相互に斜めに配置されてい る場合には、 二脚歩行式人型ロボッ卜の転倒状態からの起き上がり動作の際に、 脚部の足部, 下腿部及び大腿部が互いに千渉することなく揺動可能であるので、 確実に起き上がり動作を行なうことができる。 図面の簡単な説明
本発明は、 以下の詳細な説明及び本発明の幾つかの実施の形態を示す添付図面 に基づいて、 より良く理解されるものとなろう。 なお、 添付図面に示す実施の形 態は本発明を特定又は限定することを意図するものではなく、単に本発明の説明 及び理解を容易とするためだけに記載されたものである。
図中、
図 1は、本発明による二脚歩行式人型ロボッ卜の一実施形態の外観を示し、 (
A ) は概略正面図、 (B ) は概略側面図である。
図 2は、 図 1の二脚歩行式人型ロボットの機械的構成を示す概略図である。 図 3は、 図 1の二脚歩行式人型ロボットの接触検知部の構成を示す拡大分解斜 視図である。
図 4は、 図 1の二脚歩行式人型ロボッ卜の前屈部及び脚部の各関節部の前方へ の揺動限界を示す概略図である。
図 5は、 図 1の二脚歩行式人型ロボットの前屈部及び脚部の各関節部の前方へ の揺動限界を示す概略図である。
図 6は、 図 1の二脚歩行式人型ロボッ卜の脚部における各関節駆動用モータの 配置を示し、 (A ) は直立時の、 (B ) は揺動時の概略図である。
図 7は、 図 1の二脚歩行式人型ロボットの電気的構成のプロック図である。 図 8は、 図 1の二脚歩行式人型ロボットの前方への転倒の際の受け身動作を示 すもので、 (A ) は転倒前, (B ) は転倒時、 (C ) は倒伏時の受け身動作を示 す概略図である。
図 9は、 図 1の二脚歩行式人型ロボッ卜の後方への転倒の際の (A)転倒前, ( B ) 転倒時及び (C ) 受け身動作を示す概略図である。 発明を実施するための最良の形態
以下、本発明を好適な実施の形態について図面を参照して詳細に説明する。 図 1及び図 2は、 本発明による二脚歩行式人型ロボッ卜の一実施形態の構成を 示している。 図 1において、 二脚歩行式人型ロボット 1 0は、 胴体部 1 1と、 胴 体部 1 1の下部両側に取り付けられた脚部 1 2 L , 1 2 Rと、胴体部の上部両側 に取り付けられた腕部 1 3 L, 1 3 Rと、 胴体部の上端に取り付けられた頭部 1 4と、 を含んでいる。
上記胴体部 1 1は、 上部 1 1 aと下部 1 1 bとに分割されており、 上部 1 l a が前屈部 1 1 cにて下部 1 1 bに対して前後方向に揺動可能に、 特に前方に前屈 可能に支持されている。 さらに、上記胴体部 1 1には後述する制御部が内蔵され ている。 なお、 上記前屈部 1 1 cは関節駆動用モ一夕 (図 2参照) により構成さ れている。
上記脚部 1 2 L, 1 2 Rは、 それぞれ大腿部 1 5 L, 1 5 R, 下腿部 1 6 L, 1 6 R及び足部 1 7 L, 1 7 Rと、 から構成されている。 ここで、 上記脚部 1 2 L, 1 2 Rは、 図 2に示すように、 それぞれ六個の関節部、 即ち上方から順に、 胴体部 1 1に対する腰の脚部回旋用の関節部 1 8 L, 1 8 R、 腰のロール方向 ( X軸周り) の関節部 1 9 L, 1 9 R、 腰のピッチ方向 (y軸周り) の関節部 20 L, 2 O R、 大腿部 1 5 L, 1 51¾と下腿部1 6し, 1 6 Rの接続部分である膝 部 2 1 L, 2 1 Rのピッチ方向の関節部 2 2 L, 2 2 R、足部 1 7 L, 1 7 Rに 対する足首部のピッチ方向の関節部 2 3 L, 2 3 R、 足首部のロール方向の関節 咅 P24 L, 2 4 Rを備えている。 なお、 各関節部 1 8 L, 1 8 R乃至 2 4 L, 2 4 Rは、 それぞれ関節駆動用モータにより構成されている。 このようにして、腰 関節は、 上言己関節部 1 8 L , 1 8R, 1 9 L, 1 9 R, 20 L, 2 O Rから構成 され、 また足関節は、 関節部 2 3 L, 2 3 R, 24 L, 24 Rから構成されるこ とになる。
これにより、 二脚歩行式人型ロボット 1 0の左右両側の脚部 1 2 L, 1 2 Rは それぞれ 6自由度を与えられることになり、 歩行中にこれらの 1 2個の関節部を それぞれ駆動モータにより適宜の角度に駆動制御することにより、 脚部 1 2 L, 1 2 R全体に所望の動作を与えて、 任意に三次元空間を歩行することができるよ うに構成されている。
上記腕部 1 3 L, 1 3 Rは、 それぞれ上腕部 2 5 L, 2 5 R, 下腕部 2 6 L, 2 6 [^及び手部2 7 , 2 7 Rと、 から構成されている。 ここで、 上記腕部 1 3 L, 1 3 Rの上腕部2 5 L, 2 5 R, 下腕部 2 6 L, 2 6 R及び手部 2 7 L, 2 7 Rは、 上述した脚部 1 2 L, 1 2 Rと同様にして、 それぞれ関節部により一軸 方向または二軸方向に揺動可能に支持されており、 各関節部はそれぞれ関節駆動 用モー夕により構成されている。 このようにして、 二脚歩行式人型ロボット 1 0 の左右両側の腕部 1 3 L, 1 3 Rは、 それぞれ適宜の自由度を与えられて各種動 作を行なう。
上記頭部 1 4は、 胴体部 1 1の上部 1 1 aの上端に取り付けられており、 例え ば視覚としてのカメラや聴覚としてのマイクが搭載されている。
以上の構成は、 従来の二脚歩行式人型ロボッ卜とほぼ同様の構成であるが、本 発明実施形態による二脚歩行式人型ロボット 1 0においては、 以下の点で異なる 構成になっている。
即ち、 二脚歩行式人型ロボット 1 0は、 図 1に示すように、 上述した胴体部 1 1の上咅 P 1 1 a , 下部 1 1 b、 脚音 [Π 2 L , 1 2 Rの大腿部 1 5 L, 1 5 R, 下 腿部 1 6 L, 1 61¾そして腕部1 3し, 1 31¾の上腕部2 5し, 2 5 R, 下腕部 26 L, 2 6 Rが、 それぞれ例えば発泡スチロール等の耐衝撃性材料により形成 された凸状の曲面形状から成る外装表面を備えている。
さらに、 二脚歩行式人型ロボット 1 0は、転倒時に床面等に衝突し得る部分、 即ち上記各腕部 1 3 L, 1 3 Rの上腕部 2 5 L , 2 5 R及び下腕部 26 L, 26 Rの間の肘部 2 8 L, 2 8 Rの外側と、 上記各腕部 1 3 L, 1 3 Rの下腕部 26 L, 2 6 Rと手部 2 7 L, 2 7 Rの間の手首部 2 9 L, 2 9 Rの外側と、 上記足 部 1 7 L, 1 7 Rの下面中央, 爪先部 3 0 L, 30 Rの下側, 踵部 3 1 L, 3 1 Rの下側及び膝部 2 1 L, 2 1 Rの外側と、上記胴体部 1 1の下部 1 1 bの後側 である尻部 3 2及び上部 1 1 aの後側である背中部 3 3と、 にそれぞれ接触検知 部 4 0を備えている。 この接触検知部 4 0は、 図 3に示すように、 外装表面を構 成する外装部 4 1と、 外装部 4 1の内側に配置された圧力センサ 4 2と、 さらに その内側に配置された衝撃吸収材 4 3と、 から構成されている。
上記外装部 4 1は、 例えば発泡スチロール等の耐衝撃性材料等から構成されて おり、 上述した各部と同様に凸状の曲面形状から構成されている。
上記圧力センサ 4 2は、 当該接触検知部 40が二脚歩行式人型ロボット 1 0の 転倒時等にて床面等に接触しているとき、 接触圧力を検出して、 その検出信号を 後述する制御部に出力するようになっている。 上記衝撃吸収材 4 3は、例えばソルボセイン等から構成されており、 当該接触 検知部 4 0が二脚歩行式人型ロボット 1 0の転倒時等により床面等に衝突したと き、 その衝撃を吸収するようになっている。
なお、 上記接触検知部 4 0は、 外側から順に外装部 4 1 , 圧力センサ 4 2及び 衝撃吸^材 4 3を備えているが、 これに限らず、 任意の順に配置されていてもよ い。 この場合、外装部 4 1が最も外側に配置されると、 二脚歩行式人型ロボッ卜
1 0の転倒の際に、 各接触検知部 4 0が床面等に衝突したとしても、外装部 4 1 が直接に床面等により接触し、 内側の圧力センサ 4 2 , 衝撃吸収材 4 3さらに内 部構造を衝撃から保護することができる。 また、 圧力センサ 4 2が最も外側に配 置されると、 二脚歩行式人型ロボット 1 0の転倒の際に、圧力センサ 4 2が床面 等に直接に接触し、 床面等への接触を確実に検出することができる。 さらに、衝 撃吸収材 4 3が最も外側に配置されると、 二脚歩行式人型ロボット 1 0の転倒の 際に、 各接触検知部 4 0が床面等に衝突したとしても、 衝撃吸収材 4 3が直接に 床面等により接触し、衝撃が確実に吸収され得る。
また、 上記接触検知部 4 0は、 外装部 4 1, 圧力センサ 4 2及び衝撃吸収材 4
3が別体に構成されているが、 これに限らず、 圧力センサ 4 2及び衝撃吸収材 4
3、 あるいは外装部 4 1 , 圧力センサ 4 2及び衝撃吸収材 4 3が互いに一体に構 成されていてもよい。
さらに、上記二脚歩行式人型ロボット 1 0においては、胴体部 1 1の前屈部 1
1 cと、 脚部 1 2 L , 1 2 Rの前後方向の関節部、 即ち腰関節の関節部 2 0 L,
2 0 R , 膝部の関節部 2 2 L, 2 2 R , 足首部の関節部 2 3 L , 2 3 Rは、 図 4 及び図 5に示す角度範囲で揺動可能に支持されている。 即ち、 足首部の関節部 2
3 L , 2 3 Rは、 その揺動角度 θ 1がー 1 0乃至 + 2 0度以上の角度範囲で揺動 可能である。
また、 膝部の関節部 2 2 L , 2 2 Rは、 その揺動角度 Θ 2が 0乃至 + 6 0度以 上の角度範囲で揺動可能である。
さらに、腰関節の関節部 2 0 L , 2 O Rは、 その揺動角度 Θ 3が 0乃至 + 4 5 度以上の角度範囲で揺動可能である。
また、 胴体部 1 1の前屈部 1 1 cは、 その揺動角度 Θ 4が、 0乃至 + 3 0度以 上の角度範囲で揺動可能である。
上述した前屈部 1 1 c及び各関節部 20 L, 2 O R, 2 2 L, 2 2 R, 2 3 L , 2 3 Rの揺動角度範囲を実現するために、 前屈部 1 1 c及び各関節部 2 0 L, 2 OR, 2 2 L, 2 2 R, 23 L, 2 3 Rの関節駆動用モー夕は、 図 6に示すよ うに配置されている。 即ち、 図 6において、 前屈部 1 1 c及び各関節部 2 0 L, 2 0 R, 2 2 L, 2 2 R, 2 3 L, 2 3 Rの関節駆動用モー夕 M 2 , M3, M4 は、 それぞれモータの駆動軸が減速器 G 2, G 3, G 4を介して、 その出力軸 G 2 a, G 3 a, G4 aにより前屈部 1 1 c及び各関節部 2 0 L, 2 OR, 2 2 L , 2 2 R, 2 3 L, 2 3 Rを駆動して、 それぞれ胴体部 1 1の上部 1 1 a , 大腿 咅 1 5 L. 1 5 R, 6 L, 1 6 Rそして足き P 1 7 L , 1 7 Rを揺動させ るようになっている。 そして、 減速器 G2 , G 3, G 4を含む各モータ M 2, M 3, M4は、 互いに前屈部 1 1 c, 各関節部 2 0 L, 2 0 R, 2 2 L, 2 2 R, の揺動を妨げないように、 図 6 (A) に示すように互いに傾斜して配置されてい る。 これにより、 前屈部 1 1 c, 各関節部 20 L, 2 O R, 2 2 L, 2 2 Rが揺 動したとき、 図 6 (B) に示すように、 各モータ M 2, M3, M4は、 前屈部 1 1 じ, 各関節部201^, 2 0 R, 2 2 L, 2 2 Rの揺動と干渉しない。 このよう な構成により、 脚部 1 2 L, 1 2 Rの長さを必要以上に長くすることなく、前屈 音 P 1 1 c及び各関節部 2 0 L, 2 O R, 2 2 L, 11 Rの揺動の角度範囲を確保 することができる。 なお、 図 6において、 モータ M lは、 関節咅 P24 L, 24 R の関節駆動用モータであり、 またモー夕 M 5は、 関節部 1 9 L, 1 9 R用の関節 駆動用モー夕である。
図 7は、 図 1乃至図 6に示した二脚歩行式人型ロボット 1 0の電気的構成を示 している。 図 7において、 二脚歩行式人型ロボット 1 0は、 駆動手段、 即ち上述 した前屈部 1 1 c、 そして各関節部、 即ち関節駆動用モータ 1 8 L, 1 8 R乃至 2 4 L, 24 Rを駆動制御する歩行制御装置 5 0を備えている。
上記歩行制御部 5 0は、 制御部 5 1とモータ制御ュニッ卜 5 2とから構成され ている。 上記制御部 5 1は、前以て決められた動作パターンに基づいて各関節駆 動用モータの制御信号を生成するようになっている。 上記モー夕制御ュニット 5 2は、制御部 5 1からの制御信号に従って各関節駆動用モータを駆動制御するよ うになつている。 さらに、 上記制御部 5 1は、 二脚歩行式人型ロボット 1 0の転 倒時には、 その転倒状態、 即ち各接触検知部 4 0の圧力センサ 4 2からの検出信 号に基づいて転倒状態 (転倒姿勢) を判別して、 この転倒姿勢に対する動作パ夕 ーンに基づいて転倒時の受け身動作, 転倒後の起き上がり動作を行なうように、 前以て決められた動作パターンに基づいて各関節駆動用モータの制御信号を生成 する。
本発明実施形態による二脚歩行式人型ロボット 1 0は以上のように構成されて おり、 通常の歩行動作は、 歩行制御装置 5 0の制御部 5 1が前以て決められた歩 行動作パターンに基づいて制御信号を生成してモータ制御ュニット 52に出力す る。 これにより、 モータ制御ュニット 5 2が前屈部 1 1 c及び各関節部 1 8 L, 1 8 R乃至 2 4 L, 24 Rの関節駆動用モータを駆動制御する。 このようにして 二脚歩行式人型ロボッ卜 1 0は歩行動作を行なうことになる。
ここで、 二脚歩行式人型ロボット 1 0が、 例えば歩行姿勢が不安定になって、 前側に転倒する場合、 図 8 (A) に示すように、 通常の歩行では、足部 1 7 L, 1 7 Rの下面中央付近に設けられた接触検知部 4 0の圧力センサが圧力を検出し て、 その検出信号を制御部 5 1に出力する。 これにより、制御部 5 1は、 安定し た歩行状態と判断して通常の歩行動作を継続する。
これに対して、 二脚歩 ί亍式人型ロボッ卜 1 0が、 図 8 (Β) に示すように前側 に転倒すると、 片方の腕部 1 3 Lまたは 1 3 Rの手首部 2 9 L, 2 9 Rに設けら れた接触検知部 40の圧力センサが圧力を検出して、 その検出信号を制御部 5 1 に出力する。 これにより制御部 5 1は、 手首部 2 9 L, 2 9 Rの圧力センサ 4 2 からの検出信号に基づいて二脚歩行式人型ロボット 1 0が前方に転倒しているこ とを判別し、 受け身動作を行なうようにモータ制御ュニット 5 2に対して制御信 号を出力する。 従って、二脚歩行式人型ロボット 1 0は、 図 8 (C) に示すよう に、 受け身動作により、両肘部 2 8 L, 2 8 R, 両膝部 2 1 L. 2 1 Rを床面に ついた状態となる。 この場合、 両肘部 2 8 L, 2 8 R, 両膝部 2 1 L, 2 1 Rに は、 それぞれ接触検知部 4 0が設けられているので、 両肘部 2 8 L, 2 8 R, 両 膝部 2 1 L, 2 1 Rが床面に衝突したとしても、 接触検知部 4 0の衝擊吸収材 4 3が衝突による衝撃を吸収する。 また、制御部 5 1は、 図示のように、 両肘部 2 8 L, 2 8 R, 両膝部 2 1 L , 2 1 Rそして一方の足部 1 7 Lまたは 1 7 Rの爪先部 3 0 L , 3 O Rに設けられ た接触検知部 4 0からの検出信号が入力されることにより、 二脚歩行式人型口ボ ット 1 0の転倒姿勢を把握することができる。 従って、 制御部 5 1は、 この転倒 状態から起き上がり動作を行なうように、 モータ制御ュニット 5 2に対して制御 信号を出力する。 これにより、 二脚歩行式人型ロボット 1 0は、起き上がり動作 を行なって、 二脚で立ち上がった状態に移行することができる。 この際、 各部の 外装表面が凸状の曲面形状からなる外装表面を有しているので、 起き上がり動作 を円滑に行なうことができる。
また、 二脚歩行式人型ロボット 1 0が、 例えば歩行姿勢が不安定になって後側 に転倒する場合、 図 9 (A) に示すように、 通常の歩行では足部 1 7 L , 1 7 R の下面中央付近に設けられた接触検知部 4 0の圧力センサが圧力を検出して、 そ の検出信号を制御部 5 1に出力する。 これにより、 制御部 5 1は安定した歩行状 態と判断して通常の歩行動作を継続する。
これに対して、 二脚歩行式人型ロボッ卜 1 0が、 図 9 ( B ) に示すように後側 に転倒すると、 片方の足部 1 7 Lまたは 1 7 Rの踵部 3 1 L , 3 1 Rに設けられ た接触検知部 4 0の圧力センサ 4 2が圧力を検出して、 その検出信号を制御部 5 1に出力する。 これにより、制御部 5 1は、 踵部 3 1 L , 3 1 Rの圧力センサ 4 2からの検出信号に基づいて、 二脚歩行式人型ロボット 1 0が後方に転倒してい ることを判別し、 受け身動作を行なうようにモータ制御ュニット 5 2に対して制 御信号を出力する。 従って、 二脚歩行式人型ロボット 1 0は、 図 9 ( C ) に示す ように、 受け身動作により、尻部 3 2 , 背中部 3 3及び両肘部 2 8 L , 2 8 Rを 床面についた状態となる。 この場合、 尻部 3 2 , 背中部 3 3及び両肘部 2 8 L ,
2 8 Rには、 それぞれ接触検知部 4 0が設けられているので、 尻部 3 2 , 背中部
3 3及び両肘部 2 8 L , 2 8 Rが床面に衝突したとしても、 接触検知部 4 0の衝 撃吸収材 4 3が衝突による衝撃を吸収する。
また、 制御部 5 1は、 図示のように、尻部 3 2, 背中部 3 3及び両肘部 2 8 L , 8 Rに設けられた接触検知部 4 0からの検出信号が入力されることにより、 二脚歩行式人型ロボット 1 0の転倒姿勢を把握することができる。 従って、 制御 部 5 1は、 この転倒状態から起き上がり動作を行なうようにモータ制御ユニット 5 2に対して制御信号を出力する。 これにより、 二脚歩行式人型ロボット 1 0は 起き上がり動作を行なつて、 二脚で立ち上がった状態に移行することができる。 この際、 同様にして、 各部の外装表面が凸状の曲面形状からなる外装表面を有し ているので、起き上がり動作を円滑に行なうことができる。
このようにして、 本発明実施形態による二脚歩行式人型ロボット 1 0によれば 、 両肘部 2 8 L , 2 8 R, 手首部2 9 L, 2 9 R , 両膝部 2 1 L , 2 1 R, 足部 1 7 L , 1 7 Rの下面中央部, 踵部 3 1 L, 3 1 R及び爪先部 3 0 L , 3 0 Rに 設けられた接触検知部 4 0により転倒姿勢を検出することができるので、 二脚歩 行式人型ロボット 1 0の転倒時には、 その転倒姿勢に対応した受け身動作を行な うことができると共に、 転倒姿勢に応じた起き上がり動作によつて二脚で立ち上 がった状態に円滑に移行することができる。 さらに、本発明実施形態による二脚 歩行式人型ロボット 1 0によれば、転倒状態 (転倒姿勢) を把握することができ るので、例えば床面上での前転, 後転等の運動を行なうことも可能である。 上述した実施形態においては、 腕部 1 3 L , 1 3 Rは、 受け身動作及び起き上 がり動作時にどのように動作するかについて説明されていないが、 これらの受け 身動作及び起き上がり動作時に適宜に動作するようにしてもよい。 産業上の利用可能性
本発明によれば、 二脚歩行式人型ロボッ卜が転倒する際、 あるいは前転等の床 面上での運動を行なう場合に、 床面等に衝突し得る部分、 即ち各腕部の上腕部及 び下腕部の間の肘部外側と、 上記各腕部の下腕部と手部の間の手首部外側と、 上 記足部の爪先部下側と、 上記足部の踵部下側と、 上記足部の大腿部及び下腿部の 間の膝部外側と、上記胴体部の尻部, 背中部とにそれぞれ接触検知部が備えられ ているので、 これらの部分が床面等に衝突したとしても接触検知部の衝撃吸収材 によって衝突による衝撃が吸収される。 従って、転倒時等の際に、 二脚歩行式人 型口ボットの各部における内部構造に対する衝撃が緩和されることで各部が破損 するようなことはない。
そして、 二脚歩行式人型ロボッ卜の転倒時に、 上記各部のうち床面等に接触し ている部分の接触検知部の圧力センサが圧力を検知し、 制御部により二脚歩行式 人型ロボッ卜の転倒状態が把握される。 従って、 制御部が、 現在の転倒状態に基 づいて駆動手段を駆動制御して、 腕部及び脚部を適宜に動作させることにより、 転倒するときに受け身動作を行なったり、 起き上がり動作によって二脚で立ち上 がつた状態に移行することができる。
このようにして、 本発明によれば、転倒時等に各部に作用する衝撃を緩和させ ると共に、転倒状態を検出するようにした、 極めて優れた二脚歩行式人型ロボッ 卜が提供される。

Claims

請 求 の 範 囲
1 . 胴体部と、 胴体部の下部両側に取り付けられた脚部と、 胴体部の上部 両側に取り付けられた腕部と、 胴体部の上端に取り付けられた頭部と、 を備えて おり、
上記脚部が、 胴体部に対して三軸方向に揺動可能に取り付けられた二つの大腿 部と、 各大腿部の下端に対してそれぞれ一軸方向に揺動可能に取り付けられた下 腿部と、 各下腿部の下端に対して二軸方向に揺動可能に取り付けられた足部と、 を含んでいて、
上記腕部が、 上記胴体部に対して二軸方向に揺動可能に取り付けられた二つの 上腕部と、 各上腕部に対してそれぞれ一軸方向に揺動可能に取り付けられた下腕 部と、 各下腕部に対して二軸方向に揺動可能に取り付けられた手部と、 を含んで おり、
また上記胴体部が、 途中の前屈部にて前屈可能に構成されていて、
さらに、 上記脚部の足部, 下腿部, 大腿部そして上記腕部の手, 下腕部及び上 腕部そして前屈部をそれぞれ揺動させる駆動手段と、 各駆動手段をそれぞれ駆動 制御する制御部と、 を有している二脚歩行式人型ロボッ卜において、
上記各腕部の上腕部及び下腕部の間の肘部外側と、 上記各腕部の下腕部と手部 の間の手首部外側と、 上記足部の爪先部下側と、 上記足部の踵部下側と、 上記足 部の大腿部及び下腿部の間の膝部外側と、 上記胴体部の尻部, 背中部と、 にそれ ぞれ接触検知部を備えており、
各接触検知部が、 それぞれ外装表面を構成する外装部と、 この外装部に作用す る圧力を検知する圧力センサと、 この外装部に作用する衝撃を緩和する衝撃吸収 材と、 から構成されていることを特徴とする、 二脚歩行式人型ロボット。
2 . 前記各接触検知部における圧力センサ及び衝撃吸収材が一体に構成さ れていることを特徴とする、 請求項 1に記載の二脚歩行式人型ロボッ卜。
3 . 前記各接触検知部における外装部, 圧力センサ及び衝撃吸収材が一体 に構成されていることを特徴とする、 請求項 1記載の二脚歩行式人型ロボット。
4 . 前記各接触検知部における外装部が最も外側に配置されていることを 特徴とする、 請求項 1に記載の二脚歩行式人型ロボット。
5 . 前記各接触検知部における圧力センサが最も外側に配置されているこ とを特徴とする、 請求項 1に記載の二脚歩行式人型ロボット。
6 . 前記各接触検知部における衝撃吸収材が最も外側に配置されているこ とを特徴とする、 請求項 1に記載の二脚歩行式人型ロボット。
7 . 前記胴体部, 腕部の上腕部, 下腕部, 脚部の大腿部, 下腿部が、 凸状 の曲面形状から成る外装表面を有していることを特徴とする、 請求項 1に記載の 二脚歩行式人型ロボット。
8 . 前記足部が、 下腿部に対して前後方向に関して— 2 0乃至 + 2 0度以 上の角度範囲で揺動可能であり、
前記下腿部が、 大腿部に対して前後方向に関して 0乃至 + 6 0度以上の角度範 囲で揺動可能であって、
また、前記大腿部が、 胴体部に対して前後方向に関して 0乃至 + 4 5度以上の 角度範囲で揺動可能であり、
さらに、前記胴体部が、前後方向に関して 0乃至 + 3 0度以上の角度範囲で前 屈可能であることを特徴とする、請求項 1に記載の二脚歩行式人型ロボット。
9 . 前記脚部の足部, 下腿部, 大腿部をそれぞれ揺動させるための駆動手 段が、 互いに足部, 下腿部及び大腿部の揺動を妨げないように、 相互に斜めに配 置されていることを特徴とする、請求項 1に記載の二脚歩行式人型ロボット。
PCT/JP2002/005423 2001-06-07 2002-06-03 Two-leg walking humanoid robot WO2002100607A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02733274A EP1393867B1 (en) 2001-06-07 2002-06-03 Two-leg walking humanoid robot
DE60231300T DE60231300D1 (de) 2001-06-07 2002-06-03 Auf zwei beinen gehender humanoider roboter
US10/466,316 US6902015B2 (en) 2001-06-07 2002-06-03 Two-leg walking humanoid robot
KR10-2003-7000965A KR100515276B1 (ko) 2001-06-07 2002-06-03 2각 보행식 인형 로봇

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-173263 2001-06-07
JP2001173263A JP3682525B2 (ja) 2001-06-07 2001-06-07 二脚歩行式人型ロボット

Publications (1)

Publication Number Publication Date
WO2002100607A1 true WO2002100607A1 (en) 2002-12-19

Family

ID=19014754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005423 WO2002100607A1 (en) 2001-06-07 2002-06-03 Two-leg walking humanoid robot

Country Status (7)

Country Link
US (1) US6902015B2 (ja)
EP (1) EP1393867B1 (ja)
JP (1) JP3682525B2 (ja)
KR (1) KR100515276B1 (ja)
DE (1) DE60231300D1 (ja)
TW (1) TW544380B (ja)
WO (1) WO2002100607A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110653811A (zh) * 2018-06-29 2020-01-07 深圳市优必选科技有限公司 一种控制方法、机器人及计算机存储介质

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3731118B2 (ja) * 2002-02-18 2006-01-05 独立行政法人科学技術振興機構 二脚歩行式人型ロボット
JP3938326B2 (ja) 2002-05-10 2007-06-27 川田工業株式会社 ロボット用付加的支持構造
US7761184B2 (en) * 2003-03-23 2010-07-20 Sony Corporation Robot apparatus and control method thereof
US7603199B2 (en) 2003-11-27 2009-10-13 Honda Motor Co., Ltd. Control device for mobile body
KR100657530B1 (ko) * 2005-03-31 2006-12-14 엘지전자 주식회사 자동주행 로봇의 들림감지장치
JP2006305642A (ja) * 2005-04-26 2006-11-09 Kawada Kogyo Kk 人型ロボットおよび着脱可能型臀部
KR100862190B1 (ko) 2006-11-30 2008-10-09 한국전자통신연구원 로봇의 자세 검출 장치 및 그 방법
EP3281671A1 (en) * 2007-09-13 2018-02-14 ProCure Treatment Centers, Inc. Patient positioner system
KR100863187B1 (ko) * 2008-01-10 2008-10-13 (주)다사로봇 지능형 로봇 장치의 제어시스템 및 그 제어방법
US8352077B2 (en) * 2008-12-19 2013-01-08 Honda Motor Co., Ltd. Inertia shaping for humanoid fall direction change
US8369991B2 (en) * 2008-12-19 2013-02-05 Honda Motor Co., Ltd. Humanoid fall direction change among multiple objects
WO2012066678A1 (ja) * 2010-11-19 2012-05-24 株式会社日立製作所 自律移動体
US8880221B2 (en) * 2011-03-21 2014-11-04 Honda Motor Co., Ltd. Damage reduction control for humanoid robot fall
US9193403B2 (en) * 2013-03-20 2015-11-24 Honda Motor Co., Ltd Humanoid fall damage reduction
FR3021572B1 (fr) * 2014-06-03 2016-07-01 Aldebaran Robotics Securite d'un robot a caractere humanoide
US9499219B1 (en) 2014-08-25 2016-11-22 Google Inc. Touch-down sensing for robotic devices
JP6228097B2 (ja) * 2014-10-06 2017-11-08 本田技研工業株式会社 移動ロボット
US9555846B1 (en) * 2015-03-20 2017-01-31 Google Inc. Pelvis structure for humanoid robot
CN105346618B (zh) * 2015-11-20 2017-11-14 清华大学 基于串联弹性驱动器的带上身双足机器人平地行走方法
CN105583856B (zh) * 2016-01-28 2019-01-01 苏州大学 一种被试仿人机器人
JP6588624B2 (ja) 2016-04-05 2019-10-09 株式会社日立製作所 ヒューマノイドロボット
JP6794800B2 (ja) 2016-11-29 2020-12-02 セイコーエプソン株式会社 ロボット
US10351189B2 (en) * 2016-12-13 2019-07-16 Boston Dynamics, Inc. Whole body manipulation on a legged robot using dynamic balance
CN106737584A (zh) * 2016-12-29 2017-05-31 东莞市锝铼金机器人自动化有限公司 一种基于空心驱动器、微型驱动器的人形机器人
CN107685788B (zh) * 2017-09-06 2023-10-27 滨州学院 一种足球机器人
CN109866218B (zh) * 2017-12-01 2021-04-20 优必选教育(深圳)有限公司 机器人摔倒站立控制方法及装置
CN108890643A (zh) * 2018-06-25 2018-11-27 珠海格力智能装备有限公司 机器人的控制方法和装置
CN110653814B (zh) * 2018-06-29 2021-09-17 深圳市优必选科技有限公司 一种机器人的控制方法、机器人及具有存储功能的装置
CN110206840B (zh) * 2019-06-21 2020-07-14 重庆大学 一种仿股骨头减震结构及步行机器人
CN110450193A (zh) * 2019-09-06 2019-11-15 梁渤涛 双足行走型机器人的行走支撑机构
CN110695964A (zh) * 2019-09-27 2020-01-17 广州嘉欣电工科技有限公司 一种轮毂车标装配方法、系统、装置及存储介质
CN113156926A (zh) * 2020-01-22 2021-07-23 深圳市优必选科技股份有限公司 机器人的有限状态机的建立方法、有限状态机和机器人
CN112025698B (zh) * 2020-07-13 2021-11-23 北京大学 一种基于撞击预测和主动顺应的机器人跌倒保护方法及系统
CN112894749B (zh) * 2021-01-15 2022-05-17 南通科橙机器人有限公司 一种具有防护结构的人工智能机器人
US20230150135A1 (en) * 2021-11-12 2023-05-18 Sanctuary Cognitive Systems Corporation Robots and methods for protecting fragile components thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133894A (ja) * 1984-07-25 1986-02-17 神鋼電機株式会社 産業用ロボツトの安全ア−ム及び安全ハンド
JPH06278081A (ja) * 1993-03-26 1994-10-04 Nec Corp 衝突防止機能付ロボットアーム
JP2001138271A (ja) * 1999-11-12 2001-05-22 Sony Corp 脚式移動ロボット及び脚式移動ロボットの転倒時動作制御方法
JP2001239479A (ja) * 1999-12-24 2001-09-04 Sony Corp 脚式移動ロボット及びロボットのための外装モジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034295A (ja) * 1983-08-03 1985-02-21 株式会社日立製作所 皮膚感覚センサ
JP2520019B2 (ja) * 1989-06-29 1996-07-31 本田技研工業株式会社 脚式移動ロボットの駆動制御装置
US5255753A (en) * 1989-12-14 1993-10-26 Honda Giken Kogyo Kabushiki Kaisha Foot structure for legged walking robot
JP3278467B2 (ja) * 1992-08-18 2002-04-30 本田技研工業株式会社 移動ロボットの制御装置
JP3655056B2 (ja) * 1997-08-04 2005-06-02 本田技研工業株式会社 脚式移動ロボットの制御装置
JP3555107B2 (ja) * 1999-11-24 2004-08-18 ソニー株式会社 脚式移動ロボット及び脚式移動ロボットの動作制御方法
JP3511088B2 (ja) * 2000-04-10 2004-03-29 独立行政法人航空宇宙技術研究所 多関節介護ロボット制御用の圧力分布センサ
US6732015B2 (en) * 2002-03-14 2004-05-04 Kabushiki Kaisha Toshiba Robot system
US6999851B2 (en) * 2002-08-30 2006-02-14 Sony Corporation Robot apparatus and motion controlling method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133894A (ja) * 1984-07-25 1986-02-17 神鋼電機株式会社 産業用ロボツトの安全ア−ム及び安全ハンド
JPH06278081A (ja) * 1993-03-26 1994-10-04 Nec Corp 衝突防止機能付ロボットアーム
JP2001138271A (ja) * 1999-11-12 2001-05-22 Sony Corp 脚式移動ロボット及び脚式移動ロボットの転倒時動作制御方法
JP2001239479A (ja) * 1999-12-24 2001-09-04 Sony Corp 脚式移動ロボット及びロボットのための外装モジュール

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1393867A4 *
TAKAYUKI FURUTA: "Kogata humanoid Mk. 6 zenshin kodo seisei algorithm kenshoyo platform no kochiku", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS ROBOTICS MECHATRONICS KOENKAI KOEN RONBUNSHU, no. PT. 3, 10 June 2001 (2001-06-10), pages 2A1.N3(1) - 2A1.N3(2), XP002960209 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110653811A (zh) * 2018-06-29 2020-01-07 深圳市优必选科技有限公司 一种控制方法、机器人及计算机存储介质

Also Published As

Publication number Publication date
JP2002361575A (ja) 2002-12-18
KR100515276B1 (ko) 2005-09-15
JP3682525B2 (ja) 2005-08-10
EP1393867A1 (en) 2004-03-03
US20040060746A1 (en) 2004-04-01
EP1393867A4 (en) 2008-04-02
US6902015B2 (en) 2005-06-07
EP1393867B1 (en) 2009-02-25
TW544380B (en) 2003-08-01
KR20030029789A (ko) 2003-04-16
DE60231300D1 (de) 2009-04-09

Similar Documents

Publication Publication Date Title
WO2002100607A1 (en) Two-leg walking humanoid robot
JP5539040B2 (ja) 脚式移動ロボット
EP1083120B1 (en) Leg-movement-type robot and its hip joint device
JP4279416B2 (ja) 2足歩行ロボット
JP3603279B2 (ja) 二脚歩行式人型ロボット
EP1586424A1 (en) Joint structure of robot
JP5468973B2 (ja) 脚式移動ロボット
WO2006027902A1 (ja) 脚式移動ロボット
JPH04201185A (ja) 脚式移動ロボットの歩行制御装置
US7441614B2 (en) Legged mobile robot
JP2008200813A (ja) 二足歩行ロボット
JP2008126332A (ja) 脚式歩行ロボットの足構造
JP3673869B2 (ja) 二脚歩行式人型ロボット及びその手先収納機構
JP3627057B2 (ja) 二脚歩行式人型ロボット
JP3569767B2 (ja) 歩行式ロボット
JP5528916B2 (ja) ロボット及びロボットの外力検出機構
JPH0735030B2 (ja) 負荷軽減機構を有する多関節脚機構
JP2004188530A (ja) 歩行式移動装置並びにその動作制御装置及び動作制御方法
JP5261222B2 (ja) 脚式移動ロボット
JP2010184311A (ja) 脚式移動ロボット
JP4940905B2 (ja) 関節駆動型ロボット、及びその制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020037000965

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020037000965

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10466316

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002733274

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002733274

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020037000965

Country of ref document: KR