WO2002080370A2 - Überabtasten in analog-digital- und digital-analog-umsetzern - Google Patents
Überabtasten in analog-digital- und digital-analog-umsetzern Download PDFInfo
- Publication number
- WO2002080370A2 WO2002080370A2 PCT/EP2001/003685 EP0103685W WO02080370A2 WO 2002080370 A2 WO2002080370 A2 WO 2002080370A2 EP 0103685 W EP0103685 W EP 0103685W WO 02080370 A2 WO02080370 A2 WO 02080370A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- digital
- analog
- post
- noise
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/20—Increasing resolution using an n bit system to obtain n + m bits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/20—Increasing resolution using an n bit system to obtain n + m bits
- H03M1/201—Increasing resolution using an n bit system to obtain n + m bits by dithering
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/322—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M3/324—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement
- H03M3/326—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement by averaging out the errors
- H03M3/328—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement by averaging out the errors using dither
- H03M3/33—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement by averaging out the errors using dither the dither being a random signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/458—Analogue/digital converters using delta-sigma modulation as an intermediate step
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/50—Digital/analogue converters using delta-sigma modulation as an intermediate step
Definitions
- DSL Digital Subscriber Line
- VDSL Very High Data Rate DSL
- VDSL denotes a transmission method whose transmission speed is higher than that of ADSL (Asymmetry Digital Subscriber Line).
- ADSL Asymmetry Digital Subscriber Line
- a VDSL system is used for a hybrid network, which consists of fiber optic and copper lines, the use of fiber optic cables in particular providing high transmission rates.
- a fiber optic cable is routed to local exchanges or even to cable distributors on a roadside, such conventional applications, for example, from the internal address "htp: // www.e- online.de/sites/kom/0305237 .htm are known.
- An essential feature of digital transmission systems is an analog-digital conversion, a digital transmission and a subsequent digital-analog conversion of relevant data streams.
- Various methods of oversampling are used in a conventional manner, as described, for example, in the Internet reference "http: // www. Hoer-wege. De / over + upsamp .htm.
- FIG. 3 shows a circuit arrangement of a conventional analog-digital converter, as is used, for example, in digital transmission systems.
- Analog input signal 100 is fed to an input terminal 102.
- the analog-digital converter 101 includes a summation device 104 and a quantization device 111, a digital signal 105 being able to be taken off as an output signal at an output connection 106, and a noise signal 113 being connectable to a second input connection, a noise source connection 103.
- the analog input signal 100 and one to the
- Noise signal connection 113 connected to noise source connection 103 is superimposed in summation device 104, the summed signal being supplied to quantization device 111.
- the output of the quantization device 111 is connected to the output connection 106, a digital signal 105 being provided as the output signal.
- Such prior art analog-to-digital converters have a number of disadvantages.
- analog-to-digital converters and digital-to-analog converters with an effective resolution of 9 bits to 12 bits are used.
- the resolution of these converters influences costs or chip area and energy consumption to a large extent.
- high-resolution converters allow the complexity of external components that can be connected to the integrated circuit, such as duplex filters, to be reduced.
- the method according to the invention is advantageously combined with a noise shaping concept in VDSL (Very High
- Data Rate DSL Data Rate DSL systems are used, which increases an effective number of bits.
- the core of the invention is a method for oversampling in analog-digital and digital-analog converters, in which oversampling with a first noise shaping, which is carried out by means of a first noise shaping device in an analog-digital conversion, with a second noise shaping, the by means of a second
- Noise shaping device is carried out in a digital-analog implementation. Advantageous developments and improvements of the respective subject matter of the invention can be found in the subclaims.
- the invention uses a combination of oversampling and a noise shaping concept in VDSL systems, whereby a reduction in energy consumption of an integrated circuit and a reduction in chip area of an integrated circuit can be achieved.
- a combination of oversampling and a noise shaping concept is used for integrated circuits which are used for the VDSLA-4 band, for IOBaseS and for VDSLA-4port units.
- a second order comb filter is used as the decimation filter unit.
- an oversampling factor greater than one is provided.
- the first is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- Noise shaping device is a first order noise shaping device.
- Noise shaping device is a first order noise shaping device.
- a post-filtering device is used used to eliminate high frequencies that occur due to a staircase function at the output of a digital-to-analog converter.
- an interpolation filter unit is a second-order comb filter.
- a digital-to-analog converter is a 10-bit current control converter.
- noise shaping is provided by an adaptive noise shaping device.
- Figure la shows a circuit arrangement for an analog-digital conversion according to an embodiment of the present invention
- Figure lb shows a further circuit arrangement for an analog-digital conversion according to a further embodiment of the present invention, which compared to that shown in Figure la
- Circuit arrangement is expanded by a first noise shaping device
- Figure 2 shows a circuit arrangement for a digital-to-analog implementation with a second
- FIG. 1 shows a conventional circuit arrangement for an analog-digital conversion.
- Figure la shows a circuit arrangement for an analog-digital conversion according to an embodiment of the present invention.
- a conventional analog-to-digital converter 101 is used in the circuit arrangement shown in FIG. 1a, and is expanded by a decimation filter unit 107.
- a v output signal of the analog-to-digital converter 101 is provided at an output terminal 106 as a digital signal 105 and the decimation filter 107 is supplied to a an analog input signal 100 corresponding digital signal 105th
- the conversion of the analog input signal 100 into the digital signal 105 takes place in a conventional manner by the analog input signal 100 being connected to an input connection 102 of the
- Analog-to-digital converter 101 is supplied. Furthermore, a noise signal 113 is supplied to a noise source connection 103, the analog input signal 100 and the noise signal 113 supplied to the noise source connection 103 being superimposed in a summation device 104.
- the output signal of the summing device 104 is quantized in a quantizing device 111 in order to provide the output signal as a digital signal 105.
- a decimation filter unit 107 is connected downstream, in which low-pass filtering is carried out.
- the decimation filter unit 107 is provided, for example, by a digital low-pass filter, which reduces a frequency bandwidth of, for example, 260 MHz to a frequency bandwidth of 40 MHz, an oversampling factor of approximately 6.6 being achieved.
- the resolution of the analog-digital converter is advantageously increased from 10 bits to 11 bits.
- a digital transmission signal 110 is provided at the output of the decimation filter unit 107 as the output signal of the overall circuit arrangement, which is shown in FIG.
- the circuit arrangement shown in FIG. 1b corresponds to the circuit arrangement shown in FIG. 1 a, with the exception that a first noise shaping device 112 is arranged between the analog-digital converter 101 and the decimation filter unit 107.
- the first noise shaping device 112 serves to further increase the resolution of the overall circuit arrangement.
- the same noise energy white noise
- the lowest permitted distortion in the respective frequency band must always be used as a measure of the noise energy.
- a maximum bit rate can disadvantageously not be fully used because specific frequency subbands allow less noise energy than the other frequency subbands.
- Noise shaping carried out in the first noise shaping device 112 makes it possible to assign noise to individual frequency bands.
- Figure 2 illustrates a circuit arrangement for a digital-to-analog implementation with a second
- Noise shaping device according to an embodiment of the present invention.
- a transmitted digital transmission signal 110 is fed to a mixing unit 201.
- the digital transmission signal 110 is superimposed with a reception noise signal 211 applied to a reception noise source connection 209.
- the output signal of the mixing unit 201 is fed to a post-quantization device 202, an output signal quantized by the post-quantization device 202 being fed to an interpolation filter unit 203.
- an interpolation filter unit 203 provides an increase in the frequency bandwidth by the same factor by which the frequency bandwidth was reduced in the example shown in FIG. La, b, in this case by one Factor which is approximately 6.6.
- the output signal of the post-quantization unit 202 is fed to the interpolation filter unit 203, which provides a suitable oversampling.
- An output signal of the interpolation filter unit 203 becomes an amplifier unit 204, in which the output signal of the interpolation filter unit 203 is amplified by a specifiable factor, which is particularly suitable for driving a subsequent second noise shaping device 205.
- An output signal of the amplifier unit 204 is fed to the input of the second noise shaping device 205.
- noise shaping is carried out as described with reference to the first noise shaping device 112, as described in FIG. 1b.
- An output signal of the noise shaping device 205 is finally fed to a digital-to-analog converter 206, which converts the digital output signal of the second noise shaping device 205 into an analog value.
- the output signal of the digital-to-analog converter 206 is fed to a post-filtering device 207, which provides for filtering out high frequency components, which are caused by a step-like curve of the analog output voltage due to the digital-to-analog conversion process in the digital-to-analog converter 206.
- a filtered output signal of the post-filtering device 207 is provided as an analog output signal 208 for further processing.
- An oversampling factor of 6.6 and an interpolation filter unit 203 designed as a second-order comb filter, a second first-order noise shaping device 205 and a digital-to-analog converter 206 designed as a 10-bit current control converter result in an increase in resolution by 2 bits, the one described with reference to Figures la, b Circuit arrangement a saving in a chip area by approximately a factor of 2 is provided.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB018231136A CN100376083C (zh) | 2001-03-30 | 2001-03-30 | 模/数和数/模转换器中的重复取样方法 |
AU2001260173A AU2001260173A1 (en) | 2001-03-30 | 2001-03-30 | Oversampling in analogue-digital and digital-analogue converters |
KR1020037012801A KR100567192B1 (ko) | 2001-03-30 | 2001-03-30 | 아날로그/디지털 및 디지털/아날로그 변환기에서의오버샘플링 |
PCT/EP2001/003685 WO2002080370A2 (de) | 2001-03-30 | 2001-03-30 | Überabtasten in analog-digital- und digital-analog-umsetzern |
US10/669,280 US6879273B2 (en) | 2001-03-30 | 2003-09-23 | Oversampling in analog/digital and digital/analog converters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2001/003685 WO2002080370A2 (de) | 2001-03-30 | 2001-03-30 | Überabtasten in analog-digital- und digital-analog-umsetzern |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/669,280 Continuation US6879273B2 (en) | 2001-03-30 | 2003-09-23 | Oversampling in analog/digital and digital/analog converters |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002080370A2 true WO2002080370A2 (de) | 2002-10-10 |
WO2002080370A3 WO2002080370A3 (de) | 2003-10-02 |
Family
ID=8164361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2001/003685 WO2002080370A2 (de) | 2001-03-30 | 2001-03-30 | Überabtasten in analog-digital- und digital-analog-umsetzern |
Country Status (5)
Country | Link |
---|---|
US (1) | US6879273B2 (de) |
KR (1) | KR100567192B1 (de) |
CN (1) | CN100376083C (de) |
AU (1) | AU2001260173A1 (de) |
WO (1) | WO2002080370A2 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101064513B (zh) * | 2006-04-25 | 2010-06-09 | 艾默生网络能源系统有限公司 | 数模转换电路及转换方法 |
KR100850777B1 (ko) * | 2006-11-24 | 2008-08-06 | 한국과학기술원 | 오버샘플링에 의해 해상도를 향상시킨 아날로그-디지털변환방법 |
KR100966576B1 (ko) * | 2007-12-20 | 2010-06-29 | 주식회사 시앤디 | 자세 교정용 매트 |
TWI419149B (zh) * | 2010-11-05 | 2013-12-11 | Ind Tech Res Inst | 抑制雜訊系統與方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02134010A (ja) * | 1988-11-15 | 1990-05-23 | Sony Corp | 信号処理装置 |
JPH02292916A (ja) * | 1989-05-02 | 1990-12-04 | Yamaha Corp | D/a変換回路 |
US5148167A (en) * | 1990-04-06 | 1992-09-15 | General Electric Company | Sigma-delta oversampled analog-to-digital converter network with chopper stabilization |
JP3033162B2 (ja) * | 1990-09-20 | 2000-04-17 | ソニー株式会社 | ノイズシェーピング回路 |
JP3168620B2 (ja) * | 1991-07-03 | 2001-05-21 | ソニー株式会社 | ディジタル/アナログ変換装置 |
US5760722A (en) * | 1995-01-31 | 1998-06-02 | The United States Of America As Represented By The Secretary Of The Navy | Distributed quantization noise transmission zeros in cascaded sigma-delta modulators |
FR2763190B1 (fr) * | 1997-05-07 | 1999-08-06 | Sgs Thomson Microelectronics | Procede et dispositif de transfert d'informations entre des circuits echangeant des donnees par l'intermediaire de convertisseurs |
-
2001
- 2001-03-30 AU AU2001260173A patent/AU2001260173A1/en not_active Abandoned
- 2001-03-30 CN CNB018231136A patent/CN100376083C/zh not_active Expired - Fee Related
- 2001-03-30 WO PCT/EP2001/003685 patent/WO2002080370A2/de active Application Filing
- 2001-03-30 KR KR1020037012801A patent/KR100567192B1/ko active IP Right Grant
-
2003
- 2003-09-23 US US10/669,280 patent/US6879273B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
NORSWORTHY S R ET AL: "A programmable codec signal processor" SOLID-STATE CIRCUITS CONFERENCE, 1996. DIGEST OF TECHNICAL PAPERS. 42ND ISSCC., 1996 IEEE INTERNATIONAL SAN FRANCISCO, CA, USA 8-10 FEB. 1996, NEW YORK, NY, USA,IEEE, US, 8. Februar 1996 (1996-02-08), Seiten 170-171,438, XP010156441 ISBN: 0-7803-3136-2 * |
Also Published As
Publication number | Publication date |
---|---|
US6879273B2 (en) | 2005-04-12 |
WO2002080370A3 (de) | 2003-10-02 |
KR100567192B1 (ko) | 2006-04-03 |
KR20040028734A (ko) | 2004-04-03 |
US20040263369A1 (en) | 2004-12-30 |
CN1620759A (zh) | 2005-05-25 |
CN100376083C (zh) | 2008-03-19 |
AU2001260173A1 (en) | 2002-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0691756A1 (de) | Echokompensator mit analogen Grobkompensator und digitalem Feinkompensator | |
WO2000069078A1 (de) | Sigma-delta-analog/digital-wandleranordnung | |
EP1118245B1 (de) | Leitungsabschlussvorrichtung für eine teilnehmeranschlussleitung | |
DE19933485B4 (de) | Leitungsabschlußeinrichtung für eine Telefon-Teilnehmeranschlußleitung | |
DE10153309A1 (de) | Digital-Analog-Umsetzer-Vorrichtung mit hoher Auflösung | |
EP1053629B1 (de) | Verfahren zur behandlung von durch ein analoges fernsprechendgerät gelieferten fernsprechsignalen und von durch eine datenendeinrichtung gelieferten daten | |
DE69314939T2 (de) | Verfahren zur kaskadierung von sigma-delta modulatoren und ein sigma-delta modulatorsystem | |
DE102005028726B4 (de) | Verfahren und Vorrichtung zur Analog-Digital-Wandlung | |
DE3044582C2 (de) | Digitaler Verstärker, insbesondere zur Verwendung in einer digitalen Fernsprech-Teilnehmerschaltung | |
WO2002080370A2 (de) | Überabtasten in analog-digital- und digital-analog-umsetzern | |
EP0448753A1 (de) | Zweidraht-Vierdraht-Umsetzer | |
EP0448754B1 (de) | Zweidraht-Vierdraht-Umsetzer | |
DE4221397C2 (de) | Integrierte PCM-Codec-Schaltung für ein Vermittlungssystem | |
DE10228942A1 (de) | Verfahren und Schaltungsanordnung zur Sigma-Delta-Wandlung mit reduzierten Leerlauftönen | |
EP1230744B1 (de) | Vorrichtung zur echokompensation bei gleichlage-übertragungsverfahren im duplex-betrieb über eine zweidrahtleitung | |
DE69403549T2 (de) | Signalverarbeitungsanordnung mit mehreren verschiedenen Filtern, insbesondere für audiofrequente Codierung von Stimmensignalen | |
DE19725171A1 (de) | Schaltungsanordnung zur Wandlung eines analogen Signals in ein digitales Signal | |
EP0953234B1 (de) | Schaltungsanordnung zur zweidraht-vierdraht-umsetzung | |
DE10349739B4 (de) | Verfahren und Vorrichtung zum Interpolieren oder Dezimieren eines Signals | |
DE102004002694B4 (de) | Telefon-Linecard | |
DE10146891A1 (de) | Verfahren zum Übertragen von Gebührenbestimmungssignalen über einen Datenübertragungspfad und Vorrichtung zur Spannungspegelgenerierung | |
WO2001001570A1 (de) | Programmierbares digitales bandpass-filter für eine kodec-schaltung | |
DE10147082A1 (de) | Verfahren zum Übertragen von Gebührenbestimmungssignalen über einen Datenübertragungspfad unter Ausnutzung von Resonanzerscheinungen | |
EP1226660B1 (de) | Echokompensationsvorrichtung | |
DE102005050631B4 (de) | Vorrichtung zum Empfangen und Vorrichtung zum Senden eines Datensignales, das Mehrfachtonsignale aufweist, sowie System mit jeweils einer solchen Vorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10669280 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 018231136 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020037012801 Country of ref document: KR |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |