WO2002085990A1 - Composition de matiere de revetement ayant une activite photocatalytique - Google Patents

Composition de matiere de revetement ayant une activite photocatalytique Download PDF

Info

Publication number
WO2002085990A1
WO2002085990A1 PCT/JP2002/003536 JP0203536W WO02085990A1 WO 2002085990 A1 WO2002085990 A1 WO 2002085990A1 JP 0203536 W JP0203536 W JP 0203536W WO 02085990 A1 WO02085990 A1 WO 02085990A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalytic
solution
weight
alkali silicate
aqueous
Prior art date
Application number
PCT/JP2002/003536
Other languages
English (en)
French (fr)
Inventor
Tohru Naruse
Kouji Miyabara
Original Assignee
Tososangyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tososangyo Co., Ltd. filed Critical Tososangyo Co., Ltd.
Priority to US10/474,938 priority Critical patent/US7297206B2/en
Priority to EP02714559A priority patent/EP1394224A1/en
Priority to KR1020037013402A priority patent/KR100609393B1/ko
Publication of WO2002085990A1 publication Critical patent/WO2002085990A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates

Definitions

  • the present invention relates to, for example, plastic, metal, glass, ceramic, concrete
  • silicon-based resins are well known as a coating agent for imparting hydrophilicity and anti-fog properties to the surface of eyeglass lenses, bathroom mirrors, injection needles and the like.
  • a coating agent consisting of a mixture of anatase type titanium oxide T io 2 and a silicon-based resin having a photocatalytic activity by coating, are also known surface hydrophilic substrate exhibits hydrophilicity effect during UV irradiation.
  • the hydrophilic coating agent comprising anatase Sani ⁇ titanium T io 2 and a silicon-based resin having a photocatalytic ability, in order to exhibit the hydrophilic functionality are required ultraviolet irradiation, ultraviolet irradiation When installed in a place where it is not performed, there is a disadvantage that the hydrophilic function cannot be exhibited.
  • Japanese Patent Application Laid-Open No. 10-2373753 discloses a "hydrophilic coating agent containing an amorphous titanium oxide and a silicon oxide".
  • specific examples of the silicon oxide include silicon dioxide such as colloidal silica, as well as siloxane compounds such as silicone and organopolysiloxane, and water glass.
  • siloxane compounds have the disadvantages of insufficient dispersibility and poor mechanical strength of the coating film.
  • Water glass has a disadvantage that the dispersibility becomes insufficient due to low anion activity.
  • the contact angle of inorganic refuse represented by clay minerals with water is 20 ° to 50 °, and it has an affinity for a 30 ° to 40 ° graphitic polymer coating film with a contact angle with water. It is considered that the coating of the graft polymer cannot prevent contamination by inorganic dust because it easily adheres to the surface.
  • acrylic resin acrylic silicone resin, water-based silicone, block polymer of silicone resin and acrylic resin, acrylic styrene resin,
  • Various hydrophilic paints comprising a crosslinked urethane of rubitan fatty acid ethylene oxide, sorbitan fatty acid ester, urethane acetate, polycarbonate diol and z or polyisocyanate, and a crosslinked polyacrylate alkyl ester are commercially available.
  • the contact angle of these hydrophilic paints with water is relatively large, and it is not possible to effectively prevent contamination by urban dust containing a large amount of lipophilic substances.
  • an aqueous solution of aluminum silicate called water glass contains a relatively large amount of alkali ions in order to maintain the solution state, so that the molar ratio of silicon to alkali is high.
  • silicic acid sol and colloidal silica have no internal surface area or crystalline portion, and these are dispersed in an alkaline medium.
  • Alkali reacts with the silica surface to create a negative charge on the alkali surface, and the silica particles have a negative charge, which is stabilized by the repulsive force of the negative charges among the particles.
  • Si-0H silanol groups
  • the molar ratio, high-Re S i ⁇ 2 concentration activity of Rapi should be considered to use silicate al Chikarari solution. And to force, only concentrated by simple evaporation of water glass can not be increased molar ratio, for example, up to 30% by weight Si0 2 concentration the product of highest 4.0 molar ratio among water glass When concentrated, it gels completely.
  • colloidal silica is concentrated by an ultrafiltration method (for example, see US Pat. No. 3,969,266, British Patent No. 1,148,950, and JP-A-58-15022). ). If the colloidal silicic force is in the state of silica particles growing, it can be sufficiently concentrated by ultrafiltration S. Water glass has many low molecular weight components such as ions, and the yield by the Ponto extrafiltration method is low. . In addition, since the loss of ions is large, the anionic activity inherent in water glass is also lost. Purpose of the invention
  • the present invention has been made in view of the above problems, has intermediate characteristics between water glass and co Roidarushirika, the molar ratio (Si0 2 / (A 2 0 + B) (A: alkali
  • A alkali
  • Such a photocatalytic coating agent composition of the present invention comprises the aqueous solution of silica silicate (1) : 100 parts by weight (solid content) and the photocatalytic compound (2): 95 to 9500 parts by weight. Is preferred.
  • the photocatalytic regeneration compound (2) is an anatase type titanium oxide.
  • the photocatalytic coating agent composition of the present invention may contain a film-forming auxiliary (3).
  • the aqueous alkali silicate solution (1) 100 parts by weight (solid content)
  • the photocatalytic compound (2) 95 to 9500 parts by weight
  • the film-forming auxiliary (3) 95 to 9500 parts by weight. It preferably comprises
  • the photocatalytic coating agent composition aqueous solution (1) of the photocatalytic coating agent composition used in the present invention preferably has the following properties (C) to (F). Meet at least one of
  • the peak area at a chemical shift of 100 to 120 ppm is at least 1.35 times the peak area at 100 to 120 ppm of the chemical shift of water glass measured under 2 ⁇ i-NMR under the same conditions; Chemical shift of colloidal sili force measured by 29 Si-NMR under the same force and condition-100 times or more the peak area at 120 ppm.
  • Fig. 2 shows 2i-NMR spectra of aqueous sodium silicate solution and water glass colloidal silicide (SM manufactured by DuPont) produced in Production Examples.
  • the photocatalytic coating agent composition according to the present invention comprises a specific aqueous solution of an alkali silicate (1) and a photocatalytic compound (2) as essential components. ).
  • an alkali silicate (1) and a photocatalytic compound (2) as essential components.
  • Aqueous alkali silicate solution (1) Aqueous alkali silicate solution (1)
  • Silicate Al Chikarari aqueous solution used in the present invention has between properties in a water glass and colloidal silica, the molar ratio (Si0 2 / (A 2 0 + B) (A: alkali metal, B: NH 3) It has a high silicon content and a high degree of anion activation. That is, the aqueous solution of alkali silicate used in the present invention has a feature that the content of silicon with respect to alkali is higher than that of ordinary water glass.
  • lithium, sodium, power stream, ammo, and the like are used as the aluminum power.
  • the molar ratio of Kei element and Al force Li (A) (SiO Bruno (A 2 0 + B) ( A: alkali metal, B: NH 3) is 4 to 30, It is preferably from 9 to 26, and more preferably from 12 to 21.
  • the alkali is lithium, sodium, potassium or the like
  • the molar ratio is calculated as oxide (A 20 , where A is an alkali metal).
  • ammonia is an ammonia, it is a value calculated on an ammonia basis.
  • Alkali metal and ammonia may be used in combination.
  • (Si0 2 / (a 2 0 + B) (a: sometimes abbreviated as NH 3) simply "molar ratio" a: Al force Li metal, B.
  • Kei iodine concentration of oxide equivalent, S i 0 2 concentration (B) is 6.8 to 30 wt%, preferably 8 to 26, further favored properly 14-22 It is.
  • Such an alkali silicate aqueous solution used in the present invention has a silicon concentration approximately equal to that of a silicate sol or colloidal silica.
  • the aqueous alkali silicate solution of the present invention preferably satisfies at least one of the following properties (C) to (F) in addition to the properties (A) and (B). That is, the anion activity is evaluated by the zeta potential.
  • the zeta potential (C) is preferably 1-40 MV80.
  • MV more preferably one 50 MV 80 MV, particularly preferably one 58 MV to one 80 MV
  • Zeta potential is a parameter involved in particle dispersion and aggregation. If the same type of particles are dispersed in the liquid, each particle will have the same charge. And the higher the charge, the more they repel each other and stay stable for a long time without agglomeration. Conversely, if there is no charge, or if substances with the opposite sign are mixed, the particles immediately aggregate and precipitate. The charge of these particles also depends on the pH of the solution.
  • the zirconium silicate aqueous solution has a high zeo potential, and has a high zeo potential activity because it contains a large number of angiogen molecules.
  • anionic molecules contained in this aqueous solution of silica silicate are extremely small and are smaller than colloids such as colloidal silica. Therefore, in the present invention, even if anionic particles are present, no sol-like behavior is observed, and the particles can be practically handled as a solution. This is supported by the transmittance described later.
  • the anionic particles Although the form of existence of the anionic particles is not always clear, it is thought that they exist as ultrafine particles of the order of nanometers having SiO— on the surface.
  • various structures of silicates are known as described below, the aqueous solutions of silicates used in the present invention are monofunctional or monofunctional and belong to linear polymers or polycyclic silicates. It is thought that trifunctional Q3x, trifunctional Q3y, and tetrafunctional Q4 are contained in large amounts.
  • the zeta potential is about 25 MV to 38 MV.
  • water glass contains aion, the zeta potential is about 14 MV to 140 MV due to the small number of highly functional anion portions.
  • the chemical shift of the peak area at 100 to 120 ppm under the same conditions is the chemical shift of water glass measured at 29 Si-R under the same conditions.
  • the silicate solution of the present invention there are few mono- and bi-functional compounds belonging to linear polymers or polycyclic silicates, and 3 functional Q3x, trifunctional Q3y, It can be seen that a large amount of tetrafunctional Q4 is contained.
  • the peak area is calculated from the area surrounded by the vertical axis at 100 ppm, the vertical axis at 120 ppm, and the spectrum curve after baseline correction.
  • the aqueous alkali silicate solution used in the present invention preferably has a transmittance (E) in the wavelength region of 1000 to 200 nm in the spectrophotometric method of 90 to 100%, and more preferably 95 to 100%.
  • E transmittance
  • the transmittance of ordinary water glass is the same as above, but the transmittance of colloidal force is extremely low at 10 to less than 200 to 380 nm and is 10 to 0%. As a result, it is found that the aqueous alkali silicate solution has characteristics close to those of water glass.
  • the aqueous alkali silicate solution used in the present invention preferably has an electric conductivity (F) of from 2 l to 35 mS / cm, more preferably 2.:! 1616 ms, particularly preferably 5.0 to 11.0 ms / cm.
  • F electric conductivity
  • This alkali silicate aqueous solution is a highly desalted solution because of its high electrical conductivity, and is a solution that is kept stable without agglomeration by aluminous silicate.
  • the aqueous alkali silicate solution used in the present invention has intermediate properties between water glass and colloidal silica, has a high molar ratio and a high silicon content, and has a high degree of anion activity.
  • the method for producing the aqueous alkali silicate solution as described above is not particularly limited. However, the present inventors efficiently and stably produce a new aqueous solution of alkali silicate by the first and second production methods described below. Have found it possible.
  • Silicic acid and Alkari in aqueous solution of raw silica (Alli is the same as above)
  • the molar ratio (Si0 2 / (A 2 0 + B) (A: alkali metal, B:. NH 3) is less than 4, preferably from 1.5 to 4 0, more preferably less than 2 8-3. . about 5 is suitable also oxides concentration in terms of Kei element (S i 0 2 concentration) from 2.0 to 12 0 weight percent, preferably 3. 0:. 12.0 by weight%, more preferably A suitable amount is about 4.5 to 12.0% by weight.
  • the electrodialysis device has a cation exchange membrane 1 and an anion exchange membrane 2 arranged side by side between an anode and a cathode, and alternately forms a desalination chamber 3 and a concentration chamber 4.
  • a conventionally known device can be used without any particular limitation. That is, the electrodes, the ion-exchange membrane, and the members that require such power constituting such an electrodialysis apparatus are not particularly limited, and known ones are used.
  • a cation exchange group is generally a sulfonic acid group
  • an anion exchange group is a quaternary ammonium group
  • a styrene dibutylbenzene copolymer material is formed using a reinforcing material.
  • Hydrocarbon-based cation exchange membranes and anion exchange membranes are also used industrially.
  • a fluorinated ion-exchange membrane in which the material of the ion exchange membrane is made of a fluorinated polymer can also be used.
  • the electrodialysis apparatus it is desirable to use an ion-exchange membrane that is resistant to alkaline force, because the raw material alkali aqueous silicate solution used for electrodialysis is alkaline and the caustic alkali is concentrated (generated).
  • an aqueous solution of raw material alkali silicate is supplied to the desalting chamber 3 of the electrodialysis apparatus, and water or a dilute aqueous caustic solution is supplied to the concentrating chamber 4 to perform electrodialysis.
  • alkali metal ions for example, Na +
  • hydroxide ions OH—
  • the operating conditions of the electrodialysis device are as follows: the size of the device, the concentration of the raw material silicate solution.
  • the voltage is adjusted so as to be constant at 0.6 VZ pair, and it is appropriate to supply the raw material aluminum silicate aqueous solution to the desalting chamber at a rate of about 3.1 littorno.
  • Water or dilute old alkaline solution is supplied to the enrichment chamber at a rate of about 3.1 liters Z minutes.
  • an aqueous solution of alkali silicate (a dealkalized solution) having a reduced concentration is obtained by the desalting.
  • the force S is desirably adjusted to 0 to 30, more preferably 9 to 26, and particularly preferably about 12 to 21.
  • Electrodialysis conditions by particularly selecting the electrical conductivity appropriate, it is possible to adjust the molar balance of the alkali silicate aqueous solution (Si0 2 / (A 2 0 + B)).
  • Si0 2 / (A 2 0 + B) when the electric conductivity is high, Si0 2 / if (A 2 0 + B) is lowered, also the low electrical conductivity, Si0 2 / (A 2 0 + B) becomes higher tendency There is.
  • the use of a relatively high Keimoto concentration, Quai I oxygen partial concentration of the resulting silicate al Chikarari aqueous solution, S i 0 2 conversion Is preferably 6.8 to 12% by weight, and more preferably about 6.8 to 9% by weight.
  • a high molar ratio aqueous solution of active alkali silicate according to the present invention which satisfies the characteristics (A) and (B) as described above, and more preferably (C) to (F), is obtained.
  • a caustic aqueous solution is obtained from the concentration chamber 4.
  • silicic acid migrates through the ion-exchange membrane during the dialysis process, and a small amount of about 0.1 to 1% by weight of silicic acid may be mixed in, but the mixing of a small amount of silicic acid does not matter.
  • an alkali source for preparing an aqueous solution of an alkali silicate which is a starting material for the production of a silica sol, for example, it can be recycled as it is.
  • the concentration of the alkaline solution can be reduced.
  • a reverse osmosis membrane method may be used to further concentrate the dealkalized solution (aqueous solution of alkali silicate) obtained from the desalting chamber.
  • the reverse osmosis membrane preferably has a molecular weight cut-off of 100 to 20,000, more preferably 100 to 1,000, and particularly preferably 100 to 800.
  • water is removed without evaporating water and energy consumption is reduced, and the recovery of valuable resources (here, silica silicate) is concentrated stably and efficiently in solution. The point that can be raised.
  • the ultrafiltration membrane method has a drawback of removing effective and highly active silicate anion which is developed by electrodialysis.
  • the reverse osmosis membrane method in which an organic thin film that is stable in a strong alkaline aqueous solution is three-dimensionally constructed as a module with excellent volumetric efficiency, is energy-saving, compact, easily controls conditions, and transforms valuable resources without applying heat. It is a method that can be concentrated and recovered without causing any waste.
  • the pressure at the time of reverse osmosis is preferably 4.0 MPa or less (at the entrance of the reverse osmosis module), and more preferably it is preferably adjusted to about 3.2 to 3.8 MPa.
  • silicate alkali aqueous solution obtained through the electrodialysis can be further concentrated, the Kei oxygen partial concentration, preferably in S i 0 2 conversion 3.0 It can be concentrated to about 30.0% by weight, more preferably about 6.5 to 30% by weight.
  • the second manufacturing method of the alkali silicate aqueous solution used in the present invention the molar ratio (Si0 2 / A 2 0) less than 4 feedstock silicate al Chikarari aqueous Te use Rere electrodialysis device de Anore Chikararishi,
  • the solution is characterized in that the solution is concentrated by a reverse osmosis membrane method.
  • Silicate and Al force Li in the starting alkali silicate aqueous solution Al force Li is as defined above
  • the molar ratio (Si0 2 / (A 2 0 + B)) 1 less than 4 preferably less than 1.5 to 4.0, further good Mashiku 2.8 to 3.5 is appropriate.
  • the Sani ⁇ concentration calculated Kei element (S i 0 2 concentration) is not particularly limited, 2.0 to 12.0 wt%, preferably from 3.0 to 12.0 by weight%, more preferably suitably about 4.5 to 12.0 wt% Duru.
  • the apparatus and conditions used for electrodialysis are the same as those in the first production method.
  • Desalting chamber 3 forces et obtained, reduced lean silicate al Chikarari aqueous Al force Li concentration (de-alkali solution), while increasing the molar ratio (Si0 2 / (A 2 0 + B)), and silica solid to suppress the solid content of the precipitate, the molar ratio (Si0 2 / (a 2 0 + B)) , it preferably 4.0 to 30, more preferably 9 to 26, particularly preferably kept adjusted to about 12 to 21 Force S desirable.
  • Kei oxygen partial concentration of the dealkalized solution in the second manufacturing method is preferably in the S i 0 2 conversion 3.0 ⁇ ; L0.0 wt%, more preferably by adjusting the time about 4.0 to 8.0 wt% It is desirable to keep.
  • the desalting solution obtained from the desalting chamber is concentrated by a reverse osmosis membrane method.
  • Reverse osmosis is performed as described above.
  • the alkali concentration (in terms of oxide) of the high-molar-ratio aqueous alkali silicate solution obtained by the present invention can be reduced to 0.4% by weight or less, but if necessary, contact treatment with a positive ion exchange resin is required. By doing so, the alkali concentration can be further reduced.
  • An exchange resin is used without any particular limitation.
  • the contact treatment with the ion exchange resin may be performed after electrodialysis or after reverse osmosis.
  • Desalting proceeds in an alkaline solution by directly contacting a high molar ratio aqueous solution of active silica silicate with a cation exchange membrane by electrodialysis or reverse osmosis membrane method. Further molar ratio (Si0 2 / (a 2 0 + B)) may be high rather adjusted.
  • Contact with the cation exchange resin can, for example, in a column tower 200 to 1000 cm 3, packed with a cation exchange resin of 240 ⁇ 530Cm 3, washed with water PH5.0 ⁇ 6- 0, flow rate 4 ⁇ 25ml / / sec This is carried out by passing an aqueous solution of silica silicate.
  • the photocatalytic compound used in the present invention may be a compound that itself has a photocatalytic action, or may be a photocatalyst precursor that can be converted to a photocatalyst through a required process.
  • the photocatalyst usable in the present invention T i 0 2, Z n 0, S r T i 0 3, Cd S, C dO, I nP, I n 2 0 3, B a T i 0 3, K 2 n b 0 3, F e 2 0 3, T a 2 0 5 ⁇ W0 3, B i 2 0 3 , n i 0, C u 2 0, S i 0 2, Mo S 2, Mo S 3, I n P b, Ru0 2, C e0 2 ⁇ Ga P, Z r 0 2, S n 0 2, V 2 0 5, KT a 0 3% Nb 2 0 5, C u 0, M o 0 3, C r 2 0 3, GaAs, S i, C d S e, CdF e0 3, but R a Rh0 3, and the like, powder or sol-like anatase type titanium dioxide T io 2 among these, preferred.
  • the particle size of such a photocatalyst is preferably from 1 to 20 nm, particularly preferably from 5 to 15 nm.
  • the sol-form anatase-type titanium oxide that is, anatase-type titanium oxide sol is prepared by heating an amorphous titanium peroxide sol as described below at a temperature of 10 ° C or more.
  • the properties of the anatase-type titanium oxide sol slightly change depending on the heating temperature and the heating time.
  • the anatase-type titanium oxide sol produced by treatment at 100 ° C. for 6 hours has a pH of It has a particle size of 7.5 to 9.5 and a particle size of 8 to 2 O nm, and its appearance is a yellow suspension liquid.
  • This anatase-type titanium oxide sol is stable even when stored at room temperature for a long period of time, but when it is mixed with an acid or an aqueous metal solution, precipitation may occur. Properties and acid resistance may be impaired.
  • Suitable photocatalysts include, in addition to the above anatase-type titanium oxide sol, powdered titanium dioxide, for example, commercially available “ST-01” (Ishihara Sangyo Co., Ltd., hS) and “ST-31” (Ishihara Sangyo (Made by Co., Ltd.) can also be used.
  • ST-01 Ishihara Sangyo Co., Ltd., hS
  • ST-31 Ishihara Sangyo (Made by Co., Ltd.
  • any binder can be used as long as it does not deteriorate due to the photocatalytic action and does not decrease the photocatalytic function, but it has excellent adhesion at room temperature as described below. It is desirable to use an amorphous titanium peroxytitanium sol.
  • the photocatalytic compound (2) is preferably used in an amount of 95 to 95 based on 100 parts by weight of the solid content of the aqueous solution of alkali silicate (1). It is used in a proportion of 100 parts by weight, more preferably 95 to 400 parts by weight.
  • the film-forming aid (3) is used as needed to improve the applicability and the coating adhesion of the photocatalytic coating composition of the present invention.
  • Such coalescents, amorphous type titanium oxide can also act as a precursor of the photocatalyst described above, for example the use of titanium peroxide amorphous type T i 0 3 or amorphous type titanium oxide emissions T io 2 Can be.
  • a particularly preferred amorphous titanium peroxide sol can be produced, for example, as follows.
  • titanium salt solution such as titanium chloride T i C 1 4, adding good UNA hydroxyl Ihiarukari aqueous ammonia or sodium hydroxide. Pale bluish white occurring, amorphous titanium hydroxide T i (OH) 4, also known as ortho-titanic acid H 4 T i 0 4, after washing. Separating the Mizusani ⁇ titanium, treatment with aqueous hydrogen peroxide Thus, an amorphous titanium peroxide solution of the present invention is obtained.
  • This amorphous titanium peroxide sol has a pH of 6.0 to 7.0, a particle size of 8 to 20 nm, and is a yellow transparent liquid, and is stable even when stored at room temperature for a long period of time.
  • the sol concentration is usually adjusted to 1.40 to 1.60%, but the concentration can be adjusted as needed.If used at low concentrations, dilute with distilled water, etc. To use.
  • this amorphous titanium peroxide sol is in an amorphous state at room temperature, has not yet crystallized into anatase titanium oxide, and has excellent adhesion, high film-forming properties, and a uniform and flat thin film.
  • the dried film has the property of being insoluble in water and the property of being stable to a photocatalyst.
  • amorphous titanium oxide used in the present invention those in the form of fine powder or sol in which this fine powder is suspended and dispersed in a solvent such as water or alcohol are known.
  • a fine powder of amorphous titanium oxide having no photocatalytic function it is mixed with a binder such as a thermosetting water-soluble resin for coating.
  • the amorphous titanium oxide is used as a film-forming auxiliary (3).
  • an anionic surfactant or a modified silicone-based surfactant can be used.
  • these film-forming assistants can be used in combination of two or more kinds.
  • the film-forming auxiliary (3) is preferably 95 to 9500 parts by weight, more preferably 95 to 9500 parts by weight, based on 100 parts by weight of the solid content of the aqueous alkali silicate solution (1). Is used in a proportion of 95 to 4000 parts by weight.
  • Other ingredients are used in a proportion of 95 to 4000 parts by weight.
  • raw coating agent composition of the present invention in addition to the above components, if necessary, in addition to silicon dioxide such as colloidal silica, siloxane compounds such as silicone and organopolysiloxane, and water glass are added. You may.
  • the auxiliary additive metal Pt, Ag, Rh, Ru, Nb, Cu, Sn, Ni, Pd, Os, Ir, Zn, Cd, Fe, Se, Y, etc.
  • the auxiliary additive metal Pt, Ag, Rh, Ru, Nb, Cu, Sn, Ni, Pd, Os, Ir, Zn, Cd, Fe, Se, Y, etc.
  • the photocatalytic coating agent composition of the present invention contains, as necessary, a dielectric ceramic material or a conductive ceramic material having an ultraviolet blocking function or an electrostatic discharge preventing function, together with amorphous titanium oxide and silicon oxide. Can be included.
  • Photocatalytic coating agent Preferably 95 to 9500 parts by weight, more preferably 95 to 4000 parts by weight based on 100 parts by weight of the solid content of It is.
  • the photocatalytic coating agent composition of the present invention is obtained by mixing the above components (1) and (2), and if necessary, the component (3) and other components in a mixer. At the time of mixing, a diluent such as water can also be used. The use of a diluent may improve coatability in some cases.
  • the resulting photocatalytic coating agent composition preferably has the following composition, although it depends on the mixing ratio of the above components.
  • the photocatalytic coating agent composition is preferably
  • the molar ratio of Kei element and Al force Li (Si0 2 / (A 2 0 + B) (A: Al force Li metal, B: NH 3) is 4-3 0, preferably 1 5-3 0, more preferably It is preferably about 20 to 30 and particularly preferably about 25 to 30.
  • Ti0 2 / Si0 2 molar ratio is from 0.7 to 7 0, preferably 3 to 7 about 0.
  • the content of the film-forming auxiliary (3) is preferably about 0.05 to 2% by weight, and more preferably about 0.01 to 2% by weight.
  • the balance is diluent, usually water. Further, the photocatalytic coating agent composition of the present invention may be appropriately diluted before use as required before the coating operation.
  • Such a photocatalytic coating agent composition according to the present invention includes various materials such as inorganic materials such as ceramics and glass, organic materials such as organic polymer resins, rubber, wood, and paper, and metal materials such as aluminum and steel. Can be used for the substrate.
  • the size and shape are not limited, and may be plate-like, needle-like, honeycomb-like, fiber-like, filter-sheet-like, bead-like, foam-like, or a combination of these.
  • the coating method of the photocatalytic coating agent composition of the present invention includes a method of forming a thin film by a method such as spray coating, diving, or spin coating.
  • the thickness of the coating thin film (layer) is generally 0.1 to 3 m, preferably 1 to 3 m, which is determined by the thickness which can be achieved for the purpose of imparting hydrophilicity and the film forming performance such as a binder. About 3 ⁇ m.
  • the photocatalytic coating agent composition of the present invention can be used to prevent fogging of showcase glass, bathroom mirrors, spectacle lenses, automobile window glasses and bodies, reduce the irritating pain when injecting injections into the body, prevent dew condensation on window glasses and skylights It can be used to prevent contamination of building materials such as silicone sealing materials such as between a bathroom and unit pass, between an outer wall and a window frame, between tiles and tiles, and oil-based caulking materials. Since contaminant organic substances such as dust, oil, and dirt attached to the surface of a substrate made of an inorganic material such as glass and tile are decomposed by photocatalysis, they can be used for exterior building materials and the like.
  • a photocatalytic coating composition capable of adjusting the refractive index, the coating density, and the hydrophilicity, and improving the coating strength and the adhesion of the film.
  • the specifications of the electrodialysis device and the reverse osmosis device used are as follows.
  • Electrodialysis machine manufactured by Tokuyama Corporation
  • Cation exchange membrane (1 or 2) CMB (trade name), manufactured by Tokuyama Corporation
  • Electrode material Ni plate
  • Reverse osmosis membrane Mini spiral membrane (Synthetic composite membrane with resistance to water: molecular weight cut off 200, membrane area 1.6m 2 , 2.OX4OL)
  • the thus obtained aqueous solution of the raw material silica silicate was supplied to the desalting chamber of the electrodialyzer at the time t, and the concentrated caustic soda solution was supplied.
  • the dealkalized solution obtained from the desalting chamber is temperature-controlled to 30 to 40 ° C and supplied to the concentration tank of the reverse osmosis unit.
  • the inlet flow rate is 10 LZ
  • the average pressure is 3.0 MPa
  • the flux (30 ° C )
  • the solution was concentrated at 35 to 28 kg / m 2 hr to obtain a high molar sodium silicate aqueous solution having the following composition and characteristics.
  • FIG. 2 also shows the 29 Si-NMR spectrum of the following water glass colloidal silica measured under the same conditions.
  • FIG. 3 shows the results of UV-visible absorption spectroscopy.
  • FIG. 3 shows the results of UV-visible absorption spectroscopy analysis of colloidal silica (SM manufactured by DuPont) and the following colloidal silica measured under the same conditions.
  • the measuring methods and measuring devices for each property value are as follows.
  • the components shown in Table 1 were mixed with 100 parts by weight (based on solid content) of the aqueous sodium silicate solution prepared in Production Example 1 above to obtain a photocatalytic coating agent composition.
  • the obtained coating agent composition was adhered by diving to a glass substrate of 50 ⁇ 200 mm (TLC glass plate manufactured by Mutual Life Science Glass Co., Ltd.) to prepare a glass substrate with a coating.
  • the coating strength, hydrophilicity, and peel strength of the coating were evaluated as follows.
  • Coating strength Scratch method based on empirical scratch values described in JIS K 5400
  • Example 2 The same operation as in Example 1 was performed except that colloidal silica (HS-40 manufactured by DuPont) was used instead of the aqueous sodium silicate solution. Table 1 shows the results. Comparative Example 2
  • Example 1 The same operation as in Example 1 was performed except that water glass (diluted No. 3 sodium silicate (manufactured by Tosoh Sangyo Co., Ltd.)) was used instead of the aqueous sodium silicate solution. The results are shown in Table 1. Comparative Example 3
  • Example 1 The same operation as in Example 1 was performed except that the aqueous sodium silicate solution was not used. Table 1 shows the results.
  • Example 100 4000 1500 200 194 200 4H 15 ° No peeling No abnormality

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Catalysts (AREA)
  • Silicon Compounds (AREA)

Description

光触媒性コーティング剤,組成物
技術分野
本発明は、 たとえばプラスチック、 金属、 ガラス、 セラミック、 コンクリー 明
ト、 木、 石、 それらの組み合わせ、 それらの積層体、 またはそれらの材料で構 田
成された、 建物の外装、 窓枠、 自動車、 鉄道車両、 航空機、 船舶のような乗り 物、 ガードレール、 遮音壁、 街路灯、 各種標識の外装および塗装のための光触 媒性コ一ティング剤組成物に関する。
背景技術 .
従来、 眼鏡レンズ、 浴室鏡、 注射針等の表面に親水性 ·防曇性等を付与する コーティング剤としてはシリコン系樹脂がよく知られている。 また、光触媒能 を有するアナターゼ型酸化チタン T i o2 とシリコン系樹脂との混合物から なるコーティング剤をコーティングし、紫外線照射時に親水性作用を発揮する 表面親水性基体も知られている。
シリコン系樹脂を親水性コーティング剤として用いた場合、シリコン系樹脂 面に生じる静電気により、 大気中の塵埃等が着塵し、 その表面を黒く汚すとい う問題点があった。 また、 この光触媒能を有するアナターゼ型酸ィ匕チタン T i o2 とシリコン系樹脂とからなる親水性コーティング剤は、 親水機能を発揮す るためには紫外線照射が必要とされており、紫外線が照射されない場所に設置 された場合には親水性機能が発揮できないという不都合があった。
このような問題を 消するために、たとえば特開平 1 0— 2 3 7 3 5 3号公 報には、 「ァモルフ了ス型チタン酸化物とケィ素酸化物とを含む親水性コーテ イング剤」 が開示されている。 ここで、 ケィ素酸化物としては、 具体的には、 コロイダルシリカ等の二酸化珪素の他、 シリコーン、 オルガノポリシロキサン 等のシロキサン類化合物、 水ガラスが例示されている。
しかし、 コロイダルシリ力では、 特に超微粉の光触媒性化合物 (チタン酸化 物) を用いた場合に、 分散性がなお不十分であった。
またシロキサン類化合物では、分散性が不十分となり、 また塗膜の力学的強 度が劣るという不都合があり、
水ガラスでは、 ァニオン活性が低いため、 分散性が不十分になるという不都 合があった。
他方、 建築および塗装の分野においても、 環境汚染に伴い、 建築外装材ゃ建 造物その他の塗膜の汚れが問題となっている。 汚染の原因物質は、 カーボンブ ラックのような燃焼生成物や、都市煤塵、粘土粒子のような無機物質等があり、 このような原因物質の多様性が防汚対策を複雑化している。 従来の通念では、 建築外装などの汚れを防止するためには、ポリテトラフルォロエチレンのよう な撥水性の塗料が好ましいと考えられていたが、最近では、親油性成分を多く 含む都巿煤塵に対しては、塗膜の表面をできるだけ親水性にするのが望ましい と考えられている。 そこで、親水性のグラフトポリマーで建物を塗装すること が提案されている。 このようなグラフトポリマーの塗膜は、水との接触角が 3 0〜4 0 ° の親水性を呈する。 しかしながら、粘土鉱物で代表される無機塵芥 の水との接触角は 2 0 ° 〜5 0 ° であり、水との接触角が 3 0〜4 0 ° のグラ フトポリマーの塗膜に対し親和性を有し、 その表面に付着しやすいので、 この グラフトポリマ一の塗膜は無機塵芥による汚れを防止できないと考えられる。 また、 従来、 アクリル樹脂、 アクリルシリコン樹脂、 水性シリコーン、 シリコ ーン樹脂とアクリルとの樹脂とのブロック重合体、 アクリルスチレン樹脂、 ソ ルビタン脂肪酸エチレンオキサイド、 ソルビタン脂肪酸エステル、 ウレタン系 ァセテ一ト、ポリカーボネートジオールおよび zまたはポリィソシァネートの 架橋型ウレタン、ポリアクリル酸アルキルエステル架橋体などからなる種々の 親水性塗料が市販されている。 これらの親水性塗料の水との接触角は比較的大 きく、親油' !·生成分を多く含む都市煤塵による汚れを効果的に防止することがで きない。
ところで、 水ガラスと呼ばれる珪酸アル力リ水溶液では、溶液状態を保った めアルカリイオンを比較的多量に包含するので、 ケィ素とアルカリのモル比
(SiO2/ (A20+B) (A :アルカリ金属、 B :NH3) ) は通常 4未満である。 溶液中には、 珪酸イオン、 アルカリイオンが含まれるものの、負の電荷量が少ないためァニ オン活性も低くなり、ァニオン活性の指標となるゼータ電位は一14〜一 40MV 未満の範囲にある。
一方、 珪酸ゾル、 コロイダルシリカと呼ばれる一次粒子においては、 内部表 面積や結晶質部分はなく、 これらはアルカリ性媒体に分散されている。 アル力 リはシリカ表面と反応してアルカリ表面に負電荷をつく り、シリカ粒子は負電 荷を持っため粒子同士による負電荷の反発力により安定化されている。 しかし、 基本的にシリカコロイド物質の表面には負電荷を形成する珪酸ァ二オン以外 にシラノール基 (Si- 0H) も多く存在するため、 負の電荷量が少なくゼータ電 位は一25〜一 38MVの範囲にある。
水ガラスの脱アルカリにより、 コロイダルシリカが得られる力 水ガラスと コロイダルシリカルとの間での安定な中間体は得られていなレ、。 すなわち、 脱 アル力リの進行によりモル比が高くなり、水ガラスが溶液状態を保ち得なくな るためである。 一般に、 モル比が 4. 2以上になると、 シリカの析出が起こり、 水ガラスが溶液状態を保ち得なくなる。
—方、水ガラスのような溶液的性質を有し、 しかもコロイダルシリカのよう にモル比ならびに S i〇2濃度が高い、 高モル比珪酸アルカリ水溶液を、 上記 の光触媒性コーティング剤組成物の成分として用いれば、緻密で塗膜強度、 密 着強度の高い膜が得られ、このような膜に適度な親水性を付与できれば上記の ような諸問題を一度に解消できる可能性がある。
すなわち、 水ガラスの溶液的性質を残しつつ、 モル比、 活性度ならぴに S i 〇 2濃度の高レ、珪酸アル力リ水溶液を用いることが検討されるべきである。 し力 し、水ガラスを単純に蒸発濃縮により濃縮するだけではモル比を上げる ことはできず、たとえば水ガラスの中でもモル比の一番高い 4. 0の製品を Si02 濃度が 30重量%まで濃縮すると完全にゲル化してしまう。
また一方、 コロイダルシリカを限外ろ過法により濃縮することも行われてい る (たとえば米国特許第 3, 969, 266号、 英国特許第 1, 148, 950号、 特開昭 58 - 15022号公報参照)。 シリカが粒子成長した状態であるコロイダルシリ力 であれば限外ろ過法によっても充分に濃縮できる力 S、水ガラスではイオンなど の低分子量成分が多く、 P艮外ろ過法による歩留りは低レ、。 またイオンの損失が 多いため、 水ガラス力本来有するァニオン活性も失われてしまう。 発明の目的
本発明は、 上記のような問題点に鑑みてなされたものであり、水ガラスとコ ロイダルシリカとの中間的性質を有し、モル比(Si02/ (A20+B) (A:アルカリ金属、 B : H3)およぴケィ素含量が高く、 しかもァニオン活性化度の高レ、珪酸アルカリ 水溶液を、 光触媒性ィ匕合物とともに用いることで、 屈折率、 塗 度。 親水性 の調整が可能であり、塗膜強度の向上おょぴ膜の密着性を向上しうる光触媒性 コーティング剤組成物を提供することを目的としている。 発明の概要 本発明に係る光触媒性コーティング剤組成物は、
(1) (A) ケィ素とアル力リのモル比 (Si02/(A20+B) (A:アルカリ金属、 B:NH3) 力 S4〜30であり、
(B) ケィ素の酸化物換算濃度 (S i〇2濃度) が 6.8〜30重量%であ る珪酸アル力リ水溶液と、
(2) 光触媒性ィ匕合物とからなることを特徴としている。
このような本発明の光触媒性コーティング剤組成物は、前記珪酸アル力リ水 溶液 (1) : 100重量部 (固形分) と、 前記光触媒性化合物 (2) : 95〜9 500重量部からなることが好ましい。
また、 本発明の光触媒性コーティング剤組成物では、 前記光触媒†生化合物 (2) がアナターゼ型酸化チタンであることが好ましい。
さらに、 本発明の光触媒性コーティング剤組成物は、 造膜助剤 (3) を含ん でいてもよい。 この場合、 前記珪酸アルカリ水溶液 (1) : 100重量部 (固 形分) と、前記光触媒性化合物(2) : 95〜9500重量部と、造膜助剤( 3 ) : 95〜9500重量部とからなることが好ましい。
さら〖こ、本発明で用いる光触媒性コーティング剤組成物の前記珪酸アル力リ 水溶液 (1) は、 上記特性 (A) および (B) に加えて、 好ましくは下記特性 (C) 〜 (F) の少なくとも一つを満たす。
(C) ゼータ電位が一40MV 80MVであり、
(D) 29Si- NMR測定時に、 ケミカルシフト一 100 120ppmにおけるピーク 面積が、 同一条件下で 2¾i - NMR測定した水ガラスのケミカルシフト一 100〜一 120ppmにおけるピーク面積の 1.35倍以上であり、 力つ同一条件下で 29Si- NMR 測定したコロイダルシリ力のケミカルシフトー 100 120ppmにおけるピーク 面積の 1.20倍以上である。
(E) 吸光光度法における波長領域 1000〜200mnでの透過率が 90〜100%で ある。
( F ) 電気伝導度が 2.:!〜 35m Sん mである。 図面の簡単な説明
' 図 1
製造例で用レ、た電気透析装置の概略図である。
図 2
製造例で製造した珪酸ソーダ水溶液、水ガラスおょぴコロイダルシリ力 (デ ュポン社製 S M) の 2 i- NMRスペク トルを示す。
図 3
製造例で製造した珪酸ソーダ水溶液、コロイダルシリカ(デュポン社製 S M) およびコロイダルシリカ (デュポン社製 HS— 40) の紫外可視吸光光度分析の 結果を示す。 発明の具体的説明
以下、 本発明について、 さらに具体的に説明する。
本発明に係る光触媒性コーティング剤組成物は、前述したように、特定の珪 酸アルカリ水溶液 (1 ) と、 光触媒性化合物 (2 ) とを必須成分として含み、 必要に応じ造膜助剤 (3 ) を含むものである。 以下、 各成分毎に詳細に説明す る。 珪酸アルカリ水溶液 (1 )
本発明で用いる珪酸アル力リ水溶液は、水ガラスとコロイダルシリカとの中 間的性質を有し、 モル比 (Si02/ (A20+B) (A:アルカリ金属、 B :NH3)およぴケィ素 含量が高く、 しかも高いァニオン活性化度を有する。 すなわち、本発明で用いる珪酸アル力リ水溶液は、通常の水ガラスに比べて、 アルカリに対するケィ素の含有量が高いという特徴を有する。 ここで、 アル力 リとしては、 リチウム、 ナトリゥム、 力リゥム、 アンモ-ゥム等が用いられる
1S 最も一般的にはナトリゥムである。
本発明で用いる珪酸アルカリ水溶液においては、ケィ素とアル力リのモル比 (A) (SiOノ (A20+B) (A:アルカリ金属、 B:NH3)が 4〜30であり、 好ましくは 9 〜26、 さらに好ましくは 12〜21である。 なお、 アルカリがリチウム、 ナトリ ゥム、 カリウム等である場合には、 モル比は酸化物換算 (A20、 ただし Aはアル カリ金属)で算出された値であり、 アル力リがアンモニゥムである場合には、 アンモニア基準で算出された値である。 また、 アルカリ金属とアンモニゥムと を併用してもよい。以下、本明細書では、 (Si02/ (A20+B) (A:アル力リ金属、 B:NH3) を単純に 「モル比」 と略記することがある。
通常の水ガラスにおいては、脱アルカリが進行し、 モル比 (SiOノ(A20+B) (A: アルカリ金属、 B :NH3)が高くなると、 シリカが析出し、 溶液状態を保ち得なく なるが、 本発明においては、 溶液として安定に存在しうる。 上記のようなァニ オンの存在が大きく寄与していると考えられる。ァニオン活 1 "生が高いと水ガラ ス中の重合ストッパーである Naを脱塩しても珪酸ァ二オンが活発に寄与し、 電気的二重層をつくるため安定に保たれる。
本発明で用いる珪酸アルカリ水溶液においては、 酸化物換算のケィ素濃度、 S i 02濃度 (B ) が 6. 8〜30重量%であり、 好ましくは 8〜26、 さらに好ま しくは 14〜22である。
このような本発明で用いる珪酸アルカリ水溶液は、珪酸ゾルあるいはコロイ ダルシリカと同程度のケィ素濃度を有する。
また本発明の珪酸アルカリ水溶液は、上記特性 (A)および(B)に加えて、 好ましくは下記特性 ( C) 〜 (F ) の少なくとも一つを満たす。 すなわち、 ァニオン活性ィ匕度はゼータ電位によって評価され、本発明の珪酸 アルカリ水溶液においては、 ゼータ電位 ( C) が好ましくは一 40MV 80
MV、 さらに好ましくは一 50MV 80MV、特に好ましくは一 58MV〜一 80
MVの範囲にある。
ゼータ電位は、 粒子の分散、 凝集に関与するパラメータである。 同種類の粒 子が液中に多く分散している場合、各々の粒子は同符号の電荷を持つことにな る。 そして、 その電荷が高ければ高い程、 お互いに反発し、 凝集せずに長期間 安定を保つ。 逆に電荷を持たない場合、 あるいは反対符号の物質が混在する場 合は、 粒子はすぐに凝集、 沈殿する。 この粒子の電荷は溶液の p Hにも依存す る。
この珪酸アル力リ水溶液では、上記のようにゼータ電位は負であり、 多くの ァニオン十生分子が含まれていることから、 高いァ-オン活个生を有する。
この珪酸アル力リ水溶液に含まれるァニオン性分子は極めて微小であり、 コ ロイダルシリカのようなコロイドと比べても小さレ、。 したがって、本発明にお いては、ァニオン性粒子が存在するとしても、ゾルのような挙動は観察されず、 実質的には溶液として取扱える。 このことは、後述する透過率によっても裏付 けられる。
ァニオン性粒子の存在形態は、必ずしも明らかではないが、表面に SiO—を有 するナノメートルオーダーの超微粒子として存在していると思われる。珪酸ァ ェオンの構造は、 下記のように種々知られているが、本発明で用いる珪酸アル 力リ水溶液では、 1〜 2官能性で直鎖重合体や多環珪酸ァ二オンに帰属するも のは少なく、 3官能性 Q3x、 3官能性 Q3y、 4官能性 Q4が多く含まれていると 考えられる。
【化 1】 ONa 0一 0
NaO-Si-O-Na NaO-Si-O-'Na ' -o-Si-o- ONa ONa c!-、
(Qo) (四官能性 Q4) ,
Figure imgf000011_0001
(Qay) (力ゴ型 Q3x) (枝分 Q3y)
通常のコロイダルシリカでは、上記のようなァニオンの存在は少なく、 ゼー タ電位は、 一 25MV 38MV程度である。 また、 水ガラスはァ-オンを含む ものの、 高官能性のァニオン部が少ないため、 ゼータ電位は、 一 14MV〜一 40 MV程度である。
(D) 29Si-匪 R測定時に、 ケミカルシフトー 100〜一 120ppmにおけるピーク 面積が、 同一条件下で29 Si-画 R測定した水ガラスのケミカルシフトー 100〜一 120ppmにおけるピーク面積の好ましくは L 35倍以上、 さらに好ましくは 1. 35 〜2. 5倍であり、 かつ同一条件下で 29Si-NMR測定したコロイダルシリカのケミ カルシフト一 100 120ppmにおけるピーク面積の 1. 20倍以上、 さらに好ま しくは 1. 20〜; L 33倍である。この結果から、本発明の珪酸アル力リ溶液には、 1〜 2官能性で直鎖重合体や多環珪酸ァ二オンに帰属するものは少なく、 3官 能性 Q3x、 3官能性 Q3y、 4官能性 Q4が多く含まれていることがわかる。 なお、 ピーク面積は、 ベースライン補正をした後、 一 lOOppmにおける縦軸 と、 一120ppmにおける縦軸とスぺク トル曲線により囲まれた面積により算出 される。
また本発明で用いる珪酸アルカリ水溶液は、 吸光光度法における波長領域 1000〜200nmでの透過率 (E ) が好ましくは 90〜100%であり、 さらに好まし くは 95〜100%である。
通常の水ガラスの透過率は上記と同様であるが、コロイダルシリ力の透過率 は 200〜380nm未満では極めて低く 10〜O %である。 この結果、 この珪酸アル カリ水溶液が水ガラスに近い特性を有することがわかる。
さらに本発明で用いる珪酸アルカリ水溶液は、 電気伝導度 ( F) が好ましく は 2. l〜35m S /cmであり、 さらに好ましくは 2.:!〜 16m Sん mであり、 特に好 ましくは 5. 0〜11. 0m S /cmである。 この珪酸アルカリ水溶液は、 電気伝導度 が高いことから、 高脱塩溶液であり、珪酸ァユオンによって凝集せずに安定を 保つ溶液である。
このような本発明で用いる珪酸アルカリ水溶液は、水ガラスとコロイダルシ リカとの中間的性質を有し、 モル比およぴケィ素含量が高く、 しかも高いァニ オン活性ィヒ度を有する。
上記のような珪酸アルカリ水溶液の製法は特に限定はされないが、本発明者 らは、 以下に説明する第 1および第 2の製造方法により、効率よく安定して新 規珪酸アル力リ水溶液を製造し得ることを見出している。
本発明で用いる珪酸アル力リ水溶液の第 1の製造方法は、
モル比 (Si02/ (A20+B) (A:アル力リ金属、 B:N¾) 4未満であり、 ケィ素の酸ィ匕 物換算濃度 (S i 02濃度) が 2. 0〜12重量%の原料珪酸アルカリ水溶液を電 気透析装置により脱アルカリすることを特徴としている。
原料珪酸アル力リ水溶液における珪酸とアル力リ (アル力リは前記と同義) は、モル比 (Si02/ (A20+B) (A :アルカリ金属、 B : NH3)が、 4未満、好ましくは 1. 5 〜4. 0未満、 さらに好ましくは 2 8〜3. 5程度が適当である。 またケィ素の酸 化物換算濃度 (S i 02濃度) は 2. 0〜12. 0重量%、 好ましくは 3. 0〜: 12. 0重 量%、 さらに好ましくは 4. 5〜12. 0重量%程度が適当である。
電気透析装置は、 図 1に示すように、 陽極と陰極との間に、 陽イオン交換膜 1と陰イオン交換膜 2を交 並べて配置され、脱塩室 3と濃縮室 4とが交互 に形成されている。 このような電気透析装置としては、従来公知のものが特に 制限されることなく使用することができる。 即ち、 このような電気透析装置を 構成する電極、 イオン交換膜、 そのほ力必要な部材についても、 特に制限なく 公知のものが用いられる。 例えば、 イオン交換膜としては、 一般に陽イオン交 換基がスルホン酸基、 陰イオン交換基が第四級アンモニゥム基であり、補強基 材を用いてスチレンージビュルべンゼン共重合体の素材からなる炭化水素系 陽イオン交換膜および陰イオン交換膜が工業的にも用いられる。 また、 イオン 交換膜の素材が含フッ素重合体よりなる含フッ素系ィオン交換膜も用いるこ とができる。 なお、 電気透析装置では、 電気透析に供する原料珪酸アルカリ水 溶液がアルカリ性であるとともに、 苛性アルカリを濃縮 (生成) するため、 耐 アル力リ性のィオン交換膜を用いることが望ましい。
電気透析時には、電気透析装置の脱塩室3に原料珪酸アルカリ水溶液を供給 し、濃縮室 4に水または希薄の苛性アル力リ水溶液を供給して電気透析を行う。 脱塩室 3では、 アルカリ金属イオン (たとえば N a +) が陽イオン交換膜 1を 通して濃縮室 4側に移行し、 また水酸化物イオン (OH— ) が陰イオン交換腠 2を通して濃縮室側 4に移行して脱塩が行われる。 一方、 濃縮室 4では、 脱塩 室 3から移行してきたアルカリ金属イオンおょぴ水酸化物イオンの濃縮が行 われ、 苛性アルカリ水溶液が得られる。
電気透析装置の運転条件は、装置の大きさ、原料珪酸アル力リ水溶液の濃度 等により様々であるが、 0. 6 VZ対で一定となるように電圧調整し、 原料珪酸 アル力リ水溶液の脱塩室への供給速度約 3 . 1リツトルノ分程度が適当である。 なお、 濃縮室へは、水または希薄昔性アルカリ水溶液を約 3 . 1リットル Z分 程度の速度で供給する。
脱塩室 3からは脱アル力リにより、アル力リ濃度の低下した珪酸アル力リ水 溶液 (脱アルカリ溶液) が得られる。
モル比 (Si02/ (A20+B) ) を高めながら、 かつシリカ固形分の析出を抑えるた め、脱塩室 3から得られる珪酸アル力リ水溶のモル比は、好ましくは 4. 0〜30、 さらに好ましくは 9〜26、 特に好ましくは 12〜21程度に調節しておくこと力 S 望ましい。
電気透析条件、特に電気伝導度を適宜に選択することで、珪酸アルカリ水溶 のモルバランス (Si02/ (A20+B) ) を調整することができる。 一般的には、 電気 伝導度が高い場合に、 Si02/ (A20+B)が低くなり、また電気伝導度が低い場合に、 Si02/ (A20+B)が高くなる傾向がある。
また、 この第 1の製造方法において原料珪酸アルカリ水溶液として、ケィ素 分濃度の比較的高いものを用いているため、得られる珪酸アル力リ水溶液のケ ィ素分濃度は、 S i 02換算で好ましくは 6. 8〜12重量%、 さらに好ましくは 6. 8〜 9重量%程度となる。
従来、珪酸アルカリ水溶液の電気透析においては、イオン交換膜の目詰まり を防止し、違続運転を行う観点から、比較的低濃度の原料珪酸アル力リ水溶液 が用いられており、 その濃度は、 S i 02換算で、 せいぜい 6. 0重量%程度で あり、 得られる脱アルカリ溶液の S i 02換算濃度も、 せいぜい 6. 2重量0 /0程 度であった。 これに対して、 本発明の第 1の製法では、 上述したように比較的 S i o2換算濃度の高い、 原料珪酸アルカリ水溶液を用いているので、 S i o2 換算濃度の高い脱アルカリ溶液 (珪酸アルカリ水溶液)が得られる。この結果、 前述したような特性 (A) および (B ) , さらに好ましくは (C ) 〜 (F ) を も満たす、 本発明に係る高モル比の活性珪酸アルカリ水溶液が得られる。 電気透析においては、濃縮室 4からは苛性アルカリ水溶液が得られる。 この 苛性アルカリ水溶液には、透析の過程において、珪酸がイオン交換膜を通して 移行し、 0 . 1〜1重量%程度の微量の珪酸が混入する場合があるが、 微量の 珪酸の混入を問題としない用途、 たとえば、珪酸ゾル製造の際の出発物質であ る珪酸アルカリ水溶液を調整するためのアルカリ源として使用する場合には、 そのままリサイクルできる。 また S i 02 20比の低い J I S 1号、 2号 珪酸アルカリ、 メタケイ酸ソーダ、 オルトケィ酸ソーダの製造に用いることも 可能である。
また、電気透析中に濃縮室 4の溶液を滞留させることでアル力リ濃度を低減 させることができる。
第 1の製造方法においては、 上記脱塩室から得られた脱アルカリ溶液 (珪酸 アル力リ水溶液) をさらに濃縮するために逆浸透膜法を用いてもよい。
なお、脱アル力リ溶液には微量のアル力リが含まれるため、 逆浸透膜として 耐アルカリ複合膜を用いることが望ましい。 また、 この逆浸透膜は、 分画分子 量が好ましくは 100〜20000、 さらに好ましくは 100〜1000、 特に好ましくは 100〜800の範囲にある。 逆浸透膜法の特長として、 水を蒸発させないで、 ェ ネルギー消費の少ない形で水分を除去し、有価物回収(ここでは珪酸アル力リ ) が溶液の状態で安定的かつ効率的に濃縮することができる点があげられる。た とえば、従来法におけるコロイダルシリ力を濃縮する方法である、水の沸点で ある 100°Cに昇温して行う蒸発濃縮法や減圧下で水の沸点を下降せしめて行う 減圧蒸留法では、あえて加熱条件下にてコロイダルシリ力を粒子成長させてい るため、珪酸ァ二オンがその粒子表面に若干存在するだけで、活性度が失われ やすい。 一方、圧力をかけてポリスルホン、ポリアクリロ二トリル、酢酸セルロース、 ニトロセルロース、 セルロース等の有機薄膜を用いて水分の除去を行う、 限外 ろ過膜法が、エネルギー的な面と条件コントロールの簡便さから一般的に用い られている (米国特許第 3, 969, 266号や英国特許第 1, 148, 950号、 さらには特 開昭 58— 15022号公報等参照)。
しかし、 限外ろ過膜法では、電気透析により発現する有効な活性度の高い珪 酸ァニオンを除去してしまう欠点がある。
これに対し、強アルカリ水溶液中で安定な有機薄膜を容積効率の優れたモジ ユールとして立体構成した逆浸透膜法は、省エネルギー型でコンパクト、条件 コントロールが容易で熱を加えないで有価物を変質させることなく濃縮回収 できる方法である。
逆浸透時の圧力は、 好ましくは 4. 0M P a以下 (逆浸透モジュール入り口) であり、 さらに好ましくは 3 . 2〜3 . 8 M P a程度に調節しておくことが望 ましい。
また、 溶液温度は、 35〜40°C程度に調整することが望ましい。
このような逆浸透膜法を併用することで、電気透析を経て得られた珪酸アル カリ水溶液をさらに濃縮することができ、 そのケィ素分濃度を、 S i 02換算 で好ましくは 3. 0〜30. 0重量%、 さらに好ましくは 6. 5〜30重量%程度まで濃 縮できる。
なお、 逆浸透膜法を併用する場合には、原料珪酸アルカリ水溶液として、 上 記のような高ケィ素濃度の溶液を使用する必要は必ずしもない。
すなわち、 本発明で用いる珪酸アルカリ水溶液の第 2の製造方法は、 モル比 (Si02/A20) 4未満の原料珪酸アル力リ水溶液を電気透析装置を用レヽ て脱ァノレ力リし、
脱アル力リ溶液を逆浸透膜法により濃縮することを特徴としている。 原料珪酸アルカリ水溶液における珪酸とアル力リ (アル力リは前記と同義) は、 モル比 (Si02/(A20+B)) 1 4未満、 好ましくは 1.5〜4.0未満、 さらに好 ましくは 2.8〜3.5程度が適当である。 またケィ素の酸ィ匕物換算濃度 (S i 02 濃度) は特に限定はされないが、 2.0〜12.0重量%、 好ましくは 3.0〜12.0重 量%、 さらに好ましくは4.5〜12.0重量%程度が適当でぁる。
電気透析に用いる装置およぴ条件は前記第 1の製法と同様である。
脱塩室 3力 ら得られる、 アル力リ濃度の低下した希薄珪酸アル力リ水溶液 (脱アルカリ溶液) は、 モル比 (Si02/(A20+B)) を高めながら、 かつシリカ固 形分の析出を抑えるため、 モル比 (Si02/(A20+B)) は、 好ましくは 4.0〜30、 さらに好ましくは 9〜26、 特に好ましくは 12〜21程度に調節しておくこと力 S 望ましい。
また、 この第 2の製造方法における脱アルカリ溶液のケィ素分濃度は、 S i 02換算で好ましくは 3.0〜; L0.0重量%、 さらに好ましくは 4.0〜8.0重量%程 度に調節しておくことが望ましい。
次に、第 2の製造方法においては、脱塩室から得られた脱アル力リ溶液を逆 浸透膜法により濃縮する。
逆浸透は前記と同様にして行われる。
このような逆浸透膜法により、脱アルカリ溶液中の水分が除去され、脱アル カリ溶液 (珪酸アルカリ水溶液) の濃縮が行われる。 この結果、 前述したよう な特性 (A) および (B), さらに好ましくは (C) 〜 (F) をも満たす、 本 発明に係る高モル比の活性珪酸アル力リ水溶液が得られる。
本発明により得られる高モル比の活性珪酸アルカリ水溶液のアル力リ濃度 (酸化物換算) は、 0. 4重量%以下まで低減されるが、 必要に応じ、 陽ィォ ン交換樹脂と接触処理することで、 さらにアルカリ濃度を低下できる。 イオン 交換樹脂としては、 R— S03H型、 R— COOH型、 R— OH型の陽イオン 交換樹脂が特に制限されることなく用いられる。 なお、 イオン交換樹脂との接 触処理は、電気透析の後、あるいは逆浸透の後のいずれにおいて行ってもよレ、。 電気透析法により得た、またはさらに電気透析法および逆浸透膜法により高 モル比の活性珪酸アル力リ水溶液を直接陽イオン交換膜と接触処理すること により、 アルカリ溶液中で脱塩が進行し、 さらにモル比 (Si02/(A20+B)) を高 く調整することが可能である。 陽イオン交換樹脂との接触は、 たとえば 200〜 1000cm3のカラム塔中に、 240〜530cm3の陽イオン交換樹脂を充填し、 水洗後 pH5.0〜6- 0、流速 4〜25ml/ /秒にて珪酸アル力リ水溶液を通過させることによ り行われる。 光触媒性化合物 (2)
本発明で用いられる光触媒性化合物は、それ自体が光触媒作用を有する化合 物であっても、また所用の行程を経ることで光触媒に転換しうる光触媒前駆体 であってもよい。
本発明において使用しうる光触媒としては、 T i 02、 Z n 0、 S r T i 03、 Cd S、 C dO、 I nP、 I n203、 B a T i 03、 K2N b 03, F e203、 T a 205ゝ W03、 B i 203、 N i 0、 C u20、 S i 02、 Mo S2、 Mo S3、 I n P b、 Ru02、 C e02ゝ Ga P、 Z r 02、 S n 02、 V205、 KT a 03% Nb2 05、 C u 0、 M o 03、 C r 203、 GaAs、 S i、 C d S e、 CdF e03、 R a Rh03などを挙げることができるが、 これらの中でも粉末状又はゾル状 のアナターゼ型酸化チタン T i o2 が好ましい。
このような光触媒の粒子径は、好ましくは 1〜 20 n m、特に好ましくは 5 〜 1 5 n mでめる。
前記ゾル状のアナターゼ型酸化チタン、すなわちアナターゼ型酸化チタンゾ ノレは、後述するようなアモルファス型過酸化チタンゾルを 10 o°c以上の温度 で加熱することにより製造できる力 アナターゼ型酸ィヒチタンゾルの性状は加 熱温度と加熱時間とにより多少変化し、例えば 1 0 0 °Cで 6時間処理により生 成するアナターゼ型の酸化チタンゾルは、 p H 7 . 5〜9 . 5、 粒子径 8〜2 O n mであり、 その外観は黄色懸濁の液体である。 このアナターゼ型酸化チタ ンゾルは、 常温で長期間保存しても安定であるが、酸や金属水溶液等と混合す ると沈殿が生じることがあり、 また、 N aイオンが多量に存在すると光触媒活 性や耐酸性が損なわれる場合がある。
好適な光触媒としては、 上記のアナターゼ型酸化チタンゾルの他、粉末状の 二酸化チタンとして、 例えば市販の 「S T— 0 1』 (石原産業株式会ネ: hS) や 「S T— 3 1」 (石原産業株式会社製) をも使用しうる。 この場合、 バインダ 一としては、 光触媒作用により劣化を受けないもので、 かつ、 光触媒機能を低 下させないものであればどのようなものでも使用できるが、常温での優れた接 着性を有する後記アモルファス型過酸ィヒチタンゾルを用いることが望ましい。 本発明の光触媒性コーティング剤組成物においては、 上記光触媒性化合物 ( 2 ) は、 珪酸アル力リ水溶液 ( 1 ) の固形分 1 0 0重量部に対して、 好まし くは 9 5〜9 5 0 0重量部、 さらに好ましくは 9 5〜4 0 0 0重量部の割合で 用いられる。
造膜助剤 ( 3 )
造膜助剤 (3 ) は、 本発明の光触媒性コーティング剤組成物の塗布性、 塗膜 密着性を改善するために必要に応じて用いられる。 このような造膜助剤として は、前記した光触媒の前駆体としても作用しうるアモルファス型チタン酸化物、 たとえばアモルファス型の過酸化チタン T i 03やアモルファス型酸化チタ ン T i o2 を用いることができる。 アモルファス型の過酸化チタンゃァモルフ ァス型酸化チタンには、 アナターゼ型酸化チタン T i 02やルチル型酸化チタ ン T i .02 と異なり、 光触媒機能は実質上殆どない。 アモルファス型過酸化チタンとして、特に好ましいアモルファス型過酸化チ タンゾルは、例えば次のようにして製造することができる。 四塩化チタン T i C 1 4 のようなチタン塩水溶液に、 アンモニア水ないし水酸化ナトリウムのよ うな水酸ィヒアルカリを加える。 生じる淡青味白色、 無定形の水酸化チタン T i (OH) 4はオルトチタン酸 H4T i 04とも呼ばれ、 この水酸ィ匕チタンを洗浄 . 分離後、過酸化水素水で処理すると、 本発明のアモルファス形態の過酸化チタ ン液が得られる。 このアモルファス型過酸化チタンゾルは、 p H 6 . 0〜7 . 0、 粒子径 8〜 2 0 n mであり、 その外観は黄色透明の液体であり、 常温で長 期間保存しても安定である。 また、 ゾル濃度は通常 1 . 4 0〜1 . 6 0 %に調 整されているが、必要に応じてその濃度を調整することができ、低濃度で使用 する場合は、 蒸留水等で希釈して使用する。
また、 このアモルファス型過酸化チタンゾルは、 常温ではアモルファスの状 態で未だアナターゼ型酸化チタンには結晶化しておらず、密着性に優れ、成膜 性が高く、 均一でフラットな薄膜を作成することができ、 かつ、 乾燥被膜は水 に溶けないという性質の他に、光触媒に対して安定であるという特性を有して いる。 なお、 アモルファス型の過酸化チタンのゾルを 1 0 o °c以上で加熱する と、 アナターゼ型酸化チタンゾルに変ィ匕し始め、 アモルファス型過酸化チタン ゾルを基体にコーティング後乾燥固定したものは、 2 5 0 T以上の加熱により アナターゼ型酸化チタンになる。
本発明において用いられるアモルファス型酸化チタンとしては微粉末状の ものやこの微粉末状のものを水やアルコール等の溶媒に懸濁分散させたゾル 状のものが知られている。 この光触媒機能を有さないアモルファス型酸化チタ ンの内、微粉末状のものを用いる場合には、 熱硬化水溶性樹脂などのバインダ 一と混合してコーティングすることになる。
さらに本発明では、 造膜助剤 (3 ) として、 前記アモルファス型酸化チタン の他にも、 たとえば、 陰イオン性界面活性剤や、 変性シリコーン系界面活个生剤 を用いることもできる。 また、 これらの造膜助剤は、 2種以上を組み合わせて 用いることもできる。
本発明の光触媒性コーティング剤組成物においては、上記造膜助剤( 3 )は、 珪酸アル力リ水溶液 ( 1 ) の固形分 100重量部に対して、 好ましくは 95〜 9500重量部、 さらに好ましくは 95〜4000重量部の割合で用いられる。 その他の成分
本発明の光触媒 1生コーティング剤組成物においては、 上記各成分に加えて、 必要に応じ、 コロイダルシリカ等の二酸化珪素の他、 シリコーン、 オルガノポ リシロキサン等のシロキサン類化合物、 水ガラス等を添加してもよい。
また、 光触媒反応を促進補完するものとして、 その製造過程で、 光触媒機能 補助添加金属 (P t, Ag, Rh, Ru, Nb, C u, Sn, N i, P d, O s, I r , Z n, C d, F e, S e, Y, など) を添加しておくこともでき る。 また、 成形前に、 光触媒と共に、 自発型紫外線放射剤又は蓄光型紫外線放 射剤の粒子あるいはこれらの放射剤を混入した粒子を混合しておくこともで さる。
さらに本発明の光触媒性コーティング剤組成物には、アモルファス型酸化チ タンとケィ素酸化物とともに、紫外線遮断機能や静電気放電防止機能を有する 誘電体セラミックス材料や導電性セラミックス材料を、必要に応じて含有せし めることができる。
これらの成分は、本発明の目的を損なわない範囲で任意的に用いられるもの であり、 その使用量は、 成分の性質、 使用目的により様々であるが、 一般的に は、 珪酸アルカリ水溶液 (1) の固形分 100重量部に対して、 好ましくは 9 5〜9500重量部、 さらに好ましくは 95〜4000重量部の割合で用いら れる。 光触媒性コーティング剤且成物
本発明の光触媒性コーティング剤組成物は、 上記成分 (1 ) および (2 )、 ならびに必要に応じ成分 (3 )、 その他の成分をミキサー中で混合することに より得られる。なお、混合に際しては、水などの希釈剤を用いることもできる。 希釈剤を用いることで塗布性を向上できる場合がある。 得られる光触媒性コーティング剤組成物は、上記成分の配合割合にもよるが、 好ましくは以下のような組成を有する。
すなわち、 光触媒性コーティング剤組成物は、 好ましくは、
ケィ素を酸化物換算濃度 (S i 02濃度) で、 0 . 0 5〜3重量%、 さらに 好ましくは 0 . 1〜3重量%、 いっそう好ましくは 1〜3重量%、 特に好まし くは 2〜3重量%、
光触媒性化合物を 0 . 1〜3重量%、 さらに好ましくは 0 - 5〜3重量%、 いっそう好ましくは 1〜3重量%、 特に好ましくは 1 . 5〜 3重量%で含み、 また
ケィ素とアル力リのモル比 (Si02/ (A20+B) (A:アル力リ金属、 B:NH3) は 4〜 3 0、 好ましくは 1 5〜 3 0、 いっそう好ましくは 2 0〜 3 0、特に好ましく は 2 5〜 3 0程度である。
さらに、 光触媒性化合物として酸ィ匕チタンを用いた場合、 Ti02/Si02モル比 は、 0 . 7〜7 0、 好ましくは 3〜7 0程度である。
また、 造膜助剤 ( 3 ) の含有量は、 好ましくは 0 . 0 0 5〜 2重量%、 さら に好ましくは 0 . 0 1〜 2重量%程度である。
残部は、 希釈剤であり、 通常は水である。 また、 本発明の光触媒性コーティング剤組成物は、塗布作業前に必要応じて 適宜に希釈して用いてもよい。
このような本発明に係る光触媒性コーティング剤組成物は、 セラミックス、 ガラスなどの無機材質、 有機高分子樹脂、 ゴム、 木、 紙などの有機材質、 並び にアルミニウム、 鋼などの金属材質などの各種の基体に用いることができる。 また、その大きさや形には制限されず板状、針状、ハニカム状、ファイバー状、 濾過シート状、 ビーズ状、 発砲状やそれらが集積したものでもよい。
本発明の光触媒性コーティング剤組成物のコーティング方法としては、スプ レーコート、ディッビング、 スピンコートなどの工法で薄膜を作る方法が挙げ られる。 また、 コーティング薄膜 (層) の厚みとしては、 親水性付与という目 的が達成しうる厚みやバインダ一等の造膜性能により決定される力 一般的に は 0 . 1〜 3 m、 好ましくは 1〜 3 μ m程度である。
本発明の光触媒性コーティング剤組成物は、 ショウケースガラス、 浴室鏡、 眼鏡レンズ、 自動車のウィンドウガラスやボディーの曇り防止、 注射 fl "の体内 注入時の刺激痛軽減、 窓ガラス、 天窓の結露防止、 浴室とュニットパスとの間 や外壁と窓枠との間やタイルとタイルとの間等のシリコン系シーリング材ゃ 油性コーキング材等建材の汚れ防止などに用いることができる。 また、 光触媒 を含むので、 ガラスやタイル等の無機材からなる基体表面に付着した塵、 油、 垢等の汚染有機物が光触媒作用によつて分解されるので、外装建築材等に用レヽ ることができる。
発明の効果
上記したような本発明によれば、 屈折率、 塗膜密度、 親水性の調整が可能で あり、塗膜強度の向上および膜の密着性を向上しうる光触媒性コーティング剤 組成物が提供される。 実施例
以下、本発明の実施例を示すが、本発明はこれらの実施例に限られるもので なレ、。
用いた電気透析装置および逆浸透装置の仕様はともに以下のとおり。
電気透析装置 ((株) トクャマ製)
陰イオン交換膜 (10枚) : AHA (商品名)、 (株) トクャマ製
陽イオン交換膜 (1 2枚) : CMB (商品名)、 (株) トクャマ製
電極材料: N i板
電極間距離 : 26. 2mm
陰イオン交換膜と陽イオン交換膜との距離: 0 7 mm
イオン交換膜の面積: 2 dm2/枚
逆浸透装置 (東レエンジニアリング製)
逆浸透膜: ミニスパイラル膜 (耐アル力リ性合成複合膜:分画分子量 200、 膜 面積 1.6m2、 2.OX4OL)
高圧循環ポンプ (SUS316L/NBR)
常用: 5〜12.5LZ分、 40kgf /cm2
耐圧: 10 L//分、 70kgf/cm2
スパイラルべッセル: φ 2.0 X 40 L用、 FRP耐圧 70kgf/cm2
アキュムレータ:プラダ式、 100cc、 最高使用圧 70kgfん m2 製造例 1
原料として用いた珪酸アル力リ水溶液の比重、組成は以下のとおりであった。 比重 (15°C) : 1.404
S i 0。 (%) : 28. 12 N a2 O (%) : 9. 21
Si02/Na20 (モノレ比) : 3. 15
これをさらに水で稀釈し、 珪酸濃度 (S i 02換算) 6重量%の珪酸アル力 リ水溶液を得た。
かくして得られた原料珪酸アル力リ水溶液を、上記の t«の電気透析装置の 脱塩室に供給し、 濃縮室には希薄苛性ソ一ダ溶液を供給した。
定電圧運転にて 0.6 V/対(スタック電圧 6 V/10対) で電極室を含めた槽電 圧 9〜10Vで電気透析を開始したところ、 初期伝導度は 2 AmSZcmであつ た。電気透析を開始後、伝導度が 4.5 mS /cm未満に低下するまで運転した。 伝導度が 4. 5mQ/cm未満に低下するまでの平均透析時間は、 80分であつ た。 脱塩室から得られた脱アルカリ溶液は、 シリカ含量 (S i 02) が 6. 4 重量%、 アルカリ含量 (Na20) が 0. 35重量%であった。
脱塩室から得られた脱アルカリ溶液を、 30〜40°Cに温度制御し、逆浸透装置 の濃縮タンクに供給し、 入口流量 10 L Z分、 平均圧力 3.0M P a、 フラック ス (30°C) 35〜28kg/m2hrで濃縮し、 以下のような組成および特性の高モル珪 酸ソーダ水溶液を得た。
(A) モル比 (Si02/Na20) : 14.8
(B) S i 02濃度: 16.3重量%
(C) ゼータ電位: -58.6MV
(D) 29Si- NMRスペク トルを図 2に示す。
比較のため、同一条件下で測定された下記水ガラスおょぴコロイダルシリカ の 29Si- NMRスぺクトルを合わせて図 2に示す。
水ガラス:希釈 3号珪酸ソーダ (東曹産業株式会社製)
比重 ( 15 °C) : 1.064
S i 02 (%) : 5. 80 N a 2 O (%) : 1. 90
Si02/Na20 (モノレ比) : 3. 1 5
ゼータ電位 : -27.5MV
コロイダルシリ力 :デュポン社製 S M
比重 (1 5°C) : 1.216
S i 02 (%) : 30
N a 2 O (%) : 0. 56
Si02/Na20 (モル比) : 5 5. 2 6
ゼータ電位 :― 34.0M V
本発明の珪酸ソーダ水溶液の 29Si-NMRスぺクトルにおけるケミカルシフト — 100〜一 120ppmにおけるピーク面積は、水ガラスのピーク面積に対して 2.28 倍であり、 コロイダルシリ力 (デュポン社製 S M) に対して 1.27倍であった。
(E) 波長 1000〜200nmの透過率: 95〜100%
紫外可視吸光光度分析の結果を図 3に示す。 比較のため、 同一条件下で測定 されたコロイダルシリカ (デュポン社製 SM) および下記コロイダルシリカの 紫外可視吸光光度分析の結果を合わせて図 3に示す。
コロイダルシリ力 :デュポン社製 HS-40
比重 (1 5°C) : 1.305
S i 02 (%) : 40
Na2 O (%) : 0. 41
Si02/Na20 (モル比) : 1 00. 68
ゼータ電位 : -36.7MV
( F ) 電気伝導度: 7.5m S m
なお、 各物性値の測定法、 測定装置等は以下のとおりである。
(A) モル比 (Si02/Na20): JIS K1408により Si02、 Na20を分析し、算出した。 ( B ) S i〇2濃度: JIS K1408により Si02を分析した。
( C ) ゼータ電位:ベックマン · コールター社製 DELSA 4403Xを用い、 電気 泳動光散乱法により測定した。
(D) 29Si- NMR測定: 日本電子製 ALPHA- 500型 (500腿 z) を用いた。
( E ) 透過率: 日本分光製 UV-550型を用いた。
( F ) 電気伝導度:堀場製作所製 ES-12型を用いた。 実施例 1
上記製造例 1で調製した珪酸ソーダ水溶液 1 0 0重量部 (固形分基準) に対 して、 表 1に記載の各成分を混合し、 光触媒性コーティング剤組成物を得た。 得られたコーティング剤組成物を、 50 X 200 mmのガラス基体 ((株) 相互理 化学硝子製作所製 TLCガラスプレート) にディッビングにて付着させ被膜付 ガラス基体を作成した。
被膜の塗膜強度、 親水性、 剥離強度を以下のようにして評価した。
塗膜強度: JIS K 5400に記載のェンピッ引かき値の中の手かき法
親水性:被膜付ガラス基体を暗所に 2 4時間以上放置後、暗室で被膜と純水と の接触角を測定した。
剥離強度:被膜に、 力ッターナイフにより I X l mraの 1 0 0値の碁盤目を入 れ、セロハン粘着テープを貼付後、剥離し、剥離した被膜の升目数を確認した。 また、 コーディング剤組成物溶液を 2 5 °Cの暗所で 6ヶ月間貯蔵した後、溶 液の外観変化を目視にて確認し、さらに貯蔵後の溶液を用レヽて上記と同様にし て被膜を作成し、 コーティング剤組成物の貯蔵安定性を評価した。 なお、被 膜の外観は、 貯蔵試験前の組成物溶液で作成したサンプルとの比較を示す。 結果を表 1に示す。 比較例 1
珪酸ソーダ水溶液に代えて、 コロイダルシリカ (デュポン社製 HS— 40) を 用いた以外は、 実施例 1と同様の操作を行った。 結果を表 1に示す。 比較例 2
珪酸ソーダ水溶液に変えて、 水ガラス (希釈 3号珪酸ソーダ (東曹産業株式 会社製)) を用いた以外は、 実施例 1と同様の操作を行った。 結果を表 1に示 す。 比較例 3
珪酸ソーダ水溶液を用いなかった以外は、 実施例 1と同様の操作を行った。 結果を表 1に示す。
配合 (重暈咅 P) 貯蔵安定性 塗膜の評価
コロイ 光触媒成 造膜
水ガラ J醜
珪酸アル 分 ナタ ァモルフ
ダル ス 変性シリ
力リ水溶 ゼ型酸 ァス型酸 コーン系
シリカ (固形 一ア
液 (固形 化チタン 化チタン 界面活性 塗膜強度 親水性 剥離強度 溶液外観
(固形 分換
分換算) (固形分 (固形分 剤
分換算) 算)
換算) 換算) (液状)
実施例 100 4000 1500 200 194200 4H 15° 剥離なし 異常なし
1 変化なし 比較例 100 4000 1500 200 194200 3H 32° 剥離なし 塗布作業 凝集沈殿
X 不能 比較例 100 4000 1500 200 194200 2H 45° 剥離なし 塗布作業
2 凝集沈殿
不能 比較例 4000 1500 200 194200 2H 43° 2力所
3 変化なし 異常なし 剥離

Claims

請求の範囲
1. ( 1 ) (A) ケィ秦とアル力リのモル比(SiOノ (A20+B) (A:アル力リ金属、 B:NH3)が 4〜30であり、
(B) ケィ素の酸化物換算濃度 (S i 02濃度) が 6.8〜30重量%であ る珪酸アルカリ水溶液と、
(2)光触媒性ィ匕合物とからなることを特徴とする光触媒性コーティング剤糸且 成物。 2. 前記珪酸アルカリ水溶液 (1) : 1 00重量部 (固形分) と、 前記光触 媒性化合物 (2) : 9 5〜9 500重量部からなることを特徴とする請求項 1 に記載の光触媒性コーティング剤組成物。
3. 前記光触媒性化合物 (2) がアナターゼ型酸化チタンであることを特徴 とする請求項 1または 2に記載の光触媒性コーティング剤組成物。
4. さらに造膜助剤 ( 3 ) を含むことを特徴とする請求項 1〜 3の何れかに 記載の光触媒性コーティング剤組成物。
5. 前記珪酸アルカリ水溶液 (1) : 1 00重量部 (固形分) と、 前記光触 媒性化合物 (2) : 95〜9500重量部と、 造膜助斉 U (3) : 95〜9 500 重量部とからなることを特徴とする請求項 4に記載の光触媒性コーテイング 剤組成物。
6. 前記珪酸アルカリ水溶液 (1) のゼータ電位 (C) がー 40ΜΥ· ~— 80 MVであることを特徴とする請求項 1〜 5の何れかに記載の光触媒性コーテ ィング剤組成物。
7 . 前記珪酸アル力リ水溶液 ( 1 ) の 29Si-匪 R測定時に、 ケミカルシフト一 ) 100〜一 120ppmにおけるピーク面積 (D) 力 同一条件下で29 Si-画 R測定した 水ガラスのケミカルシフトー 100 120ppmにおけるピーク面積の 1. 35倍以 上であり、かつ同一条件下で 29Si- NMR測定したコ口ィダルシリカのケミカルシ フト一100 120ppmにおけるピーク面積の 1. 20倍以上であることを特徴と する請求項 1〜 6の何れかに記載の光触媒性コーティング剤組成物。
8 . 前記珪酸アルカリ水溶液 (1 ) の吸光光度法における波長領域 1000〜 200nmでの透過率 (E ) 力 S 90〜100%であることを特徴とする請求項 1〜 7の 何れかに記載の光触媒性コーティング剤組成物。
9 . 前記珪酸アルカリ水溶液 ( 1 ) の電気伝導度 (F ) が 2.;!〜 30m S /cm であることを特徴とする請求項 1〜 8の何れかに記載の光触媒性コーティン グ剤組成物。
1 0 . 基体表面にコーティングすることで、 親水性、 塗膜強度、 密着性、 屈 折率に優れた膜を形成しうる請求項 1〜 9の何れかに記載の光触媒性コーテ イング剤組成物。
PCT/JP2002/003536 2001-04-17 2002-04-09 Composition de matiere de revetement ayant une activite photocatalytique WO2002085990A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/474,938 US7297206B2 (en) 2001-04-17 2002-04-09 Coating material composition having photocatalytic activity
EP02714559A EP1394224A1 (en) 2001-04-17 2002-04-09 Coating material composition having photocatalytic activity
KR1020037013402A KR100609393B1 (ko) 2001-04-17 2002-04-09 광촉매성 코팅제 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001118484 2001-04-17
JP2001-118484 2001-04-17

Publications (1)

Publication Number Publication Date
WO2002085990A1 true WO2002085990A1 (fr) 2002-10-31

Family

ID=18968866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003536 WO2002085990A1 (fr) 2001-04-17 2002-04-09 Composition de matiere de revetement ayant une activite photocatalytique

Country Status (5)

Country Link
US (1) US7297206B2 (ja)
EP (1) EP1394224A1 (ja)
KR (1) KR100609393B1 (ja)
TW (1) TWI270567B (ja)
WO (1) WO2002085990A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1559753A3 (en) * 2004-01-22 2005-09-07 Ezio Barucco Antibacterial potassium-silicate-based paint containing titanium dioxide in anatase form.

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE365700T1 (de) * 2002-09-25 2007-07-15 Koninkl Philips Electronics Nv Verfahren zur herstellung von lösungen zur verwendung als beschichtung in photokatalytischen und transparenten filmen
KR20060034098A (ko) * 2004-10-18 2006-04-21 삼성전자주식회사 광주사장치 및 이를 채용한 화상형성장치
US8637980B1 (en) 2007-12-18 2014-01-28 Rockwell Collins, Inc. Adhesive applications using alkali silicate glass for electronics
US8166645B2 (en) * 2006-08-23 2012-05-01 Rockwell Collins, Inc. Method for providing near-hermetically coated, thermally protected integrated circuit assemblies
US8581108B1 (en) 2006-08-23 2013-11-12 Rockwell Collins, Inc. Method for providing near-hermetically coated integrated circuit assemblies
US8076185B1 (en) 2006-08-23 2011-12-13 Rockwell Collins, Inc. Integrated circuit protection and ruggedization coatings and methods
US8617913B2 (en) 2006-08-23 2013-12-31 Rockwell Collins, Inc. Alkali silicate glass based coating and method for applying
US8174830B2 (en) 2008-05-06 2012-05-08 Rockwell Collins, Inc. System and method for a substrate with internal pumped liquid metal for thermal spreading and cooling
US8084855B2 (en) 2006-08-23 2011-12-27 Rockwell Collins, Inc. Integrated circuit tampering protection and reverse engineering prevention coatings and methods
US7915527B1 (en) 2006-08-23 2011-03-29 Rockwell Collins, Inc. Hermetic seal and hermetic connector reinforcement and repair with low temperature glass coatings
US8363189B2 (en) 2007-12-18 2013-01-29 Rockwell Collins, Inc. Alkali silicate glass for displays
US20090162560A1 (en) * 2007-12-21 2009-06-25 Envont L.L.C. Hybrid vehicle systems
US20090163656A1 (en) * 2007-12-21 2009-06-25 Envont Llc Hybrid vehicle systems
US20090163647A1 (en) * 2007-12-21 2009-06-25 Envont Llc Hybrid metal oxides
US8205337B2 (en) 2008-09-12 2012-06-26 Rockwell Collins, Inc. Fabrication process for a flexible, thin thermal spreader
US8650886B2 (en) 2008-09-12 2014-02-18 Rockwell Collins, Inc. Thermal spreader assembly with flexible liquid cooling loop having rigid tubing sections and flexible tubing sections
US8221089B2 (en) 2008-09-12 2012-07-17 Rockwell Collins, Inc. Thin, solid-state mechanism for pumping electrically conductive liquids in a flexible thermal spreader
US8616266B2 (en) 2008-09-12 2013-12-31 Rockwell Collins, Inc. Mechanically compliant thermal spreader with an embedded cooling loop for containing and circulating electrically-conductive liquid
US8119040B2 (en) * 2008-09-29 2012-02-21 Rockwell Collins, Inc. Glass thick film embedded passive material
US9435915B1 (en) 2012-09-28 2016-09-06 Rockwell Collins, Inc. Antiglare treatment for glass
US8785679B2 (en) 2012-12-10 2014-07-22 Empire Technology Development Llc Hydrophilic biocidal coatings
CN106609063A (zh) * 2015-10-23 2017-05-03 江苏冠军涂料科技集团有限公司 一种新型的纳米SiO2改性内墙功能涂料
KR101659755B1 (ko) 2016-01-15 2016-09-26 이엔에프씨 주식회사 산소반응 촉매조성물 및 그 제조방법
KR101686014B1 (ko) * 2016-02-16 2016-12-13 주식회사 오일시티 산소반응 촉매조성물 및 그 제조방법
KR20240092322A (ko) 2022-12-14 2024-06-24 (주) 유니플라텍 가시광 감응형 광촉매 조성물 및 이를 포함하는 가시광 감응형 광촉매 필름

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237353A (ja) * 1997-02-24 1998-09-08 Tao:Kk 親水性コーティング剤及び表面親水性基体
JP2000044807A (ja) * 1998-05-25 2000-02-15 Chuo Rika Kogyo Corp 樹脂組成物及びその製造方法並びに塗装物
JP2000044224A (ja) * 1998-07-31 2000-02-15 Touso Sangyo Kk 珪酸ゾルの製造方法および珪酸ゾルの使用方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1148950A (en) 1966-12-23 1969-04-16 Monsanto Chemicals Production of colloidal compositions
US3721574A (en) * 1968-08-06 1973-03-20 R Schneider Silicate coatings compositions
US3969266A (en) 1971-06-23 1976-07-13 E. I. Du Pont De Nemours And Company Microporous membrane process for making concentrated silica sols
JPS5144138B2 (ja) * 1972-08-21 1976-11-26
US3893864A (en) * 1973-12-20 1975-07-08 Exxon Research Engineering Co Quick-curing water resistant silica-alkali metal coatings and processes therefor
DE4413996C1 (de) * 1994-04-22 1995-07-20 Braas Gmbh Dachpfanne mit einer Silikatbeschichtung
US5916947A (en) * 1994-12-02 1999-06-29 Cape Cod Research, Inc. Zinc oxide photoactive antifoulant material
JPH08318166A (ja) * 1995-05-25 1996-12-03 Agency Of Ind Science & Technol 固定化光触媒及び光触媒の固定化方法
US6569520B1 (en) * 2000-03-21 2003-05-27 3M Innovative Properties Company Photocatalytic composition and method for preventing algae growth on building materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237353A (ja) * 1997-02-24 1998-09-08 Tao:Kk 親水性コーティング剤及び表面親水性基体
JP2000044807A (ja) * 1998-05-25 2000-02-15 Chuo Rika Kogyo Corp 樹脂組成物及びその製造方法並びに塗装物
JP2000044224A (ja) * 1998-07-31 2000-02-15 Touso Sangyo Kk 珪酸ゾルの製造方法および珪酸ゾルの使用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1559753A3 (en) * 2004-01-22 2005-09-07 Ezio Barucco Antibacterial potassium-silicate-based paint containing titanium dioxide in anatase form.

Also Published As

Publication number Publication date
US7297206B2 (en) 2007-11-20
TWI270567B (en) 2007-01-11
EP1394224A1 (en) 2004-03-03
KR20030085108A (ko) 2003-11-01
KR100609393B1 (ko) 2006-08-04
US20040116577A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
WO2002085990A1 (fr) Composition de matiere de revetement ayant une activite photocatalytique
Petronella et al. Nanocomposite materials for photocatalytic degradation of pollutants
US8518174B2 (en) Titania-metal composite and method for preparation thereof, and film forming method using dispersion comprising the composite
KR101797447B1 (ko) 안정한 나노 티타니아 졸 및 이의 제조 방법
JP4335446B2 (ja) 酸化チタンゾル、薄膜およびそれらの製造法
JP5761346B2 (ja) 無機親水性コート液、それから得られる親水性被膜及びこれを用いた部材
JP4507066B2 (ja) 酸化タングステン含有酸化チタンゾル及びその製造方法並びにコーティング剤及び光機能体
WO2001023483A1 (en) Photocatalytic coating composition and product having thin photocatalytic film
JP5146683B2 (ja) 変性された酸化ジルコニウム−酸化第二スズ複合体ゾルの製造方法
JP4256618B2 (ja) 光触媒性コーティング剤組成物
JP2004337740A (ja) 光触媒体
JP3238349B2 (ja) 親水性、光触媒性および透光性に優れた酸化チタンセラミック塗料およびその製造方法
JP3251167B2 (ja) 酸化チタン系セラミック塗料およびその製造方法
KR100570482B1 (ko) 무기막 형성용 도포제 및 이 도포제를 사용한 무기막 형성방법
WO2002074688A1 (fr) Solution aqueuse active de silicate alcalin presentant un rapport molaire eleve et son procede de production et d'utilisation
JP5025856B2 (ja) 表面強化材
JP4869578B2 (ja) 滑雪用塗膜形成コーティング組成物、滑雪用塗膜および滑雪用部材
Ryabkova et al. Properties of poly (titanium oxide)-containing polymeric materials exhibiting UV-induced superhydrophilicity under simulated climate test conditions
KR100444126B1 (ko) 안티파울링 특성이 우수한 역삼투 분리막 및 그 제조방법
JP2004155608A (ja) 酸化チタン膜形成用液体、酸化チタン膜の形成法、酸化チタン膜及び光触媒性部材
JP5434776B2 (ja) 光触媒塗工液及び塗膜
JP7424867B2 (ja) 珪酸塩系水溶液
JP4348679B2 (ja) 光触媒担持用塗料及びそれを用いた光触媒体
Worsley et al. Future Tuning Optoelectronic Oxides from the Inside: Sol‐Gel (TiO2) x‐(SiO2) 100‐x
JP2007330953A (ja) 酸化チタン超微粒子分散塗料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020037013402

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10474938

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002714559

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002714559

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002714559

Country of ref document: EP