WO2002084226A1 - Sensorchip mit potentialflächen bzw. verwendung von potentialflächen auf einem sensorchip bzw. verfahren zur vermeidung von verschmutzungen auf einem sensorchip - Google Patents

Sensorchip mit potentialflächen bzw. verwendung von potentialflächen auf einem sensorchip bzw. verfahren zur vermeidung von verschmutzungen auf einem sensorchip Download PDF

Info

Publication number
WO2002084226A1
WO2002084226A1 PCT/DE2002/001424 DE0201424W WO02084226A1 WO 2002084226 A1 WO2002084226 A1 WO 2002084226A1 DE 0201424 W DE0201424 W DE 0201424W WO 02084226 A1 WO02084226 A1 WO 02084226A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
area
sensor chip
potential
chip according
Prior art date
Application number
PCT/DE2002/001424
Other languages
English (en)
French (fr)
Inventor
Uwe Konzelmann
Torsten Schulz
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2002581933A priority Critical patent/JP2004518987A/ja
Priority to EP02735048A priority patent/EP1281048A1/de
Priority to US10/311,404 priority patent/US6854325B2/en
Publication of WO2002084226A1 publication Critical patent/WO2002084226A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices

Definitions

  • the invention is based on a sensor chip with potential areas or on the use of a potential area on a sensor chip or on a method for avoiding contamination on a sensor chip according to the preamble of claim 1 or 13 or 14 or 15.
  • a sensor chip with a sensor area which, for example, consists of a frame element, a recess and a membrane, which forms a sensor area.
  • Contamination, such as 01, to which the sensor chip is exposed can lead to an undesirable influence on the measurement signal of the sensor chip in the area of the sensor area.
  • Contamination of the sensor area or in the immediate area around the sensor area with 01 changes the arm conductance on the surface of the sensor chip and thus has a falsifying effect on the measurement signal.
  • the 01 deposited on the sensor chip acts as an adhesion promoter for solid particles contained in a flowing medium. These trapped particles further increase the unfavorable influence.
  • US Pat. No. 5,705,745 shows a sensor chip with a membrane on which temperature and heating resistors are arranged, the membrane being surrounded by an arm guide element, which can also have a U-shape.
  • the heat conducting element is not heated, i.e. it has no potential.
  • US Pat. No. 4,888,988 shows a sensor chip with a membrane, a metallic conductor being arranged around the membrane. This conductor is the common neutral conductor of a measuring arrangement on the sensor chip for a measuring method.
  • DE 198 01 484 AI shows a sensor chip with a membrane, electrical conductors being arranged around the membrane, through which an electric current flows. These conductor tracks are temperature sensors that are used for the
  • Measuring method or the measuring process can be used.
  • the sensor chip according to the invention with the potential areas or the use according to the invention of potential areas on a sensor chip or the method according to the invention for avoiding contamination on a sensor chip with the characterizing features of claims 1 or 13 or 14 or 15 has the advantage that contamination of the sensor area of the sensor chip is reduced or prevented in a simple manner.
  • Downstream of the flow of the sensor area are advantageously also potential areas which protect the sensor area, for example in the event of reverse flows.
  • An advantageous potential drop is achieved by a positive potential on a first potential area and a negative potential on a subsequent potential area.
  • the potential areas advantageously have a U-shape, which advantageously encloses the sensor area.
  • the potential areas are advantageously designed as a conductor track, since this is a known and simple manufacturing method.
  • the sensor area is advantageously operated independently of the potential areas, ie the measurement or that The measurement signal that the sensor area provides is not influenced by the operation of the potential area and vice versa.
  • FIG. 2a shows a first
  • FIG. 2b shows a second
  • FIG. 2c shows a third exemplary embodiment of a sensor chip according to the invention.
  • FIG. 1 shows a sensor chip according to the prior art, which is improved according to the invention in accordance with the explanations for Figures 2a to 2c.
  • the manufacturing process and the use of such a sensor chip is described in more detail in DE 196 01 791 AI, the content of which is expressly part of this disclosure.
  • the sensor chip has a frame element 3, which consists, for example, of silicon.
  • the frame element 3 has a recess 5.
  • a dielectric layer 21, for example made of SiO 2 is applied to the frame element.
  • the layer 21 can extend over the entire frame element 3, but also only over a region of the recess 5. This region forms a membrane 33 which partially or completely delimits the recess 5 on one side.
  • At least one, for example three, metal tracks 19 are applied to the side of the membrane 33 facing away from the recess 5.
  • the metal tracks 19 form, for example, electrical heaters and / or measuring resistors and form a sensor region 17 with the membrane 33 Sensor area 17 is preferably covered with a protective layer 23.
  • the protective layer 23 can also extend only over the metal tracks 19.
  • the sensor chip has a surface 27 which is in direct contact with a flowing medium.
  • FIG. 2a shows a first exemplary embodiment of a sensor chip 1 designed according to the invention in a plan view.
  • Metal traces for example forming at least one electrical heating resistor 35 and at least one temperature sensor 37, are arranged on the sensor region 17.
  • the temperature sensor 37 is also an electrical resistor, for example.
  • the metal tracks are arranged in the sensor area 17 and are a prerequisite for a measurement method for determining the at least one parameter, such as the temperature and / or flow rate, of the flowing medium.
  • the sensor area 17 is therefore connected to a known control and regulating circuit, not shown.
  • the sensor region 17 can be formed, for example, by the membrane 33 described above.
  • the sensor chip 1 is arranged in a flowing medium for determining at least one parameter, the flowing medium flowing past or above the sensor chip 1 or the surface 27 in a main flow direction 42.
  • the flowing medium can contain impurities that can lead to contamination of the sensor chip 1. These are, for example, 01 or salts dissolved in water.
  • the main flow direction 42 must be in front of the sensor region 17 a first 44 and a second 47 potential area are arranged.
  • the first potential area 44 has, for example, a positive potential of 1 volt, which comes, for example, from a voltage source that is independent of the control and regulating circuit.
  • the second potential area 47 has no or a negative potential.
  • the potential gradient can have any size and can also be reversed.
  • Electrostatic fields are preferably used. Alternating fields can also be created.
  • FIG. 2b shows a second exemplary embodiment of a sensor chip 1 designed in accordance with the invention.
  • the sensor chip 1 additionally has a third 50 and a fourth 53 potential area in the sensor region 17 in a downstream direction.
  • the first potential area 44 is, for example, at the same potential as the fourth potential area 53 and the second 47 and third 50 potential areas also have, for example the same potential. This also prevents contamination in the sensor region 17 for existing reverse flows, for example due to pulsations, which can take place against the main flow direction 42.
  • the potential areas 44, 47, 50, 53 upstream and downstream of the sensor region 17 do not necessarily have to have the same potential difference.
  • FIG. 2c shows a third exemplary embodiment of a sensor chip 1 designed according to the invention.
  • the potential surfaces 44, 47, 50, 53 form parts of a U shape which at least partially enclose the sensor region 17.
  • the second and third potential areas 47, 50 are thus connected to one another, and the first potential area 44 to the fourth potential area 53, which then form a potential area.
  • the sensor chip 1 is, for example, plate-shaped and has the surface 27, past which the flowing medium flows.
  • the sensor area 17 and the potential areas 44, 47, 50, 53 are arranged together on the surface 27, for example.
  • the potential areas 44, 47, 50, 53 are, for example, designed such that they have a length at least upstream or downstream of the sensor region 17 which is longer than a length 1 of the sensor region 17, perpendicular to the main flow direction 42. As a result, the sensor region 17 is protected from contamination over its entire length 1.
  • the resistors 35, 37 and / or the potential areas 44, 47, 50, 53 are preferably designed as conductor tracks.
  • the potential areas 44, 47, 50, 53 can be arranged in whole or in part on the sensor area 17, directly adjacent to the sensor area 17 or at a distance from the sensor area 17.
  • the sensor area 17 can be operated independently of the potential areas 44, 47, 50, 53, i.e. the measurement or the measurement signal that the sensor area 17 supplies is not influenced by the operation of the potential areas 44, 47, 50, 53.
  • the control and regulating circuit of the sensor area 17 can send signals to the potential areas 44, 47, 50, 53 , such as apply a certain voltage or switch off a voltage, but the potential areas 44, 47, 50, 53 are not part of the measuring or controlled system of the sensor region 17.
  • the magnitude of the applied voltage can be varied.
  • the potential of the potential areas 44, 47, 50, 53 can also be fixed during the construction, so that no control circuit is necessary for them in order to set a certain potential, which is then fixed for the total life of the sensor chip.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Bei einem Sensorchip nach dem Stand der Technik kommt es, aufgrund von Verschmutzungen in dem Medium, das an dem Sensorchip vorbeiströmt, zu Ablagerungen im Sensorbereich. Ein erfindungsgemässer Sensorchip (1) weist zumindest strömungsaufwärts des Sensorbereichs (17) zumindest eine Potentialfläche (44, 47, 50, 53) auf, die durch elektrische Wechselwirkung mit den Verschmutzungen im strömenden Medium, eine Abscheidung im Sensorbereich (17) verhindert.

Description

Sensorchip mit Potentialflachen bzw. Verwendung von
Potentialflachen auf einem Sensorchip bzw. Verfahren zur Vermeidung von Verschmutzungen auf einem Sensorchip
Stand der Technik
Die Erfindung geht aus von einem Sensorchip mit Potentialflachen bzw. von einer Verwendung einer Potentialflache auf einem Sensorchip bzw. von einem Verfahren zur Vermeidung von Verschmutzungen auf einem Sensorchip nach der Gattung des Anspruchs 1 bzw. 13 bzw. 14 bzw. 15.
Aus der DE 196 01 791 AI ist ein Sensorchip mit einem Sensorbereich bekannt, der bspw. aus einem Rahmenelement, einer Ausnehmung und einer Membran, die einen Sensorbereich bildet, besteht. Es kann immer wieder aufgrund von Kontaminationen, wie z.B. 01, denen der Sensorchip ausgesetzt ist, zu einer unerwünschten Messsignalbeeinflussung des Sensorchips im Bereich des Sensorbereichs kommen. Eine Verschmutzung des Sensorbereichs oder im unmittelbaren Bereich um den Sensorbereich mit 01 verändert den armeleitwert an der Oberflache des Sensorchips und wirkt sich so verfälschend auf das Messsignal aus. Hinzu kommt, dass das auf dem Sensorchip niedergeschlagene 01 als Haftvermittler für in einem stromenden Medium enthaltene Festkorperpartikel dient. Diese eingefangenen Partikel verstarken wiederum den ungunstigen Einfluss zusatzlich.
Die US-PS 5,705,745 zeigt einen Sensorchip mit einer Membran, auf der Temperatur- und Heizwiderstande angeordnet sind, wobei die Membran von einem armeleitelement umgeben ist, das auch eine U-Form haben kann. Das Warmeleitelement wird nicht beheizt, d.h. es hat kein Potential.
Die US-PS 4,888,988 zeigt einen Sensorchip mit einer Membran, wobei um die Membran herum ein metallischer Leiter angeordnet ist. Dieser Leiter ist der gemeinsame Nullleiter einer Messanordnung auf dem Sensorchip für ein Messverfahren.
Die DE 198 01 484 AI zeigt einen Sensorchip mit einer Membran, wobei um die Membran elektrische Leiter angeordnet sind, durch die ein elektrischer Strom fliesst. Diese Leiterbahnen sind Temperaturfühler, die für das
Messverfahren bzw. den Messvorgang benutzt werden.
Die DE 29 00 210 AI bzw. US-PS 4,294,114 zeigt einen Sensorchip, der einen temperaturabhangigen Widerstand auf einem Trager aufweist, wobei auf dem Trager ein weiterer Widerstand aufgebracht ist, der das Substrat aufheizt.
Die DE 42 19 454 AI bzw. US-PS 5,404,753 zeigt einen Sensorchip, der in einem Abstand von einem Sensorbereich einen Referenztemperaturfuhler aufweist.
Die DE 31 35 793 AI bzw. US-PS 4,468,963 zeigt einen Sensorchip, der stromungsaufwarts und/oder stromungsabwarts des Sensorwiderstands einen weiteren Widerstand aufweist, der aber das Messsignal beemflusst. Vorteile der Erfindung
Der erfindungsgemasse Sensorchip mit den Potentialflachen bzw. die erfindungsgemasse Verwendung von Potentialflachen auf einem Sensorchip bzw. das erfindungsgemasse Verfahren zur Vermeidung von Verschmutzungen auf einem Sensorchip mit den kennzeichnenden Merkmalen des Anspruchs 1 bzw. 13 bzw. 14 bzw. 15 hat demgegenüber den Vorteil, dass auf einfache Art und Weise eine Verschmutzung des Sensorbereichs des Sensorchips reduziert oder verhindert wird.
Durch die in den abhangigen Ansprüchen aufgeführten Massnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 genannten Sensorchips möglich.
Stromungsabwarts des Sensorbereichs sind vorteilhafterweise auch Potentialflachen angeordnet, die den Sensorbereich bspw. bei Ruckstromungen schützen.
Ein vorteilhaftes Potentialgefalle erreicht man durch ein positives Potential auf einer ersten Potentialflache und ein negatives Potential auf einer folgenden Potentialflache.
Die Potentialflachen haben vorteilhafterweise eine U-Form, die in vorteilhafter Weise den Sensorbereich umschliesst.
Die Potentialflachen sind vorteilhafterweise wie die Heizwiderstande als Leiterbahn ausgebildet, da dies ein bekanntes und einfaches Herstellungsverfahren ist.
Der Sensorbereich wird vorteilhafterweise unabhängig von den Potentialflachen betrieben, d.h. die Messung, oder das Messsignal, das der Sensorbereich liefert ist nicht beemflusst vom Betrieb des Potentialflachen und umgekehrt. Zeichnung
Ausfuhrungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung naher erläutert.
Es zeigen Figur 1 einen Sensorchip nach dem Stand der Technik,
Figur 2a ein erstes, Figur 2b ein zweites und Figur 2c ein drittes Ausfuhrungsbeispiel eines erfindungsgemassen Sensorchips .
Beschreibung der Ausfuhrungsbeispiele
Figur 1 zeigt einen Sensorchip nach dem Stand der Technik, der erfindungsgemass entsprechend den Ausführungen zu den Figuren 2a bis 2c verbessert wird. Das Herstellungsverfahren und die Anwendung eines solchen Sensorchips ist in der DE 196 01 791 AI naher beschrieben, deren Inhalt ausdrucklich Teil dieser Offenbarung sein soll . Der Sensorchip hat ein Rahmenelement 3, das bspw. aus Silizium besteht. Das Rahmenelement 3 hat eine Ausnehmung 5. Auf dem Rahmenelement ist bspw. eine dielektrische Schicht 21, bspw. aus Sι02, aufgebracht. Die Schicht 21 kann sich über das ganze Rahmenelement 3 erstrecken, aber auch nur über einen Bereich der Ausnehmung 5. Dieser Bereich bildet eine Membran 33, die die Ausnehmung 5 auf einer Seite teilweise oder ganz begrenzt. Auf der der Ausnehmung 5 abgewandten Seite der Membran 33 sind zumindest ein, bspw. drei Metallbahnen 19 aufgebracht. Die Metallbahnen 19 bilden bspw. elektrische Heizer und/oder Messwiderstande und bilden mit der Membran 33 einen Sensorbereich 17. Wenigstens der Sensorbereich 17 ist vorzugsweise mit einer Schutzschicht 23 überzogen. Die Schutzschicht 23 kann sich auch nur über die Metallbahnen 19 erstrecken.
Der Sensorchip hat eine Oberflache 27, die m direkten Kontakt mit einem stromenden Medium steht.
Figur 2a zeigt ein erstes Ausfuhrungsbeispiel eines erfindungsgemass ausgebildeten Sensorchips 1 in einer Draufsicht.
Auf dem Sensorbereich 17 sind bspw. Metallbahnen, die bspw. zumindest einen elektrischen Heizwiderstand 35 und zumindest einen Temperaturfühler 37 bilden, angeordnet. Der Temperaturfühler 37 ist bspw. auch ein elektrischer Widerstand. In diesem Fall sind es ein Heizwiderstand 35 und zwei Temperaturfühler 37, die überwiegend parallel zueinander angeordnet sind, wobei die Temperaturfühler 37 links und rechts des Heizwiderstands 35 verlaufen. Die Metallbahnen sind zum grossten Teil in dem Sensorbereich 17 angeordnet und sind Voraussetzung für ein Messverfahren zur Bestimmung des zumindest einen Parameters, wie z.B. der Temperatur und/oder Durchflussmenge, des stromenden Mediums. Der Sensorbereich 17 ist daher an eine nicht dargestellte bekannte Kontroll- und Regelschaltung angeschlossen. Der Sensorbereich 17 kann bspw. durch die oben beschriebene Membran 33 gebildet sein.
Der Sensorchip 1 ist in einem stromenden Medium zur Bestimmung zumindest eines Parameters angeordnet, wobei das stromende Medium in einer Hauptstromungsrichtung 42 an dem bzw. über dem Sensorchip 1 bzw. der Oberflache 27 vorbeistromt . Das stromende Medium kann Verunreinigungen beinhalten, die zur Verschmutzung des Sensorchips 1 fuhren können. Dies sind z.B. 01 oder in Wasser geloste Salze. Um eine Verschmutzung zu vermeiden oder zu reduzieren sind in der Hauptstromungsrichtung 42 vor dem Sensorbereich 17 eine erste 44 und eine zweite 47 Potentialflache angeordnet. Die erste Potentialflache 44 weist beispielsweise ein positives Potential von lVolt auf, das bspw. von einer von der Kontroll- und Regelschaltung unabhängigen Spannungsquelle stammt. Die zweite Potentialflache 47 weist kein oder ein negatives Potential auf. Das Potentialgefalle kann jede Grosse haben und auch umgekehrt ausgebildet sein.
Durch die elektrische Wechselwirkung der Potentialflachen mit den Flussigkeits- bzw. Schmutzteilchen, die in dem stromenden Medium enthalten sind, wird eine Verhinderung der Abscheidung im Sensorbereich 17 bewirkt, weil die Schmutzteilchen durch das elektrische Feld der angelegten Spannung abgestossen werden und so um den Sensorbereich 17 umgelenkt werden. Dies geschieht, wenn das Potential der Potentialflachen und die Ladung der Flussigkeits- bzw. Schmutzteilchen gleichsinnig, also entweder beide positiv oder beide negativ, geladen sind. Wenn das Potential der Potentialflachen und die Ladung der Flussigkeits- bzw. Schmutzteilchen gegensinnig ist, also das das Potential positiv und die Flussigkeits- bzw. Schmutzteilchen negativ oder umgekehrt, werden die Flussigkeits- bzw. Schmutzteilchen zur Oberflache 27 angezogen und lagern sich gewollt im Bereich der Potentialflachen, aber nicht im Sensorbereich 17 an.
Vorzugsweise verwendet man elektrostatische Felder. Es können aber auch Wechselfelder angelegt werden.
Figur 2b zeigt ein zweites Ausfuhrungsbeispiel eines erfmdungsgemass ausgebildeten Sensorchips 1. Der Sensorchip 1 weist zusätzlich stromungsabwarts im Sensorbereich 17 eine dritte 50 und eine vierte 53 Potentialflache auf. Die erste Potentialflache 44 liegt bspw. auf dem gleichen Potential wie die vierte Potentialflacne 53 und die zweite 47 und die dritte 50 Potentialflache weisen beispielsweise ebenfalls das gleiche Potential auf. So werden auch für vorhandene Ruckstromungen, beispielsweise durch Pulsationen, Verschmutzungen im Sensorbereich 17 vermieden, die entgegen der Hauptstromungsrichtung 42 erfolgen können. Die Potentialflachen 44, 47, 50, 53 stromungsaufwarts und stromungsabwarts des Sensorbereichs 17 müssen nicht notwendigerweise einen gleichen Potentialunterschied aufweisen.
Figur 2c zeigt ein drittes Ausfuhrungsbeispiel eines erfindungsgemass ausgebildeten Sensorchips 1. Die Potentialflachen 44, 47, 50, 53 bilden Teile j e einer U- Form, die den Sensorbereich 17 zumindest teilweise umschliessen . Ausgehend von Figur 2b sind also die zweite und die dritte Potentialflache 47, 50 miteinander verbunden, sowie die erste Potentialflache 44 mit der vierten Potentialflache 53, die dann eine Potentialflache bilden.
Für alle Ausführungsbeispiele gilt ausserdem, was im folgenden beschrieben ist.
Der Sensorchip 1 ist beispielsweise plattchenformig ausgebildet und hat die Oberflache 27, an der das stromende Medium vorbeistromt . Der Sensorbereich 17 und die Potentialflachen 44, 47, 50, 53 sind dabei bspw. zusammen auf der Oberflache 27 angeordnet.
Die Potentialflachen 44, 47, 50, 53 sind bspw. so ausgebildet, dass sie zumindest stromungsaufwarts oder stromungsabwarts des Sensorbereichs 17 eine Lange aufweisen, die langer als eine Lange 1 des Sensorbereichs 17, senkrecht zur Hauptstromungsrichtung 42, ist. Dadurch wird der Sensorbereich 17 über seine gesamte Lange 1 vor Verschmutzungen geschützt. Die Widerstände 35, 37 und/oder die Potentialflachen 44, 47, 50, 53 sind vorzugsweise als Leiterbahnen ausgebildet.
Die Potentialflachen 44, 47, 50, 53 können ganz oder teilweise auf dem Sensorbereich 17, direkt angrenzend an den Sensorbereich 17 oder im Abstand vom Sensorbereich 17 angeordnet sein.
Der Sensorbereich 17 kann unabhängig von den Potentialflachen 44, 47, 50, 53 betrieben werden, d.h. die Messung, oder das Messsignal, das der Sensorbereich 17 liefert, ist nicht beeinflusst vom Betrieb der Potentialflachen 44, 47, 50, 53. Die Kontroll- und Regelschaltung des Sensorbereichs 17 kann zwar Signale an die Potentialflachen 44, 47, 50, 53 schicken, wie z.B. eine bestimmte Spannung anlegen oder eine Spannung ausschalten, aber die Potentialflachen 44, 47, 50, 53 sind kein Teil der Mess- oder Regelstrecke des Sensorbereichs 17. Die Hohe der angelegten Spannung kann variiert werden. Das Potential der Potentialflachen 44, 47, 50, 53 kann auch schon bei der Konstruktion festgelegt sein, so dass keine Steuerungsschaltung für diese notwendig ist, um ein bestimmtes Potential einzustellen, das dann für die gesarate Lebensdauer des Sensorchips festgelegt ist.

Claims

Ansprüche
1. Sensorchip zur Messung zumindest eines Parameters eines strömenden Mediums, der einen Sensorbereich für zumindest ein Messverfahren hat, wobei das Medium eine Hauptstromungsrichtung (42) aufweist,
dadurch gekennzeichnet, dass
dass zumindest teilweise stromungsaufwarts vor dem Sensorbereich (17) auf dem Sensorchip (1) zumindest eine Potentialfläche (44,47,50,53) angeordnet ist.
2. Sensorchip nach Anspruch 1 , dadurch gekennzeichnet, dass
stromungsabwarts hinter dem_ Sensorbereich (17) auf dem Sensorchip (1) zumindest eine weitere Potentialfläche (44,47,50,53) angeordnet ist.
3. Sensorchip nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass
die zumindest eine Potentialfläche (44,47,50,53) im Abstand zu dem Sensorbereich (17) angeordnet ist.
4. Sensorchip nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass
eine Potentialfläche (44,47,50,53) ein positives elektrisches Potential aufweist und eine andere direkt benachbarte Potentialfläche (44,47,50,53) kein oder ein negatives Potential aufweist, wobei beide Potentialflächen (44, 47 ,50, 53) in
Hauptstromungsrichtung (42) vor oder hinter dem Sensorbereich (17) angeordnet sind.
5. Sensorchip nach Anspruch 1, dadurch gekennzeichnet, dass
die Potentialfläche (44,47,50,53) eine U-Form hat
6. Sensorchip nach Anspruch 1, dadurch gekennzeichnet, dass
der Sensorbereich (17) eine Membran (33) aufweist.
7. Sensorchip nach Anspruch 1, dadurch gekennzeichnet, dass
in dem Sensorbereich (17) zumindest ein Heizwiderstand (35) und zumindest ein Temperaturfühler (37) angeordnet sind, die (35, 37) grösstenteils in dem Sensorbereich (17) angeordnet sind.
8. Sensorchip nach Anspruch 1, dadurch gekennzeichnet, dass
der Sensorbereich (17) quer zur Hauptstromungsrichtung (42) eine Länge (1) hat, und dass die Potentialfläche (44,47,50,53) quer zur
Hauptstromungsrichtung (42) angeordnet und länger als die Länge (1) ist.
9. Sensorchip nach Anspruch 7, dadurch gekennzeichnet, dass
die Widerstände (35) oder der Temperaturfühler (37) als Leiterbahnen ausgebildet sind.
10. Sensorchip nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass
die Potentialfläche (44,47,50,53) als Leiterbahn ausgebildet ist .
11. Sensorchip nach Anspruch 1, dadurch gekennzeichnet,
dass der Sensorchip (1) zumindest eine Oberfläche (27) hat, an der das strömende Medium vorbeiströmt, und dass der Sensorbereich (17) und die Potentialfläche (44,47,50,53) zusammen auf einer Oberfläche (27) angeordnet sind.
12. Sensorchip nach Anspruch 1, dadurch gekennzeichnet, dass
der Sensorbereich (17) unabhängig von den Potentialflächen (44, 47, 50, 53) elektrisch betrieben ist.
13. Verwendung zumindest einer Potentialfläche (44,47,50,53) zur Ablenkung von mitgeführten Teilchen eines strömenden Mediums in der Umgebung des Sensorbereichs (17) mittels elektrischer Felder, wobei die Potentialfläche (44,47,50,53) auf einem Sensorchip (1) angeordnet ist, der zur Bestimmung zumindest eines Parameters des strömenden Mediums dien .
14. Verfahren zur Vermeidung von Verschmutzungen auf einem Sensorchip (1) , der einen Sensorbereich (17) hat und in einem strömenden Medium angeordnet ist,
dadurch gekennzeichnet, dass
zumindest eine Potentialfläche (44,47,50,53) durch eine angelegte elektrische Spannung ein elektrisches Feld erzeugt, das mitgeführte Teilchen des Mediums um den Sensorbereich (17) lenkt .
15. Verfahren zur Vermeidung von Verschmutzungen auf einem Sensorchip (1) , der einen Sensorbereich (17) hat und in einem strömenden Medium angeordnet ist,
dadurch gekennzeichnet, dass
zumindest eine Potentialfläche (44,47,50,53) durch eine angelegte elektrische Spannung ein elektrisches Feld erzeugt, das mitgeführte Teilchen des Mediums vor oder hinter den Sensorbereich (17) im Bereich der Potentialflächen (44,47,50,53) anzieht.
PCT/DE2002/001424 2001-04-18 2002-04-17 Sensorchip mit potentialflächen bzw. verwendung von potentialflächen auf einem sensorchip bzw. verfahren zur vermeidung von verschmutzungen auf einem sensorchip WO2002084226A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002581933A JP2004518987A (ja) 2001-04-18 2002-04-17 ポテンシャルエネルギー面を備えたセンサチップおよびセンサチップ上へのポテンシャルエネルギー面の適用およびセンサチップ上の汚染回避方法
EP02735048A EP1281048A1 (de) 2001-04-18 2002-04-17 Sensorchip mit potentialflächen bzw. verwendung von potentialflächen auf einem sensorchip bzw. verfahren zur vermeidung von verschmutzungen auf einem sensorchip
US10/311,404 US6854325B2 (en) 2001-04-18 2002-04-17 Sensor chip having potential surfaces for avoiding contaminant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10118781A DE10118781B4 (de) 2001-04-18 2001-04-18 Verfahren zur Vermeidung von Verschmutzungen auf einem Sensorchip und Verwendung einer Potentialfläche auf einem Sensorchip
DE10118781.5 2001-04-18

Publications (1)

Publication Number Publication Date
WO2002084226A1 true WO2002084226A1 (de) 2002-10-24

Family

ID=7681711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/001424 WO2002084226A1 (de) 2001-04-18 2002-04-17 Sensorchip mit potentialflächen bzw. verwendung von potentialflächen auf einem sensorchip bzw. verfahren zur vermeidung von verschmutzungen auf einem sensorchip

Country Status (8)

Country Link
US (1) US6854325B2 (de)
EP (1) EP1281048A1 (de)
JP (1) JP2004518987A (de)
KR (1) KR20030011895A (de)
CN (1) CN1279333C (de)
DE (1) DE10118781B4 (de)
RU (1) RU2305258C2 (de)
WO (1) WO2002084226A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215522A1 (de) 2013-08-07 2015-02-12 Robert Bosch Gmbh Sensorvorrichtung zur Bestimmung wenigstens eines Parameters eines durch einen Kanal strömenden fluiden Mediums
CN105806433A (zh) * 2014-12-29 2016-07-27 深圳万讯自控股份有限公司 一种气体介质流量测量中探头除液除冰的方法及装置
DE102015206702A1 (de) 2015-04-15 2016-10-20 Robert Bosch Gmbh Sensor zur Bestimmung wenigstens eines Parameters eines durch einen Kanal strömenden fluiden Mediums
JPWO2016084664A1 (ja) * 2014-11-28 2017-06-22 日立オートモティブシステムズ株式会社 熱式流量センサ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7668667B2 (en) * 2005-03-07 2010-02-23 Microstrain, Inc. Miniature stimulating and sensing system
JP2008516252A (ja) 2005-09-20 2008-05-15 ビ−エイイ− システムズ パブリック リミテッド カンパニ− センサー装置
US9772208B2 (en) 2012-01-18 2017-09-26 Hitachi Automotive Systems, Ltd. Thermal type flowmeter with particle guide member
RU2509995C1 (ru) * 2012-07-10 2014-03-20 федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИЭТ" (Национальный исследовательский университет МИЭТ) Мембранный термоанемометр
DE102014215209A1 (de) * 2014-08-01 2016-02-04 Robert Bosch Gmbh Sensor zur Bestimmung wenigstens eines Parameters eines durch einen Messkanal strömenden fluiden Mediums
US9702892B1 (en) * 2014-11-21 2017-07-11 Lockheed Martin Corporation Thermal air data (TAD) system
EP3037791A1 (de) * 2014-12-22 2016-06-29 Sensirion AG Durchflusssensor
EP3421947B1 (de) 2017-06-30 2019-08-07 Sensirion AG Betriebsverfahren für eine durchflusssensorvorrichtung
CN110824181B (zh) * 2019-10-18 2021-10-15 中国航空工业集团公司西安飞行自动控制研究所 一种低电阻敏感器件信号连接方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888988A (en) * 1987-12-23 1989-12-26 Siemens-Bendix Automotive Electronics L.P. Silicon based mass airflow sensor and its fabrication method
US4947688A (en) * 1988-08-31 1990-08-14 Ricoh Company, Ltd. Flow velocity sensor
US5158801A (en) * 1988-04-01 1992-10-27 The United States Of America As Represented By The United States Administrator Of The National Aeronautics And Space Administration Method of forming a multiple layer dielectric and a hot film sensor therewith
US5705745A (en) * 1995-07-29 1998-01-06 Robert Bosch Gmbh Mass flow sensor
EP1031821A1 (de) * 1999-02-26 2000-08-30 Delphi Technologies, Inc. Mikromechanisch hergestellter Massendurchflussmesser mit Umgebungstemperatursensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2900210A1 (de) * 1979-01-04 1980-07-17 Bosch Gmbh Robert Vorrichtung zur messung der masse eines stroemenden mediums
DE3135793A1 (de) * 1981-09-10 1983-03-24 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zur messung der masse eines in einem stroemungsquerschnitt stroemenden pulsierenden mediums
DE4219454C2 (de) * 1992-06-13 1995-09-28 Bosch Gmbh Robert Massenflußsensor
CA2108539C (en) * 1993-10-15 1999-01-26 Constantinos J. Joannou Ionizing type air cleaner
DE19601791A1 (de) * 1996-01-19 1997-07-24 Bosch Gmbh Robert Sensor mit einer Membran und Verfahren zur Herstellung eines Sensors mit einer Membran
JP3366818B2 (ja) * 1997-01-16 2003-01-14 株式会社日立製作所 熱式空気流量計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888988A (en) * 1987-12-23 1989-12-26 Siemens-Bendix Automotive Electronics L.P. Silicon based mass airflow sensor and its fabrication method
US5158801A (en) * 1988-04-01 1992-10-27 The United States Of America As Represented By The United States Administrator Of The National Aeronautics And Space Administration Method of forming a multiple layer dielectric and a hot film sensor therewith
US4947688A (en) * 1988-08-31 1990-08-14 Ricoh Company, Ltd. Flow velocity sensor
US5705745A (en) * 1995-07-29 1998-01-06 Robert Bosch Gmbh Mass flow sensor
EP1031821A1 (de) * 1999-02-26 2000-08-30 Delphi Technologies, Inc. Mikromechanisch hergestellter Massendurchflussmesser mit Umgebungstemperatursensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215522A1 (de) 2013-08-07 2015-02-12 Robert Bosch Gmbh Sensorvorrichtung zur Bestimmung wenigstens eines Parameters eines durch einen Kanal strömenden fluiden Mediums
US9841305B2 (en) 2013-08-07 2017-12-12 Robert Bosch Gmbh Sensor device for determining at least one parameter of a fluid medium flowing through a duct
JPWO2016084664A1 (ja) * 2014-11-28 2017-06-22 日立オートモティブシステムズ株式会社 熱式流量センサ
CN105806433A (zh) * 2014-12-29 2016-07-27 深圳万讯自控股份有限公司 一种气体介质流量测量中探头除液除冰的方法及装置
DE102015206702A1 (de) 2015-04-15 2016-10-20 Robert Bosch Gmbh Sensor zur Bestimmung wenigstens eines Parameters eines durch einen Kanal strömenden fluiden Mediums

Also Published As

Publication number Publication date
JP2004518987A (ja) 2004-06-24
DE10118781A1 (de) 2002-10-31
CN1279333C (zh) 2006-10-11
US20030159505A1 (en) 2003-08-28
KR20030011895A (ko) 2003-02-11
US6854325B2 (en) 2005-02-15
EP1281048A1 (de) 2003-02-05
CN1461405A (zh) 2003-12-10
RU2305258C2 (ru) 2007-08-27
DE10118781B4 (de) 2005-04-21

Similar Documents

Publication Publication Date Title
DE10111840C2 (de) Verfahren zur Vermeidung von Verschmutzungen auf einem Sensorchip und Verwendung eines Zusatzheizers auf einem Sensorchip
DE102010029147B4 (de) Verfahren zur Ermittlung der Temperatur eines Leistungshalbleiters
DE10118781B4 (de) Verfahren zur Vermeidung von Verschmutzungen auf einem Sensorchip und Verwendung einer Potentialfläche auf einem Sensorchip
DE3231995A1 (de) Verfahren und anordnung zum messen der verschmutzung eines kapazitiven taupunktsensors
EP0271660A2 (de) Vorrichtung zur Bestimmung des Massendurchflusses eines strömenden Mediums
DE60030333T2 (de) Einrichtung zur messung einer physikalischen grösse, verfahren zu ihrer herstellung und fahrzeugsteuersystem mit der einrichtung zur messung einer physikalischen grösse
DE19919398B4 (de) Wärmeempfindlicher Flußratensensor
EP0478958A2 (de) Kapazitiver Sensor zur Messung eines Kraftstoffwandfilms
DE4408270C2 (de) Zweirichtungsluftstromdetektor
DE3444347A1 (de) Vorrichtung zur luftmengenmessung
DE112019000469T5 (de) Leistungshalbleitervorrichtung
DE102011076651B4 (de) Stromregelung mit thermisch gepaarten Widerständen
DE4036109A1 (de) Widerstandstemperaturfuehler
DE102004026396B4 (de) Vorrichtung zur Messung der Füllstandshöhe und/oder der Temperatur in einem Behälter
DE102004009027B4 (de) Wärmeempfindliches Flussratendetektorelement und Verfahren zu dessen Herstellung
CH663686A5 (de) Verfahren und schaltung zur temperaturkompensation eines stromgespeisten hallelementes.
EP1573327A1 (de) Dna-chip mit einem mikroarray aus mikroelektrodensystem
DE112020005816T5 (de) Wärmeflussmesser
DE10361033A1 (de) Gaskonzentrationsmessgerät
DE3722941C2 (de)
DE68911767T2 (de) Wärmefluss-Durchflussmesser.
DE10111948B4 (de) Formanpassbare Elektrodenstruktur in Schichtbauweise und Verfahren zum Betrieb
DE2243979C3 (de) Magnetoresistive Abfühlanordnung mit Rauschunterdrückung
DE1905025A1 (de) Temperaturkompensierte Vergleichsschaltung
DE3823642C2 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2002735048

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027016997

Country of ref document: KR

Ref document number: 028012224

Country of ref document: CN

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 581933

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2002735048

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027016997

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10311404

Country of ref document: US