WO2002084680A1 - Procede pour definir des magnetisations de reference dans des systemes de couches - Google Patents

Procede pour definir des magnetisations de reference dans des systemes de couches Download PDF

Info

Publication number
WO2002084680A1
WO2002084680A1 PCT/DE2002/001302 DE0201302W WO02084680A1 WO 2002084680 A1 WO2002084680 A1 WO 2002084680A1 DE 0201302 W DE0201302 W DE 0201302W WO 02084680 A1 WO02084680 A1 WO 02084680A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hard
resistor
magnetic field
cooled
Prior art date
Application number
PCT/DE2002/001302
Other languages
German (de)
English (en)
Inventor
Oliver De Haas
Rudolf Schäfer
Claus Schneider
Original Assignee
Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. filed Critical Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V.
Priority to EP02761865A priority Critical patent/EP1377993A1/fr
Priority to US10/473,593 priority patent/US7060509B2/en
Priority to JP2002581537A priority patent/JP2004523928A/ja
Publication of WO2002084680A1 publication Critical patent/WO2002084680A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3218Exchange coupling of magnetic films via an antiferromagnetic interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • H01F41/304Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation using temporary decoupling, e.g. involving blocking, Néel or Curie temperature transitions by heat treatment in presence/absence of a magnetic field

Definitions

  • the invention relates to the field of materials technology and relates to a method for defining reference magnetizations, which is used, for example, in components in magnetic sensors or spin electronics, such as e.g. could be used in GMR sensors or MRAM memory cells.
  • armature layer can consist of a hard magnet, a natural or artificial antiferromagnet.
  • the magnetization direction of the ferromagnetic layer is spatially fixed by the exchange coupling between the ferromagnet and the armature layer.
  • This anchor layer itself must also be magnetically aligned. Depending on the material properties of the anchor layer, the following methods have been used to date:
  • the object of the present invention is to provide a method for determining reference magnetizations in layer systems, the reference directions in terms of number and spatial direction being arbitrary.
  • At least one hard and / or soft magnetic layer is produced by geometrically structuring a hard and / or soft magnetic layer and before or during or after a one- or multi-stage heat treatment and / or soft magnetic layer is brought into direct contact with at least one antiferromagnetic layer.
  • the heat treatment is carried out with an increase in temperature at least up to above the coupling temperature.
  • the layer system is then cooled.
  • the layer system is advantageously cooled without applying a magnetic field, so that the demagnetized state or the remanent state is impressed as reference magnetization without being disturbed.
  • the layers are advantageously produced with lateral dimensions in the micro and nanometer range and layer thicknesses in the nanometer range.
  • a hard and / or soft magnetic layer is initially structured geometrically. This can be done using methods known from microelectronics, such as, for example, lithographic methods. This geometric structuring determines the shape, number and arrangement of these geometric elements in relation to one another. This process step has a significant influence on the direction of magnetization of the hard and / or soft magnetic layer, since the choice of the geometric shape according to the principle found by van den Berg determines the direction of magnetization within the respective shape. Domains form within a shape, the magnetization of which is aligned parallel to the nearest edge. Alternatively, the stray field interaction of neighboring elements can be used to form desired domain patterns.
  • any number of reference directions and any number of different reference directions can thus be produced in one layer system by number, shape and / or arrangement with respect to one another.
  • the heating above the coupling temperature means that the magnetization configurations can be set in the hard and / or soft magnetic layer that is free due to the temperature increase in accordance with the domain elements.
  • the antiferromagnetic layer takes over the magnetization configuration of the hard and / or soft magnetic layer.
  • the layer system thus has a uniform magnetization configuration.
  • the hard and / or soft magnetic layer it is also possible for the hard and / or soft magnetic layer to be subjected to the heat treatment alone and to be applied to an antiferromagnetic layer only during or after cooling.
  • the antiferromagnetic layer takes over the magnetization configuration of the hard and / or soft magnetic layer.
  • the hard and / or soft magnetic layer is applied or can only be applied after the production of the antiferromagnetic layer, its structuring can take place, for example, by means of an interchangeable mask process or lithographically controlled ion etching.
  • the magnetization of the antiferromagnet is not determined by an applied magnetic field, but by the magnetization of the exchange-coupled ferromagnetic layer.
  • a magnetic field during the heat treatment can favor the setting of the pattern as described by van den Berg.
  • a sufficiently strong DC magnetic field can specifically cause remanent magnetization states.
  • Another advantage of the method according to the invention is that the domain patterns of the hard and / or soft magnetic layer are retained even at higher temperatures and thus the method with the Temperature treatment for generating an antiferromagnetic state, such as PtMn and similar substances, is compatible.
  • the reference magnetizations established by the method according to the invention can be regenerated (self-healing). This can only be achieved by reheating the layer composite above the coupling temperature. Destroyed magnetizations above the coupling temperature are thus reset and can serve as reference magnetizations again after cooling.
  • the method according to the invention can be used well in the miniaturization of magnetoelectronic components, since it can be used over a wide scaling range.
  • a reliable determination of the reference magnetization can be achieved in particular in the submicron range.
  • FIG. 1 shows a typical magnetization configuration of a ferromagnetic layer and an antiferromagnetic layer a) before a heat treatment b) at T> TB, with a TB coupling temperature c) after a heat treatment
  • Fig. 2 is a nuclear microscope image of 4 ellipsoidally structured
  • perpendicular reference magnetizations are required.
  • a 10 nm thick FeMn layer is first deposited on silicon as an anchor layer and then a 100 nm thick ferromagnetic Ni ⁇ iFeig layer is deposited.
  • squares with an edge length of 24 ⁇ m are structured.
  • the ferromagnetic layer must be completely removed outside the structure.
  • the heat treatment takes place at 200 ° C.
  • the sample is demagnetized in a decaying magnetic field with a maximum amplitude of 1 kA / cm and then cooled to room temperature without the influence of a magnetic field.
  • the layer system now shows a stable magnetization configuration as shown in Fig. 1.
  • Magnetoresistive magnetic field sensors are advantageously implemented in a Wheatson bridge circuit.
  • reference magnetizations that are antiparallel to each other are required.
  • a double layer consisting of 10 nm FeMn and 100 nm Ni 8 ⁇ Fei 9 is dusted on a silicon substrate.
  • a homogeneous magnetic field with a strength of 240 A / cm is present during the layer deposition.
  • 4 elements of an ellipse-like shape with the lateral dimensions of 100 ⁇ m x 20 ⁇ m are structured. The elements are aligned parallel to each other and to the field direction during the layer deposition and are next to each other with a distance of 30 ⁇ m.
  • the heat treatment takes place at 200 ° C.
  • the sample is demagnetized in a decaying field of maximum amplitude of 1 kA / cm, which is aligned diagonally to the element axis and then cooled to room temperature without the influence of a magnetic field.
  • the layer system now shows a stable magnetization configuration, as shown in Fig. 2.

Abstract

L'invention se rapporte au domaine de la technique des matériaux et concerne un procédé pour définir des magnétisations de référence, ce procédé pouvant trouver par exemple des applications dans les composants de capteurs magnétiques. L'objectif de l'invention est de mettre au point un procédé pour définir des magnétisations de référence dans des systèmes de couches, les directions de référence pouvant être choisies arbitrairement du point de vue du nombre et de la direction dans l'espace. A cet effet, on fait appel à un procédé pour définir des magnétisations de référence dans des systèmes de couches selon lequel au moins un système de couches est produit par structuration géométrique d'une couche magnétique dure et/ou douce et par application de cette couche magnétique dure et/ou douce sur au moins une couche antiferromagnétique avant, pendant ou après un traitement thermique à une ou plusieurs étapes, la température étant augmentée au moins jusqu'à une température supérieure à la température de liaison et le système de couches étant ensuite refroidi.
PCT/DE2002/001302 2001-04-12 2002-04-05 Procede pour definir des magnetisations de reference dans des systemes de couches WO2002084680A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02761865A EP1377993A1 (fr) 2001-04-12 2002-04-05 Procede pour definir des magnetisations de reference dans des systemes de couches
US10/473,593 US7060509B2 (en) 2001-04-12 2002-04-05 Method for defining reference magnetizations in layer systems
JP2002581537A JP2004523928A (ja) 2001-04-12 2002-04-05 層系における参照磁化を確定するための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10119381.5 2001-04-12
DE10119381 2001-04-12

Publications (1)

Publication Number Publication Date
WO2002084680A1 true WO2002084680A1 (fr) 2002-10-24

Family

ID=7682096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/001302 WO2002084680A1 (fr) 2001-04-12 2002-04-05 Procede pour definir des magnetisations de reference dans des systemes de couches

Country Status (4)

Country Link
EP (1) EP1377993A1 (fr)
JP (1) JP2004523928A (fr)
DE (1) DE10215506A1 (fr)
WO (1) WO2002084680A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9529060B2 (en) 2014-01-09 2016-12-27 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US9812637B2 (en) 2015-06-05 2017-11-07 Allegro Microsystems, Llc Spin valve magnetoresistance element with improved response to magnetic fields
US10620279B2 (en) 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11022661B2 (en) 2017-05-19 2021-06-01 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11719771B1 (en) 2022-06-02 2023-08-08 Allegro Microsystems, Llc Magnetoresistive sensor having seed layer hysteresis suppression

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004032483A1 (de) * 2004-07-05 2006-01-26 Infineon Technologies Ag Verfahren zum Erzeugen einer lokalen Magnetisierung und Bauelement
US7635974B2 (en) * 2007-05-02 2009-12-22 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) based magnetic field angle sensor
DE102007040183A1 (de) * 2007-08-25 2009-03-05 Sensitec Naomi Gmbh Magnetfeldsensor zur Erfassung eines äußeren magnetischen Felds, insbesondere des Erdmagnetfelds, sowie mit solchen Magnetfeldsensoren gebildetes Magnetfeldsensorsystem

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074658A (ja) * 1996-06-28 1998-03-17 Victor Co Of Japan Ltd スピンバルブ磁気抵抗効果素子の製造方法
JPH11273034A (ja) * 1998-03-23 1999-10-08 Tdk Corp 磁気センサ、薄膜磁気ヘッド及び該薄膜磁気ヘッドの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074658A (ja) * 1996-06-28 1998-03-17 Victor Co Of Japan Ltd スピンバルブ磁気抵抗効果素子の製造方法
JPH11273034A (ja) * 1998-03-23 1999-10-08 Tdk Corp 磁気センサ、薄膜磁気ヘッド及び該薄膜磁気ヘッドの製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE INSPEC [online] INSTITUTE OF ELECTRICAL ENGINEERS, STEVENAGE, GB; TSUNODA M ET AL: "Reversible change of direction of the exchange anisotropy of polycrystalline ferromagnetic/antiferromagnetic bilayers by thermal annealing in magnetic field", XP002212605, Database accession no. 7006715 *
JOURNAL OF THE MAGNETICS SOCIETY OF JAPAN, 2001, MAGNETICS SOCIETY OF JAPAN, JAPAN, vol. 25, no. 4, pt.2, pages 827 - 830, ISSN: 0285-0192 *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 08 30 June 1998 (1998-06-30) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 01 31 January 2000 (2000-01-31) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9529060B2 (en) 2014-01-09 2016-12-27 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US9804234B2 (en) 2014-01-09 2017-10-31 Allegro Microsystems, Llc Magnetoresistance element with an improved seed layer to promote an improved response to magnetic fields
US9922673B2 (en) 2014-01-09 2018-03-20 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US10347277B2 (en) 2014-01-09 2019-07-09 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US9812637B2 (en) 2015-06-05 2017-11-07 Allegro Microsystems, Llc Spin valve magnetoresistance element with improved response to magnetic fields
US10620279B2 (en) 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11002807B2 (en) 2017-05-19 2021-05-11 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11022661B2 (en) 2017-05-19 2021-06-01 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11719771B1 (en) 2022-06-02 2023-08-08 Allegro Microsystems, Llc Magnetoresistive sensor having seed layer hysteresis suppression

Also Published As

Publication number Publication date
EP1377993A1 (fr) 2004-01-07
DE10215506A1 (de) 2002-10-24
JP2004523928A (ja) 2004-08-05

Similar Documents

Publication Publication Date Title
DE69130351T3 (de) Verfahren zur Herstellung eines GMR Gegenstandes
DE69534013T2 (de) Magnetfeldfühler und Verfahren zu ihrer Herstellung
DE10028640B4 (de) Wheatstonebrücke, beinhaltend Brückenelemente, bestehend aus einem Spin-Valve-System, sowie ein Verfahren zu deren Herstellung
DE60022616T2 (de) Magnetischer Speicher
DE102015121753B4 (de) Magnetsensorbauelement und Verfahren für ein Magnetsensorbauelement mit einer magnetoresistiven Struktur
DE102006008257B4 (de) Magnetoresistives Mehrschichtensystem vom Spin Valve-Typ mit einer magnetisch weicheren Elektrode aus mehreren Schichten und dessen Verwendung
WO2016078793A1 (fr) Procédé et dispositif de réalisation d'un dispositif de détection de champ magnétique et dispositif de détection de champ magnétique correspondant
DE112010002899T5 (de) Verfahren zur Herstellung eines Magnetowiderstandseffektelements, eines Magnetsensors, einer Drehwinkel-Erfassungsvorrichtung
WO2003017295A1 (fr) Systeme de couches a effet magnetoresistif renforce et son utilisation
DE60203677T2 (de) Verfahren zum Ändern der Schaltfeldeigenschaften von magnetischen Tunnelübergängen
DE10155423B4 (de) Verfahren zur homogenen Magnetisierung eines austauschgekoppelten Schichtsystems eines magneto-resistiven Bauelements, insbesondere eines Sensor-oder Logikelements
WO2000010178A1 (fr) Element magnetoresistif et son utilisation comme element de memoire dans un ensemble de cellules de memoire
WO2002084680A1 (fr) Procede pour definir des magnetisations de reference dans des systemes de couches
DE10117355A1 (de) Verfahren zur Einstellung einer Magnetisierung in einer Schichtanordnung und dessen Verwendung
DE10214159B4 (de) Verfahren zur Herstellung einer Referenzschicht für MRAM-Speicherzellen
EP3918356B1 (fr) Ensemble de structures stratifiées adjacentes pour un capteur de champ magnétique magnétorésistif, capteur de champ magnétique magnétorésistif et procédé pour leur fabrication
EP1527351A1 (fr) Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches
US7060509B2 (en) Method for defining reference magnetizations in layer systems
EP1444709A1 (fr) Procede d'aimantation homogene d'un systeme de couches couplees par echange d'un dispositif de cellules de memoire magnetique numerique
DE10106860A1 (de) MTJ-Element und Magnetspeicher unter Verwendung eines solchen
EP1378950A1 (fr) Méthode pour la définition ou changement local de la magnétisation dans une couche d' une multicouche magnétorésistive,tampon chaud pour le chauffage de la multicouche magnétorésistive et son application
DE10251566A1 (de) Verfahren zur Herstellung einer magnetoresistiven Schichtanordnung oder eines Sensorelementes oder Speicherelementes damit, sowie GMR-Sensorbauelement oder GMR-Speicherbauelement
DE102019107689A1 (de) Schichtstruktur für einen magnetoresistiven Magnetfeldsensor, magnetoresistiver Magnetfeldsensor und Verfahren zu deren Herstellung
AT412039B (de) Verfahren zur zweidimensionalen manipulation kleiner volumina von flüssigkeiten und festkörpern und aktuator zur ausführung des verfahrens
DE102022128167A1 (de) Spin-ventil-bauelement und verfahren zum bilden eines spin-ventil-bauelements

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002761865

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002581537

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10473593

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002761865

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002761865

Country of ref document: EP