WO2002065521A1 - Dispositif de traitement de piece de type feuille - Google Patents

Dispositif de traitement de piece de type feuille Download PDF

Info

Publication number
WO2002065521A1
WO2002065521A1 PCT/JP2002/001380 JP0201380W WO02065521A1 WO 2002065521 A1 WO2002065521 A1 WO 2002065521A1 JP 0201380 W JP0201380 W JP 0201380W WO 02065521 A1 WO02065521 A1 WO 02065521A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
processed
power
heat treatment
processing container
Prior art date
Application number
PCT/JP2002/001380
Other languages
English (en)
French (fr)
Inventor
Shigeru Kasai
Hiroyuki Miyashita
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001040570A external-priority patent/JP2002246318A/ja
Priority claimed from JP2001175354A external-priority patent/JP2002367914A/ja
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US10/467,918 priority Critical patent/US20040069234A1/en
Priority to KR1020037010721A priority patent/KR100839678B1/ko
Priority to EP02712428A priority patent/EP1367637A4/en
Publication of WO2002065521A1 publication Critical patent/WO2002065521A1/ja
Priority to US12/078,332 priority patent/US20080280048A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Definitions

  • the present invention relates to a heat treatment apparatus capable of subjecting a semiconductor wafer or the like to heat treatment such as film formation annealing one by one. Background technology
  • various heat treatments such as a film forming process, an etching process, an oxidation diffusion process, and an anneal reforming process are repeatedly performed on a substrate such as a semiconductor wafer.
  • FIG. 11 is a schematic configuration diagram illustrating an example of a conventional heat treatment apparatus
  • FIG. 12 is a schematic diagram illustrating a warped state of a semiconductor wafer on a mounting table.
  • Heat treatment apparatus shown in FIG. 1 the inside of the c processing container 2 having a vacuum evacuable processing chamber 2, that has the placing table 4 is provided for mounting a semiconductor wafer W.
  • a shutter head 6 for introducing a processing gas is provided at the ceiling of the processing container 2.
  • a plurality of heating lamps 8 as heating means are provided below the bottom of the processing container 2. Heat rays radiated from the heating lamp 8 are applied to the mounting table 4 through a transmission window 10 made of, for example, quartz provided at the bottom of the processing container 2. As a result, the wafer W is heated and heated, and a desired heat treatment is performed at a predetermined temperature.
  • the wafer temperature is raised to a predetermined process temperature as quickly as possible in order to improve productivity, that is, throughput.
  • a relatively small diameter wafer for example, a 6-inch wafer
  • rapid heating did not cause much problem.
  • the wafer size As shown in FIG. 12, there is a problem that as the temperature increases to 8 inches or 12 inches, the peripheral portion of the semiconductor wafer W itself warps upward and deforms when the temperature rises. This warpage is caused by the fact that the amount of thermal expansion on the back surface of the wafer in contact with the mounting table 4 is larger than that on the front surface of the wafer.
  • Such a warping phenomenon of the wafer is particularly large in the case of a 12-inch (30 cm) wafer, and depends on the process temperature when the warping height H of the peripheral portion reaches about 3 mm. There was also.
  • the reason why the wafer warps when the temperature rises is that the thermal expansion coefficient from room temperature to, for example, about 327 ° C is higher than that in the temperature range. Is considerably larger than the coefficient of thermal expansion in
  • a transfer error may occur when transferring the wafer.
  • the film stress is increased and the film is easily peeled.
  • An object of the present invention is to provide a heat treatment method and a heat treatment apparatus capable of preventing the object from being warped and deformed when the temperature of the object is raised without lowering the throughput. is there.
  • the present invention includes: a mounting step of mounting an object on a mounting table installed in a vacuum-evacuable processing container; and a temperature increasing step of raising the temperature of the object to a predetermined temperature.
  • the object to be processed in at least a part of the temperature raising step, maintains a temperature distribution in which a temperature at a central portion of the object to be processed is high and a temperature at a peripheral portion is low.
  • a heat treatment method characterized in that the temperature distribution is maintained such that the temperature of the central portion of the object to be processed is high and the temperature of the peripheral portion is low. Since the temperature of the object to be processed is increased in the state, the object to be processed can be prevented from being warped and deformed. Therefore, it is possible to prevent peeling of the thin film and occurrence of an error in transporting the object to be processed.
  • the object to be processed is heated at a temperature rising rate lower than a heat transfer rate from a central part to a peripheral part of the object to be processed.
  • the predetermined temperature is a warp safe temperature at which the thermal expansion coefficient of the object to be processed is sufficiently low so that the object to be processed hardly warps.
  • the present invention provides a mounting step of mounting an object to be mounted on a mounting table installed in a vacuum-evacuable processing container, a temperature increasing step of raising the temperature of the object to a predetermined temperature,
  • the pressure in the processing container is set to a pressure equal to or lower than a viscous flow in at least a part of the temperature raising step.
  • the pressure in the processing vessel is set to a pressure equal to or lower than the viscous flow at the time of temperature rise, so that radiation becomes a main component of heat transfer, and the speed of heat transfer from the mounting table to the processing object is reduced. Can be. For this reason, the object to be processed can be prevented from being warped. Therefore, it is possible to prevent the peeling of the thin film and the occurrence of an error in transporting the object.
  • the pressure equal to or lower than the viscous flow is equal to or lower than 133 Pa (lTorr).
  • the predetermined temperature is a warp safe temperature at which the thermal expansion coefficient of the object to be processed is sufficiently low so that the object to be processed hardly warps.
  • the present invention provides a processing container that can be evacuated, a mounting table that is installed in the processing container and on which a processing object can be mounted, and individually heats each zone in which the processing object is concentrically divided.
  • a plurality of zone heating units, a power supply unit for supplying power to each zone heating unit, a temperature measurement unit provided corresponding to at least one of the zones of the object, and the temperature measurement unit Based on the detected value, the temperature of the object to be processed is raised to a predetermined temperature while maintaining a temperature distribution in which the temperature of the central part of the object is high and the temperature of the peripheral part is low, And a power control means for controlling the power supply means.
  • the present invention provides a processing container capable of being evacuated, a mounting table installed in the processing container, on which a processing object can be mounted, and heating the processing object so that a predetermined temperature distribution is formed.
  • a heating unit that supplies power to the heating unit; and a power supply unit configured to supply the power to the heating unit.
  • the power supply unit is controlled so that the temperature rises to a predetermined temperature.
  • a power control means for controlling the power supply unit.
  • the present invention provides a processing container that can be evacuated, a mounting table that is installed in the processing container, and on which a processing target can be mounted, and that a temperature distribution that is concentric with the processing target is formed.
  • a heating unit for heating a power supply unit for supplying power to the heating unit, a temperature measurement unit provided corresponding to at least one of the object to be processed, and a detection value of the temperature measurement unit. Controlling the power supply unit so as to raise the temperature of the target object to a predetermined temperature while maintaining a temperature distribution in which the temperature of the central part of the target object is high and the temperature of the peripheral part is low.
  • a power control means is provided.
  • a processing container capable of being evacuated, a mounting table installed in the processing container, on which an object to be processed is mounted, and each zone in which the object to be processed is concentrically divided are individually heated.
  • a power control means for controlling the power supply means so as to raise the temperature to a predetermined temperature.
  • the present invention provides a processing container that can be evacuated, a mounting table that is installed in the processing container, and on which a processing target can be mounted, and that a temperature distribution that is concentric with the processing target is formed.
  • Means, based on the detection value of the power detection means, the temperature of the object to be processed is maintained at a predetermined temperature while maintaining a temperature distribution in which the temperature of the central part of the object is high and the temperature of the peripheral part is low.
  • a power control means for controlling the power supply means so as to increase the temperature to a maximum.
  • the power detection means includes at least one of a current detector, a voltage detector, and a light amount detector.
  • the predetermined temperature is a warp safe temperature at which the thermal expansion coefficient of the object to be processed is sufficiently low and the object to be processed hardly warps.
  • the predetermined temperature is a temperature of 300 ° C. or higher.
  • the power control unit is configured to control the power supply unit so that the temperature of the object to be processed is increased at a temperature increase rate lower than a heat transfer rate from a central portion to a peripheral portion of the object to be processed. It can be controlled.
  • the power control means includes a limiter for limiting an operation amount.
  • the limiter section performs a limiter process on the operation amount with a fixed limiter constant so that the operation amount does not saturate when the temperature of the object to be processed is raised.
  • the limiter unit performs a limiter process on the operation amount with a variable limiter value so that the operation amount does not saturate when the temperature of the object to be processed is raised.
  • the power control means includes a plurality of limiters for limiting an operation amount to each zone heating unit, and each of the limiters includes an operation for any one of the zone heating units.
  • the limiter value used in the limiter process is determined based on a ratio of an operation amount for a saturated zone heating unit to a saturation operation amount of the zone heating unit.
  • FIG. 1 is a sectional view showing an embodiment of the processing apparatus according to the present invention.
  • FIG. 2 is a configuration diagram illustrating a control system of a heating unit that heats the mounting table.
  • FIG. 3 is a schematic diagram showing an example of a change in the temperature distribution when the temperature of the object is raised.
  • FIG. 4 is a block diagram showing an example of a control system of a power control unit of a modified example of the processing apparatus according to the present invention.
  • FIG. 5 is a block diagram illustrating an example of a control system of a power control unit of another modification of the processing apparatus according to the present invention.
  • Figure 6 shows the current detection that detects the output current from each power supply unit as power detection means. It is a figure which shows the state in which the output device was provided.
  • FIG. 7 is a diagram illustrating a state in which a voltage detector that detects an output voltage from each power supply unit is provided as power detection means.
  • FIG. 8 is a diagram showing a state in which light amount detectors are provided corresponding to each zone as power detection means to detect the amount of heat rays from each heat lamp.
  • FIG. 9 is a diagram showing a state of heat transfer when the temperature of the object to be processed is raised by the conventional method and the method of the present invention.
  • FIG. 10 is a plan view showing a heating lamp according to a modification of the heating means.
  • FIG. 11 is a schematic configuration diagram illustrating an example of a conventional heat treatment apparatus.
  • FIG. 12 is a schematic diagram illustrating a warped state of a semiconductor wafer on a mounting table.
  • C FIG. 13 is a block diagram illustrating an example of a control system of a power control unit of another modification of the processing apparatus according to the present invention. It is.
  • FIG. 14 is a block diagram showing an example of a control system of a power control unit of another modification of the processing apparatus according to the present invention.
  • FIG. 15 is a block diagram showing an example of a control system of power control means of another modification of the processing apparatus according to the present invention.
  • FIG. 16 is a graph showing the relationship between the coefficient of thermal expansion of silicon and temperature.
  • FIG. 17 is a diagram showing a state in which a light amount detector is provided as a power detecting means corresponding to each zone to detect the reflected light amount and the like.
  • FIG. 18 is a plan view showing a modification of the heating lamp of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a cross-sectional configuration diagram illustrating a processing apparatus according to the present invention
  • FIG. 2 is a configuration diagram illustrating a control system of a heating unit that heats a mounting table
  • FIG. 3 is a diagram illustrating a temperature distribution when a temperature of an object to be processed is raised. It is a schematic diagram which shows an example of a transition.
  • a single wafer type film forming apparatus will be described as an example of the processing apparatus.
  • the film forming apparatus 12 has, for example, a substantially cylindrical aluminum processing container 14.
  • the ceiling in the processing vessel 14 has a shower head 16 is provided via a sealing member 17 such as an O-ring.
  • a number of gas injection ports 18 are provided on the lower surface of the shower head 16.
  • the processing gas whose flow rate is controlled, for example, various film forming gases, is injected toward the processing space S from the many gas injection ports 18.
  • a cylindrical reflector 20 standing from the bottom of the processing container is provided inside the processing container 14.
  • the reflector 20 is made of aluminum.
  • the holding member 22 is made of a heat-transmissive material, for example, quartz.
  • the mounting table 24 has a thickness of about l mm and is made of, for example, a carbon material or a ceramic such as A1N.
  • a plurality of, for example, three L-shaped lift pins 26 are provided so as to rise upward.
  • the base of each of the lift pins 26 penetrates the reflector 20 so as to be vertically movable outward and is commonly connected to the ring member 28.
  • the ring member 28 can be moved up and down by a push-up rod 30 penetrating the processing vessel bottom. This allows the tip of the pin 26 to pass through the pin hole 32 provided in the mounting table 24 so that the wafer W can be lifted.
  • An extendable bellows 34 is interposed between the lower part of the push-up rod 30 and the lower surface of the container bottom in order to maintain the airtight state inside the processing container 14.
  • the lower end of the push-up rod 30 is connected to the factory 36.
  • An exhaust port 38 is provided at the peripheral edge of the bottom of the processing container 14. This exhaust
  • An exhaust passage 40 connected to a vacuum pump (not shown) is connected to 38.
  • a gate valve 42 that is opened and closed when a wafer is loaded and unloaded is provided on a side wall of the processing container 14.
  • a transparent window made of a heat-transmissive material such as quartz is provided at the bottom of the processing vessel just below the mounting table 24.
  • a box-shaped heating chamber 48 is provided below the transmission window so as to surround the transmission window 44.
  • a heating means 50 composed of, for example, a plurality of heating lamps is attached to a turntable 52 also serving as a reflecting mirror.
  • the turntable 52 is rotated by a rotary motor 54 provided at the bottom of the heating chamber 48 via a rotary shaft.
  • the heat rays emitted from the heating means 50 pass through the transmission window 44 and illuminate the lower surface of the mounting table 24. Thereby, the mounting table 24 can be heated.
  • the heating means 50 is connected to a power supply means 56 for supplying power thereto.
  • the power supply means 56 is controlled by a power control means 58 such as a microcomputer.
  • a temperature measuring means 60 for measuring the temperature of this portion is provided on the back side of the mounting table 24 .
  • the temperature measuring means 60 comprises, for example, a thermocouple.
  • the measured value of the temperature measuring means 60 is supplied to the power control means 58.
  • the mounting table 24 is concentrically divided into a plurality of, for example, three zones 24 A, 24 B, and 24 C.
  • thermocouples 60 A, 60 B, and 60 C as temperature measuring means 60 are provided corresponding to the respective zones 24 A to 24 C.
  • a plurality of heating lamps forming the heating means 50 corresponding to each zone 24 A to 24 C of the mounting table 24 include three heating lamp groups (zone heating sections) 50 A, 5 A. 0 B and 50 C. Therefore, the inner heating lamp 5 OA is the inner zone 24 A, the middle heating lamp 50 B is the middle zone 24 B, and the outer heating lamp 50 C is the outer zone 24. C is mainly irradiated.
  • the power supply means 56 has three power supply units 56 A, 56 B, and 56 C connected to the three lamp groups 50 A to 50 C, respectively. This allows the supply power to be individually controlled for each of the lamp groups 50A to 50C.
  • the power control means 58 when the temperature of the semiconductor wafer W is raised, the power control means 58 has a temperature distribution such that the temperature at the center of the wafer W is high and the temperature at the peripheral portion is low. In this state, the temperature of the wafer W can be raised to a predetermined temperature.
  • the gate pulp 42 provided on the side wall of the processing container 14 is opened, and the wafer W is loaded into the processing container 14 by a transfer arm (not shown).
  • the lift pin 26 is pushed up through the push-up bar 30 and protrudes from the mounting table 24. Jeha W is delivered on a protruding riff pin 26.
  • the wafer W is mounted on the mounting table 24 by lowering the lift pins 26.
  • a predetermined film forming gas as a processing gas is supplied from the processing gas source (not shown) to the shear head section 16 by a predetermined amount.
  • the film forming gas is supplied from the gas injection port 18 into the processing container 14 substantially uniformly.
  • the internal atmosphere is sucked and exhausted from the exhaust port 38, and the inside of the processing container 14 is set to a predetermined degree of vacuum, for example, about 600 Pa.
  • the heating lamp groups 50 A to 50 C of the heating means 50 located below the mounting table 24 are driven while being rotated by the rotary motor 54 to emit heat energy.
  • the radiated heat rays pass through the transmission window 44 and then irradiate the back surface of the mounting table 24 to heat it. Since the mounting table 24 is very thin, about 1 mm as described above, it is quickly heated. Therefore, the wafer W mounted thereon can be quickly heated to a predetermined temperature, for example, about 550 ° C.
  • the supplied film forming gas causes a predetermined chemical reaction, and a thin film is deposited and formed on the entire surface of the wafer.
  • the temperature of the semiconductor wafer W is raised by the conventional method, the entire surface of the wafer is heated. The temperature is raised at a uniform temperature. Therefore, as shown in FIG. 9A, heat moves from the back surface of the wafer to the front surface, and the temperature difference between the front and back surfaces of the wafer increases.
  • the temperature of the semiconductor wafer W is raised by the method of the present invention
  • the temperature of the wafer is raised in such a temperature distribution that the central part of the wafer becomes higher and the peripheral part becomes lower.
  • Fig. 9 (B) there is a component that moves from the back surface of the wafer to the front surface, and a component that moves from the center of the wafer to the periphery, as a result of heat transfer. Become.
  • the temperature of the wafer W it is preferable to raise the temperature of the wafer W to a predetermined temperature with a temperature distribution as shown in FIG.
  • the detection values of the thermocouples 60 A to 60 C provided in the zones 24 A to 24 C of the mounting table 24 are input to the power control means 58. Based on these detected values The power supply units 56 A to 56 C of the power supply means 56 are controlled. Thereby, the power supply amounts of the heating lamp groups 50 A to 50 C for each zone are determined. At this time, the amount of power supply to each of the heating lamp groups 50A to 50C is naturally feedback-controlled so that the temperature distribution of the mounting table 24 as shown in FIG. 3 is maintained.
  • FIG. 3 shows the transition of the temperature distribution at predetermined time intervals.
  • the temperature difference between the central part and the peripheral part of the mounting table 24 is approximately At ° C., and a convex temperature distribution with a high central part temperature is formed. I have. With the temperature distribution maintained, the temperature of the entire wafer rises. Then, when the temperature in the central portion of the wafer substantially reaches the set value of 550 ° C., the operation of raising the temperature of only the peripheral portion is further continued for a certain period of time. Thereby, the entire temperature of wafer W is set to the set value of 550 ° C.
  • the temperature difference A t ° C depends on the diameter of the wafer W and the set value of the target temperature, when the wafer W is 300 mm (12 inch) size, for example, 10 to 30 ° It is about C.
  • the temperature in the central portion of the wafer reaches a safe warp temperature, for example, 300 to 350 ° C. in the above-mentioned temperature raising process, then a uniform temperature distribution (a flat temperature distribution instead of a convex shape) is thereafter obtained. May be used to raise the temperature.
  • a safe warp temperature for example, 300 to 350 ° C. in the above-mentioned temperature raising process.
  • a uniform temperature distribution (a flat temperature distribution instead of a convex shape) is thereafter obtained. May be used to raise the temperature.
  • the thermal expansion coefficient of the material constituting the wafer is lower in the temperature range above the safe warp temperature than in the temperature range around room temperature. Therefore, in the range where the warping deformation stress is higher than the warp safe temperature. This is because it will ease. In this case, the rate of temperature rise of the wafer can be slightly increased.
  • the warpage safe temperature refers to a temperature range in which the wafer W does not warp and deform even when the temperature is raised in a flat
  • the temperature rising rate VI of the semiconductor wafer W is set to be lower than the heat transfer rate V2 of heat from the center to the peripheral edge of the wafer. It is. If the heating rate VI is faster than the heat transfer rate V2, the heat transfer component from the back surface to the front surface of the wafer W increases. Therefore, when the difference in thermal expansion between the front surface and the back surface of the wafer W increases, the wafer may be warped. However Therefore, as in the present embodiment, the temperature was raised while maintaining the temperature difference between the central portion and the peripheral portion of the wafer W at about At ° C, and the heating rate V 1 was higher than the heat transfer rate V 2. If it is set to be slow, it is possible to raise the temperature without causing warpage of the wafer and without lowering the throughput.
  • the value of 1 is in the range of about 10 ° C. to 30 ° C.
  • the temperature rising rate VI of the wafer W can be set to, for example, about 10 ° C./sec, as a rate at which the wafer does not warp and reduce the throughput.
  • the pressure in the processing container 14 when the temperature of the wafer is raised is higher than the process pressure as described above in order to maintain relatively good thermal conductivity between the wafer W and the mounting table 24. It is set to about 600 Pa, but is not limited to this.
  • the heating lamp group is individually provided for each zone of the mounting table 24, but is not limited to this. If a desired temperature distribution can be obtained, it is not necessary to provide a heating lamp for each zone, and the number of heating lamps provided may be smaller than the number of zones. For example, only one heating lamp may be provided.
  • thermocouples 60 A to 60 C are provided for each of the zones 24 A to 24 C of the mounting table 24, but the present invention is not limited to this.
  • only two thermocouples can be provided to detect a temperature distribution.
  • thermocouples 60 A and 60 C may be provided in the inner zone 24 A and the outer zone 24 C, respectively.
  • an intermediate value of the detection values of the two thermocouples 60A and 60C can be used as the temperature of the middle zone 24B for use in temperature control.
  • FIG. 4 is a block diagram showing an example of a control system of power control means 58 controlled based on such a method.
  • a thermocouple 60 A is provided only in the inner peripheral zone 24 A, and no thermocouple is provided in the other zones 24 B and 24 C.
  • the comparison unit 62 compares the set temperature value with the measured value from the thermocouple 6 OA. Compare and output the deviation.
  • the control unit 64 determines a control amount based on the deviation from the comparison unit 62. Then, one manipulated variable output from the control unit 64 is multiplied by a variable gain constant K1, K2, ⁇ 3 corresponding to each zone. Each result of the multiplication is output to each of the power supply units 56 ⁇ to 56C.
  • the gain K1 corresponding to the inner circumferential zone 24 ° is set to “1”
  • the other gain constants K2 and ⁇ 3 are set so as to form the temperature distribution as shown in FIG. Are set in advance to numerical values less than or equal to "1".
  • the other gain constants K2 and ⁇ 3 also sequentially change toward "1". As a result, the temperature of the entire surface of the wafer can be finally maintained at the set temperature.
  • a limiter constant LC such as a positive number smaller than “1”, for example, “0.7”, for the output manipulated variable resulting from the multiplication by each of the gain constants Kl, ⁇ 2, ⁇ 3, is used.
  • a common multiplication may be set so that the manipulated variable does not saturate when the wafer is heated. This is effective to prevent the output of the amplifiers of the power supply units 56 ⁇ to 56C from being saturated.
  • the rate K 1 may be used as the limit value LC (variable) and applied to the manipulated variables for the other heating lamps 50B and 50C.
  • each zone heating section heating lamp
  • the power may be controlled based on each detection value of the power detection means.
  • FIG. 6 shows a case where current detectors 66A, 66B and 66C for detecting output currents from the respective power supply units 56A to 56C are provided as power detection means.
  • FIG. 7 shows a case where voltage detectors 68A, 68B, 68C for detecting output voltages from the respective power supply units 56A to 56C are provided as power detection means. Then, based on the detected output current or output voltage, the power control means 58 controls the power supplied to each of the heating lamps 50A to 50C. Further, as shown in FIG. 8, light quantity detectors 70 A, 70 B having optical fibers or the like extended to a mounting table corresponding to each of the zones 24 A to 24 C as a part detection means.
  • the light intensity of the heat rays from each of the heating lamps 50 A to 50 C can be detected.
  • the light quantity detectors 70 A to 70 C detect the reflected light quantity from each zone 24 A to 24 C, as shown in FIG. Or infrared light emitted from the device.
  • the power control means 58 controls the power supplied to each of the heating lamps 50A to 50C based on the detection values of the light quantity detectors 70A to 70C.
  • the wafer is heated by maintaining the temperature difference between the central portion and the peripheral portion of the wafer W at about ⁇ t ° C. It is possible to raise the temperature without warping and without lowering the throughput.
  • thermocouple 60 A corresponding to the inner peripheral zone 24 A is provided.
  • the electric power supplied to each of the zones 24A to 24C is controlled in order to realize the temperature distribution shown in FIG.
  • the pressure in the processing container 14 may be reduced to a pressure equal to or lower than the viscous flow when the temperature of the wafer is raised.
  • the pressure below the viscous flow refers to the pressure below 133 Pa (lTorr), which is the pressure in the molecular flow region.
  • a heating lamp composed of a point light source is used as the heating means, but the heating means is not limited to this.
  • winding a filament or the like into a coil A rotating line light source lamp can be used.
  • a plurality of, for example, four, linear heating lamps 92 in which a filament 90 is wound in a coil shape may be radially arranged.
  • the filament 90 is wound so as to form a high-density portion 92A, a medium-density portion 92B, and a low-density portion 92C in this order.
  • a plurality of, for example, four, linear heating lamps 92, 93 in which a filament 90 is wound in a coil shape may be arranged radially.
  • each linear heating lamp 92 is arranged so that its high-density portion 92 A is located on the center side of the turntable 52, while each linear heating lamp 93 is arranged to its low-density portion 92.
  • C is located on the center side of the turntable 52.
  • the mounting table 24 is divided into three zones, but the number of divisions may be any number equal to or greater than two. Further, in the above embodiment, the mounting table 24 is divided into concentric zones, but is not limited to this.
  • the mounting table can be divided into, for example, a plurality of circular spot-shaped zones.
  • the heating means is not limited to the heating lamp, and may be a resistance heating heater which can be embedded in the mounting table.
  • the present invention can be applied not only to a film forming apparatus but also to an etching process, an oxidation diffusion process, an anneal reforming process, and the like.
  • a semiconductor wafer has been described as an example of an object to be processed, but the present invention is not limited to this, and may be applied to an LCD substrate, a glass substrate, or the like.
  • FIG. 13 is a block diagram showing an example of a control system of power control means 58 of the present embodiment.
  • the power control means 58 shown in FIG. 13 is provided with limiters LIM1, LIM2 and LIM3 in order to limit the operation amount of each zone.
  • limiters LIM1, LIM2 and LIM3 in order to limit the operation amount of each zone.
  • the comparison sections 62A, 62B, and 62C corresponding to each zone compare the set temperature value of each zone with the measured value from each thermocouple 60A to 60C. Outputs the deviation.
  • the control unit 64 performs control calculations based on the deviations from the comparison units 62A to 62C to obtain the manipulated variables Ul, U2, and U3. Then, each of the manipulated variables U1 to U3 output from the control unit 64 is multiplied by a variable gain constant Kl, ⁇ 2, ⁇ ⁇ 3 corresponding to each zone.
  • each of the limiters L IM1 to L IM3 operates as a fixed limiter.
  • the gain K1 corresponding to the inner peripheral zone 24A is set to "1"
  • the other gain constants K2 and ⁇ 3 become the temperature distribution as shown in FIG.
  • Each value is preset to a value less than "1".
  • the other gain constants K2 and ⁇ 3 also sequentially change toward “1”. Thereby, the temperature of the entire surface of the wafer can be finally maintained at the set temperature.
  • LC1 to LC3 of "1" or less are set respectively.
  • C2 and C3 are averaging constants determined in advance so that the balance of the power in the entire heating unit is uniform. That is, Cj (j is a positive integer) sets the ratio of the manipulated variable of each channel in advance so that the temperature distribution shown in Fig. 3 can be maintained even when the manipulated variable of each channel is saturated. It is a constant (averaging constant) determined for each channel.
  • the saturation of the manipulated variable is prevented from occurring, and the wafer is minimized without disturbing the temperature distribution.
  • the temperature can be raised quickly.
  • thermocouples 60 A to 60 C are provided for each of the zones 24 A to 24 C of the mounting table 24, but the invention is not limited to this.
  • only two thermocouples can be provided to detect a temperature distribution.
  • thermocouples 60A and 60C may be provided in the inner zone 24A and the outer zone 24C, respectively.
  • an intermediate value of the detection values of the two thermocouples 60A and 60C may be used.
  • thermocouple 6 OA when only one thermocouple is provided in a certain zone, power can be supplied to each zone at a predetermined ratio so as to generate a temperature distribution as shown in FIG.
  • FIG. 14 shows a block diagram when such control is performed, and shows a case where a thermocouple 6 OA is provided only in the inner peripheral zone 24A.
  • the control unit 64 also determines the operation amounts U 2 and U 3 of the middle zone and the outer zone based on the detected value of the thermocouple 6 OA and a predetermined power ratio. .
  • the limiters L IM1 to L IM3 are always limited by the fixed limit LC 1 to LC 3 with respect to the operation amount, but the present invention is not limited to this. .
  • the variable control value is multiplied by the limit value of the other zone in response to the saturation. You may limit the amount No. That is, the limiter unit may operate as a variable limiter instead of a fixed limiter. As a result, even when the operation amount is saturated, the temperature of the wafer can be raised while maintaining the temperature distribution as shown in FIG.
  • FIG. 15 is a block diagram showing an example of a control system of the power control means 58 for performing such control.
  • the control unit 64 in the figure calculates the operation amounts of the three channels corresponding to each zone.
  • the channel whose operation amount is saturated is assumed to be the “i” channel
  • the input operation amount of LIM i based on the control calculation is V i
  • the input operation amount when the power supply unit 56 i is saturated is Wi sus .
  • the ratio Li of the two manipulated variables is defined as in the following equation.
  • the limit value LCj of the other non-saturated channel is obtained as shown in the following equation, and the limit value LCj of the other channel other than the saturated channel is obtained. Sent as a value.
  • C j is an averaging constant predetermined so that the power of each channel is averaged.
  • each limit value is as shown in the table below.
  • the concept of the limiter has been described as a concept of clamping the operation amount Wj, but the present invention is not limited to this.
  • a constant limiter constant in all zones and to always multiply the input manipulated variable V j by this limiter constant so that the output is not saturated.
  • variable limiter when the operation amount is saturated in any zone, the operation amount can be limited immediately without waiting for the operation amount to be clamped in other zones.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

明 細 書 枚葉式の処理装置 技 術 分 野
本発明は、 半導体ウェハ等に対して、 1枚ずつ、 成膜ゃァニール等の熱処理を 施すことができる熱処理装置に関する。 背 景 技 術
一般に、 所望の半導体集積回路を製造するには、 半導体ウェハ等の基板に、 成 膜処理、 エッチング処理、 酸化拡散処理、 ァニール改質処理等の各種の熱処理が 繰り返し行われる。
このような熱処理を行うための枚葉式の熱処理装置の一例を説明する。 図 1 1 は、 従来の熱処理装置の一例を示す概略構成図、 図 1 2は、 載置台上における半 導体ウェハの反り返り状態を示す模式図である。
図 1 1に示す熱処理装置は、 真空引き可能になされた処理容器 2を有している c 処理容器 2の内部に、 半導体ウェハ Wを載置するための載置台 4が設けられてい る。 処理容器 2の天井部には、 処理ガスを導入するためのシャヮ一へヅド 6が設 けられている。 そして、 処理容器 2の底部の下方には、 加熱手段としての複数の 加熱ランプ 8が設けられている。 この加熱ランプ 8から放射される熱線が、 処理 容器 2の底部に設けられた例えば石英製の透過窓 1 0を介して載置台 4に照射さ れる。 これにより、 ウェハ Wが加熱昇温され、 所定の温度にて所望の熱処理が行
発 明 の 要 旨
ところで、 半導体ウェハの処理においては、 生産性すなわちスループットを向 上させるために、 ウェハ温度を所定のプロセス温度までできるだけ高速で昇温さ せるようになつている。 直径が比較的小さな例えば 6インチサイズのウェハの場 合には、 急速昇温を行ってもそれ程問題は生じなかった。 しかし、 ウェハサイズ が 8インチ、 1 2インチへと大きくなるに従って、 図 1 2に示すように、 昇温時 に半導体ウェハ W自体の周縁部が上方へ反り返って変形してしまう、 といった問 題があった。 この反り返りは、 載置台 4と接触するウェハ裏面側の熱膨張量がゥ ェハ表面側のそれよりも大きくなることに起因している。 このようなウェハの反 り返りの現象は、 1 2インチ (3 0 c m) のウェハの場合には特に大きく、 プロ セス温度にもよるが周縁部の反り返り高さ Hが 3 mm程度まで達する場合もあつ た。
このように昇温時にウェハが反り返る理由は、 図 1 6の S iウェハの熱膨張率 のグラフに示すように、 室温から例えば 3 2 7 °C程度までの熱膨張率がそれ以上 の温度領域における熱膨張率よりもかなり大きいことによる。
ウェハの反り返りが生じると、 ウェハの搬送時に搬送エラーが生じ得る。 或い は、 この状態で薄膜を堆積させると、 膜ストレスが大きくなつて膜剥がれが生じ 易くなる。
本発明は、 以上のような問題点に着目し、 これを有効に解決すべく創案された ものである。 本発明の目的は、 スループットの低下を生ずることなく、 被処理体 の昇温時に被処理体の反り返り変形が発生することを防止することが可能な熱処 理方法及び熱処理装置を提供することにある。
本発明は、 真空引き可能な処理容器内に設置された載置台に被処理体を載置す る載置工程と、 前記被処理体を所定の温度にまで昇温する昇温工程と、 を備えた 熱処理方法であって、 前記昇温工程の少なくとも一部において、 前記被処理体は、 前記被処理体の中央部の温度が高くて周縁部の温度が低いという温度分布が維持 された状態で、 昇温されるようになっていることを特徴とする熱処理方法である 本発明によれば、 被処理体の中央部の温度が高くて周縁部の温度が低いという 温度分布が維持された状態で被処理体が昇温されるので、 被処理体に反り返り変 形が発生することが防止され得る。 従って、 薄膜の剥離や被処理体の搬送ミスの 発生を防止することが可能となる。
好ましくは、 前記昇温工程の少なくとも一部において、 前記被処理体は、 前記 被処理体の中央部から周縁部への熱移動速度よりも遅い昇温速度で、 昇温される ようになつている。 また、 好ましくは、 前記所定の温度は、 前記被処理体の熱膨張率が十分に低く なつて前記被処理体の反りが発生し難くなる反り安全温度である。
また、 本発明は、 真空引き可能な処理容器内に設置された載置台に被処理体を 載置する載置工程と、 前記被処理体を所定の温度にまで昇温する昇温工程と、 を 備えた熱処理方法において、 前記昇温工程の少なくとも一部において、 前記処理 容器内の圧力は、 粘性流以下の圧力に設定されていることを特徴とする熱処理方 法である。
本発明によれば、 昇温時に処理容器内の圧力が粘性流以下の圧力に設定される ため、 輻射が熱伝達の主体となり、 載置台から被処理体への熱移動の速度を遅く することができる。 このため、 被処理体に反り返り変形が発生することが防止さ れ得る。 従って、 薄膜の剥離や被処理体の搬送ミスの発生を防止することが可能 となる。
好ましくは、 前記粘性流以下の圧力は、 1 3 3 P a ( l T o r r ) 以下の圧力 である。
また、 好ましくは、 前記所定の温度は、 前記被処理体の熱膨張率が十分に低く なつて前記被処理体の反りが発生し難くなる反り安全温度である。
また、 本発明は、 真空引き可能な処理容器と、 前記処理容器内に設置され、 被 処理体が載置され得る載置台と、 前記被処理体を同心円状に区分した各ゾーンを 個別に加熱する複数のゾーン加熱部と、 各ゾーン加熱部へ電力を供給する電力供 給手段と、 前記被処理体の各ゾーンの少なくとも 1つに対応して設けられた温度 測定手段と、 前記温度測定手段の検出値に基づいて、 前記被処理体の中央部の温 度が高くて周縁部の温度が低いという温度分布を維持した状態で前記被処理体を 所定の温度にまで昇温するように、 前記電力供給手段を制御する電力制御手段と、 を備えたことを特徴とする熱処理装置である。
あるいは、 本発明は、 真空引き可能な処理容器と、 前記処理容器内に設置され、 被処理体が載置され得る載置台と、 前記被処理体を所定の温度分布が形成される ように加熱する加熱部と、 前記加熱部へ電力を供給する電力供給手段と、 前記被 処理体の中央部の温度が高くて周縁部の温度が低いという温度分布を維持した状 態で前記被処理体を所定の温度にまで昇温するように、 前記電力供給手段を制御 する電力制御手段と、 を備えたことを特徴とする熱処理装置である。
あるいは、 本発明は、 真空引き可能な処理容器と、 前記処理容器内に設置され、 被処理体が載置され得る載置台と、 前記被処理体を同心円状の温度分布が形成さ れるように加熱する加熱部と、 前記加熱部へ電力を供給する電力供給手段と、 前 記被処理体の少なくとも 1箇所に対応して設けられた温度測定手段と、 前記温度 測定手段の検出値に基づいて、 前記被処理体の中央部の温度が高くて周縁部の温 度が低いという温度分布を維持した状態で前記被処理体を所定の温度にまで昇温 するように、 前記電力供給手段を制御する電力制御手段と、 を備えたことを特徴 とする熱処理装置である。
あるいは、 本発明は、 真空引き可能な処理容器と、 前記処理容器内に設置され、 被処理体が載置され得る載置台と、 前記被処理体を同心円状に区分した各ゾーン を個別に加熱する複数のゾーン加熱部と、 各ゾーン加熱部へ電力を供給する電力 供給手段と、 前記電力供給手段による各ゾーン加熱部へ供給されるパワー、 また は、 各ゾーン加熱部から放出されるパワー、 を検出するパワー検出手段と、 前記 パワー検出手段の検出値に基づいて、 前記被処理体の中央部の温度が高くて周縁 部の温度が低いという温度分布を維持した状態で前記被処理体を所定の温度にま で昇温するように、 前記電力供給手段を制御する電力制御手段と、. を備えたこと を特徴とする熱処理装置である。
あるいは、 本発明は、 真空引き可能な処理容器と、 前記処理容器内に設置され、 被処理体が載置され得る載置台と、 前記被処理体を同心円状の温度分布が形成さ れるように加熱する加熱部と、 前記加熱部へ電力を供給する電力供給手段と、 前 記電力供給手段による前記加熱部へ供給されるパワー、 または二 前記加熱部から 放出されるパワー、 を検出するパワー検出手段と、 前記パワー検出手段の検出値 に基づいて、 前記被処理体の中央部の温度が高くて周縁部の温度が低いという温 度分布を維持した状態で前記被処理体を所定の温度にまで昇温するように、 前記 電力供給手段を制御する電力制御手段と、 を備えたことを特徴とする熱処理装置 である。
好ましくは、 前記パワー検出手段は、 電流検出器、 電圧検出器及び光量検出器 のうちの少なくともいずれかを含む。 また、 好ましくは、 前記所定の温度は、 前記被処理体の熱膨張率が十分に低く なって前記被処理体の反りが発生し難くなる反り安全温度である。 特に好ましく は、 前記所定の温度は、 3 0 0 °C以上の温度である。
また、 好ましくは、 前記電力制御手段は、 前記被処理体が前記被処理体の中央 部から周縁部への熱移動速度よりも遅い昇温速度で昇温されるように、 前記電力 供給手段を制御可能となっている。
また、 好ましくは、 前記電力制御手段は、 操作量を制限するためのリミッタ部 を含んでいる。
この場合、 更に好ましくは、 前記リミッタ部は、 前記被処理体の昇温時に、 操 作量が飽和しないように、 固定的なリミッタ定数で、 前記操作量にリミッタ処理 を施すようになつている。 あるいは、 前記リミッタ部は、 前記被処理体の昇温時 に、 操作量が飽和しないように、 可変的なリミッタ値で、 前記操作量にリミッタ 処理を施すようになつている。
また、 好ましくは、 前記電力制御手段は、 各ゾーン加熱部への操作量を制限す るための複数のリミッタ部を含んでおり、 各リミヅ夕部は、 いずれかのゾーン加 熱部への操作量が飽和した時に、 他のゾーン加熱部への操作量にリミッ夕処理を 施すようになつている。 この場合、 更に好ましくは、 前記リミッタ処理において 用いられるリミッタ値は、 飽和したゾーン加熱部に対する操作量と、 当該ゾーン 加熱部の飽和操作量と、 の比に基づいて決定されるようになっている。 図面の簡単な説明
図 1は、 本発明に係る処理装置の一実施例を示す断面図である。
図 2は、 載置台を加熱する加熱手段の制御系を示す構成図である。
図 3は、 被処理体の昇温時の温度分布の変移の一例を示す模式図である。 図 4は、 本発明に係る処理装置の変形例の電力制御手段の制御系の一例を示す プロック図である。
図 5は、 本発明に係る処理装置の他の変形例の電力制御手段の制御系の一例を 示すプロック図である。
図 6は、 パワー検出手段として各電力供給部からの出力電流を検出する電流検 出器を設けた状態を示す図である。
図 7は、 パワー検出手段として各電力供給部からの出力電圧を検出する電圧検 出器を設けた状態を示す図である。
図 8は、 パワー検出手段として各ゾーンに対応させて光量検出器を設けて各カロ 熱ランプからの熱線の光量を検出するようにした状態を示す図。
図 9は、 従来方法と本発明方法とによる被処理体の昇温時の熱移動の状態を示 す図である。
図 1 0は、 加熱手段の変形例の加熱ランプを示す平面図である。
図 1 1は、 従来の熱処理装置の一例を示す概略構成図である。
図 1 2は、 載置台上における半導体ウェハの反り返り状態を示す模式図である c 図 1 3は、 本発明に係る処理装置の他の変形例の電力制御手段の制御系の一例 を示すブロック図である。
図 1 4は、 本発明に係る処理装置の他の変形例の電力制御手段の制御系の一例 を示すプロック図である。
図 1 5は、 本発明に係る処理装置の他の変形例の電力制御手段の制御系の一例 を示すプロック図である。
図 1 6は、 シリコンの熱膨張率と温度との関係を示すグラフである。
図 1 7は、 パワー検出手段として各ゾーンに対応させて光量検出器を設けて反 射光量等を検出するようにした状態を示す図。
図 1 8は、 図 1 0の加熱ランプの変形例を示す平面図である。 発明を実施するための最良の形態
以下に、 本発明に係る処理装置の一実施例を添付図面に基づいて詳述する。 図 1は、 本発明に係る処理装置を示す断面構成図、 図 2は、 載置台を加熱する 加熱手段の制御系を示す構成図、 図 3は、 被処理体の昇温時の温度分布の変移の 一例を示す模式図である。 ここでは、 処理装置として枚葉式の成膜装置を例にと つて説明する。
図 1に示すように、 成膜装置 1 2は、 例えば略円筒形状のアルミニウム製の処 理容器 1 4を有している。 この処理容器 1 4内の天井部には、 シャワーヘッド部 1 6が 0リング等のシール部材 1 7を介して設けられている。 シャワーへヅド部 1 6の下面には多数のガス噴射口 1 8が設けられている。 これにより、 流量制御 された処理ガス例えば各種の成膜ガスが、 多数のガス噴射口 1 8から処理空間 S に向けて噴射されるようになっている。
処理容器 1 4内には、 処理容器底部より起立する円筒状のリフレクタ 2 0が設 けられている。 当該リフレクタ 2 0上に、 例えば L字状の 3本の保持部材 2 2 (図 1では 2本のみ記す) を介して、 被処理体としての半導体ウェハ Wを載置す るための載置台 2 4が設けられている。 リフレクタ 2 0は、 アルミニウムで構成 されている。 保持部材 2 2は、 熱線透過性の材料、 例えば石英により構成されて いる。 また、 載置台 2 4は、 厚さ l mm程度であって、 例えばカーボン素材ある いは A 1 Nなどのセラミヅク等により構成されている。
載置台 2 4の下方には、 複数本例えば 3本の L字状のリフ夕ピン 2 6 (図示例 では 2本のみ記す) が上方へ起立するように設けられている。 各リフ夕ピン 2 6 の基部は、 リフレクタ 2 0を外側に上下移動可能に貫通して、 リング部材 2 8に 共通に接続されている。 リング部材 2 8は、 処理容器底部を貫通する押し上げ棒 3 0により上下動可能となっている。 これにより、 上記リフ夕.ピン 2 6の先端が、 載置台 2 4に設けられた貫通リフ夕ピン穴 3 2に揷通されて、 ウェハ Wを持ち上 げ得るようになっている。
押し上げ棒 3 0の下方部と容器底部の下面との間には、 処理容器 1 4内部の気 密状態を保持するために、 伸縮可能なベローズ 3 4が介設されている。 押し上げ 棒 3 0の下端は、 ァクチユエ一夕 3 6に接続されている。
処理容器 1 4の底部の周縁部には、 排気口 3 8が設けられている。 この排気口
3 8には、 図示しない真空ポンプに接続された排気通路 4 0が接続されている。 これにより、 処理容器 1 4内が所定の真空度に維持され得るようになつている。 また、 処理容器 1 4の側壁には、 ウェハを搬出入する際に開閉されるゲートバル ブ 4 2が設けられている。
載置台 2 4の直下の処理容器底部には、 石英等の熱線透過材料よりなる透過窓
4 4が、 0リング等のシール部材 4 6を介して気密に設けられている。 透過窓の 下方には、 当該透過窓 4 4を囲むように、 箱状の加熱室 4 8が設けられている。 この加熱室 4 8内では、 例えば複数の加熱ランプよりなる加熱手段 5 0が、 反射 鏡も兼ねる回転台 5 2に取り付けられている。 この回転台 5 2は、 回転軸を介し て、 加熱室 4 8の底部に設けられた回転モー夕 5 4により回転される。 この加熱 手段 5 0より放出された熱線は、 透過窓 4 4を透過して、 載置台 2 4の下面を照 射する。 これにより、 載置台 2 4が加熱され得るようになつている。
そして、 上記加熱手段 5 0は、 これに電力を供給するための電力供給手段 5 6 に接続されている。 この電力供給手段 5 6は、 例えばマイクロコンピュー夕等よ りなる電力制御手段 5 8により制御される。
一方、 図 1及び図 2に示すように、 上記載置台 2 4の裏面側には、 この部分の 温度を測定する温度測定手段 6 0が設けられている。 温度測定手段 6 0は、 例え ば熱電対よりなる。 温度測定手段 6 0の測定値は、 上記電力制御手段 5 8へ供給 されるようになつている。
ここでは、 載置台 2 4は、 同心円状に複数例えば 3つのゾーン 2 4 A、 2 4 B、 2 4 Cに区分されている。 そして、 上記各ゾーン 2 4 A〜 2 4 Cに対応させて、 温度測定手段 6 0としての熱電対 6 0 A、 6 0 B , 6 0 Cがそれそれ設置されて いる。
また、 載置台 2 4の各ゾーン 2 4 A〜 2 4 Cに対応させて、 加熱手段 5 0を形 成する複数の加熱ランプが、 3つの加熱ランプ群 (ゾーン加熱部) 5 0 A、 5 0 B、 5 0 Cに区分されている。 従って、 内周の加熱ランプ 5 O Aは内周のゾーン 2 4 Aを、 中周の加熱ランプ 5 0 Bは中周のゾーン 2 4 Bを、 外周の加熱ランプ 5 0 Cは外周のゾーン 2 4 Cを、 それそれ主として照射するようになっている。 そして、 電力供給手段 5 6は、 上記 3つの各ランプ群 5 0 A〜5 0 Cに接続され る 3つの電力供給部 5 6 A、 5 6 B、 5 6 Cを有している。 これにより、 供給電 力が各ランプ群 5 0 A〜5 0 C毎に個別に制御され得るようになつている。 そし て、 本発明の特徴として、 半導体ウェハ Wの昇温時には、 電力制御手段 5 8によ つて、 ウェハ Wの中央部の温度が高くて周縁部の温度が低くなるような温度分布 を持たせた状態でウェハ Wを所定の温度まで昇温し得るようになつている。
次に、 以上のように構成された装置を用いて行われる本発明の方法について説 明する。 まず、 処理容器 1 4の側壁に設けられたゲートパルプ 4 2が開いて、 図示しな い搬送アームにより処理容器 1 4内にウェハ Wが搬入される。 一方、 リフ夕ピン 2 6が押し上げ棒 3 0を介して押し上げられて、 載置台 2 4から突出する。 ゥェ ハ Wは、 突出するリフ夕ピン 2 6上に受け渡される。 そして、 リフ夕ピン 2 6が 降下することによって、 ウェハ Wが載置台 2 4上に載置される。
次に、 図示しない処理ガス源から、 処理ガスとしての所定の成膜ガスが、 シャ ヮ一へッド部 1 6へ所定量ずつ供給される。 成膜ガスは、 ガス噴射口 1 8から処 理容器 1 4内へ略均等に供給される。 これと同時に、 排気口 3 8から内部雰囲気 が吸引排気されて、 処理容器 1 4内が所定の真空度、 例えば 6 0 0 P a程度に設 定される。 さらに、 載置台 2 4の下方に位置する加熱手段 5 0の各加熱ランプ群 5 0 A~ 5 0 Cが、 回転モ一夕 5 4によって回転されながら駆動し、 熱エネルギ を放射する。
放射された熱線は、 透過窓 4 4を透過した後、 載置台 2 4の裏面を照射してこ れを加熱する。 この載置台 2 4は、 前述のように l mm程度と非常に薄いことか らヽ 迅速に加熱される。 従って、 この上に載置してあるウェハ Wも、 迅速に所定 の温度、 例えば 5 5 0 °C程度、 まで加熱され得る。 供給された成膜ガスは、 所定 の化学反応を生じて、 薄膜がウェハ表面の全面に堆積して形成されることになる ここで、 従来方法により半導体ウェハ Wを昇温する時には、 ウェハ全面が均一 な温度で昇温される。 このため、 図 9 (A) で示すように、 熱がウェハ裏面から 表面へと移動して、 ウェハ表裏面間の温度差が大きくなつてしまう。
一方、 本発明方法により半導体ウェハ Wを昇温する時には、 ウェハの中央部が 高くなつて周縁部で低くなるような温度分布でウェハが昇温される。 このため、 図 9 ( B ) に示すように、 熱の移動に関して、 ウェハ裏面から表面に向かう成分 と、 ウェハ中心から周縁に向かう成分とができ、 結果としてウェハ表裏面間の温 度差が小さくなる。
さらに詳しくは、 本発明方法においては、 図 3に示すような温度分布で、 ゥェ ハ Wを所定の温度まで昇温することが好ましい。
すなわち、 載 ¾台 2 4の各ゾーン 2 4 A〜2 4 C每に設けられた各熱電対 6 0 A〜6 0 Cの検出値が、 電力制御手段 5 8へ入力される。 これらの検出値に基づ いて、 電力供給手段 5 6の各電力供給部 5 6 A〜5 6 Cが制御される。 これによ り、 各ゾーン毎の加熱ランプ群 5 0 A〜5 0 Cの電力供給量が決定される。 この 時、 図 3に示すような載置台 2 4の温度分布が維持されるように、 各加熱ランプ 群 5 0 A〜5 0 Cへの電力供給量は当然のこととしてフィードバック制御されて いる。
図 3においては、 時間の経過はグラフ中の下方より上方へ向かって表されてい る。 図 3には、 所定の時間間隔毎の温度分布の推移が示されている。 図 3に示す ように、 載置台 2 4の中央部と周縁部との間の温度差は、 略 A t °Cとなっていて、 中央部の温度が高い凸状の温度分布が形成されている。 この温度分布状態が維持 されたまま、 ウェハ全体の温度が上昇して行く。 そして、 ウェハ中央部の温度が 設定値である 5 5 0 °Cに略到達したならば、 周縁部のみの昇温操作がある程度の 時間だけ更に続行される。 これにより、 ウェハ Wの全体の温度が設定値である 5 5 0 °Cに設定される。
この場合、 上記温度差 A t °Cは、 ウェハ Wの直径や目標温度の設定値にもよる が、 ウェハ Wが 3 0 0 mm ( 1 2ィンチ) サイズの時は例えば 1 0〜 3 0 °C程度 である。
また、 上記昇温過程において、 ウェハ中央部の温度が反り安全温度、 例えば 3 0 0〜3 5 0 °Cに達したならば、 その後は均一な温度分布 (凸状でなくフラヅト な温度分布) で昇温しても良い。 この理由は、 この反り安全温度以上の温度領域 では、 室温程度の温度領域と比較して、 ウェハの構成材料の熱膨張率が小さく、 そのために、 反り返り変形の応力が反り安全温度以上の領域では緩和するからで ある。 この場合には、 ウェハの昇温速度を少し高めることができる。 ここで、 反 り安全温度とは、 フラットな温度分布で昇温してもウェハ Wに反り返り変形が生 じない温度帯域をいう。
また、 ここで重要な点は、 図 3に示すように、 半導体ウェハ Wの昇温速度 V I を、 ウェハの中央部から周縁部への熱の熱移動速度 V 2よりも遅く設定している 点である。 昇温速度 V Iが熱移動速度 V 2よりも早過ぎると、 ウェハ Wの裏面か ら表面へ向かう熱の移動成分が増加する。 従って、 ウェハ Wの表面と裏面との間 の熱膨張差が大きくなつて、 ウェハに反り返りの変形が発生し得る。 しかしなが ら、 本実施例のように、 ウェハ Wの中央部と周縁部との間の温度差を A t °C程度 に維持したまま昇温し、 昇温速度 V 1を熱移動速度 V 2よりも遅くなるように設 定すれば、 ウェハに反り返り変形が生ずることなく、 しかもスループットを低下 させることもなく、 これを昇温することが可能である。
ここで、 載置台の熱応力による破損防止及びウェハの反り返り変形防止という 見地から、 厶1: は1 0 °C〜3 0 °C程度の範囲であることが望ましい。
この場合、 ウェハ Wの昇温速度 V Iは、 ウェハに反り返り変形が生ぜずしかも それ程スループヅトを低下させない速度として、 例えば 1 0 °C/ s e c程度に設 定され得る。
また、 ウェハ昇温時の処理容器 1 4内の圧力は、 ウェハ Wと載置台 2 4との間 の熱伝導性を比較的良好に維持するために、 前述のようにプロセス圧力よりも高 い 6 0 0 P a程度に設定されているが、 これに限定されない。
また、 上記実施例では、 載置台 2 4の各ゾーン毎に個別に加熱ランプ群が設け られているが、 これに限定されない。 所望の温度分布が得られるならば、 ゾーン 毎に加熱ランプを設ける必要はなく、 設けられる加熱ランプの数はゾーン数より 少なくてもよい。 例えば 1個の加熱ランプのみが設けられても良い。
また、 上記実施例では、 載置台 2 4の各ゾーン 2 4 A〜2 4 C毎に熱電対 6 0 A〜6 0 Cが設けられているが、 これに限定されない。例えば、 温度分布を検出 するために、 2つのみの熱電対が設けられ得る。 例えば内周ゾーン 2 4 Aと外周 ゾーン 2 4 Cとに、 それそれ熱電対 6 0 A、 6 0 Cが設けられ得る。 この場合、 温度制御に用いるための中周ゾーン 2 4 Bの温度として、 上記 2つの熱電対 6 0 A、 6 0 Cによる各検出値の例えば中間値が利用され得る。
また、 あるゾーンに熱電対が 1つだけ設けられる場合、 他のゾーンに関しては、 図 3に示したような温度分布を生ずるように、 予め定めた比率で各ゾーンに電力 が投入され得る。 図 4は、 このような方法に基づいて制御される電力制御手段 5 8の制御系の一例を示すプロック図である。 この場合、 例えば内周ゾーン 2 4 A のみに熱電対 6 0 Aが設けられ、 他のゾーン 2 4 B、 2 4 Cには熱電対が設けら れていない。
図 4において、 比較部 6 2が、 設定温度の値と熱電対 6 O Aからの計測値とを 比較して、 偏差を出力する。 制御部 64が、 上記比較部 62からの偏差に基づい て、 制御量を決定する。 そして、 制御部 64から出力された 1つの操作量に対し て、 各ゾーン毎に対応して可変のゲイン定数 K 1、 K2、 Κ 3が乗算される。 乗 算の各結果が、 各電力供給部 56 Α〜 56 Cへそれそれ出力される。 ここで、 例 えば内周ゾーン 24 Αに対応するゲイン K1が" 1" と設定されると、 他のゲイ ン定数 K2、 Κ3は、 前述した図 3に示すような温度分布を形成するように、 そ れそれ" 1 "以下の数値に予め設定される。 そして、 熱電対 6 OAの検出値が目 標値である設定温度に達したならば、 他のゲイン定数 K2、 Κ3も順次" 1" に 向かって変化して行く。 これにより、 最終的に、 ウェハ全面の温度が設定温度に 維持され得る。
また、 図 5に示すように、 各ゲイン定数 Kl、 Κ2、 Κ 3による乗算結果の出 力操作量に対して、 " 1"より小さい正数、 例えば" 0. 7"等のリミッタ定数 LCを共通に乗算して (固定的) 、 ウェハ昇温時に操作量が飽和しないように設 定してもよい。 これは、 電力供給部 56 Α〜56 Cの増幅器の出力が飽和するこ とを防止するために有効である。 あるいは、 図 5に示す場合において、 ゲイン定 数 Κ 1の入力操作量 U 1に対してこの出力操作量が U 1 susに飽和したならば、 飽和率 K1=U1 sus/Ulを求め、 この飽和率 K 1をリミヅ夕値 LC (可変 的) として他の加熱ランプ 50B、 50 Cに対する操作量にかけてもよい。
また、 図 2に示す装置の場合、 各ゾーン 24 A〜 24 Cの温度が直接的に測定 されるが、 これに限定されない。 例えば、 各ゾーン 24A〜24 Cに対応する各 ゾーン加熱部 (加熱ランプ) 50 A〜50 Cへ投入されるパワーや各ゾーン 24 A-24 Cから放出されるパワーを検出するパワー検出手段を設け、 このパワー 検出手段の各検出値に基づいて、 電力を制御するようにしてもよい。
図 6は、 パワー検出手段として、 各電力供給部 56A〜56 Cからの出力電流 を検出する電流検出器 66 A、 66B、 66 Cが設けられた場合を示している。 図 7は、 パワー検出手段として、 各電力供給部 56 A〜56 Cからの出力電圧を 検出する電圧検出器 68 A、 68B、 68 Cが設けられた場合を示している。 そして、 検出された出力電流或いは出力電圧に基づいて、 電力制御手段 58は、 各加熱ランプ 50 A〜50 Cへの供給電力を制御することになる。 また、 図 8に示すように、 パヮ一検出手段として、 各ゾーン 2 4 A〜2 4 Cに 対応させて載置台まで延ばされた光ファイバ等を有する光量検出器 7 0 A、 7 0 B、 7 0 Cが設けられる場合には、 各加熱ランプ 5 0 A〜 5 0 Cからの熱線の光 量が検出され得る。 あるいは、 光量検出器 7 0 A~ 7 0 Cは、 図 1 7に示される ように、 各ゾーン 2 4 A〜2 4 Cからの反射光量を検出したり、 各ゾーン 2 4 A 〜2 4 Cから放射される赤外線光等を検出するようになっていてもよい。 これら の場合、 光量検出器 7 0 A〜7 0 Cの検出値に基づいて'、 電力制御手段 5 8は、 各加熱ランプ 5 0 A〜5 0 Cへの供給電力を制御することになる。
従って、 図 6乃至図 8に示す各装置の場合にも、 ウェハ Wの中央部と周縁部と の間の温度差を△ t °C程度に維持したままウェハを昇温することにより、 ウェハ に反り返り変形を生ずることなく、 しかも、 スループットを低下させることもな く、 これを昇温することが可能となる。
尚、 載置台 2 4の温度を直接的に測定するために、 少なくとも 1つの熱電対が 設けられていることが好ましい。 図 6乃至図 8においては、 内周ゾーン 2 4 Aに 対応した熱電対 6 0 Aが設けられている。
以上説明した本実施の形態では、 載置台 2 4に図 3に示すような温度分布を実 現するために、 各ゾーン 2 4 A〜 2 4 C毎に投入する電力が制御されている。 こ の操作方法に加えて、 或いは、 この操作方法を行なわないで、 ウェハ昇温時に処 理容器 1 4内の圧力を粘性流以下の圧力まで低下させるようにしてもよい。 実際 には、 粘性流以下の圧力とは、 1 3 3 P a ( l T o r r ) 以下の圧力を指し、 分 子流の領域の圧力である。
これにより、 載置台 2 4とウェハ Wとの間の熱移動は、 伝導と輻射とが支配的 となって、 対流による熱移動がほとんどなくなる。 このため、 両者の熱伝達が少 し抑制されることになる。 この結果、 ウェハの昇温速度自体が抑制されて遅くな ると共に、 ウェハ中心から周縁に向かう熱の移動成分が増加するので、 その分、 ウェハの表面と裏面との間の温度差が少なくなる。 従って、 ウェハ自体に反り返 りによる変形が発生することを防止することができる。
また、 上記実施の形態では、 加熱手段として、 点光源よりなる加熱ランプが用 いられているが、 これに限定されない。 例えば、 フィラメント等をコイル状に卷 回してなる線光源ランプが用いられ得る。 この場合、 例えば図 1 0に示すように、 フィラメント 9 0をコイル状に卷回した線状加熱ランプ 9 2が複数本、 例えば 4 本放射状に配置され得る。 ここで、 フィラメント 9 0は、 高密度部分 9 2 A、 中 密度部分 9 2 B及び低密度部分 9 2 Cを順に形成するように卷回されている。 そ して、 各線状加熱ランプ 9 2を、 その高密度部分 9 2 Aが回転台 5 2の中心側に 位置するように配置すれば、 図 3に示すようなゾーン状の温度分布を得ることが できる。
更にまた、 例えば図 1 8に示すように、 フィラメント 9 0をコイル状に巻回し た線状加熱ランプ 9 2、 9 3が複数本、 例えば 4本放射状に配置され得る。 そし て、 各線状加熱ランプ 9 2を、 その高密度部分 9 2 Aが回転台 5 2の中心側に位 置するように配置する一方、 各線状加熱ランプ 9 3を、 その低密度部分 9 2 Cが 回転台 5 2の中心側に位置するように配置する。 これによれば、 線状加熱ランプ 9 2の点灯によって、 図 3に示すようなゾーン状の温度分布での昇温が可能であ る。 そして、 所定の温度に達した後、 線状加熱ランプ 9 3も点灯することによつ て、 均一な温度分布での昇温が可能である。
尚、 上記実施の形態では、 載置台 2 4が 3つのゾーンに区分されているが、 区 分数は 2以上の任意の数であり得る。 また、 上記実施の形態では、 藓置台 2 4が 同心円状のゾーンに区分されているが、 これに限定されない。 載置台は、 例えば、 複数の円形スポット状のゾーンに区分され得る。 また、 加熱手段としては、 加熱 ランプに限定されず、 載置台に埋め込んで設けられ得る抵抗加熱ヒー夕であって もよい。
更に、 本発明は、 成膜装置のみならず、 エッチング処理、 酸化拡散処理、 ァニ —ル改質処理等にも適用することができる。
また、 上記実施の形態では、 被処理体として半導体ウェハを例にとって説明し たが、 これに限定されず、 L C D基板、 ガラス基板等にも適用できる。
次に、 図 1 3を用いて、 本発明の他の実施の形態について説明する。 図 1 3は、 本実施の形態の電力制御手段 5 8の制御系の一例を示すブロック図である。 図 1 3に示す電力制御手段 5 8には、 各ゾーンの操作量を制限するために、 リミッタ 部 L I M 1、 L I M 2、 L I M 3が設けられている。 以下、 本実施の形態に関して、 上記した実施の形態と異なる部分のみが説明さ れ、 同一の部分の説明は省略される。
図 13において、 各ゾーンに対応した比較部 62 A、 62 B、 62 Cが、 各ゾ ーンの設定温度の値と各熱電対 60 A〜60 Cからの計測値とをそれそれ比較し て、 偏差を出力する。 制御部 64が、 上記比較部 62 A〜62 Cからの偏差に基 づいて制御計算を行って、 各操作量 Ul、 U2、 U3を求める。 そして、 制御部 64から出力された各操作量 U 1〜U3に対して、 各ゾーン毎に対応して可変の ゲイン定数 Kl、 Κ2、 Κ 3が乗算される。 そして、 ゲイン乗算後の出力に、 各 リミッ夕部 L ΙΜ 1〜: L ΙΜ3にて予め定められた各リミヅ夕定数 LC 1〜L C 3によりリミッタをかけ、 その出力が各電力供給部 56 A〜56 Cへ出力される ようになつている。 すなわち、 各リミッタ部 L IM 1〜: L IM3は、 固定リミツ 夕として動作する。 ここで、 例えば内周ゾーン 24 Aに対応するゲイン K 1が" 1" と設定されると、 他のゲイン定数 K2、 Κ3は、 前述した図 3に示すような 温度分布を形成するように、 それそれ" 1"以下の数値に予め設定される。 そし て、 内周ゾーンの熱電対 6 OAの検出値が目標値である設定温度に達したならば、 他のゲイン定数 K2、 Κ3も順次" 1"に向かって変化して行く。 これにより、 最終的に、 ウェハ全面の温度が設定温度に維持され得る。
また、 各リミッタ部 LIM1〜LIM3には、 " 1"以下の正数のリミッタ定 数 L C 1〜L C 3がそれそれ設定されている。 この値は、 例えば LC 1 = 0. 9、 LC2 = C2 · LC K LC3 = C3 ' LC 1として設定され得る。 ここで C2 及び C 3は、 加熱部全体での電力パワーのバランスが一様となるように予め定め られた平均化定数である。 すなわち、 Cj (jは正の整数) は、 各チャネルの操 作量が飽和した場合であっても、 図 3に示すような温度分布を維持できるように、 各チャネルの操作量の比率を予めチャネル毎に定めた定数 (平均化定数) である また、 LC1 = 0. 9の意味するところは、 前述の固定的リミッタとは異なり、 例えば次のようなものである。 すなわち、 電力供給部 56 Aの入力操作量 W1が あるしきい値以上になると、 出力が飽和する。 この時のあるしきい値を Wlsus とする。 そして、 リミッタ部 L IM1の入力操作量を VI、 出力操作量を W1と すると、 V1<0. 9 - Wlsus の場合には、 リミッタ部出力は Wl =V 1であ るが、 V1≥0. 9 · Wlsus の場合には、 リミッタ部出力は VIとは無関係に 0. 9 - Wlsus となる。 つまり、 ここでいうリミヅ夕部は、 その出力操作量を (リミッタ定数) xWisus の値にクランプする機能を有している。 このような リミッタ処理は、 他の各リミッタ部 L IM 2、 L IM3においても同様に行われ る o
もし一部のゾーンの操作量が飽和すると、 供給熱量のバランスが崩れて昇温時 の温度分布 (図 3参照) が維持できなくて崩れてしまい得る。 しかしながら、 こ のようにリミッタをかけることにより、 昇温速度は僅かに低下するが、 図 3に示 すような温度分布を維持したままウェハを確実に昇温することができる。
このように、 固定的なリミヅ夕定数 LC 1〜LC3を各操作量にかけることに より、 操作量の飽和が発生することを防止し、 温度分布の崩れを生ずることなく ウェハを可及的に速やかに昇温することができる。
また、 上記実施例では、 載置台 24の各ゾーン 24 A~ 24 C毎に熱電対 60 A〜60 Cが設けられているが、 これに限定されない。 例えば、 温度分布を検出 するために、 2つのみの熱電対が設けられ得る。 例えば内周ゾーン 24Aと外周 ゾーン 24 Cとに、 それそれ熱電対 60 A、 60Cが設けられ得る。 この場合、 温度制御に用いるための中周ゾ一ン 24Bの温度として、 上記 2つの熱電対 60 A、 60 Cによる各検出値の例えば中間値が利用され得る。
また、 あるゾーンに熱電対が 1つだけ設けられる場合、 他のゾーンに関しては、 図 3に示したような温度分布を生ずるように、 予め定めた比率で各ゾーンに電力 が投入され得る。 図 14は、 このような制御を行う時のプロック図を示しており、 内周ゾーン 24Aのみに熱電対 6 OAを設けた場—合を示している。 この制御部 6 4は、 熱電対 6 OAの検出値と予め定められた電力比率とに基づいて、 中周ゾー ン及ぴ外周ゾ一ンの各操作量 U 2、 U 3も演算により決定する。
また、 上記実施の形態では、 各リミッタ部 L IM1〜L IM3において、 操作 量に対して常時固定的なリミッ夕定数 LC 1〜LC3によりリミッ夕をかけるよ うにしているが、 これに限定されない。 例えば、 ウェハの昇温時にいずれか 1ゾ —ンに対応する操作量が飽和した時に、 それに対応させて、 可変的な制御値を他 のゾーンのリミッ夕値に乗算して最終的な出力操作量を制限するようにしてもよ い。 すなわち、 リミッタ部は、 固定リミヅ夕ではなく、 可変リミッタとして動作 してもよい。 これにより、 操作量が飽和しても、 図 3に示すような温度分布を維 持したままウェハを昇温することができる。
図 15は、 このような制御を行うための電力制御手段 58の制御系の一例を示 すプロヅク図である。
図中の制御部 64は、 各ゾーンに対応した 3つのチャネルの操作量を演算して いる。 この時、 操作量が飽和を起こしたチャネルを、 仮に" i"チャネルとし、 制御計算に基づく L I M iの入力操作量を V i、 電力供給部 56 iが飽和を起こ すときの入力操作量を Wisus とする。 そして、 上記両操作量の比 L iを以下の 式のように定義する。
L i=Vi/Wisus
そして、 上記比 Liに基づいて、 飽和を起こしていない他のチャネルのリミツ 夕値 L C jが以下の式のように求められ、 これが飽和しているチャネル以外の他 のチャネルのリミッ夕部ヘリミッ夕値として送出される。
LC j= (Cj/Li) x (V j/Wj sus)
ここで C jは、 前述したように、 各チャネルの電力パワーが平均化するように 予め定められた平均化定数である。
上記制御演算によれば、 例えば内周ゾーンのチャネルの操作量が飽和した場合、 各リミッ夕値は以下に示す表のようになる。
なお、 ここで、 LC1 = 1とし、 各ゾーンにおけるクランプされた出力操作量 は、 (L C j XW j sus )で与えられる。 リミッ夕出力
リミッタ値 LCj クランプ o n クランプ o f f 内周ゾーン 1 Wl sus VI
中周ゾーン (C2/Ll)x(V2/W2sus) V2XC2/L1 V2
外周ゾーン (C3/Ll)x(V3/W3sus) V3XC3/L1 V3 つまり、 いずれかのゾーンに対応する操作量が操作量飽和を起こした場合には、 操作量飽和を起こしていないチャネルの操作量に対して、 操作量飽和を起こした チャネルからの情報に基づいて動的に操作量制限がかかる。 従って、 いずれかの ゾーンに対応する操作量が飽和を起こしても、 各チャネルの出力操作量が適切に 保たれる。 これにより、 図 3に示すような温度分布をより正確に維持しつつ、 ゥ ェハを昇温させることができ、 もってウェハに反りが発生することを確実に防止 することが可能となる。
また、 上記説明において、 リミッタの概念として、 操作量 W jをクランプする ような概念で説明したが、 本発明はこれに限定されない。 例えば、 固定リミッタ の場合、 全てのゾーンに一定のリミッタ定数をもち、 入力操作量 V jに対し出力 が飽和しないようにこのリミッ夕定数を常に乗算することも可能である。
更に、 可変リミッタの場合、 いずれかのゾーンで操作量が飽和を起こした時、 他のゾーンでは操作量がクランプされるのを待つことなく、 すぐに操作量を制限 することも可能である。

Claims

請求 の 範 囲
1 . 真空引き可能な処理容器内に設置された載置台に被処理体を載置する載 置工程と、
前記被処理体を所定の温度にまで昇温する昇温工程と、
を備えた熱処理方法であって、
前記昇温工程の少なくとも一部において、 前記被処理体は、 前記被処理体の中 央部の温度が高くて周縁部の温度が低いという温度分布が維持された状態で、 昇 温されるようになっている
ことを特徴とする熱処理方法。
2 . 前記昇温工程の少なくとも一部において、 前記被処理体は、 前記被処理 体の中央部から周縁部への熱移動速度よりも遅い昇温速度で、 昇温されるように なっている
ことを特徴とする請求項 1に記載の熱処理方法。
3 . 前記所定の温度は、 前記被処理体の熱膨張率が十分に低くなつて前記被 処理体の反りが発生し難くなる反り安全温度である
ことを特徴とする請求項 1に記載の熱処理方法。
4 . 真空引き可能な処理容器内に設置された載置台に被処理体を載置する載 置工程と、
前記被処理体を所定の温度にまで昇温する昇温工程と、
を備えた熱処理方法において、
前記昇温工程の少なくとも一部において、 前記処理容器内の圧力は、 粘性流以 下の圧力に設定されている
ことを特徴とする熱処理方法。
5 . 前記粘性流以下の圧力は、 1 3 3 P a ( 1 T o r r ) 以下の圧力である ことを特徴とする請求項 4に記載の熱処理方法。
6 . 前記所定の温度は、 前記被処理体の熱膨張率が十分に低くなって前記被 処理体の反りが発生し難くなる反り安全温度である
ことを特徴とする請求項 4に記載の熱処理方法。
7 . 真空引き可能な処理容器と、
前記処理容器内に設置され、 被処理体が載置され得る載置台と、
前記被処理体を同心円状に区分した各ゾーンを個別に加熱する複数のゾーン加 熱部と、
各ゾーン加熱部へ電力を供給する電力供給手段と、
前記被処理体の各ゾーンの少なくとも 1つに対応して設けられた温度測定手段 と、
前記温度測定手段の検出値に基づいて、 前記被処理体の中央部の温度が高くて 周縁部の温度が低いという温度分布を維持した状態で前記被処理体を所定の温度 にまで昇温するように、 前記電力供給手段を制御する電力制御手段と、 を備えたことを特徴とする熱処理装置。
8 . 真空引き可能な処理容器と、
前記処理容器内に設置され、 被処理体が載置され得る載置台と、
前記被処理体を所定の温度分布が形成されるように加熱する加熱部と、 前記加熱部へ電力を供給する電力供給手段と、
前記被処理体の中央部の温度が高くて周縁部の温度が低いという温度分布を維 持した状態で前記被処理体を所定の温度にまで昇温するように、 前記電力供給手 段を制御する電力制御手段と、
を備えたことを特徴とする熱処理装置。
9 . 真空引き可能な処理容器と、
前記処理容器内に設置され、 被処理体が載置され得る載置台と、 前記被処理体を同心円状の温度分布が形成されるように加熱する加熱部と、 前記加熱部へ電力を供給する電力供給手段と、
前記被処理体の少なくとも 1箇所に対応して設けられた温度測定手段と、 前記温度測定手段の検出値に基づいて、 前記被処理体の中央部の温度が高くて 周縁部の温度が低いという温度分布を維持した状態で前記被処理体を所定の温度 にまで昇温するように、 前記電力供給手段を制御する電力制御手段と、 を備えたことを特徴とする熱処理装置。
1 0 . 真空引き可能な処理容器と、
前記処理容器内に設置され、 被処理体が載置され得る載置台と、
前記被処理体を同心円状に区分した各ゾーンを個別に加熱する複数のゾーン加 熱部と、
各ゾーン加熱部へ電力を供給する電力供給手段と、
前記電力供給手段による各ゾーン加熱部へ供給されるパワー、 または、 各ゾー ン加熱部から放出されるパワー、 を検出するパヮ一検出手段と、
前記パワー検出手段の検出値に基づいて、 前記被処理体の中央部の温度が高く て周縁部の温度が低いという温度分布を維持した状態で前記被処理体を所定の温 度にまで昇温するように、 前記電力供給手段を制御する電力制御手段と、 を備えたことを特徴とする熱処理装置。
1 1 . 真空引き可能な処理容器と、
前記処理容器内に設置され、 被処理体が載置され得る載置台と、
前記被処理体を同心円状の温度分布が形成されるように加熱する加熱部と、 前記加熱部へ電力を供給する電力供給手段と、
前記電力供給手段による前記加熱部へ供給されるパワー、 または、 前記加熱部 から放出されるパワー、 を検出するパワー検出手段と、
前記パワー検出手段の検出値に基づいて、 前記被処理体の中央部の温度が高く て周縁部の温度が低いという温度分布を維持した状態で前記被処理体を所定の温 度にまで昇温するように、 前記電力供給手段を制御する電力制御手段と、 を備えたことを特徴とする熱処理装置。
1 2 . 前記パワー検出手段は、 電流検出器、 電圧検出器及び光量検出器のう ちの少なくともいずれかを含む
ことを特徴とする請求項 1 0または 1 1に記載の熱処理装置。
1 3 . 前記所定の温度は、 前記被処理体の熱膨張率が十分に低くなつて前記 被処理体の反りが発生し難くなる反り安全温度である
ことを特徴とする請求項 7乃至 1 2のいずれかに記載の熱処理装置。
1 4 . 前記所定の温度は、 3 0 0 °C以上の温度である
ことを特徴とする請求項 7乃至 1 2のいずれかに記載の熱処理装置。
1 5 . 前記電力制御手段は、 前記被処理体が前記被処理体の中央部から周縁 部への熱移動速度よりも遅い昇温速度で昇温されるように、 前記電力供給手段を 制御可能となっている
ことを特徴とする請求項 7乃至 1 4のいずれかに記載の熱処理装置。
1 6 . 前記電力制御手段は、 操作量を制限するためのリミッ夕部を含んでい る
ことを特徴とする請求項 7乃至 1 5のいずれかに記載の熱処理装置。
1 7 . 前記リミッ夕部は、 前記被処理体の昇温時に、 操作量が飽和しないよ うに、 固定的なリミッタ定数で、 前記操作量にリミッタ処理を施すようになって いる
ことを特徴とする請求項 1 6に記載の熱処理装置。
1 8 . 前記リミッ夕部は、 前記被処理体の昇温時に、 操作量が飽和しないよ うに、 可変的なリミッ夕値で、 前記操作量にリミッ夕処理を施すようになつてい る
ことを特徴とする請求項 1 6に記載の熱処理装置。
1 9 . 前記電力制御手段は、 各ゾーン加熱部への操作量を制限するための複 数のリミッ夕部を含んでおり、
各リミッタ部は、 いずれかのゾーン加熱部への操作量が飽和した時に、 他のゾ ーン加熱部への操作量にリミッ夕処理を施すようになつている
ことを特徴とする請求項 7または 1 0に記載の熱処理装置。
2 0 . 前記リミッタ処理において用いられるリミッタ値は、 飽和したゾーン 加熱部に対する操作量と、 当該ゾーン加熱部の飽和操作量と、 の比に基づいて決 定されるようになつている
ことを特徴とする請求項 1 9に記載の熱処理装置。
PCT/JP2002/001380 2001-02-16 2002-02-18 Dispositif de traitement de piece de type feuille WO2002065521A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/467,918 US20040069234A1 (en) 2001-02-16 2002-02-18 Sheet-type treating device
KR1020037010721A KR100839678B1 (ko) 2001-02-16 2002-02-18 열 처리 방법 및 열 처리 장치
EP02712428A EP1367637A4 (en) 2001-02-16 2002-02-18 TREATMENT DEVICE OF BLADE TYPE
US12/078,332 US20080280048A1 (en) 2001-02-16 2008-03-28 Single wafer processing unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-40570 2001-02-16
JP2001040570A JP2002246318A (ja) 2001-02-16 2001-02-16 熱処理方法及び熱処理装置
JP2001-175354 2001-06-11
JP2001175354A JP2002367914A (ja) 2001-06-11 2001-06-11 熱処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/078,332 Continuation US20080280048A1 (en) 2001-02-16 2008-03-28 Single wafer processing unit

Publications (1)

Publication Number Publication Date
WO2002065521A1 true WO2002065521A1 (fr) 2002-08-22

Family

ID=26609562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001380 WO2002065521A1 (fr) 2001-02-16 2002-02-18 Dispositif de traitement de piece de type feuille

Country Status (4)

Country Link
US (2) US20040069234A1 (ja)
EP (1) EP1367637A4 (ja)
KR (2) KR100839679B1 (ja)
WO (1) WO2002065521A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053946A2 (en) * 2002-12-09 2004-06-24 Koninklijke Philips Electronics N.V. System and method for suppression of wafer temperature drift in cold-wall cvd system
CN110211902A (zh) * 2019-06-19 2019-09-06 北京北方华创微电子装备有限公司 承载装置及工艺腔室

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404572B2 (en) * 2009-02-13 2013-03-26 Taiwan Semiconductor Manufacturing Co., Ltd Multi-zone temperature control for semiconductor wafer
US8728831B2 (en) * 2010-12-30 2014-05-20 Stmicroelectronics Pte. Ltd. Reconstituted wafer warpage adjustment
EP2770442A3 (en) 2013-02-20 2014-09-17 Hartford Steam Boiler Inspection and Insurance Company Dynamic outlier bias reduction system and method
CN111185351B (zh) * 2019-12-11 2022-05-03 湖南联诚轨道装备有限公司 一种灌胶加热装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220308A (ja) * 1985-07-19 1987-01-28 Hitachi Ltd 熱処理方法および装置
JPH02249227A (ja) * 1989-03-22 1990-10-05 Nec Corp 短時間熱処理方法
JPH03218624A (ja) * 1989-02-14 1991-09-26 Nippon Soken Inc 熱処理装置および熱処理方法
JPH06333846A (ja) * 1993-05-26 1994-12-02 Canon Inc 薄膜形成装置
US5445675A (en) * 1992-07-09 1995-08-29 Tel-Varian Limited Semiconductor processing apparatus
JPH07316811A (ja) * 1994-05-23 1995-12-05 Hitachi Ltd 多点温度モニタによる温度制御方法及び半導体製造装置
JP2000193375A (ja) * 1998-12-22 2000-07-14 Dainippon Screen Mfg Co Ltd 基板熱処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132231A (ja) * 1992-10-20 1994-05-13 Hitachi Ltd Cvd装置
JP3099101B2 (ja) * 1993-05-10 2000-10-16 東京エレクトロン株式会社 熱処理装置
US5650082A (en) * 1993-10-29 1997-07-22 Applied Materials, Inc. Profiled substrate heating
JP3563224B2 (ja) * 1996-03-25 2004-09-08 住友電気工業株式会社 半導体ウエハの評価方法、熱処理方法、および熱処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220308A (ja) * 1985-07-19 1987-01-28 Hitachi Ltd 熱処理方法および装置
JPH03218624A (ja) * 1989-02-14 1991-09-26 Nippon Soken Inc 熱処理装置および熱処理方法
JPH02249227A (ja) * 1989-03-22 1990-10-05 Nec Corp 短時間熱処理方法
US5445675A (en) * 1992-07-09 1995-08-29 Tel-Varian Limited Semiconductor processing apparatus
JPH06333846A (ja) * 1993-05-26 1994-12-02 Canon Inc 薄膜形成装置
JPH07316811A (ja) * 1994-05-23 1995-12-05 Hitachi Ltd 多点温度モニタによる温度制御方法及び半導体製造装置
JP2000193375A (ja) * 1998-12-22 2000-07-14 Dainippon Screen Mfg Co Ltd 基板熱処理装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOBORU AKIYAMA ET AL.: "Critical radial temperature gradient inducing slip dislocations in silicon epitaxy using dual heating of the two surfaces of a wafer", JPN. J. APPL. PHYS., vol. 25, no. 11, 20 November 1986 (1986-11-20), pages 1619 - 1622, XP002951898 *
See also references of EP1367637A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053946A2 (en) * 2002-12-09 2004-06-24 Koninklijke Philips Electronics N.V. System and method for suppression of wafer temperature drift in cold-wall cvd system
WO2004053946A3 (en) * 2002-12-09 2005-03-17 Koninkl Philips Electronics Nv System and method for suppression of wafer temperature drift in cold-wall cvd system
US7921802B2 (en) 2002-12-09 2011-04-12 Nxp B.V. System and method for suppression of wafer temperature drift in cold-wall CVD systems
CN110211902A (zh) * 2019-06-19 2019-09-06 北京北方华创微电子装备有限公司 承载装置及工艺腔室

Also Published As

Publication number Publication date
KR100839678B1 (ko) 2008-06-19
US20040069234A1 (en) 2004-04-15
EP1367637A1 (en) 2003-12-03
US20080280048A1 (en) 2008-11-13
EP1367637A4 (en) 2006-01-04
KR20030074831A (ko) 2003-09-19
KR100839679B1 (ko) 2008-06-19
KR20080016977A (ko) 2008-02-22

Similar Documents

Publication Publication Date Title
KR100788056B1 (ko) 클램프의 가열 방법
US5938850A (en) Single wafer heat treatment apparatus
KR100241290B1 (ko) 반도체 처리장치
KR102072525B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
EP1770758B1 (en) Heating process of the light irradiation type
KR20070090957A (ko) 기판 처리 방법 및 기판 처리 장치
WO2006049199A1 (ja) 絶縁膜形成方法および基板処理方法
US11264253B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
KR20100110822A (ko) 열처리 장치 및 그 제어 방법
US8308350B2 (en) Method of determining thermal property of substrate and method of deciding heat treatment condition
KR20100138984A (ko) 열처리 장치
JPH10107018A (ja) 半導体ウェーハの熱処理装置
US20080280048A1 (en) Single wafer processing unit
KR20010087334A (ko) 반도체 제조 장치에 있어서의 기판 탑재 방법 및 장치
JP2002367914A (ja) 熱処理装置
JPH09232297A (ja) 熱処理装置
JP2002299328A (ja) 熱処理方法及び熱処理装置
US11553565B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and non-transitory computer-readable recording medium
JP2002299257A (ja) 熱処理方法および縦型熱処理装置
JP3421465B2 (ja) 熱処理装置及びその方法
JP2002246318A (ja) 熱処理方法及び熱処理装置
JP2012109429A (ja) 半導体装置の製造方法、及び基板処理装置
US6149728A (en) Semiconductor manufacturing device
JP2640269B2 (ja) 処理方法及び処理装置
JP2006114638A (ja) 熱処理装置、熱処理方法及び昇温レートの算出方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002712428

Country of ref document: EP

Ref document number: 10467918

Country of ref document: US

Ref document number: 1020037010721

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037010721

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002712428

Country of ref document: EP