WO2002087057A1 - Elektronisch kommutierter gleichstrommotor - Google Patents

Elektronisch kommutierter gleichstrommotor Download PDF

Info

Publication number
WO2002087057A1
WO2002087057A1 PCT/DE2002/000246 DE0200246W WO02087057A1 WO 2002087057 A1 WO2002087057 A1 WO 2002087057A1 DE 0200246 W DE0200246 W DE 0200246W WO 02087057 A1 WO02087057 A1 WO 02087057A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead frame
motor according
housing
motor
circuit board
Prior art date
Application number
PCT/DE2002/000246
Other languages
English (en)
French (fr)
Inventor
Thomas Weigold
Johannes Pfetzer
Guenther Riehl
Matthias Schmitz
Gerta Rocklage-Marliani
Torsten Heidrich
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7682103&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002087057(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP02700169.2A priority Critical patent/EP1384307B2/de
Priority to US10/311,848 priority patent/US20040027014A1/en
Priority to JP2002584457A priority patent/JP2004519992A/ja
Publication of WO2002087057A1 publication Critical patent/WO2002087057A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/03Machines characterised by the wiring boards, i.e. printed circuit boards or similar structures for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2211/00Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
    • H02K2211/03Machines characterised by circuit boards, e.g. pcb
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles

Definitions

  • the invention is based on an electronically commutated * DC motor according to the preamble of claim 1.
  • Motors also known as brushless drive motors, are the ones required for electronic commutation
  • Semiconductor switches in the form of power transistors and the control electronics for controlling the power transistors in the motor itself are integrated.
  • the stator is fastened to a cup-like housing encompassing the outside of the rotor, on the outer bottom of which is turned away from the rotor, an axially projecting ring wall is formed, which is connected to the Ring wall latched plastic lid forms a closed receiving space.
  • a cup-like housing encompassing the outside of the rotor, on the outer bottom of which is turned away from the rotor, an axially projecting ring wall is formed, which is connected to the Ring wall latched plastic lid forms a closed receiving space.
  • They are in the recording room
  • Power transistors and a circuit board carrying the control electronics are arranged.
  • the control line to the control grids of the power transistors is produced on the one hand via the conductor tracks of the printed circuit board and on the other hand the connector inserted in a recess in the ring wall is contacted.
  • the power transistors are divided into two groups of three power transistors each and lie with their cooling surfaces on projections on the floor of the receiving space.
  • the approximately ring-shaped circuit board also lies on the projections and has cutouts in the areas of the two groups of power transistors.
  • the circuit board is pretensioned against the projections on the floor at several points using fastening screws. With the fastening screws together two brackets are held on the bottom, which overlap the three associated power transistors in one go.
  • a prestressed leaf spring is arranged between the inside of each bracket and the power transistors, which press the power transistors firmly against the projections on the floor and in this way ensure particularly good heat dissipation from the power transistors to the housing.
  • the DC motor according to the invention with the features of claim 1 has the advantage that all power currents are routed through the lead frame and the circuit board with its soldering sensitive tracks only for the weak signal and control currents, as well as for the Power supply to the control electronics is used.
  • the leadframe embedded in an insulating body which is manufactured, for example, by a plastic encapsulation of the leadframe, is mechanically so stable that it is used for functions other than pure power current conduction, such as for fixing semiconductor switches and other power components, such as electrolytic capacitors and chokes Press the housing of the semiconductor switch on cooling surfaces and to fix the assembly unit formed by him together with the circuit board in the motor housing.
  • insulation displacement terminals are formed on the lead frame for contacting the winding phases in such a way that when the lead frame is inserted into the motor housing, they produce electrical contact points with the assigned winding phases and maintain them in the final position of the lead frame.
  • This constructive measure advantageously produces solder-free contact points and saves additional expensive processes, such as soldering or welding.
  • the insulation displacement terminals peel off the insulating varnish: of the winding wire at the winding phase ends and establish a good connection between the winding phases, the lead frame and the semiconductor switches. In this way, there is only a single connection between the stator and the commutation device of the brushless Electric motor that is very easy to assemble and does not require a thermal connection process.
  • the lead frame is in an upper and a separate lower one.
  • a plug pin of the connecting plug for applying the positive and negative potential of the mains DC voltage is advantageously assigned to each grid position of the lead frame.
  • FIG. 1 is an electrical circuit diagram of the DC motor in FIG. 1,
  • FIG. 3 is a perspective view in the direction of arrow III in FIG. 1 of the DC motor with the housing cover removed, 4 shows a perspective rear view of a lead frame embedded in an insulating body in the direct current motor according to FIG. 1 without the electronic components of a commutation device,
  • FIG. 5 is a plan view of the upper grid layer of the lead frame in FIG. 4,
  • Fig. 6 is a plan view of the lower grid layer of the
  • FIG. 7 shows a plan view of the grid layers of the lead frame according to FIGS. 4 and 5 lying one above the other in the axial direction, with the electronic components of the commutation device being fitted.
  • the electronically commutated DC motor shown in longitudinal section in FIG. 1, hereinafter referred to as EC motor, is used in motor vehicles to drive devices, e.g. like here to drive one
  • the EC motor which is designed as an external rotor motor, has a motor housing 11, on one end of which the cooling water pump 10 is flanged and the other end of which is covered by a removable housing cover 12.
  • the connector housing 131 is made in one piece with the housing cover 12 and in the exemplary embodiment encloses a total of four connector pins 132.
  • a stator 14 is fixed, which carries a multi-phase stator winding 15.
  • the stator 14 is fastened on the side facing away from the housing cover 12 of a housing base 111 which extends transversely through the motor housing 11 and carries a bearing 16 in a hollow cylindrical interior for receiving a rotor shaft 17 which is inserted into the
  • Cooling water pump 10 protrudes, is additionally supported there and receives the pump wheel in a rotationally fixed manner.
  • a permanently magnet-excited, pot-shaped rotor 18 is held in a rotationally fixed manner on the rotor shaft 17 and engages over the stator 14 with its pot casing.
  • Permanent magnet segments 19 are arranged on the inside of the pot casing.
  • a receiving space 20 is formed, which is closed on the one hand by the housing base 111 and on the other hand by the housing cover 12.
  • a commutation device 21 for the EC motor is accommodated, which in a known manner comprises semiconductor switches 22 designed as MOS-FETs, control electronics 26 for controlling the semiconductor switches 22, an electrolytic capacitor 25 and, if necessary, suppression chokes.
  • the commutation device 21 is on a structural unit consisting of a lead frame 23 embedded in an insulating body 46 made of plastic and a printed circuit board 24 arranged parallel to and at a distance from the lead frame 23 and fastened to the embedded lead frame 23 1 dashed lines 241 housed, the distribution of the electronic components of the commutation device 21 on the lead frame 23 and the circuit board 24 is made so that the power electronics the lead frame 23 and
  • Control electronics 26 is assigned to the circuit board 24.
  • the insulating body 46 is produced by injection-molding around the lead frame 23.
  • the commutation device 21 comprises six semiconductor switches 22 designed as low-side MOS-FETs, one of which is in series with a winding phase 151 of the stator winding 15 is arranged.
  • the semiconductor switches 22 are connected with their power connections 221, 222, in the case of the MOS-FETs with their drains 221 and their sources 222, to the winding ends of the winding phases 151 or to the negative or ground potential of the DC voltage network.
  • the control electrodes 223 of the semiconductor switches 22, in the version as MOS-FETs the gates 223, are connected to the control electronics 26 of the commutation device 21, which controls the semiconductor switches 22 in such a way that the individual winding phases 151 are successively connected to the DC voltage network.
  • the control electronics 26, which is arranged in FIG. 2 on the rear side of the printed circuit board 24, are only indicated schematically in broken lines here.
  • the plastic-coated lead frame 23 is shown in FIG. 4, the lead frame 23 without a plastic cover or without an insulating body 46 and with Equipped with the electronic components of the
  • Commutation device 21 is shown in FIG. 7 and in detail in FIGS. 5 and 6.
  • the lead frame 23 is subdivided into an upper grid layer 231 (FIG. 5) and a lower grid layer 232 (FIG. 6), which are arranged parallel to one another with axial spacing (FIG. 7) and through the insulating body 46 (Fig. 4) are electrically isolated from one another and held together.
  • Each grid layer 231, 232 has a stamping track 27 or 28, which is approximately circular on the outside, at one end of which a plug pin 132a or 132d is formed.
  • Each of the outer punch tracks 27, 28 is provided with a clamping contact 29 and 30, respectively.
  • the clamping contacts 29, 30 are used for
  • Shaped connecting pin 32a or 32b or 32c which is contacted on the circuit board 24 after bending out of the plane of the upper grid layer 231.
  • the contact points on the printed circuit board 24 are identified in FIG. 2 by a, b, c.
  • Another contact point d on the circuit board 24 is about a connecting pin 32 d connected to the punching path 28 in the lower grid layer 232.
  • Connection lugs 231 232 are formed in each of the two grid layers 231, 232 for contacting the power connections 221, 222 of the semiconductor switches 22.
  • the connecting lugs 33 in the upper lattice layer 231 strive radially from the punched web 27, while the connecting lugs 34 in the lower lattice layer 232 also have at their end remote from the contact point with the semiconductor switches 22
  • Insulation clips -351 - 356 are provided.
  • the insulation displacement connectors 351-356 are arranged radially offset from one another by the same circumferential angle and point to the center of the lower lattice layer 232.
  • connection lugs 34 Corresponding to the six semiconductor switches 22 present, there are six connection lugs 34, each with an insulation displacement connector 351-356.
  • Three further insulation piercing clamps 361-363 protrude inward from the punching path 28 and are connected to the punching path 28 in one piece offset from one another by the same circumferential angle. All insulation displacement clamps 35, 36 are designed so that they can be bent out of the plane of the lower grid layer 232, the deflection being approximately 90 °.
  • connecting pieces 37 are formed in the upper grid position, which like the connecting lugs 33 and 34 a contact point for the semiconductor switch 22, here for connecting the control electrodes 223 of the semiconductor switch 22, and additionally to the end facing away radially inward
  • connecting pins 32 and 38 which after bending out of the Contact the printed circuit board 24 at the level of the upper grid layer 231 and establish the corresponding connection points for the control electronics 22 there.
  • the connecting pins 32 and 38 also serve to mechanically fix the printed circuit board 24 to the lead frame 23, which can be effected, for example, by a plug-in process.
  • the insulation displacement contacts 35, 36 in the upper lattice layer 231 serve for solder-free contacting of the winding phases 151 of the stator winding 15, as can be seen from the electrical circuit diagram according to FIG. 2.
  • the insulation displacement terminals 361-363 each connect one end of one of the three winding phases 151 of the stator winding 15 via the stamped track 28 to the plug pin 132 d, while the insulation displacement terminals 351-356 connect the other ends of the winding phases 151 to the one power connection 221 via the connection lugs 33 connect the semiconductor switch 22 (drain of the MOS-FETs).
  • the contacting of the winding phases 151 takes place when joining the coated lead frame 23 into the receiving space 20 in the motor housing 11.
  • circular recesses 39, 40 are provided in the housing base 111 (see FIGS. 1 and 3), which are in the insertion position of the lead frame 23 in Receiving space 20 with the cutting clamps 35, 36 protruding at right angles from the lead frame 23.
  • the recesses 39 are aligned with the insulation displacement clamps 351-356 and the recesses 40 with the insulation displacement clamps 361-363.
  • a contacting pocket 41 is located in or behind each of these recesses in the stator body or laminated core of the stator 14 (Fig.
  • support cams 42 are arranged distributed around the circumference, onto which the lead frame 23 covered with plastic is placed according to FIG. 4 with its front side seen there detect.
  • caulking pins 43 are provided which pass through the through holes 31 in the lead frame 23
  • the housing base 111 in the receiving space 20 is designed as a cooling surface and takes over the heat dissipation from the semiconductor switches 22.
  • an arch 44 (FIGS. 1 and 3) is formed in the housing base 111, which is used for the non-positive insertion of the electrolytic capacitor 25 (FIGS. 2 and 7 ) serves.
  • the arching is coated with a thermal paste.
  • the lead frame 23 (FIG. 4) constructed as described above and embedded in the insulating body 46 also serves to hold the semiconductor switches 22 the insulating body 46 is molded into pockets 45, into which the semiconductor switches 22 are inserted with their housing 224 in a form-fitting manner.
  • the pockets 45 are each arranged between the through holes 31 and executed with a small radial depth, so that a large part of the surface of the housing 224 is exposed.
  • An electrically insulating heat-conducting foil can also be inserted between the housings 224 and the cooling surface.
  • FIG. 7 which shows a top view of the not yet encased lead frame 23 with its two grid layers 231 and 232, shows the arrangement of the semiconductor switches 22 with housing 224, power connections 221 and 222 and control connections 223.
  • the insulation displacement terminals 35 and 36 are not yet bent out of the plane of the two grid layers 231, 232.
  • the plug pins 132 have already been bent out of the planes of the two grid layers 231, 232, in the opposite direction to the bending direction of the insulation displacement connectors 35, 36 by approximately 90 °.
  • the mutually parallel connector pins 132 dip into the connector housing 131 projecting axially on the housing cover 12 and the connector 13 for the EC motor is completed.
  • the minus potential is connected to the connector pin 132a and the plus potential of the DC voltage network to the connector pin 132d.
  • the signal line for the Control electronics 22 connected and the connector pin 132c is provided as a reserve.
  • a concave indentation 47 is also provided, which lies opposite the indentation 44 and also partially encompasses the cylinder jacket of the electrolytic capacitor 25, so that the electrolytic capacitor 25 between indentation 44 and indentation when the housing cover 12 is fixed to the motor housing 11 47 is held without pressing force.
  • the lead frame 23 As can be seen from the described structure of the lead frame 23 embedded in the insulating body 46 with the printed circuit board 24 attached to it, all power currents of the electronic components of the commutation device 21 are conducted via the lead frame 23, while only the weak control signals are conducted in the conductor tracks 241 of the printed circuit board 24.
  • the lead frame 23 also takes over the mounting and positioning of the semiconductor switches 22 and the non-positive pressing of the semiconductor switches onto the cooling surface, thereby ensuring good heat dissipation of the heat generated in the semiconductor switches 22.
  • the stator winding 15 is contacted automatically during the assembly process, i.e. when inserting the lead frame 23 into its intended position in the receiving space 20 of the motor housing 11.
  • the stator winding 15 can thus be designed with any number of phases, for example three or four-phase.
  • the number of semiconductor switches 22 must then be adjusted accordingly.
  • six semiconductor switches 22 are also to be provided, which are connected in a three-phase bridge circuit between the punched tracks 27 and 28 of the upper and lower grid layers 231, 232 of the punched grid 23.
  • the drains 221 of three of the semiconductor switches 22 designed as MOS-FETs and the sources 222 of the other semiconductor switches 22 are then connected to the respective ones via three insulation displacement terminals 35, 36
  • the lead frame 23 is designed in two layers with an upper and lower grid layer 231, 232 for reasons of space.
  • the lead frame 23 can also be formed in one layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Bei einem elektronisch kommutierten Gleichstrommotor mit einem Stator (14) mit mehrphasiger Statorwicklung (15), einem den Stator (14) aufnehmenden Gehäuse (11), mit einer im Gehäuse (11) angeordneten Kommutierungsvorrichtung (21) zum folgerichtigen Anschließen der Wicklungsphasen an eine Netzgleichspannung, die eine Mehrzahl von Halbleiterschaltern (22) und eine von einer Leiterplatte (24) aufgenommene Steuerelektronik (26) zum Ansteuern der Halbleiterschalter (22) aufweist, sowie mit einem Anschlussstecker (13) zum Zuführen der Netzgleichspannung sind für eine robustere Ausführung der Kommutierungsvorrichtung (21) alle Leistungsströme führenden Elektronikbauteile der Kommutierungsvorrichtung (22), elektrolytkondensator (25) u.a., auf einem Stanzgitter (23) kontaktiert, mit dem die elektrische Verbindung zur Statorwicklung (15) und zur Leiterplatte (24) hergestellt ist. Das Stanzgitter (23) ist in einem Isolierkörper (46) eingebettet und dient als Träger für die Halbleiterschalter (22) und die Leiterplatte (24) (Fig. 1).

Description

Elektronisch kommutierter Gleichstrommotor
Stand der Technik
Die Erfindung geht aus von einem elektronisch kommutierten* Gleichstrommotor nach dem Oberbegriff des Anspruchs 1.
Bei elektronisch kommutierten Gleichstrommotoren, sog. EC-
Motoren, auch als bürstenloser Antriebsmotoren bezeichnet, sind die für die elektronische Kommutierung erforderlichen
Halbleiterschalter in Form von Leistungstransitoren sowie die Steuerelektronik zum folgerichtigen Ansteuern der Leistungstransitoren im Motor selbst integriert.
Hierzu ist bei einem bekannten, als Außenläufermotor ausgebildeten EC-Motor (DE 41 22 529 AI) der Stator an einem den Rotor außen umgreifenden napfartigen Gehäuse befestigt, an dessen vom Rotor abgekehrten äußeren Boden eine axial abstehende Ringwand angeformt ist, die mit einem auf der Ringwand verrasteten Kunststoffdeckel einen geschlossenen Aufnahmeraum bildet. In dem Aufnahmeraum sind die Leistungstransistoren sowie eine die Steuerelektronik tragende Leiterplatte angeordnet. Über die Leiterbahnen der Leiterplatte ist einerseits die Steuerleitung zu den Steuergittern der Leistungstransistoren hergestellt und andererseits der in einer Aussparung in der Ringwand eingesetzte Anschlußstecker kontaktiert. Die Leistungstransistoren sind in zwei Gruppen zu je drei Leistungstransistoren verteilt und liegen mit ihren Kühlflächen auf Vorsprüngen am Boden des Aufnahmeraums auf. Die annähernd ringförmige Leiterplatte liegt ebenfalls auf den Vorsprüngen auf und trägt in den Bereichen der beiden Gruppen der Leistungstransistoren Aussparungen. Die Leiterplatte ist an mehreren Stellen mit Hilfe von Befestigungsschrauben gegen die Vorsprünge am Boden vorgespannt. Mit den Befestigungsschrauben zusammen sind an dem Boden zwei Bügel gehalten, welche die jeweils drei zusammengehörigen Leistungstransistoren in einem Zug übergreifen. Zwischen der Innenseite eines jeden Bügels und den Leistungstransistoren ist eine vorgespannte Blattfeder angeordnet, die die Leistungstransistoren fest gegen die Vorsprünge am Boden drücken und auf diese Weise eine besonders gute Wärmeabfuhr von den Leistungstransistoren zum Gehäuse gewährleisten.
Vorteile der Erfindung
Der erfindungsgemäße Gleichstrommotor mit den Merkmalen des Anspruchs 1 hat den Vorteil, daß alle Leistungsströme über das Stanzgitter geführt werden und die Leiterplatte mit ihren gegen Auflöten empfindlichen Leiterbahnen nur noch für die schwachen Signal- und Steuerströme, sowie für die Stromversorgung der Steuerelektronik genutzt wird. Das in einem Isolierkörper, der beispielsweise durch eine Kunststoffumspritzung des Stanzgitters hergestellt ist, eingebettete Stanzgitter ist mechanisch so stabil, daß es für weitere Funktionen außer der reinen LeistungsStromführung genutzt wird, so zum Fixieren- der Halbleiterschalter und weiterer Leistungsbauteile, wie Elektrolytkondensator und Drosseln, zum Anpressen der Gehäuse der Halbleiterschalter an Kühlflächen und zum Fixieren der von ihm zusammen mit der Leiterplatte gebildeten Montageeinheit im Motorgehäuse.
Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen es im Anspruch 1 angegebenen Gleichstrommotors möglich.
Gemäß einer vorteilhaften Ausführungsform der Erfindung sind zur Kontaktierung der Wicklungsphasen Schneidklemmen am Stanzgitter so ausgebildet, daß sie beim Einsetzten des Stanzgitters in das Motorgehäuse elektrische Kontaktstellen zu den zugeordneten Wicklungsphasen herstellen und diese in der endgültigen Position des Stanzgitters aufrechterhalten. Durch diese konstruktive Maßnahme werden vorteilhaft lotfrei Kontaktstellen hergestellt und zusätzliche teure Prozesse, wie beispielsweise Löten oder Schweißen, eingespart. Beim Fügevorgang schälen die Schneidklemmen den Isolierlack: des Wicklungsdrahts an den Wicklungsphasenenden ab und stellen eine gute Verbindung zwischen den Wicklungsphasen, dem Stanzgitter und den Halbleiterschaltern her. Auf diese Weise gibt es nur eine einzige Verbindungsstelle zwischen dem Stator und der Kommutierungsvorrichtung des bürstenlosen Elektromotors, die sehr einfach zu fügen ist und keines thermischen Verbindungsprozesses bedarf.
Gemäß einer vorteilhaften Ausführungsform der Erfindung ist das Stanzgitter in eine obere und eine davon getrennte untere. Gitterlage unterteilt, die in zueinander parallelen Ebenen mit Abstand angeordnet und durch den Isolierkörper zusammengehalten sind. Diese konstruktive Gestaltung ermöglicht eine kompakte Ausführung des Stanzgitters mit kleinen Abmessungen in radialer Richtung. Vorteilhaft wird dabei jeder Gitterlage des Stanzgitters ein Steckerstift des Anschlußsteckers zum Anlegen des positiven und negativen Potentials der Netzgleichspannung zugeordnet.
Zeichnung
Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels im folgenden näher beschrieben. Es zeigen :
Fig. 1 einen Längsschnitt eines elektronisch kommutierten Gleichstrommotors,
Fig. 2 ein elektrisches Schaltbild des Gleichstrommotors in Fig. 1,
Fig. 3 eine perspektivische Ansicht in Richtung Pfeil III in Fig. 1 des Gleichstrommotors bei abgenommenem Gehäusedeckel, Fig. 4 eine perspektivische Rückansicht eines in einem Isolierkörper eingebetteten Stanzgitters im Gleichstrommotor gemäß Fig. 1 ohne die elektronische Bauteile einer Kommutierungsvorrichtung,
Fig. 5 eine Draufsicht der oberen Gitterlage des Stanzgitters in Fig. 4,
Fig. 6 eine Draufsicht der unteren Gitterlage des
Stanzgitters in Fig. 4,
Fig. 7 eine Draufsicht der in Achsrichtung übereinanderliegenden Gitterlagen des Stanzgitters gemäß Fig. 4 und 5 mit Bestückung mit den elektronischen Bauteilen der Kommutierungsvorrichtung .
Beschreibung des Ausführungsbeispiels
Der in Fig. 1 im Längsschnitt gezeigte elektronisch kommutierte Gleichstrommotor, im folgenden kurz EC-Motor genannt, dient in Kraftfahrzeugen zum Antrieb von Einrichtungen, so z.B. wie hier zum Antrieb einer
Kühlwasserpumpe für das Kühlwasser des Fahrzeugmotors. Der als Außenläufermotor ausgebildete EC-Motor weist ein Motorgehäuse 11 auf, an dessen einer Stirnseite die Kühlwasserpumpe 10 angeflanscht ist und dessen andere Stirnseite von einem abnehmbaren Gehäusedeckel 12 abgedeckt ist. Im Gehäusedeckel 12 ist ein Anschlußstecker 13 zum Anschließen des EC-Motors an das 12V-Gleichspannungsnetzs des Kraftfahrzeugs integriert, dessen Steckergehäuse 131 einstückig mit dem Gehäusedeckel 12 ausgeführt ist und im Ausführungsbeispiel insgesamt vier Steckerstifte 132 umschließt. Im Motorgehäuse 11 ist ein Stator 14 festgelegt, der eine mehrphasige Statorwicklung 15 trägt. Der Stator 14 ist dabei an der vom Gehäusedeckel 12 abgekehrten Seite eines das Motorgehäuse 11 quer durchziehenden Gehäuseboden 111 befestigt und trägt in einem hohlzylindrischen Innenraum ein Lager 16 zu Aufnahme einer Rotorwelle 17, die in die
Kühlwasserpumpe 10 hineinragt, dort zusätzlich gelagert ist und das Pumpenrad drehfest aufnimmt. Auf der Rotorwelle 17 ist ein permanentmagneterregter, topfförmiger Rotor 18 drehfest gehalten, der mit seinem Topfmantel den Stator 14 übergreift. An der Innenseite des Topfmantels sind Permanentmagnetsegmente 19 angeordnet.
Auf der vom Stator 14 abgekehrten Seite des Gehäusebodens 111 ist ein Aufnahmeraum 20 ausgebildet, der einerseits von dem Gehäuseboden 111 und andererseits von dem Gehäusedeckel 12 abgeschlossen ist. In dem Aufnahmeraum 21 ist eine Kommutierungsvorrichtung 21 für den EC-Motor aufgenommen, die in bekannter Weise als MOS-FETs ausgebildete Halbleiterschalter 22, eine Steuerelektronik 26 zum Ansteuern der Halbleiterschalter 22, einen Elektrolytkonde-nsator 25 sowie ggf. Entstördrosseln umfaßt. Die Kommutierungsvorrichtung 21 ist auf einer Baueinheit, bestehend aus einem in einem Isolierkörper 46 aus Kunststoff eingebetteten Stanzgitter 23 und einer parallel zu dem Stanzgitter 23 und im Abstand davon angeordneten und am eingebetteten Stanzgitter 23 befestigten Leiterplatte 24 mit in Fig. 1 strichliniert angedeuteten Leiterbahnen 241 untergebracht, wobei die Aufteilung der Elektronikbauelemente der Kommutierungsvorrichtung 21 auf Stanzgitter 23 und Leiterplatte 24 so vorgenommen ist, daß die Leistungselektronik dem Stanzgitter 23 und die
Steuerelektronik 26 der Leiterplatte 24 zugeordnet ist. Der Isolierkörper 46 ist durch Kunststoffumspritzung des Stanzgitters 23 hergestellt.
Im Ausführungsbeispiel des EC-Motors mit einer sechsphasigen, dreisträngigen Statorwicklung 15, dessen elektrisches Schaltbild in Fig. 2 dargestellt ist, umfaßt die Kommutierungsvorrichtung 21 sechs als Low-side-MOS-FETs ausgebildete Halbleiterschalter 22, von denen jeweils einer in Reihe mit einer Wicklungsphase 151 der Statorwicklung 15 angeordnet ist. Die Halbleiterschalter 22 sind dabei mit ihren Leistungsanschlüssen 221, 222, im Falle der MOS-FETs mit ihren Drains 221 und ihren Sourcen 222, an die Wicklungsenden der Wicklungsphasen 151 bzw. an dem Minus- oder Groundpotential des Gleichspannungsnetzes angeschlossen. Die Steuerelektroden 223 der Halbleiterschalter 22, in der Ausführung als MOS-FETs die Gates 223, sind an die Steuerelektronik 26 der Kommutierungsvorrichtung 21 angeschlossen, die die Halbleiterschalter 22 folgerichtig so ansteuert, daß die einzelnen Wicklungsphasen 151 sukzessive an das Gleichspannungsnetz angeschlossen werden. Die Steuerelektronik 26, die in Fig. 2 auf der Rückseite der Leiterplatte 24 angeordnet ist, ist ier nur schematisch in Strichlinierung angedeutet. Das kunststoffummantelte Stanzgitter 23 ist in Fig. 4 dargestellt, das Stanzgitter 23 ohne Kunststoffummantelung bzw. ohne Isolierkörper 46 und mit Bestückung mit den Elektronikbauteilen der
Kommutierungsvorrichtung 21 ist in Fig. 7 und in Einzelheiten in Fig. 5 und 6 dargestellt.
Zu Erzielung einer kompakten Bauform mit geringen radialen Abmessungen ist das Stanzgitter 23 in eine obere Gitterlage 231 (Fig. 5) und eine untere Gitterlage 232 (Fig. 6) unterteilt, die mit Axialabstand parallel zueinander angeordnet (Fig. 7) und durch den Isolierkörper 46 (Fig. 4) elektrisch voneinander isoliert und zusammengehalten sind. Jede Gitterlage 231, 232 weist eine außen etwa kreisförmig umlaufende Stanzbahn 27 bzw. 28 auf, an deren einem Ende ein Steckerstift 132a bzw. 132d ausgebildet ist. Jede der äußeren Stanzbahnen 27, 28 ist mit einem Klemmkontakt 29 bzw. 30 versehen. Die Klemmkontakte 29, 30 dienen zur
Kontaktierung eines Elektrolytkondensators 25 (Fig. 2 und 7). In der Stanzbahn 27 der oberen Gitterlage 231 sind Durchgangslöcher 31 zum Durchführen von Befestigungselementen voneinander beabstandet angeordnet, mit denen das ummantelte Stanzgitter 23 im Aufnahmeraum 20 des Motorgehäuses 11 befestigt wird. In der oberen Gitterlage 231 sind zwei weitere Steckerstifte 132b und 132c ausgebildet, die parallel zu dem mit der Stanzbahn 27 verbundenen Steckerstift 132a ausgerichtet sind. An dem nach innen weisenden Ende der Steckerstifte 132a, 132b und 132c ist jeweils ein
Verbindungsstift 32a bzw. 32b bzw. 32c angeformt, der nach Ausbiegen aus der Ebene der oberen Gitterlage 231 auf der Leiterplatte 24 kontaktiert ist. Die Kontaktstellen auf der Leiterplatte 24 sind in Fig. 2 mit a, b, c gekennzeichnet. Eine weitere Kontaktstelle d auf der Leiterplatte 24 ist über einen Verbindungsstift 32 d mit der Stanzbahn 28 in der unteren Gitterlage 232 verbunden.
Zur Kontaktierung der Leistungsanschlüsse 221, 222 der Halbleiterschalter 22 sind in jeder der beiden Gitterlagen 231, 232 Anschlußfahnen 231 232 ausgebildet. Die Anschlußfahnen 33 in der oberen Gitterlage 231 streben dabei radial von der Stanzbahn 27 ab, während die Anschlußfahnen 34 in der unteren Gitterlage 232 an ihrem von der Kontaktstelle mit den Halbleiterschaltern 22 abgekehrten Ende mit
Schneidklemmen -351 - 356 versehen sind. Die Schneidklemmen 351 - 356 sind dabei um gleiche ümfangswinkel zueinander versetzt radial angeordnet und weisen zum Mittelpunkt der unteren Gitterlage 232. Entsprechend der sechs vorhandenen Halbleiterschalter 22 sind sechs Anschlußfahnen 34 mit jeweils einer Schneidklemme 351 - 356 vorhanden. Drei weitere Schneidklemmen 361 - 363 stehen von der Stanzbahn 28 nach innen ab und sind um gleiche Ümfangswinkel zueinander versetzt an der Stanzbahn 28 einstückig angebunden. Alle Schneidklemmen 35, 36 sind so ausgebildet, daß sie aus der Ebene der unteren Gitterlage 232 ausgebogen werden können, wobei die Ausbiegung ca. 90° beträgt.
Zum Anschließen der Steuerelektroden 223 der Halbleiterschalter 22 an die Steuerelektronik 22 sind in der oberen Gitterlage 231 Anschlußstücke 37 ausgebildet, die wie die Anschlußfahnen 33 und 34 eine Kontaktstelle für die Halbleiterschalter 22, hier zum Anbinden der Steuerelektroden 223 der Halbleiterschalter 22, und zusätzlich an dem davon abgekehrten Ende radial nach innen wegstrebende
Verbindungsstifte 38 aufweisen, die nach Ausbiegung aus der Ebene der oberen Gitterlage 231 die Leiterplatte 24 kontaktieren und dort die entsprechenden Anschlußpunkte für die Steuerelektronik 22 herstellen. Die Verbindungsstifte 32 und 38 dienen neben der Herstellung der elektrischen Verbindung zwischen Leiterplatte 24 und Stanzgitter 23 auch noch dem mechanischen Festlegen der Leiterplatte 24 am Stanzgitter 23, was beispielsweise durch einen Steckvorgang bewirkt werden kann.
Die Schneidklemmen 35, 36 in der oberen Gitterlage 231 dienen zum lotfreien Kontaktieren der Wicklungsphasen 151 der Statorwicklung 15, wie dies aus dem elektrischen Schaltbild gemäß Fig. 2 hervorgeht. Dabei verbinden die Schneidklemmen 361 - 363 jeweils das eine Ende eines der drei Wicklungsstränge 151 der Statorwicklung 15 über die Stanzbahn 28 mit dem Steckerstift 132 d, während die Schneidklemmen 351 - 356 die anderen Enden der Wicklungsphasen 151 über die Anschlußfahnen 33 mit dem einen Leistungsanschluß 221 der Halbleiterschalter 22 (Drain der MOS-FETs) verbinden. Die Kontaktierung der Wicklungsphasen 151 erfolgt beim Fügen des ummantelten Stanzgitters 23 in den Auf ahmeraum 20 im Motorgehäuse 11. Hierzu sind im Gehäuseboden 111 kreisförmige Aussparungen 39, 40 vorgesehen (vgl. Fig. 1 und 3), die in der Einsetzposition des Stanzgitters 23 im Aufnahmeraum 20 mit den rechtwinklig vom Stanzgitter 23 abstehenden Schneidklemmen 35, 36 fluchten. Dabei fluchten die Aussparungen 39 mit den Schneidklemmen 351 - 356 und die Aussparungen 40 mit den Schneidklemmen 361 - 363. In oder hinter jeder dieser Aussparungen ist im Statorkörper oder Blechpaket des Stators 14 eine Kontaktierungs-Tasche 41 (Fig. 1) angeordnet, in welchem ein Wicklungsende einer Wicklungsphase 151 so festgelegt ist, daß beim Eintauchen der Schneidklemmen 35, 36 in die Taschen 41 die Schneidklemmen 35, 36 den Lack des Wicklungsdrahts abschälen und eine gute Verbindung zwischen dem Wickeldraht und dem Stanzgitter 23 herstellen.
In der perspektivischen Darstellung der Draufsicht des Motorgehäuses 11 bei abgenommenem Gehäusedeckel 12 und noch nicht eingesetztem Stanzgitter 23 mit Leiterplatte 24 sind am Umfang verteilt angeordnete Auflagenocken 42, auf die das kunststoffummantelte Stanzgitter 23 gemäß Fig. 4 mit seiner dort zu sehenden Frontseite aufgelegt wird, zu erkennen. An diesen Auflagenocken 42 sind Stemmstifte 43 vorgesehen, die durch die Durchgangslöcher 31 im Stanzgitter 23
•hindurchtreten. Durch Verstemmen dieser Stemmstifte 43 wird das Stanzgitter 23 mit daran befestigter Leiterplatte 24 im Aufnahmeraum 20 gehalten.
Der Gehäuseboden 111 im Aufnahmeraum 20 ist als Kühlfläche ausgebildet und übernimmt die Wärmeableitung von den Halbleiterschaltern 22. Weiterhin ist in dem Gehäuseboden 111 eine Einwölbung 44 (Fig. 1 und 3) ausgeformt, die zum kraftschlußlosen Einlegen des Elektrolytkondensators 25 (Fig. 2 und 7) dient. Zur verbesserten Wärmeabfuhr vom Elektrolytkondensator 25 ist die Einwölbung mit einer Wärmeleitpaste bestrichen.
Das wie vorstehend beschrieben aufgebaute und in dem Isolierkörper 46 eingebettete Stanzgitter 23 (Fig. 4) dient auch zur Halterung der Halbleiterschalter 22. Hierzu sind in dem Isolierkörper 46 Taschen 45 eingeformt, in welche die Halbleiterschalter 22 mit ihrem Gehäuse 224 formschlüssig eingesteckt werden. Die Taschen 45 sind dabei jeweils zwischen den Durchgangslöchern 31 angeordnet und mit geringer radialer Tiefe ausgeführt, so daß ein großer Teil der Fläche der Gehäuse 224 freiliegt. Beim Einsetzen des Stanzgitters 23 in den Aufnahmeraum 20 und nach Befestigen des Stanzgitters 23 im Aufnahmeraum 20, drückt das Stanzgitter 23 diese freiliegenden Gehäuseflächen der Halbleiterschalter 22 kraftschlüssig an die Kühlfläche des Gehäusebodens 111 an.
Dabei kann zwischen den Gehäusen 224 und der Kühlfläche noch eine elektrisch isolierende Wärmeleitfolie eingelegt werden.
In Fig. 7, die eine Draufsicht auf das noch nicht ummantelte Stanzgitter 23 mit seinen beiden Gitterlagen 231 und 232 zeigt, ist die Anordnung der Halbleiterschalter 22 mit Gehäuse 224, Leistungsanschlüssen 221 und 222 und Steueranschlüssen 223 dargestellt. Die Schneidklemmen 35 und 36 sind dabei noch nicht aus der Ebene der beiden Gitterlagen 231, 232 ausgebogen. Aus den Ebenen der beiden Gitterlagen 231, 232 sind aber bereits die Steckerstifte 132 ausgebogen, und zwar zur Biegerichtung der Schneidklemmen 35, 36 entgegengerichtet um ca. 90°. Ist das Stanzgitter 23 im Aufnahmeraum 20 festgelegt und wird der Gehäusedeckel 12 auf das Motorgehäuse 11 aufgesetzt, so tauchen die zueinander parallelen Steckerstifte 132 in das am Gehäusedeckel 12 axial abstehende Steckergehäuse 131 ein und der Anschlußstecker 13 für den EC-Motor ist komplettiert. An den Steckerstift 132a wird dabei das Minuspotential und an den Steckerstift 132d das Pluspotential des Gleichspannungsnetzes angeschlossen. Mit dem Steckerstift 132b wird die Signalleitung für die Steuerelektronik 22 verbunden und der Steckerstift 132c ist als Reserve vorgesehen. Auf der dem Aufnahmeraum 20 zugekehrten Innenseite des Gehäusedeckels 12 ist noch eine konkave Einbuchtung 47 vorgesehen, die der Einwölbung 44 gegenüberliegt und ebenfalls den Zylindermantel des Elektrolytkondensators 25 teilweise umgreift, so daß der Elektrolytkondensator 25 bei am Motorgehäuse 11 festgelegtem Gehäusedeckel 12 zwischen Einwölbung 44 und Einbuchtung 47 ohne Preßkraft gehalten ist.
Wie aus dem beschriebenen Aufbau des in dem Isolierkörper 46 eingebetteten Stanzgitters 23 mit daran angesteckter Leiterplatte 24 hervorgeht, werden alle Leistungsströme der Elektronikbauelemente der Kommutierungsvorrichtung 21 über das Stanzgitter 23 geführt, während lediglich die schwachen Steuersignale in den Leiterbahnen 241 der Leiterplatte 24 geführt werden. Zusätzlich übernimmt das Stanzgitter 23 noch die Halterung und Positionierung der Halbleiterschalter 22 sowie das kraftschlüssige Andrücken der Halbleiterschalter an die Kühlfläche, wodurch eine gute Wärmeableitung der in den Halbleiterschaltern 22 entstehenden Wärme sichergestellt ist. Die Kontaktierung der Statorwicklung 15 erfolgt selbsttätig beim Montagevorgang, d.h. beim Einsetzen des Stanzgitters 23 in seine vorgesehene Position im Aufnahmeraum 20 des Motorgehäuses 11. Ein thermischer Verbindungsprozeß zur
Herstellung des elektrischen Kontakts zwischen Stanzgitter 23 und Statorwicklung 15 ist nicht erforderlich.
Die Erfindung ist nicht auf das vorstehend beschriebene Ausführungsbeispiel beschränkt. So kann die Statorwicklung 15 mit einer beliebigen Phasenzahl ausgeführt werden, z.B. drei- oder vierphasig. Die Anzahl der Halbleiterschalter 22 ist dann entsprechend anzupassen. Bei einer dreiphasigen Statorwicklung 15 mit nicht belegtem Sternpunkt sind ebenfalls sechs Halbleiterschalter 22 vorzusehen, die in einer dreiphasigen Brückenschaltung zwischen den Stanzbahnen 27 und 28 der oberen und unteren Gitterlage 231, 232 des Stanzgitters 23 angeschlossen werden. Die Drains 221 von drei der als MOS-FETs ausgeführten Halbleiterschalter 22 und die Sourcen 222 der anderen Halbleiterschalter 22 werden dann über jeweils drei Schneidklemmen 35, 36 mit den
Wicklungsanfängen der drei Wicklungsphasen 151 kontaktiert.
In dem beschriebenen Ausführungsbeispiel ist das Stanzgitter 23 aus Platzgründen zweilagig mit einer oberen und unteren Gitterlage 231, 232 ausgeführt. Das Stanzgitter 23 kann aber auch einlagig ausgebildet werden.

Claims

Ansprüche
1. Elektronisch kommutierter Gleichstrommotor mit einem Stator (14), der eine mehrere Wicklungsphasen (151) aufweisende Statorwicklung (15) trägt, mit mehreren, jeweils ein Gehäuse (224) mit zwei Leistungsanschlüssen (222) und einem Steueranschluß (223) aufweisenden Halbleiterschaltern (22) zum Anschließen der
Wicklungsphasen (151) an eine Netzgleichspannung, mit einer Steuerelektronik (26) zum folgerichtigen Ansteuern der Halbleiterschalter (22), mit einem den Stator (14) tragenden Motorgehäuse (11), das die Halbleiterschalter (22) sowie eine die Steuerelektronik (26) tragende
Leiterplatte (24) mit Leiterbahnen (241) aufnimmt, die über ihre Leiterbahnen (241) die Steuerelektronik (26) mit den Halbleiterschaltern (22) verbindet, und mit einem Steckerstifte (132) aufweisenden Anschlußstecker (13) zum Zuführen der Netzgleichspannung, dadurch gekennzeichnet, daß die Steckerstifte (132) des Anschlußsteckers (13), die Wicklungsphasen (151) der Statorwicklung (15), die Leistungsanschlüsse (221, 222) der Halbleiterschalter (22) sowie Anschlüsse (29, 30) weiterer Leistungsbauteile auf einem Stanzgitter (23) kontaktiert sind, mit dem eine elektrische Verbindung zur Leiterplatte (24) hergestellt ist, und daß die Leiterplatte (24) mit dem in einem Isolierkörper (46) eingebetteten Stanzgitter (23) mechanisch verbunden ist
2. Gleichstrommotor nach Anspruch 1, dadurch gekennzeichnet, daß zur Kontaktierung der Leistungsanschlüsse (221, 222) der Halbleiterschalter (22) am Stanzgitter (23) Anschlußfahnen (33, 34) ausgebildet sind.
3. Gleichstrommotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Kontaktierung der Wicklungsphasen (151) Schneidklemmen (35, 36) am Stanzgitter (23) so ausgebildet sind, daß sie beim Einsetzen des Stanzgitters (23) in das Motorgehäuse (11) elektrische Kontaktstellen zu den zugeordneten Wicklungsphasen (151) herstellen.
4. Gleichstrommotor nach Anspruch 3, dadurch gekennzeichnet, daß die Schneidklemmen (35, 36) aus der Ebene des Stanzgitters (23) ausgebogen sind.
5. Gleichstrommotor nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß die Leiterplatte (24) auf das Stanzgitter (23) aufgesteckt ist.
6. Gleichstrommotor nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, daß die Halbleiterschalter (22) am Stanzgitter (23) gehalten sind.
7. Gleichstrommotor nach Anspruch 6, dadurch gekennzeichnet, daß in dem Isolierkörper (46) des Stanzgitters (23) Taschen (45) ausgebildet sind, in die die Halbleiterschalter (22) mit ihrem Gehäuse (224) teilweise und formschlüssig eingesteckt sind.
8. Gleichstrommotor nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, daß die Steckerstiftei (132) des Anschlußsteckers (13) am Stanzgitter (23) ausgebildet und aus der Ebene des Stanzgitters (23) ausgebogen sind.
9. Gleichstrommotor nach einem der Ansprüche 1 - 8, dadurch gekennzeichnet, daß am Stanzgitter (23) mindestens ein Paar von einander zugekehrten Klemmkontakten (29, 30) für Anschlußdrähte von Leistungsbauteilen, z.B. eines Elektrolytkondensators (25), ausgebildet sind.
10. Gleichstrommotor nach einem der Ansprüche 4 - 9, dadurch gekennzeichnet, daß im Motorgehäuse (11) ein Aufnahmeraum (20) ausgebildet ist, der zum Stator (14) hin durch einen Gehäuseboden (111) abgeschlossen ist, daß im Gehäuseboden (111) Aussparungen (39, 40) so angeordnet sind, daß sie mit den Schneidklemmen (35, 36) des in den Aufnahmeraum (20) eingesetzten Stanzgitters (23) fluchten, und daß an den Aussparungen (39, 40) zum Aufnahmeraum (20) hin offene Kontaktierungs-Taschen (41) vorgesehen sind, in denen jeweils ein Wicklungsende einer Wicklungsphase (151) so angeordnet ist, daß* es beim Eintauchen der Schneidklemme (35, 36) in die zugeordnete Kontaktierungs-Tasche (41) kontaktiert wird.
11. Gleichstrommotor nach Anspruch 10, dadurch gekennzeichnet, daß im Stanzgitter (23) Durchgangslöcher (31) zum Durchstecken von im Aufnahmeraum (20) festgelegten Befestigungsmitteln vorgesehen sind.
12. Gleichstrommotor nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß der Aufnahmeraum (20) mit einem am Motorgehäuse (11) befestigten Gehäusedeckel (12) abgeschlossen ist.
13. Gleichstrommotor nach Anspruch 12, dadurch gekennzeichnet, daß der Anschlußstecker (13) im Gehäusedeckel (12) mit zur Achsrichtung des Motorgehäuses (11) parallelen Steckerstiften (132) angeordnet ist.
*
14. Gleichstrommotor nach einem der Ansprüche 10 - 13, dadurch gekennzeichnet, daß der den Aufnahmeraum (20) begrenzende Gehäuseboden (111) als Kühlfläche ausgebildet ist, daß die Taschen (45) in dem
Isolierkörper (46) des Stanzgitters (23) so ausgebildet sind und das Stanzgitter (23) im Aufnahmeraum (20) so befestigt ist, daß die in den Taschen (45) teilweise aufgenommenen Gehäuse (224) der Halbleiterschalter (22) mit einem Flächenbereich an der Kühlfläche kraftschlüssig anliegen.
15. Gleichstrommotor nach Anspruch 14, dadurch gekennzeichnet, daß zwischen den Gehäusen (224) der Halbleiterschalter (24) und der Kühlfläche eine elektrisch isolierende Wärmeleitfolie eingelegt ist.
16. Gleichstrommotor nach einem der Ansprüche 10 - 15, dadurch gekennzeichnet, daß im Gehäuseboden (111) eine Einwölbung ( 44 ) zum kraftschlußlosen Einlegen eines an dem Paar Klemmkontakten (29, 30) des Stanzgitters (23) angeschlossenen Elektrolytkondensators (25) ausgeformt ist.
17. Gleichstrommotor nach Anspruch 16, dadurch gekennzeichnet, daß im Gehäusedeckel (12) eine der Einwölbung (44) gegenüberliegende konkave Einbuchtung (47) ausgeformt ist, in der der Elektrolytkondensator (25) zusätzlich einliegt.
18. Gleichstrommotor nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß die Einwölbung (44) mit einer
Wärmeleitpaste bestrichen ist.
19. Gleichstrommotor nach einem der Ansprüche 4 - 18, dadurch gekennzeichnet, daß das Stanzgitter (23) eine obere und eine davon getrennte untere Gitterlage (231, 232) aufweist, die in zueinander parallelen Ebenen mit Abstand angeordnet und durch den Isolierkörper (46) zusammengehalten sind.
20. Gleichstrommotor nach Anspruch 19, dadurch gekennzeichnet, daß jede Gitterlage (231, 232) eine etwa kreisförmig umlaufende Stanzbahn (27, 28) aufweist und daß die Durchgangslöcher (26) zum Durchstecken der Befestigungselemente voneinander beabstandet in mindestens einer der Stanzbahnen (27) angeordnet sind.
21. Gleichstrommotor nach Anspruch 19 oder 20, dadurch gekennzeichnet, daß an jeder Gitterlage (231, 232) einer von zwei dem Anschluß an die Netzgleichspannung dienenden Steckerstifte (132a, 132d) ausgebildet ist.
22. Gleichstrommotor nach einem der Ansprüche 19 - 21, dadurch gekennzeichnet, daß an jeder Gitterlage (231, 232) ein Klemmkontakt (29, 30) des Paars von Klemmkontakten (29, 30) für den Elektrolytkondensator (25) ausgebildet ist.
23. Gleichstrommotor nach einem der Ansprüche 19 - 22, dadurch gekennzeichnet, daß in der oberen Gitterlage (231) mindestens ein weiterer Steckerstift (132b) des Anschlußsteckers (13) zum Anschließen einer
Signalleitung für die Steuerelektronik (26) ausgebildet und aus der Ebene des Stanzgitters (23) ausgebogen ist.
24. Gleichstrommotor nach einem der Ansprüche 19 - 23, dadurch gekennzeichnet, daß die Anschlußfahnen (33, 34) zur Kontaktierung der Leistungsanschlüsse (221, 222) der Halbleiterschalter (20) auf die obere und untere Gitterlage (231, 232) verteilt sind, daß die der oberen Gitterlage (231) zugeordneten Anschlußfahnen (33) von der Stanzbahn (27) nach innen wegstreben und daß in der oberen Gitterlage (231) Anschlußstücke (37) für die Steuergitter (223) der Halbleiterschalter (22) vorgesehen sind.
25. Gleichstrommotor nach Anspruch 24, dadurch gekennzeichnet, daß an den Anschlußstücken (37) Verbindungsstifte (38) zur Kontaktierung der Leiterplatte (24) ausgebildet sind, die aus der Ebene der oberen Gitterlage (281) des Stanzgitters (23) ausgebogen sind.
26. Gleichstrommotor nach Anspruch 25, dadurch gekennzeichnet, daß die Leiterplatte ' (24) parallel zum Stanzgitter (23) von diesem beabstandet angeordnet ist und über die um ca. 90° ausgebogenen Verbindungsstifte (38) am Stanzgitter (23) abgestützt ist.
27. Gleichstrommotor nach einem der Ansprüche 24 - 26, dadurch gekennzeichnet, daß die Schneidklemmen (35, 36) in der unteren Gitterlage (232) des Stanzgitters (23) ausgebildet sind und daß die einen Schneidklemmen (35) mit den der unteren Gitterlage (232) zugeordneten Anschlußfahnen (34) und die anderen Schneidklemmen (36) mit der umlaufenden Stanzbahn (28) einstückig verbunden sind.
PCT/DE2002/000246 2001-04-20 2002-01-25 Elektronisch kommutierter gleichstrommotor WO2002087057A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02700169.2A EP1384307B2 (de) 2001-04-20 2002-01-25 Elektronisch kommutierter gleichstrommotor
US10/311,848 US20040027014A1 (en) 2001-04-20 2002-01-25 Electronically commutated direct current motor
JP2002584457A JP2004519992A (ja) 2001-04-20 2002-01-25 電子直流整流子電動機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10119404.8 2001-04-20
DE10119404A DE10119404A1 (de) 2001-04-20 2001-04-20 Elektronisch kommutierter Gleichstrommotor

Publications (1)

Publication Number Publication Date
WO2002087057A1 true WO2002087057A1 (de) 2002-10-31

Family

ID=7682103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/000246 WO2002087057A1 (de) 2001-04-20 2002-01-25 Elektronisch kommutierter gleichstrommotor

Country Status (6)

Country Link
US (1) US20040027014A1 (de)
EP (1) EP1384307B2 (de)
JP (1) JP2004519992A (de)
KR (1) KR20030019378A (de)
DE (1) DE10119404A1 (de)
WO (1) WO2002087057A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2400637A2 (de) 2010-06-23 2011-12-28 C. & E. Fein GmbH Elektromotor
DE102010056120A1 (de) 2010-12-20 2012-07-05 C. & E. Fein Gmbh Verschaltungseinrichtung für einen Elektromotor
DE102011112821A1 (de) * 2011-09-12 2013-03-14 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektromotor, insbesondere Kühlerlüftermotor
WO2014060174A1 (de) * 2012-10-16 2014-04-24 Robert Bosch Gmbh Anschlusselement für eine antriebsanordnung sowie eine antriebsanordnung mit einem anschlussteil
WO2014048425A3 (de) * 2012-09-26 2015-01-29 Schaeffler Technologies Gmbh & Co. Kg Ein elektronikmodul umfassender elektromotor, vorzugsweise ein elektrisch kommutierter motor
DE102014201488A1 (de) 2014-01-28 2015-07-30 Bühler Motor GmbH Kreiselpumpenmotor
DE102014201490A1 (de) 2014-01-28 2015-08-13 Bühler Motor GmbH Kreiselpumpenmotor
FR3018012A1 (fr) * 2014-02-25 2015-08-28 Valeo Equip Electr Moteur Dispositif de connexion d'une machine electrique tournante et utilisation d'un tel dispositif de connexion dans un compresseur de suralimentation electrique
WO2016165705A1 (de) * 2015-04-15 2016-10-20 Schaeffler Technologies AG & Co. KG Aktor für eine kraftfahrzeugkupplung mit einem träger mit darin gehaltertem stecker und hybridmodul mit solchem aktor
WO2017162361A1 (de) * 2016-03-24 2017-09-28 Magna powertrain gmbh & co kg Antriebsanordnung
EP2512008B1 (de) * 2011-04-15 2017-11-22 Wilo Salmson France Baugruppe, die einen Stator und ein Klemmengehäuse zur Stromversorgung des Stators umfasst
WO2020156829A1 (de) * 2019-01-30 2020-08-06 Nidec Gpm Gmbh Pumpe mit direkter anbindung des stators an die leiterplatte
FR3140719A1 (fr) * 2022-10-10 2024-04-12 Valeo Systemes Thermiques Dispositif de connexion électrique pour connecter à un circuit imprimé trois phases électrique d’un moteur électrique

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10252315A1 (de) * 2002-11-11 2004-06-03 Minebea Co., Ltd. Einrichtung zum Anschliessen elektronischer Bauteile zur Steuerung eines Elektromotors
DE10322868A1 (de) * 2003-05-21 2004-12-16 Lang Apparatebau Gmbh Verfahren zur Regelung einer von einem elektromotorisch angetriebenen Exzenter betätigten Membran- oder Kolbenpumpe
DE102004024790B4 (de) * 2004-05-17 2008-07-03 Schunk Motorensysteme Gmbh Kontaktanordnung
US7180212B2 (en) * 2004-07-02 2007-02-20 Visteon Global Technologies, Inc. Electric machine with integrated electronics in a circular/closed-loop arrangement
JP4157092B2 (ja) * 2004-11-29 2008-09-24 Tdk株式会社 モータ
FR2882867B1 (fr) * 2005-03-07 2010-10-22 Faurecia Bloc Avant Moteur electrique pour ventilateur de vehicule automobile, et procede de montage associe
FR2886477B1 (fr) * 2005-05-31 2007-07-06 Valeo Equip Electr Moteur Piece d'interconnexion de signal pour machine electrique tournante
DE102005032191A1 (de) * 2005-07-09 2007-02-08 Zf Friedrichshafen Ag Elektromaschine mit integrierter Leistungselektronik und Verfahren zur Herstellung der Kontaktierung der DC Schienen mit den DC Kontaktflächen der Leistungshalbleiter der Leistungselektronik
DE502006008579D1 (de) * 2005-10-12 2011-02-03 Brose Fahrzeugteile Vorrichtung zur bereitstellung von pulsweitenmodulierten leistungspulsen für den motor eines lüfters
DE102005059651A1 (de) 2005-12-22 2007-07-19 Zf Friedrichshafen Ag Einrichtung zum Schutz gestanzter Leiterbahnen
KR100803127B1 (ko) * 2006-12-06 2008-02-14 엘지전자 주식회사 모터 전원장치 및 이를 포함하는 모터
DE502007003766D1 (de) * 2007-09-26 2010-06-24 Ebm Papst Mulfingen Gmbh & Co Elektromotor
US20100195286A1 (en) * 2009-02-02 2010-08-05 Rakesh Kumar Dhawan Heat sink mechanism for internally integrated inverter hub (i3h) motor for light electric vehicles
DE102011112820A1 (de) * 2011-09-12 2013-03-14 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektromotor
DE102011121943B4 (de) * 2011-12-22 2022-01-20 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Ansteuerelektronik eines bürstenlosen Elektromotors eines Kraftfahrzeugs und eine solche Ansteuerelektronik aufweisender bürstenloser Elektromotor
DE102012023477A1 (de) * 2012-11-28 2014-05-28 Ziehl-Abegg Se Schaltelement für einen Elektromotor, Stator mit einem solchen Schaltelement und Elektromotor
ITBO20120682A1 (it) * 2012-12-18 2014-06-19 Spal Automotive Srl Macchina elettrica
JP6135982B2 (ja) * 2013-01-17 2017-05-31 日本電産株式会社 モータ
DE102014200763A1 (de) * 2014-01-17 2015-07-23 Ebm-Papst Mulfingen Gmbh & Co. Kg Multifunktionsöffnung
US10693344B2 (en) 2014-12-18 2020-06-23 Black & Decker Inc. Packaging of a control module for a brushless motor
DE102015013107A1 (de) * 2015-03-03 2016-09-08 Robert Bosch Gmbh Antriebseinrichtung, insbesondere als Bestandteil eines Komfortantrieb in einem Kraftfahrzeug
DE102015219979A1 (de) * 2015-10-14 2017-04-20 Conti Temic Microelectronic Gmbh Entstörmodul für einen elektrisch kommutierten Elektromotor, Verfahren zur Herstellung eines Entstörmoduls und Fahrzeug mit einem solchen Entstörmodul
DE102016206402A1 (de) * 2016-04-15 2017-10-19 Bühler Motor GmbH Kreiselpumpenmotor
DE102018001015A1 (de) * 2018-02-06 2019-08-08 Ziehl-Abegg Se Elektromotor sowie Verfahren zur Herstellung eines Elektromotors
US11139722B2 (en) 2018-03-02 2021-10-05 Black & Decker Inc. Motor having an external heat sink for a power tool
CN110541819B (zh) 2018-05-28 2020-11-20 杭州三花研究院有限公司 电子油泵
CN110541818B (zh) * 2018-05-28 2020-11-20 杭州三花研究院有限公司 电子油泵
DE102018214441A1 (de) * 2018-08-27 2020-02-27 Continental Automotive Gmbh Verfahren zur Herstellung einer Statorbaugruppe und Statorbaugruppe
DE102019102318A1 (de) * 2019-01-30 2020-07-30 Nidec Gpm Gmbh Pumpe aufweisend einen Elektromotor mit Steckeranbindung in Form eines Zwischenringes
CN110829689A (zh) * 2019-11-19 2020-02-21 兰州理工大学 液流-气流-翅片联合散热的液压电机泵壳体
FR3104340A1 (fr) 2019-12-10 2021-06-11 Sonceboz Mechatronics Boncourt Sa Moteur electrique
US11837926B2 (en) 2020-12-23 2023-12-05 Black & Decker, Inc. Brushless DC motor with stator teeth having multiple parallel sets of windings
EP4037159A1 (de) 2021-02-02 2022-08-03 Black & Decker, Inc. Leiterplattenanordnung für einen kompakten bürstenlosen motor
WO2022197413A1 (en) * 2021-03-15 2022-09-22 Cummins Inc. Electrical machines with segmented inverter components
DE102021209722A1 (de) 2021-09-03 2023-03-09 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Elektrischer Lüfterantrieb eines Kraftfahrzeugs
US20240072604A1 (en) * 2022-08-23 2024-02-29 Black & Decker Inc. Electric drive motor for moving apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895536A (en) * 1984-05-11 1990-01-23 Amp Incorporated Lead frame assembly having severable electrical circuit sections
DE19740938A1 (de) * 1997-09-17 1999-03-18 Trw Fahrzeugelektrik Stator für einen Elektromotor, insbesondere bürstenlosen Gleichstrommotor
US6051899A (en) * 1996-06-15 2000-04-18 Itt Manufacturing Enterprises, Inc. Drive mechanism
EP1022210A1 (de) * 1998-08-07 2000-07-26 Mitsuba Corporation Motor und elekrisches steuersystem

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141382U (ja) * 1984-08-17 1986-03-15 アルプス電気株式会社 ブラシレスモータ
EP0220447B1 (de) * 1985-09-23 1990-07-11 Siemens Aktiengesellschaft Elektromotor, insbesondere dauermagneterregter Aussenläufermotor
US5006765A (en) * 1986-03-06 1991-04-09 Papst-Motoren Gmbh & Co. Kg DC motor with coreless coil installation
FR2603667B1 (fr) * 1986-09-10 1990-09-28 Etri Sa Ventilateur centrifuge entraine par un moteur a courant continu et a commutation electronique
DE3842588A1 (de) * 1988-12-17 1990-06-21 Mulfingen Elektrobau Ebm Kollektorloser aussenlaeufermotor mit halbleiter-kuehlungsanordnung
US5006744A (en) * 1988-12-27 1991-04-09 General Electric Company Integrated electronically commutated motor and control circuit assembly
US5119466A (en) * 1989-05-24 1992-06-02 Asmo Co., Ltd. Control motor integrated with a direct current motor and a speed control circuit
US5610458A (en) * 1994-05-11 1997-03-11 Emerson Electric Co. Electrical connection of printed circuit board to line leads on brushless permanent magnet refrigeration motors
DE19548820A1 (de) 1995-06-29 1997-01-02 Teves Gmbh Alfred Verschlußstueck fuer ein metallisches R¦hrchen
US5770902A (en) * 1995-11-02 1998-06-23 Globe Motors Motor termination board
CN1067495C (zh) 1996-03-07 2001-06-20 精工爱普生株式会社 电动机及其制造方法
US5825107A (en) * 1997-06-13 1998-10-20 General Electric Company Drive package for a dynamoelectric machine
WO1999016654A1 (fr) * 1997-10-01 1999-04-08 Kayaba Kogyo Kabushiki Kaisha Moteur electrique pour dispositif de direction assistee
DE19756186C1 (de) 1997-12-17 1999-06-10 Trw Fahrzeugelektrik Elektromotorisch angetriebene Pumpe, insbesondere für die Servolenkung eines Kraftfahrzeuges
DE19851060A1 (de) 1998-11-05 2000-05-18 Trw Automotive Electron & Comp Elektromotorischer Antrieb, insbesondere für eine Pumpe für ein Servo-Lenksystem eines Kraftfahrzeugs
US6177740B1 (en) * 1999-01-29 2001-01-23 Delphi Technologies, Inc. Integrated motor and motor drive unit
DE19904162C2 (de) 1999-02-03 2000-11-23 Pierburg Ag Brennstoff-Elektromotorpumpe
DE19912443C2 (de) 1999-03-19 2003-05-28 Trw Automotive Electron & Comp eine elektrische Baueinheit mit wenigstens einem Leistungshalbleiterbauelement
DE19933975A1 (de) 1999-07-20 2001-03-01 Bosch Gmbh Robert Elektronisch kommutierter elektrischer Motor mit Stanzgitter
US6297572B1 (en) * 1999-08-24 2001-10-02 Calsonic Kansei Corporation Brushless motor
EP1130745A3 (de) * 2000-03-02 2003-12-10 Calsonic Kansei Corporation Bürstenloser Motor
JP2002010609A (ja) * 2000-06-23 2002-01-11 Matsushita Electric Ind Co Ltd Dcファンモータおよびその製造方法
JP3774624B2 (ja) * 2000-10-18 2006-05-17 三菱電機株式会社 電動パワーステアリング装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895536A (en) * 1984-05-11 1990-01-23 Amp Incorporated Lead frame assembly having severable electrical circuit sections
US6051899A (en) * 1996-06-15 2000-04-18 Itt Manufacturing Enterprises, Inc. Drive mechanism
DE19740938A1 (de) * 1997-09-17 1999-03-18 Trw Fahrzeugelektrik Stator für einen Elektromotor, insbesondere bürstenlosen Gleichstrommotor
EP1022210A1 (de) * 1998-08-07 2000-07-26 Mitsuba Corporation Motor und elekrisches steuersystem

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2400637A2 (de) 2010-06-23 2011-12-28 C. & E. Fein GmbH Elektromotor
EP2400637A3 (de) * 2010-06-23 2015-06-24 C. & E. Fein GmbH Elektromotor
US9225216B2 (en) 2010-06-23 2015-12-29 C. & E. Fein Gmbh Electric motor and method of producing an electric motor that is commutated electronically
DE102010025261A1 (de) 2010-06-23 2011-12-29 C. & E. Fein Gmbh Elektromotor
DE102010056120A1 (de) 2010-12-20 2012-07-05 C. & E. Fein Gmbh Verschaltungseinrichtung für einen Elektromotor
US9093882B2 (en) 2010-12-20 2015-07-28 C. & E. Fein Gmbh Electric motor having electrical connector rack
EP2512008B1 (de) * 2011-04-15 2017-11-22 Wilo Salmson France Baugruppe, die einen Stator und ein Klemmengehäuse zur Stromversorgung des Stators umfasst
EP2756583B1 (de) * 2011-09-12 2019-10-30 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektromotor, insbesondere kühlerlüftermotor
US9590323B2 (en) 2011-09-12 2017-03-07 Brose Fahrzeugteile Gmbh & Co. Kg, Wuerzburg Electric motor, in particular a radiator fan motor, and a contact
DE102011112821A1 (de) * 2011-09-12 2013-03-14 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektromotor, insbesondere Kühlerlüftermotor
WO2013037452A3 (de) * 2011-09-12 2014-05-15 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektromotor, insbesondere kühlerlüftermotor
KR101558313B1 (ko) 2011-09-12 2015-10-07 브로제 파르초이크타일레 게엠베하 운트 코. 카게, 뷔르츠부르크 전기 모터
DE102011112821B4 (de) * 2011-09-12 2013-06-27 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektromotor, insbesondere Kühlerlüftermotor
US9899754B2 (en) 2011-09-12 2018-02-20 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Wuerzburg Insulation-displacement contact
WO2014048425A3 (de) * 2012-09-26 2015-01-29 Schaeffler Technologies Gmbh & Co. Kg Ein elektronikmodul umfassender elektromotor, vorzugsweise ein elektrisch kommutierter motor
WO2014060174A1 (de) * 2012-10-16 2014-04-24 Robert Bosch Gmbh Anschlusselement für eine antriebsanordnung sowie eine antriebsanordnung mit einem anschlussteil
DE102014201490A1 (de) 2014-01-28 2015-08-13 Bühler Motor GmbH Kreiselpumpenmotor
DE102014201488A1 (de) 2014-01-28 2015-07-30 Bühler Motor GmbH Kreiselpumpenmotor
FR3018012A1 (fr) * 2014-02-25 2015-08-28 Valeo Equip Electr Moteur Dispositif de connexion d'une machine electrique tournante et utilisation d'un tel dispositif de connexion dans un compresseur de suralimentation electrique
EP2913909A1 (de) * 2014-02-25 2015-09-02 Valeo Equipements Electriques Moteur Verbindungsvorrichtung einer elektrisch umlaufenden Maschine, und Einsatz einer solchen Verbindungsvorrichtung in einem elektrischen Aufladekompressor
WO2016165705A1 (de) * 2015-04-15 2016-10-20 Schaeffler Technologies AG & Co. KG Aktor für eine kraftfahrzeugkupplung mit einem träger mit darin gehaltertem stecker und hybridmodul mit solchem aktor
WO2017162361A1 (de) * 2016-03-24 2017-09-28 Magna powertrain gmbh & co kg Antriebsanordnung
WO2020156829A1 (de) * 2019-01-30 2020-08-06 Nidec Gpm Gmbh Pumpe mit direkter anbindung des stators an die leiterplatte
FR3140719A1 (fr) * 2022-10-10 2024-04-12 Valeo Systemes Thermiques Dispositif de connexion électrique pour connecter à un circuit imprimé trois phases électrique d’un moteur électrique

Also Published As

Publication number Publication date
KR20030019378A (ko) 2003-03-06
DE10119404A1 (de) 2002-10-24
EP1384307A1 (de) 2004-01-28
EP1384307B2 (de) 2021-09-08
EP1384307B1 (de) 2019-03-13
JP2004519992A (ja) 2004-07-02
US20040027014A1 (en) 2004-02-12

Similar Documents

Publication Publication Date Title
EP1384307B2 (de) Elektronisch kommutierter gleichstrommotor
EP2756583B1 (de) Elektromotor, insbesondere kühlerlüftermotor
EP2182616B1 (de) Bürstenloser Gleichstrommotor
DE3105428C2 (de) Naßläufermotor für eine Pumpe
EP0017075B1 (de) Aussenläufermotor
EP3078099B1 (de) Stator für einen elektronisch kommutierten gleichstrommotor
WO1989002161A1 (en) Rectifier bearing device
DE29516656U1 (de) Kollektorloser Elektromotor
DE102016223844B4 (de) Elektromotor und Kühlerlüftermodul mit einem solchen Elektromotor
DE102013020094B4 (de) Elektromotor, insbesondere Kühlerlüftermotor
DE102017126586A1 (de) Elektromotor und Ständer davon
EP3928419B1 (de) Antriebsvorrichtung mit einem bürstenlosen elektromotor
DE10130117A1 (de) Gehäusedeckel für einen Elektromotor, insbesondere für einen elektronisch kommutierten Gleichstrommotor
DE3538940A1 (de) Verdrahtungsanordnung fuer den motor eines elektrowerkzeugs
EP0797859A1 (de) Bürstentrageplatte
DE19637192C2 (de) Elektromotor, insbesondere Außenläufermotor, mit integrierter, an die Ständerwicklung angeschlossener Elektronikeinheit
EP0175992B1 (de) Verfahren zur Herstellung einer Bürstenhalterung einer Kommutatormaschine
DE19852251C1 (de) Entstörter Kommutatormotor, insbesondere drehzahlstellbarer Kraftfahrzeug-Servomotor
DE3634214C2 (de) Elektrischer Antriebsmotor für ein Gerät
WO2020156829A1 (de) Pumpe mit direkter anbindung des stators an die leiterplatte
WO2015032993A1 (de) Leiterplattenanordnung, verfahren zum herstellen einer leiterplattenanordnung und kühlerlüftermodul
WO1995008208A1 (de) Kollektormotor, insbesondere drehzahlgeregelter einphasen-reihenschlussmotor für einen waschautomatenantrieb
EP0634828A1 (de) Elektromotor, insbesondere Kommutatormotor mit einem Ständerblechpaket
DE19606141A1 (de) Kabelführungsträger für einen Universalmotor
WO2018091242A1 (de) Elektrische maschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2002700169

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020027015256

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 584457

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027015256

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10311848

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002700169

Country of ref document: EP