WO2002057203A1 - Compositions comprising cyclohexamantane - Google Patents

Compositions comprising cyclohexamantane Download PDF

Info

Publication number
WO2002057203A1
WO2002057203A1 PCT/US2002/000508 US0200508W WO02057203A1 WO 2002057203 A1 WO2002057203 A1 WO 2002057203A1 US 0200508 W US0200508 W US 0200508W WO 02057203 A1 WO02057203 A1 WO 02057203A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclohexamantane
feedstock
distillation
components
compositions
Prior art date
Application number
PCT/US2002/000508
Other languages
English (en)
French (fr)
Inventor
Jeremy E. Dahl
Robert M. Carlson
Original Assignee
Chevron U.S.A. Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA002434941A priority Critical patent/CA2434941A1/en
Priority to AU2002236732A priority patent/AU2002236732B2/en
Priority to PL02362644A priority patent/PL362644A1/xx
Priority to NZ525262A priority patent/NZ525262A/en
Application filed by Chevron U.S.A. Inc. filed Critical Chevron U.S.A. Inc.
Priority to DE60222236T priority patent/DE60222236T2/de
Priority to BR0206530-4A priority patent/BR0206530A/pt
Priority to EP02703089A priority patent/EP1351904B1/de
Priority to JP2002557886A priority patent/JP2004517887A/ja
Priority to IL15696602A priority patent/IL156966A0/xx
Priority to MXPA03006376A priority patent/MXPA03006376A/es
Priority to HU0302727A priority patent/HUP0302727A2/hu
Priority to KR10-2003-7009580A priority patent/KR20040004497A/ko
Publication of WO2002057203A1 publication Critical patent/WO2002057203A1/en
Priority to IL156966A priority patent/IL156966A/en
Priority to NO20033260A priority patent/NO20033260L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • C07C13/64Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings with a bridged ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/16Preparation of halogenated hydrocarbons by replacement by halogens of hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/395Separation; Purification; Stabilisation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/05Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/49Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton
    • C07C211/50Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton with at least two amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/18Polycyclic halogenated hydrocarbons
    • C07C23/20Polycyclic halogenated hydrocarbons with condensed rings none of which is aromatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings containing other rings in addition to the six-membered aromatic rings, e.g. cyclohexylphenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/28Saturated compounds having —CHO groups bound to carbon atoms of rings other than six—membered aromatic rings
    • C07C47/34Saturated compounds having —CHO groups bound to carbon atoms of rings other than six—membered aromatic rings polycyclic
    • C07C47/347Saturated compounds having —CHO groups bound to carbon atoms of rings other than six—membered aromatic rings polycyclic having a —CHO group on a condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/417Saturated compounds containing a keto group being part of a ring polycyclic
    • C07C49/423Saturated compounds containing a keto group being part of a ring polycyclic a keto group being part of a condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/135Purification; Separation; Use of additives by gas-chromatography
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/54Ortho- or ortho- and peri-condensed systems containing more than five condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/90Ring systems containing bridged rings containing more than four rings

Definitions

  • FF Embodiments of the present invention are directed toward novel compositions comprising the C 26 H 3 o hexamantane herein referred to as "cylcohexamantane.”
  • Hexamantanes are bridged-ring cycloalkanes. They are the hexamers of adamantane (tricyclo[3.3.1.1 3 ' 7 ]decane) or C ⁇ 0 H ⁇ 6 , in which various adamantane units are face-fused.
  • the compounds have a "diamondoid" topology, which means their carbon atom arrangement is superimposable on a fragment of the diamond lattice (FIG. 1).
  • Hexamantanes possess six of the "diamond crystal units" and therefore, it is postulated that there are thirty-nine possible hexamantane structures.
  • diamondoids have by far the most thermodynamically stable structures of all possible hydrocarbons that possess their molecular formulas due to the fact that diamondoids have the same internal "crystalline lattice" structure as diamonds. It is well established that diamonds exhibit extremely high tensile strength, extremely low chemical reactivity, electrical resistivity greater than aluminum oxide (alumina, or Al 2 O ), excellent thermal conductivity, a low coefficient of friction, and high x-ray transmissivity.
  • aluminum oxide alumina, or Al 2 O
  • cyclohexamantane has a size in the nanometer range and, in view of the properties noted above, the inventors contemplate that such a compound would have utility in micro- and molecular- electronics and nanotechnology applications.
  • the rigidity, strength, stability, variety of structural forms and multiple attachment sites shown by this molecule makes possible accurate construction of robust, durable, precision devices with nanometer dimensions.
  • the various hexamantanes are three-dimensional nanometer sized units showing different diamond lattice arrangements. This translates into a variety of rigid shapes and sizes for the thirty-nine hexamantanes.
  • hexamantane is rod shaped
  • [121(3)4] hexamantane has a "T” shaped structure while [12134] is “L” shaped and [1(2)3(1)2] is flat with four lobes.
  • the two enantiomers of [12131] have left and right handed screw like structures.
  • Cyclohexamantane ([12312] hexamantane) is disc- or wheel-shaped.
  • MEMS MicroElectroMechanical Systems
  • Embodiments of the present invention are directed toward novel compositions comprising the C 26 H 30 hexamantane herein referred to as either peri- condensed hexamantane, fully-condensed hexamantane, or cyclohexamantane.
  • embodiments of the present invention are directed toward a composition comprising at least about 5 percent by weight cyclohexamantane based on the total weight of the composition.
  • the composition comprises cyclohexamantane in a range from about 50 to 100 weight percent, preferably about 70 to 100 weight percent, more preferably about 90 to 100 weight percent, and even more preferably about 95 to 100 weight percent based on the total weight of the composition.
  • compositions When such compositions are sufficiently enriched in cyclohexamantane, the composition may form a crystalline structure. Accordingly, another embodiment of the present invention is directed toward a composition comprising cyclohexamantane in crystalline form.
  • FIG. 1 illustrates the cage-shaped structure of diamondoids and their correlation to diamonds. Specifically, FIG. 1 illustrates the correlation of the structures of diamondoids to subunits of the diamond crystal lattice.
  • FIG. 2 illustrates the Ball and Stick, CPK and Carbon Framework representations of cyclohexamantane.
  • FIG. 3 illustrates the structure with views normal to various diamond crystal lattice planes of cyclohexamantane.
  • FIG. 4 illustrates the gas chromatogram of a gas condensate feedstock; one of the original feedstocks used in the Examples (Feedstock A). Cyclohexamantane is present at low concentrations, not detectable, but is shown in vacuum distillate fractions (FIG. 7).
  • FIG. 5 illustrates a simulated distillation profile of a gas condensate feedstock containing petroleum byproducts used in the Examples (Feedstock B).
  • FIG. 6 illustrates a high temperature simulated distillation profile of atmospheric residue of diamondoid rich gas condensates: Feedstock A and Feedstock B. This Figure also illustrates the n-paraffin carbon number atmospheric equivalent boiling points. Labels A and B show the portions of each feedstock which contain cyclohexamantane.
  • FIG. 7 illustrates a gas chromatographic profile of vacuum distillate residue containing cyclohexamantane and higher diamondoids from a gas condensate, Feedstock A.
  • FIG. 8 illustrates a high temperature simulated distillation profile of Feedstock B using the atmospheric distillation 650°F+ bottoms as feedstock. This figure also illustrates the targeted cut points (1-10) for higher diamondoid isolations. Cyclohexamantane is contained primarily in distillate fractions #3 through #6.
  • FIG. 9 illustrates the gas chromatograms of vacuum distillate Fractions #3, #4, #5, and #6 of Feedstock B atmospheric distillation 650°F+ bottoms illustrated in FIG. 8 and exemplified in Example 1.
  • FIG. 10 illustrates the gas chromatograms of the concentration of hexamantanes using pyro lysis.
  • FIG. 10B illustrates the GC (DB-17 equivalent column) of Feedstock B atmospheric distillation fraction #5, exemplified in Example 1, which was used as feedstock in pyrolytic processing.
  • FIG. 10A illustrates the GC of the product of the pyrolytic process.
  • FIG. 11 illustrates results of a preparative HPLC separation of Feedstock B distillate cut pyrolysis product saturated hydrocarbon fraction showing HPLC fractions taken using octadecyl silane "ODS" columns and acetone mobile phase.
  • the "x” marks the fraction containing the highest concentration of cyclohexamantane.
  • FIG. 12(A,B) illustrates GC/MS total ion chromatogram (TIC) and mass spectrum of ODS HPLC cyclohexamantane-containing fractions #23-26.
  • FIG. 13(A,B) illustrates photomicrographs of cyclohexamantane crystals which precipitated from ODS HPLC fractions #23-26 (FIG. 14).
  • FIG. 14 illustrates results of a HPLC separation using Hypercarb stationary phase of ODS HPLC fractions #23-26 (FIG. 12). Cyclohexamantane is found in Hypercarb HPLC fractions #5-11.
  • FIG. 15 illustrates the GC/MS total ion chromatogram and mass spectrum of cyclohexamantane isolated by HPLC using ODS followed by Hypercarb stationary phase columns.
  • FIG. 16(A,B) illustrates photomicrographs of cyclohexamantane crystals precipitated from Hypercarb HPLC fractions #6-9 characterized in FIG. 15.
  • Embodiments of the present invention are directed toward C 6 H 30 hexamantane compositions. However, prior to describing this invention in further detail, the following terms will first be defined.
  • diamondoid refers to substituted and unsubstituted caged compounds of the adamantane series including adamantane, diamantane, triamantane, tetramantane, pentamantane, hexamantane, heptamantane, octamantane, nonamantane, decamantane, undecamantane, and the like, and also including molecular weight forms of these components including isomers and stereoisomers of these forms.
  • Substituted diamondoids preferably comprise from 1 to 10 and more preferably 1 to 4 substituents independently selected from the group consisting of alkyl, including straight chain alkyl, branched alkyl, or cycloalkyl groups.
  • Hexamantanes are bridged-ring cycloalkanes. They are the hexamers of adamantane (tricyclo[3.3.1.1 3 ' 7 ]decane) or C ⁇ 0 H ⁇ 6 in which various adamantane units are face-fused.
  • the compounds have a "diamondoid" topology, which means their carbon atom arrangement is superimposable on a fragment of the diamond lattice (FIG. 1).
  • cyclohexamantane refers to fully condensed hexamantane having a molecular formula of C 26 H 30 .
  • cyclohexamantane is in non- ionized form.
  • lower diamondoid components or “adamantane, diamantane and triamantane components” refers to any and or all unsubstituted and substituted derivatives of adamantane, diamantane and triamantane. These lower diamondoid components show no isomers and are readily synthesized, distinguishing them from the “higher diamondoid components.”
  • higher diamondoid components refers to any and/or all substituted and unsubstituted tetramantane components; to any and/or all substituted and unsubstituted pentamantane components; to any and/or all substituted and unsubstituted hexamantane components; to any and/or all substituted and unsubstituted heptamantane components to any and/or all substituted and unsubstituted octamantane components; to any and/or all substituted and unsubstituted nonamantane components; to any and/or all substituted and unsubstituted decamantane components; to any and/or all substituted and unsubstituted undecamantane components; as well as mixtures of the above as well as isomers and stereoisomers of tetramantane, pentamantane, hexamantane, heptamantane,
  • feedstock or "hydrocarbonaceous feedstock” refers to hydro- carbonaceous materials comprising recoverable amounts of cyclohexamantane.
  • feedstocks include oil, gas condensates, refinery streams, reservoir rocks, oil shale, tar sands, source rocks, and the like.
  • feedstocks typically, but not necessarily, comprise one or more lower diamondoid components as well as nondiamondoid components.
  • the feedstock is typically characterized as comprising components having a boiling point both below and above tetramantane which boils at about 350°C at atmospheric pressure and more preferably, having a boiling point below and above cyclohexamantane.
  • Typical feedstocks may also contain impurities such as sediment, metals including nickel, vanadium, and other inorganics. They may also contain heteromolecules containing sulfur, nitrogen and the like. Such feedstocks may be subsequently treated or subjected to various unit operations to alter the characteristics of the original feedstock and therein retain properties of said treated feedstock.
  • the term "remove” or “removing” refers to processes for removal of nondiamondoid components and/or lower diamondoid components from the feedstock. Such processes include, by way of example only, size separation techniques, distillation, evaporation either under normal or reduced pressure, well head separators, sorption, chromatography, chemical extraction, crystallization and the like. For example, Chen, et al. disclose distillation processes for removing adamantane, substituted adamantane, diamantane, substituted diamantane, and triamantane from a hydrocarbonaceous feedstock. Size separation techniques include membrane separations, molecular sieves, gel permeation, size exclusion chromatography and the like.
  • distillation or “distilling” refers to atmospheric, reduced pressure distillation, and elevated pressure distillation processes on the hydrocarbonaceous feedstock which are conducted to concentrate cyclohexamantane by removal of other components from the feedstock. Unless otherwise specified, distillation temperatures are reported as atmospheric equivalents.
  • thermal processing to pyrolyze refers to either atmospheric, reduced pressure or elevated pressure heating of the feedstock to pyrolyze a portion of one or more components in the feedstock.
  • nondiamondoid components of a feedstock refers to components of the feedstock that are not diamondoid in character wherein the term “diamondoid” is as defined herein.
  • chromatography refers to any of a number of well known chromatographic techniques including, by way of example only, column or gravity chromatography (either normal or reverse phase), gas chromatography, high performance liquid chromatography, and the like.
  • alkyl refers to straight and branched chain alkyl groups typically having from 1 to 20 carbon atoms, more preferably 1 to 6 atoms, as well as cyclic alkyl groups typically having from 3 to 20 carbon atoms and preferably from 3 to 6 carbon atoms. This term also includes the intramolecular alkyl ring closures between two attachment sites on a higher diamondoid component.
  • alkyl is exemplified by groups such as methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec- butyl, t-butyl, n-heptyl, octyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • compositions of this invention can be obtained from readily available starting materials using the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with feedstocks, but such conditions can be determined by one skilled in the art by routine optimization procedures. Detailed methods for processing feedstocks to obtain higher diamondoid compositions are set forth in U.S. Provisional Patent Application No. 60/262,842 filed January 19, 2001; U.S. Provisional Patent Application No. 60/300,148 filed June 21, 2001; U.S. Provisional Patent Application No. 60/307,063 filed July 20, 2001 and U.S. Provisional Patent Application No. _/_,_ filed November 9, 2001, entitled "Compositions Comprising Cyclohexamantane and
  • a feedstock is selected such that the feedstock comprises recoverable amounts of cyclohexamantane.
  • a feedstock comprises at least about 1 ppb (parts per billion) of cyclohexamantane. It is understood, of course, that feedstocks having higher concentrations of cyclohexamantane facilitate recovery.
  • Preferred feedstocks include, for example, natural gas condensates and refinery streams having high concentrations of higher diamondoids.
  • refinery streams include hydrocarbonaceous streams recoverable from cracking processes, distillations, coking and the like.
  • Particularly preferred feedstocks include gas condensates feedstocks recovered from the Norphlet formation in the Gulf of Mexico and from the LeDuc formation in Canada.
  • the feedstocks used to obtain the compositions of this invention typically comprise nondiamondoid components having a boiling point both below and above cyclohexamantane as well as one or more lower diamondoid components and in such feedstocks, cyclohexamantane cannot be effectively recovered. Accordingly, a sufficient amount of these contaminants is removed from the feedstock under conditions to provide a treated feedstock from which cyclohexamantane can be recovered.
  • the removal of contaminants including lower diamondoids, and in many cases some noncyclohexamantane higher diamondoids and/or hydrocarbonaceous nondiamondoid material include, by way of example only, size separation techniques such as membranes, molecular sieves, etc., evaporation and thermal separators either under normal or reduced pressures, extractors, electrostatic separators, crystallization, chromatography, well head separators, and the like.
  • a preferred separation method typically includes distillation of the feedstock to remove nondiamondoid components as well as lower diamondoid components, and in many cases some noncyclohexamantane higher diamondoids having a boiling point less than that of cyclohexamantane.
  • the feedstock is distilled to provide cuts above and below about 335°C, atmospheric equivalent boiling point, more preferably, above and below about 345 °C atmospheric equivalent boiling point and more preferably, above and below about 370°C atmospheric equivalent boiling point.
  • the lower cuts which are enriched in lower diamondoids and low boiling point higher diamondoid and nondiamondoid materials, are discarded or used to recover other higher diamondoids contained therein. Distillation can be operated to provide several cuts in the temperature range of interest to provide the initial isolation of the identified higher diamondoid. The cuts, which are enriched in higher diamondoids or the diamondoid of interest, are retained and may require further purification.
  • the preferred distillation cuts are taken at atmospheric equivalent boiling point temperatures of from about 330 to 550°C, preferably from about 390 to 470°C. Additional temperature refinements will allow for higher purity cuts for concentration of cyclohexamantane.
  • Other methods for the removal of contaminants and further purification of an enriched cyclohexamantane fraction can additionally include the following non-limiting examples: size separation techniques, evaporation either under normal or reduced pressure, sublimation, crystallization, chromatography, well head separators, flash distillation, fixed and fluid bed reactors, reduced pressure, and the like.
  • the contaminant removal may also include a pyro lysis step either prior or subsequent to distillation.
  • Pyrolysis is an effective method to remove hydrocarbonaceous, nondiamondoid components from the feedstock. It is effected by heating the feedstock under vacuum conditions or in an inert atmosphere, at a temperature of at least about 390°C or 400 °C (preferably about 410°C to about
  • pyrolysis is continued for a sufficient period of time and at a sufficiently high enough temperature to thermally degrade at least about 10 percent by weight of the nondiamondoids components of the feed material prior to pyrolysis. More preferably at least 50 percent by weight, and even more preferably at least 90 percent by weight of the nondiamondoids are thermally degraded.
  • Pyrolysis while a preferred embodiment, is not always necessary to facilitate the recovery, isolation or purification of cyclohexamantane.
  • Other separation methods may allow for the concentration of cyclohexamantane to be sufficiently high in certain feedstocks that direct purification methods such as chromatography including preparative gas chromatography and high performance liquid chromatography, crystallization, and fractional sublimation may be used to isolate cyclohexamantane.
  • cyclohexamantane Even after distillation or pyrolysis/distillation, further purification of cyclohexamantane may be desired to provide the compositions of this invention.
  • purification techniques such as chromatography, crystallization, thermal diffusion techniques, zone refining, progressive recrystalization, size separation and the like.
  • the recovered feedstock is subjected to the following additional procedures: 1) gravity column chromatography using silver nitrate impregnated silica gel; 2) two-column preparative capillary gas chromatography to isolate cyclohexamantane; or alternatively, one or multiple column high performance liquid chromatography; 3) crystallization to provide crystals of highly concentrated cyclohexamantane.
  • An alternative process is to use liquid chromatography including high performance liquid chromatography to isolate cyclohexamantane. As above, multiple columns with different selectivity can be used. Further processing using these methods allow for more refined separations which can lead to substantially pure cyclohexamantane .
  • the composition comprises at least about 5 percent by weight cyclohexamantane based upon the total weight of the composition.
  • the composition comprises cyclohexamantane ranging from about 50 to 100 percent by weight, preferably about 70 to 100 percent by weight, more preferably about 90 to 100 percent by weight, and even more preferably about 95 to 100 percent by weight based upon the total weight of the composition.
  • the composition comprise from about 70 to 100 percent by weight, more preferably from about 90 to 100 percent by weight, even more preferably from about 95 to 100 percent by weight, and most preferably from about 99 to 100 percent by weight of the single cyclohexamantane component.
  • compositions When such compositions are sufficiently enriched in cyclohexamantane, the composition may form a crystalline structure. Accordingly, another embodiment of the present invention is directed toward a composition comprising cyclohexamantane in crystalline form.
  • compositions of the present invention comprise cyclohexamantane.
  • compositions are useful in micro- and molecular-electronics and nanotechnology applications.
  • the rigidity, strength, stability, variety of structural forms and multiple attachment sites shown by cyclohexamantane makes possible accurate construction of robust, durable, precision devices with nanometer dimensions.
  • These special structural characteristics set these compounds apart from acyclic molecules, from condensed ring systems and even from bridged ring counterparts.
  • the great stability, nanometer size, variable yet rigid 3-dimensional geometries, well defined distances for places of attachment and nonplanar bridgeheads lead to their unique features. Such features make compositions comprising cyclohexamantane useful in nanotechnogy applications.
  • cyclohexamantane containing compositions can also be used in a high quality lubricating fluid which exhibits a high Viscosity Index and a very low pour point. 4 When so employed, these fluids comprise a fluid of lubricating viscosity and from about 0.1 to 10 weight percent cyclohexamantane.
  • these cyclohexamantane containing compositions can be used as high density fuels in the manner described by Chung, et al. 5 , incorporated herein by reference.
  • API American Petroleum Institute
  • FID flame ionization detector
  • ODS octadecylsilane
  • VLT vapor line temperature
  • Distillation preferably can be operated to provide specific cuts, thus removing both lower and higher boiling point components, leaving only components within a desired boiling point range.
  • Such fractionation can provide an increased concentration for a desired product within the temperature range.
  • Suitable starting materials were obtained. These materials included a gas condensate oil, Feedstock A (a gas chromatogram of this material is depicted in FIG. 4), and a gas condensate oil containing petroleum byproducts Feedstock B (a high temperature simulated distillation profile of this type of material is depicted in FIG. 5). Although other condensates, petroleums, or refinery cuts and product could have been used, these two materials were chosen due to their high diamondoid concentration, approximately 65 percent diamondoids, as determined from GC/MS. Both feedstocks were light colored and had API gravities between 19 and 20° API.
  • Table 1 shows the yields for atmospheric distillation fractions from two separate runs of Feedstock B and as a comparison the calculated yields for a simulated distillation. As seen from the table, there is a good correlation.
  • FIG. 6 compares a high-temperature simulated distillation profile of the atmospheric residue of the gas condensates, Feedstock A and Feedstock B. Additionally outlined is the identified location and size of the cyclohexamantane-containing fractions. In terms of atmospheric equivalent boiling points the cyclohexamantane components are anticipated to be predominately within the range of about 330 to 550°F with a large portion within the range of about 395 to 460°F. The nondiamondoid material can be removed by subsequent processes such as pyrolysis.
  • Feedstock A was distilled into 38 fractions to remove lower diamondoids and concentrate diamondoids of interest as verified by GC (see FIG. 7) wherein residue left after the distillation of 38 fractions was recovered, predominately boiling in the range of from about 750°F+ (atmospheric equivalent). The temperature range for these fractions are atmospheric equivalent temperatures, wherein the actual distillation can occur under various conditions including reduced pressure. Additionally, Feedstock B was distilled into fractions containing higher diamondoids guided by high temperature simulated distillation curve (FIG. 8). TABLE 2A: Distillation Report for Feedstock B
  • Table 4 illustrates the elemental composition of Feedstock B atmospheric distillation (650°F+) residue including some of the identified impurities. Table 4 displays the weight percent nitrogen, sulfur, nickel and vanadium present within this feedstock. These materials are removed in subsequent steps.
  • This step although not necessary for the recovery of cyclohexamantane from some starting materials such as feedstock A, is either necessary or greatly facilitates cyclohexamantane recovery from other feedstocks, e.g. Feedstock B.
  • feedstocks e.g. Feedstock B.
  • Such reactors can operate at a variety of temperatures and pressures.
  • FIGS. 10(A, B) illustrate this method and show a gas chromatogram of the Feedstock B 650°F+ distillation fraction 5 before pyrolysis and the resulting pyrolysis product.
  • the hexamantane peaks Prior to pyrolysis, the hexamantane peaks are obscured by the presence of nondiamondoid components. Pyrolysis can be used to degrade the nondiamondoid components to easily removable gas and coke like solids. As shown in FIG. 10A, the hexamantane peaks are clearly visible after pyrolysis.
  • a PARR ® reactor from PARR INSTRUMENT COMPANY, Moline, Illinois, was used to process the distillation fractions obtained from vacuum distillation of a feedstream.
  • Feedstock B 650°F+ distillation fraction 5 was used as a feedstock for pyrolysis. Pyrolysis was then conducted on 5.2 grams of this sample by heating the sample under vacuum in a vessel at 450°C for 16.7 hours.
  • a pyrolysis product of a distillate fraction of Feedstock B could be passed through a silica-gel gravity chromatography column to remove polar compounds and asphaltenes.
  • the use of a silver nitrate impregnated silica gel provides cleaner diamondoid-containing fractions by removing the free aromatic and polar components.
  • the distillate fraction or the pyrolysis products could be purified using this step prior to subsequent isolation procedures.
  • HPLC was used to provide sufficient enrichment of cyclohexamantane to allow for its crystallization. Suitable columns for use are well known to those skilled in the art. In some cases, reverse-phase HPLC with acetone as mobile phase can be used to effect this purification.
  • a preparative ODS HPLC run of Feedstock B distillate cut 6 pyrolysis product saturated hydrocarbon fraction was performed and the HPLC chromatogram recorded using a differential refractometer: elution fractions for cyclohexamantane are shown in FIG. 11. The "x" marks the fraction (#23) which contains the highest concentration of cyclohexamantane.
  • HPLC columns used were two 50cm x 20mm I.D. WHATMAN octadecyl silane (ODS) columns operated in series (Whatman columns are manufactured by Whatman Inc., USA).
  • ODS WHATMAN octadecyl silane
  • a 500 microliter sample of a solution of the cut 6 pyrolysis product saturated hydrocarbon fraction (54 mg) was injected into the columns.
  • the columns were set-up using acetone at 5.00 ml/min as a mobile phase carrier.
  • HPLC fractions 23-26 reached the purity (FIG. 12 A,B) necessary for cyclohexamantane to crystallize.
  • FIG. 13 A,B illustrates photomicrographs of representative cyclohexamantane crystals precipitated from ODS HPLC fractions #23-26.
  • cyclohexamantane components in this fraction could be separated using further chromatographic techniques including preparative gas chromatography or more preferably additional HPLC runs using columns of different selectivity as outlined below. Additionally other techniques known in the crystallization art could be utilized including but not limited to fractional sublimation, progressive recrystallization or zone refining.
  • cyclohexamantane could be sent for structural determination using X-ray diffraction.
  • FIG. 12 shows results of a preparative separation of cyclohexamantane from distillation cut 6-pyrolysis product saturated hydrocarbon fraction using an octadecyl silane (ODS) HPLC column with acetone as a mobile phase.
  • ODS octadecyl silane
  • This first HPLC system consisted of two Whatman M20 10/50 ODS columns operated in series using acetone as mobile phase at 5.00 mL/min. The detector used was a differential refractometer. From this HPLC run, fractions #23-26 (FIG. 12A) were combined and taken for further purification on a second HPLC system. This combined fraction contained cyclohexamantane.
  • FIG. 14 shows a preparative Hypercarb HPLC run indicating elution time of cyclohexamantane.
  • FIG. 15A,B Photomicrographs of representative crystals of cyclohexamantane obtained by this method are shown in FIG. 16A,B. After obtaining crystals of suitable size, cyclohexamantane could be sent for structural determination using X-ray diffraction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
PCT/US2002/000508 2001-01-19 2002-01-17 Compositions comprising cyclohexamantane WO2002057203A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
BR0206530-4A BR0206530A (pt) 2001-01-19 2002-01-17 Composição quìmica
PL02362644A PL362644A1 (en) 2001-01-19 2002-01-17 Compositions comprising cyclohexamantane
NZ525262A NZ525262A (en) 2001-01-19 2002-01-17 Compositions comprising cyclohexamantane
JP2002557886A JP2004517887A (ja) 2001-01-19 2002-01-17 シクロヘキサマンタンを含む組成物
DE60222236T DE60222236T2 (de) 2001-01-19 2002-01-17 Zubereitungen enthaltend cyclohexamantan
AU2002236732A AU2002236732B2 (en) 2001-01-19 2002-01-17 Compositions comprising cyclohexamantane
EP02703089A EP1351904B1 (de) 2001-01-19 2002-01-17 Zubereitungen enthaltend cyclohexamantan
CA002434941A CA2434941A1 (en) 2001-01-19 2002-01-17 Compositions comprising cyclohexamantane
IL15696602A IL156966A0 (en) 2001-01-19 2002-01-17 Compositions comprising cyclohexamantane
MXPA03006376A MXPA03006376A (es) 2001-01-19 2002-01-17 Composiciones que comprenden ciclohexamantano.
HU0302727A HUP0302727A2 (hu) 2001-01-19 2002-01-17 Ciklohexamantánt tartalmazó anyagösszetételek
KR10-2003-7009580A KR20040004497A (ko) 2001-01-19 2002-01-17 사이클로헥사만탄을 포함하는 조성물
IL156966A IL156966A (en) 2001-01-19 2003-07-16 Compositions comprising cyclohexamantane
NO20033260A NO20033260L (no) 2001-01-19 2003-07-18 Materialer omfattende sykloheksamantan

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US26284201P 2001-01-19 2001-01-19
US60/262,842 2001-01-19
US60/337,918 2001-11-09

Publications (1)

Publication Number Publication Date
WO2002057203A1 true WO2002057203A1 (en) 2002-07-25

Family

ID=22999293

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2002/000508 WO2002057203A1 (en) 2001-01-19 2002-01-17 Compositions comprising cyclohexamantane
PCT/US2002/004549 WO2002096804A2 (en) 2001-01-19 2002-01-17 Processes for the purification of higher diamondoids and compositions comprising such diamondoids
PCT/US2002/000505 WO2002057202A1 (en) 2001-01-19 2002-01-17 Compositions comprising higher diamondoids and processes for their separation

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/US2002/004549 WO2002096804A2 (en) 2001-01-19 2002-01-17 Processes for the purification of higher diamondoids and compositions comprising such diamondoids
PCT/US2002/000505 WO2002057202A1 (en) 2001-01-19 2002-01-17 Compositions comprising higher diamondoids and processes for their separation

Country Status (24)

Country Link
US (2) US6743290B2 (de)
EP (1) EP1392603B1 (de)
JP (1) JP2005503352A (de)
KR (1) KR20040004490A (de)
CN (1) CN1286784C (de)
AR (2) AR032499A1 (de)
AT (1) ATE438590T1 (de)
AU (1) AU2002321993B2 (de)
BR (1) BR0206531A (de)
CA (1) CA2435407A1 (de)
CZ (1) CZ20031977A3 (de)
DE (1) DE60233221D1 (de)
HK (1) HK1066527A1 (de)
HU (1) HUP0302721A3 (de)
IL (2) IL156963A0 (de)
MX (1) MXPA03006377A (de)
MY (1) MY143730A (de)
NO (1) NO20033259L (de)
NZ (1) NZ525260A (de)
PL (1) PL369175A1 (de)
RU (1) RU2307822C2 (de)
TW (2) TWI302527B (de)
WO (3) WO2002057203A1 (de)
ZA (5) ZA200302927B (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6843851B2 (en) * 2001-01-19 2005-01-18 Chevron U.S.A., Inc. Compositions comprising pentamantanes and processes for their separation
EP1351905A2 (de) 2001-01-19 2003-10-15 Chevron USA, Inc. Polymerisierbare höhere diamantstrukturartiger derivate
US7795468B2 (en) * 2001-01-19 2010-09-14 Chevron U.S.A. Inc. Functionalized higher diamondoids
US7173160B2 (en) * 2002-07-18 2007-02-06 Chevron U.S.A. Inc. Processes for concentrating higher diamondoids
US7049374B2 (en) 2002-07-18 2006-05-23 Chevron U.S.A. Inc. Heterodiamondoids
US7309476B2 (en) * 2002-07-18 2007-12-18 Chevron U.S.A. Inc. Diamondoid-based components in nanoscale construction
US7488565B2 (en) * 2003-10-01 2009-02-10 Chevron U.S.A. Inc. Photoresist compositions comprising diamondoid derivatives
US7402716B2 (en) * 2003-12-31 2008-07-22 Chevron U.S.A. Inc. Hybrid cubic/hexagonal diamondoids
US20070037909A1 (en) * 2005-08-10 2007-02-15 Chevron U.S.A. Inc. Diamondoid-based nucleating agents for thermoplastics
US20070251446A1 (en) * 2006-03-24 2007-11-01 Chevron U.S.A. Inc. Chemically attached diamondoids for CVD diamond film nucleation
US7758746B2 (en) 2006-10-06 2010-07-20 Vary Petrochem, Llc Separating compositions and methods of use
PL2069467T3 (pl) 2006-10-06 2015-02-27 Vary Petrochem Llc Kompozycje wydzielające i sposoby stosowania
US8062512B2 (en) * 2006-10-06 2011-11-22 Vary Petrochem, Llc Processes for bitumen separation
US8367166B2 (en) * 2008-10-31 2013-02-05 Chevron U.S.A. Inc. Synthesis of higher diamondoids
CN102101817B (zh) * 2009-12-18 2013-04-24 中国石油天然气股份有限公司 石油和烃源岩中低级金刚烷类化合物的分离和富集方法
WO2011099351A1 (ja) * 2010-02-12 2011-08-18 国立大学法人東京大学 ダイヤモンドイドの合成方法及びダイヤモンドイド
EP2663859B1 (de) * 2011-01-14 2019-01-23 Exxonmobil Upstream Research Company System und verfahren zur durchführung von geochronologie
CN102768256B (zh) * 2012-07-23 2014-06-04 中国石油天然气股份有限公司 用全二维气相色谱定量石油样品中金刚烷类化合物的方法
JP2020534040A (ja) 2017-09-21 2020-11-26 ヴェリリー ライフ サイエンシズ エルエルシー 移動可能な光学絞りを有する網膜カメラ
CN111635289B (zh) * 2020-04-29 2022-07-05 中国石油天然气股份有限公司 一种分离原油中乙基降金刚烷类化合物的方法和系统

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457318A (en) 1967-11-30 1969-07-22 Atlantic Richfield Co Alkenyl adamantanes
US3832332A (en) 1971-10-22 1974-08-27 Sun Research Development Polyamide polymer of diamino methyl adamantane and dicarboxylic acid
US4952749A (en) 1989-05-26 1990-08-28 Mobil Oil Corp. Removal of diamondoid compounds from hydrocarbonaceous fractions
CA2017527A1 (en) 1989-05-26 1990-11-26 Mobil Oil Corporation Purification of hydrocarbonaceous fractions
US4952748A (en) 1989-05-26 1990-08-28 Mobil Oil Corp. Purification of hydrocarbonaceous fractions
US4982049A (en) 1989-05-26 1991-01-01 Mobil Oil Corp. Purification of hydrocarbonaceous fractions
US4952757A (en) 1989-11-15 1990-08-28 Summagraphics Corporation Low-power electromagnetic digitizer tablet
US5017734A (en) 1989-12-11 1991-05-21 Kurt Baum Ethynyl adamantane derivatives and methods of polymerization thereof
US5019665A (en) 1990-04-18 1991-05-28 Mobil Oil Corp. Shape-selective process for concentrating diamondoid-containing hydrocarbon solvents
US5245104A (en) 1990-12-17 1993-09-14 Mobil Oil Corporation Method and apparatus for producing and separating diamondoid compounds from natural gas streams
US5461184A (en) 1991-09-25 1995-10-24 Chevron U.S.A. Inc. Method for diamondoid extraction using a solvent system
US5414189A (en) 1992-08-24 1995-05-09 Mobil Oil Corporation Isolation of high purity diamondoid fractions and components
US5268513A (en) 1992-09-10 1993-12-07 Mobil Oil Corporation Air hydroxylation of diamondoids
US5256391A (en) 1992-09-11 1993-10-26 Mobil Oil Corporation Method for synthesizing microporous crystalline material
US5298666A (en) 1992-09-18 1994-03-29 Mobil Oil Corporation Synthesis of adamantane-2,4-dione
US5306851A (en) * 1992-11-23 1994-04-26 Mobil Oil Corporation High viscosity index lubricant fluid
US5347063A (en) 1993-03-09 1994-09-13 Mobil Oil Corporation Method for direct arylation of diamondoids
US5576355A (en) 1993-06-04 1996-11-19 Mobil Oil Corp. Diamondoid derivatives for pharmaceutical use
US5369213A (en) 1993-06-30 1994-11-29 Mobil Oil Corporation Oxidative coupling of diamondoids and aromatics
US5382684A (en) 1993-07-06 1995-01-17 Mobil Oil Corporation Nitrogenous 1,3-substituted adamantanes
US5400427A (en) 1993-10-18 1995-03-21 Mobil Oil Corporation Fiber optic cable and viscous filler material
US5334228A (en) * 1993-10-18 1994-08-02 Mobil Oil Corporation Deposit control additives and fuel compositions containing the same
US5397488A (en) 1993-12-09 1995-03-14 Mobil Oil Corporation Oxidatively stable esters derived from diamondoids totally hydroxylated at the bridgeheads
US5430193A (en) 1994-04-22 1995-07-04 Mobil Oil Corporation Synthesis of 4-hydroxy-2-adamantanes and related compounds
US5394733A (en) 1994-06-24 1995-03-07 Mobil Oil Corporation Quantitative pyrolysis-gas chromatography using diamondoid compounds
US5498812A (en) 1994-08-04 1996-03-12 Mobil Oil Corporation Two-stage process for producing diamondoid hydrocarbons
WO1998052902A1 (fr) 1997-05-23 1998-11-26 Daicel Chemical Industries, Ltd. Derives polymerisables de l'adamantane et leur procede de production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; SHEN, MINGZUO ET AL: "Finite Td symmetry models for diamond: from adamantane to super-adamantane (C35H36)", XP002201142, retrieved from STN Database accession no. 116:40599 CA *
J. AM. CHEM. SOC. (1992), 114(2), 497-505 *

Also Published As

Publication number Publication date
DE60233221D1 (de) 2009-09-17
BR0206531A (pt) 2004-03-23
PL369175A1 (en) 2005-04-18
TWI302527B (en) 2008-11-01
ZA200302925B (en) 2004-07-19
JP2005503352A (ja) 2005-02-03
MXPA03006377A (es) 2004-10-29
WO2002096804A3 (en) 2003-12-18
NO20033259D0 (no) 2003-07-18
AR035529A1 (es) 2004-06-02
EP1392603B1 (de) 2009-08-05
CZ20031977A3 (cs) 2003-12-17
MY143730A (en) 2011-06-30
CN1501900A (zh) 2004-06-02
HUP0302721A3 (en) 2005-05-30
HUP0302721A2 (hu) 2003-11-28
CN1286784C (zh) 2006-11-29
WO2002057202A1 (en) 2002-07-25
AU2002321993B2 (en) 2007-04-05
ZA200302926B (en) 2004-04-14
HK1066527A1 (en) 2005-03-24
IL156963A (en) 2006-08-20
CA2435407A1 (en) 2002-12-05
US6844477B2 (en) 2005-01-18
NZ525260A (en) 2004-09-24
IL156963A0 (en) 2004-02-08
US20020193648A1 (en) 2002-12-19
RU2307822C2 (ru) 2007-10-10
KR20040004490A (ko) 2004-01-13
ZA200302927B (en) 2004-05-27
US20020139295A1 (en) 2002-10-03
TWI235743B (en) 2005-07-11
RU2003125362A (ru) 2005-02-10
ZA200302929B (en) 2004-04-14
US6743290B2 (en) 2004-06-01
NO20033259L (no) 2003-09-12
ATE438590T1 (de) 2009-08-15
AR032499A1 (es) 2003-11-12
ZA200302928B (en) 2004-04-14
WO2002096804A2 (en) 2002-12-05
EP1392603A2 (de) 2004-03-03

Similar Documents

Publication Publication Date Title
WO2002057203A1 (en) Compositions comprising cyclohexamantane
AU2002321993A1 (en) Processes for the purification of higher diamondoids and compositions comprising such diamondoids
US6861569B2 (en) Processes for the purification of higher diamondoids and compositions comprising such diamondoids
US6812370B2 (en) Compositions comprising hexamantanes and processes for their separation
US6831202B2 (en) Compositions comprising octamantanes and processes for their separation
US6843851B2 (en) Compositions comprising pentamantanes and processes for their separation
US7094937B2 (en) Compositions comprising cyclohexamantane
US7034194B2 (en) Compositions comprising decamantanes and processes for their separation
US6828469B2 (en) Compositions comprising heptamantane and processes for their separation
US6815569B1 (en) Compositions comprising tetramantanes and processes for their separation
US6812371B2 (en) Compositions comprising nonamantanes and processes for their separation
EP1351904B1 (de) Zubereitungen enthaltend cyclohexamantan
AU2002236732A1 (en) Compositions comprising cyclohexamantane
AU2007202543A1 (en) Processes for the purification of higher diamondoids and compositions comprising such diamondoids
EP1351906A1 (de) Zubereitungen enthaltend höhere diamantstrukturartige verbindungen sowie verfahren zu deren abtrennung
AU2002246966A1 (en) Compositions comprising higher diamondoids and processes for their separation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 525262

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2003/02929

Country of ref document: ZA

Ref document number: 200302929

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2002236732

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002703089

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2434941

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 028037766

Country of ref document: CN

Ref document number: PA/a/2003/006376

Country of ref document: MX

Ref document number: 156966

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2002557886

Country of ref document: JP

Ref document number: 1020037009580

Country of ref document: KR

Ref document number: PV2003-1976

Country of ref document: CZ

Ref document number: 1110/CHENP/2003

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2002703089

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2003-1976

Country of ref document: CZ

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020037009580

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 525262

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 525262

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 2002703089

Country of ref document: EP