WO2011099351A1 - ダイヤモンドイドの合成方法及びダイヤモンドイド - Google Patents

ダイヤモンドイドの合成方法及びダイヤモンドイド Download PDF

Info

Publication number
WO2011099351A1
WO2011099351A1 PCT/JP2011/051168 JP2011051168W WO2011099351A1 WO 2011099351 A1 WO2011099351 A1 WO 2011099351A1 JP 2011051168 W JP2011051168 W JP 2011051168W WO 2011099351 A1 WO2011099351 A1 WO 2011099351A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
diamondoid
diamondoids
adamantane
synthesis
Prior art date
Application number
PCT/JP2011/051168
Other languages
English (en)
French (fr)
Inventor
和夫 寺嶋
スヴェン ニコ シュタウス
裕之 宮副
岳彦 佐々木
宏和 菊池
康也 斎藤
朋季 静野
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2011505309A priority Critical patent/JPWO2011099351A1/ja
Publication of WO2011099351A1 publication Critical patent/WO2011099351A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/605Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with a bridged ring system
    • C07C13/615Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with a bridged ring system with an adamantane ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0835Details relating to the shape of the electrodes substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0883Gas-gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3325Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other polycyclic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for synthesizing diamondoids and diamondoids.
  • diamondoids which are carbon nanomaterials having sp 3 bonds, have attracted attention following carbon nanomaterials having sp 2 bonds typified by fullerenes and carbon nanotubes.
  • Such diamondoids are a series of hydrocarbon compounds having a molecular structure in which a diamond lattice cage is terminated with hydrogen, and a cage cage (adamantane (C 10 H 16 )) 100 as shown in FIG.
  • Various diamondoids can be generated by linking as a minimum structural unit of diamondoids.
  • the number of cages 100 included in the diamondoid is defined as the order thereof.
  • a diamondoid having one cage 100 is also called a primary diamondoid and has a configuration in which two cages 100 are combined. Is also called secondary diamondoid.
  • the fourth and higher order diamondoids in which structural isomers appear are called higher order diamondoids, and the third and lower order diamondoids. Is called low-order diamondoid.
  • primary diamondoids known as adamantanes have already been synthesized in large quantities and applied as pharmaceuticals, photoresist materials, and electronic device materials. Expectation is also increasing about the possibility (for example, refer nonpatent literature 1).
  • the present invention has been made in consideration of the above points, and an object thereof is to provide a diamondoid obtained by synthesis without using a catalyst or an organic solvent.
  • claim 1 of the present invention is characterized in that a diamondoid in which a plurality of adamantanes are combined is synthesized by generating plasma in a fluid in which adamantane is dissolved. is there.
  • claim 2 of the present invention is characterized in that the fluid is in a supercritical state or a subcritical state.
  • claim 3 of the present invention is characterized in that the fluid is made of xenon or carbon dioxide.
  • the diamondoid obtained by synthesis is at least one of pentamantane, hexamantane, heptamantane, octamantane, nonamantane and decamantane. .
  • claim 5 of the present invention is characterized in that a plurality of adamantanes are combined by generating plasma in a fluid in which adamantane is dissolved.
  • claim 6 of the present invention is characterized in that the fluid is in a supercritical state or a subcritical state.
  • claim 7 of the present invention is characterized in that the fluid is made of xenon or carbon dioxide.
  • claim 8 of the present invention is characterized in that it becomes at least one of pentamantane, hexamantane, heptamantane, octamantane, nonamantane and decamantane by a combination of a plurality of the adamantanes.
  • a diamondoid obtained by synthesis can be provided without using a catalyst or an organic solvent.
  • reference numeral 1 denotes a synthesizer used when synthesizing a diamondoid according to the present invention.
  • This synthesizer 1 is a supercritical fluid in which adamantane is dissolved (hereinafter referred to as a supercritical fluid) or A subcritical fluid (hereinafter referred to as a subcritical fluid) is generated in the pressure-resistant vessel 2, and plasma is generated in the supercritical fluid or subcritical fluid to connect a plurality of adamantanes. It is configured to be able to produce diamondoids.
  • a supercritical fluid or a subcritical fluid is applied below as an example.
  • the present invention is not limited to this, and in short, the number of liquids, supercritical fluids, or Knudsen numbers is one.
  • Any gas that can be handled below in a normal process, a gas of about 1/10000 barometric pressure (0.1 Torr) or more) (hereinafter, these liquids, supercritical fluids, or gases are simply referred to as fluids) may be used. That is, in the supercritical region or subcritical region near the critical point, the synthesis of the diamondoid of the present invention can be achieved at high speed, while other simple gas fluid atmospheres or liquids that are not near the critical point. Among them, the synthesis rate of the diamondoid of the present invention is possible although the synthesis rate is lowered.
  • the pressure vessel 2 includes a carrier supply unit 3 for supplying a carrier material that becomes a supercritical fluid or a subcritical fluid into the pressure vessel 2 as a carrier fluid, and a heater and a cooler (not shown) in the pressure vessel 2.
  • the pressure control vessel 4 is heated or cooled to maintain a predetermined temperature, and the gas is supplied into the pressure vessel 2 or the gas is sucked from the pressure vessel 2 to maintain the pressure vessel 2 at a predetermined pressure.
  • the pressure control unit 5 is connected.
  • the pressure vessel 2 is heated to a temperature necessary for the carrier fluid to become a supercritical fluid or subcritical fluid by the temperature control unit 4, and the carrier fluid is supercritical fluid or sublimation by the pressure control unit 5.
  • the carrier fluid supplied from the carrier supply unit 3 can be made a supercritical fluid or a subcritical fluid by being pressurized to a pressure necessary to become a critical fluid.
  • xenon (Xe) is used as the carrier material, and the xenon gas supplied from the storage unit 6 of the carrier supply unit 3 is cooled by LN2 (liquefied nitrogen gas) by the capacitor 7.
  • LN2 liquefied nitrogen gas
  • xenon has a critical pressure of 5.84 MPa and a critical temperature of 16.6 ° C
  • the pressure is 3 to 12 MPa.
  • the pressure vessel 2 is preferably adjusted to a temperature of 12 to 24 ° C.
  • xenon is applied as the carrier material.
  • the present invention is not limited to this, and various other carrier materials such as carbon dioxide may be applied.
  • the inside of the pressure vessel 2 is adjusted to be close to the critical temperature and critical pressure of the carrier material according to each carrier material, and thereby a supercritical fluid or a subcritical fluid can be generated.
  • the critical pressure of a predetermined carrier material to be used is Pc
  • the pressure P in the pressure resistant container 2 can be set to 0.5Pc ⁇ P ⁇ 10Pc, preferably 0.8Pc ⁇ P ⁇ 1.5Pc.
  • the critical temperature of the carrier material is Tc
  • the temperature T in the pressure vessel 2 can be set to 0.5Tc ⁇ T (K) ⁇ 2Tc, preferably 0.9Tc ⁇ T (K) ⁇ 1.2Tc.
  • adamantane can be dissolved in the supercritical fluid or subcritical fluid by supplying adamantane to the pressure resistant vessel 2 from a supply path (not shown) into the pressure resistant vessel 2.
  • the pressure vessel 2 is supplied with cooling water from the cooling water supply passage 10 as necessary, and can discharge the cooling water circulated through a predetermined location in the pressure vessel 2 from the cooling water discharge passage 11 to the outside.
  • the temperature rise of the predetermined location in the pressure vessel 2 can be suppressed by the cooling water.
  • Reference numeral 13 denotes a supply path for supplying hydrogen into the pressure vessel 2, and by supplying hydrogen into the pressure vessel 2, the lattice of the product generated in the pressure vessel 2 can be terminated with hydrogen. Has been made.
  • a plasma generator 15 using a dielectric barrier discharge (dielectric barrier discharge: DBD), for example, is provided inside the pressure vessel 2.
  • a plasma can be generated in a supercritical fluid or a subcritical fluid by applying an AC voltage to.
  • the plasma generating unit 15 has a ground electrode 17 made of, for example, a conductive paste, grounded, and a dielectric 18 made of, for example, machinable ceramic is provided on the ground electrode 17.
  • a mesh-like counter electrode 19 made of molybdenum (Mo) is provided.
  • the dielectric 18 is formed with a recess 21 having a recessed central region, and a plate-like counter electrode 19 is disposed on the peripheral wall of the recess 21 so that the recess 18 is located between the recess 21 and the counter electrode 19.
  • a space G can be formed.
  • the thickness t1 of the bottom of the recess 21 is selected to be about 100 ⁇ m
  • the distance t2 from the bottom surface of the recess 21 to the counter electrode is 70 ⁇ m
  • the internal volume of the space G is selected to be about 0.0003 cc. .
  • the carrier fluid is supplied to the space G to the plasma generation unit 15, and a supercritical fluid or a subcritical fluid is generated in the space G.
  • the inside of the space G is adjusted between 12 to 24 ° C. which is higher than or near the critical temperature of the carrier fluid by the heater, By adjusting the inside of the space G between 3 to 12 MPa which is equal to or higher than the critical pressure of the carrier fluid or near the critical pressure, the carrier fluid can be changed to a supercritical fluid or a subcritical fluid in the space G.
  • the plasma generating unit 15 is supplied with a predetermined amount of adamantane from a predetermined supply path to the space G in which the supercritical fluid or subcritical fluid is generated, so that the pressure-resistant vessel 2 having an internal volume of about 3 cc.
  • Adamantane can be dissolved in the range of 0.5 to 15 mg. Note that the amount of adamantane dissolved may not be in the range of 0.5 to 15 mg, but may be variously dissolved as long as the diamondoid of the present invention can be synthesized.
  • the plasma generator 15 applies plasma voltage to the space G between the counter electrode 19 and the ground electrode 17 by applying an AC voltage of several kHz (eg, 7 kHz) from the power supply unit 16 to the counter electrode 19. Can be generated.
  • the counter electrode 19 is an electrode in which an electrode portion 25 having an area of about 5 mm 2 is prepared and about 17 identical electrode portions 25 are arrayed. By arranging the electrode portions 25 in an array, the counter electrode 19 formed in a mesh shape as shown in FIG. 3C can be obtained.
  • FIG. 3B is a photograph when plasma is generated in the electrode section 25, and FIG. 3D is a photograph when plasma is generated in the counter electrode 19 in which the electrode section 25 is arrayed.
  • a plasma having a predetermined intensity can be generated over a wide range (in this case, about 85 mm 2 ).
  • the plasma generator 15 generates plasma in the space G filled with the supercritical fluid or subcritical fluid in which adamantane is dissolved, and generates plasma in the supercritical fluid or subcritical fluid. It is made to be able to let you.
  • the plasma generating unit 15 can generate a diamondoid in which a plurality of adamantanes are combined in the space G.
  • the general formula C 6 + 4n is adjusted by adjusting the temperature, pressure, and concentration of adamantane in the supercritical fluid or subcritical fluid in the space G of the plasma generator 15.
  • the higher order diamondoid with multiple adamantanes bonded to it increases the adamantane, and when the adamantane comes to a position where it already shares some carbon atoms, the total number of carbons decreases. It may be an n-order diamondoid that does not satisfy 6 + 4n H 12 + 4n . Accordingly, the following fifth to fifteenth diamondoids do not necessarily satisfy the general formula C 6 + 4n H 12 + 4n but include homologues thereof.
  • the product obtained by this synthesis method includes diamantane which is a secondary diamondoid, triamantane which is a tertiary diamondoid, and tetramantane which is a quaternary diamondoid.
  • the product obtained by this synthesis method includes pentamantan which is a fifth diamondoid, hexamantane which is a sixth diamondoid, heptamantane which is a seventh diamondoid, and octane which is an eighth diamondoid. It has also been generated for molecules that have not been artificially synthesized, such as mantan, nonamantane, which is a 9th-order diamondoid, decamantane, which is a 10th-order diamondoid, and undecamantane, which is an 11th-order diamondoid. In addition, twelfth to fifteenth diamondoids are also produced in the product obtained by this synthesis method.
  • a supercritical fluid composed of high-pressure Xe at a temperature of 18 ° C. and a pressure of 5.9 MPa is generated using the synthesis apparatus 1 described above, and about 10 ⁇ mg of adamantane is dissolved in this supercritical fluid.
  • a synthetic experiment was performed in which an alternating voltage of 7 kHz was applied to the electrode to generate plasma for 1 to 2 hours. Then, the product obtained in the pressure vessel 2 is collected, and a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (manufactured by Applied Biosystems, hereinafter referred to as MALDI-TOF) and micro Raman scattering. The collected product was analyzed using a spectrometer.
  • the product thus obtained was a white powder, and when this product was analyzed with a microscopic Raman scattering spectrometer, it was confirmed that it had sp 3 bonds by Raman spectroscopy. Further, when the mass spectrum of this product was measured by MALDI-TOF, the result shown in FIG. 4 was obtained (in FIG. 4, the product is shown as “sample”).
  • the hexamantane thus obtained is a molecule that has been successfully extracted and isolated from natural petroleum, but has not been artificially synthesized. For the first time from adamantane by the synthesis method of the present invention. We were able to synthesize artificially.
  • the product obtained in this way also contains other diamondoids, and one of them is decamantan, which is a tenth-order diamondoid. That is, when the product described above was analyzed by mass spectrum using MALDI-TOF, it was confirmed that decamantan, which is a 10th-order diamondoid, was also synthesized.
  • the decamantan thus obtained was also a molecule that was not artificially synthesized and could be artificially synthesized from adamantane for the first time by the synthesis method of the present invention.
  • the molecular structure as shown in FIG. 6 was able to be confirmed from the molecular structure analysis method using the HPLC method or the evaporation method described above (C is a carbon atom and H is a hydrogen atom).
  • C is a carbon atom
  • H is a hydrogen atom
  • the synthesizer 1 generates a supercritical fluid or subcritical fluid in which adamantane is dissolved in the pressure-resistant vessel 2, and generates plasma in the supercritical fluid or subcritical fluid.
  • the synthesis apparatus 1 can generate secondary to 15th order diamondoids in which a plurality of adamantanes are bonded, and these secondary to 15th order diamondoid isomers, and low order diamondoids can be used without using a catalyst or an organic solvent. And higher order diamondoids can also be obtained by synthesis.
  • the present invention is not limited to the present embodiment, and various modifications can be made within the scope of the gist of the present invention.
  • the supercritical fluid or subcritical fluid in which adamantane is dissolved can be obtained by supplying a raw material fluid in which adamantane is previously dissolved in the carrier fluid to the pressure vessel 2 and adjusting the raw material fluid to a predetermined temperature and pressure. You may make it produce

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

触媒や有機溶媒を用いずに、合成により得られるダイヤモンドイドを提供できるようにすることを目的とする。 合成装置1では、アダマンタンを溶解させた超臨界流体又は亜臨界流体を耐圧容器2内に生成し、当該超臨界流体中又は亜臨界流体中にプラズマを発生させる。これにより合成装置1では、複数のアダマンタンを結合させた2次~15次ダイヤモンドイド、これら2次~15次ダイヤモンドイドの各異性体を生成でき、触媒や有機溶媒を用いずに低次ダイヤモンドイドを合成できると共に、高次ダイヤモンドイドについても合成により得ることができる。

Description

ダイヤモンドイドの合成方法及びダイヤモンドイド
 本発明は、ダイヤモンドイドの合成方法及びダイヤモンドイドに関する。
 近年、フラーレンやカーボンナノチューブに代表されるsp2結合を有するカーボンナノマテリアルに続き、sp3結合を有するカーボンナノマテリアルであるダイヤモンドイドが注目されている。このようなダイヤモンドイドは、ダイヤモンド格子のケージを水素で終端させた分子構造を持つ一連の炭化水素化合物であり、図7に示すような、かご型のケージ(アダマンタン(C10H16))100をダイヤモンドイドの最小構造単位として繋げてゆくことで、種々のダイヤモンドイドが生成され得る。ここで、ダイヤモンドイドに含まれるケージ100の数をその次数と定義し、例えば1つのケージ100を有するダイヤモンドイドは、1次ダイヤモンドイドとも呼ばれ、2つのケージ100が結合した構成を有するダイヤモンドイドは、2次ダイヤモンドイドとも呼ばれている。
 また、このうち構造異性体が現れる4次以上のダイヤモンドイド(すなわち、4つ以上のケージ100が結合した構成を有するダイヤモンドイド)については高次ダイヤモンドイドと呼ばれ、3次以下のダイヤモンドイドについては低次ダイヤモンドイドと呼ばれている。このようなダイヤモンドイドについては、アダマンタンとして知られている1次ダイヤモンドイドは既に大量合成されており、医薬品やフォトレジスト材料、電子デバイス材料として応用されている一方で、高次ダイヤモンドイドの応用の可能性についても期待が高まっている(例えば、非特許文献1参照)。
W. L. Yang et al., Science, 316 (2007) 1460.
 しかしながら、4種類存在するうちの1種を除く3種類のテトラマンタン(4次ダイヤモンドイド)、及び5次以上の高次ダイヤモンドイドについては、石油中に極微量存在するものを抽出・精製するしかないというのが実情であり、人工的な合成法の確立が求められているものの、未だ成功例は報告されていない。また、従来、合成により得られる低次ダイヤモンドイドは、触媒や有機溶媒等が大量に必要となるため、環境負荷の小さい合成法の開発が望まれている。
 そこで、本発明は以上の点を考慮してなされたもので、触媒や有機溶媒を用いずに、合成により得られるダイヤモンドイドを提供できるようにすることを目的とする。
 かかる課題を解決するため本発明の請求項1は、アダマンタンを溶解させた流体中に、プラズマを発生させることにより、複数の前記アダマンタンを結合させたダイヤモンドイドを合成することを特徴とするものである。
 また、本発明の請求項2は、前記流体は、超臨界状態又は亜臨界状態であることを特徴とするものである。
 また、本発明の請求項3は、前記流体は、キセノン又は二酸化炭素からなることを特徴とするものである。
 また、本発明の請求項4は、合成により得られる前記ダイヤモンドイドは、ペンタマンタン、ヘキサマンタン、ヘプタマンタン、オクタマンタン、ノナマンタン及びデカマンタンのうち少なくともいずれか1種であることを特徴とするものである。
 また、本発明の請求項5は、アダマンタンを溶解させた流体中に、プラズマを発生させることにより、複数の前記アダマンタンが結合することにより合成されることを特徴とするものである。
 また、本発明の請求項6は、前記流体は、超臨界状態又は亜臨界状態であることを特徴とするものである。
 また、本発明の請求項7は、前記流体は、キセノン又は二酸化炭素からなることを特徴とするものである。
 また、本発明の請求項8は、複数の前記アダマンタンの結合により、ペンタマンタン、ヘキサマンタン、ヘプタマンタン、オクタマンタン、ノナマンタン及びデカマンタンのうち少なくともいずれか1種となることを特徴とするものである。
 本発明の請求項1のダイヤモンドイドの合成方法及び請求項5のダイヤモンドイドによれば、触媒や有機溶媒を用いずに、合成により得られるダイヤモンドイドを提供できる。
合成装置の全体構成を示す概略図である。 プラズマ発生部の構成を示す概略図である。 対向電極の説明に供する写真である。 生成物の質量スペクトルを示すグラフである。 ヘキサマンタンの代表的な分子構造を示す概略図である。 デカマンタンの代表的な分子構造を示す概略図である。 ダイヤモンドイドの最小構造単位となるケージを示す概略図である。
 1 合成装置
 2 耐圧容器
 3 キャリア供給部
 4 温度制御部
 5 圧力制御部
 15 プラズマ発生部
 以下図面に基づいて本発明の実施形態の一例を詳述する。
 図1において、1は本発明によるダイヤモンドイドを合成する際に用いる合成装置を示し、この合成装置1は、アダマンタンを溶解させた超臨界状態の流体(以下、これを超臨界流体と呼ぶ)又は亜臨界状態の流体(以下、これを亜臨界流体と呼ぶ)を耐圧容器2内に生成し、この超臨界流体中又は亜臨界流体中にプラズマを発生させることで、複数のアダマンタンを連結させたダイヤモンドイドを製造し得るように構成されている。
 因みに、この実施の形態の場合では、一例として以下、超臨界流体又は亜臨界流体を適用しているが、本発明はこれに限らず、要は、液体、超臨界流体、又はクヌーセン数が1以下で取り扱うことができる気体(通常のプロセスでは、およそ1/10000 気圧(0.1Torr)程度以上の気体)(以下、これら液体、超臨界流体又は気体を単に流体と呼ぶ)であればよい。すなわち、臨界点付近である超臨界領域又は亜臨界領域では、本発明のダイヤモンドイドの合成が高速で達成することができ、その一方で、臨界点付近にない他の単純なガス流体雰囲気や液体中でも、合成速度などが低下するが、本発明のダイヤモンドイドの合成は可能である。
 実際上、耐圧容器2には、超臨界流体又は亜臨界流体となるキャリア物質をキャリア流体として耐圧容器2内に供給するキャリア供給部3と、当該耐圧容器2内をヒータ及び冷却機(図示せず)で加熱又は冷却し所定温度に維持する温度制御部4と、耐圧容器2内へ気体を供給し、或いは当該耐圧容器2内から気体を吸引することにより耐圧容器2内を所定圧力に維持する圧力制御部5とが接続されている。
 これにより耐圧容器2は、温度制御部4によってキャリア流体が超臨界流体又は亜臨界流体になるのに必要な温度にまで加熱されると共に、圧力制御部5によって当該キャリア流体が超臨界流体又は亜臨界流体になるのに必要な圧力にまで加圧され、キャリア供給部3から供給されるキャリア流体を超臨界流体又は亜臨界流体にし得る。
 この実施の形態の場合には、キャリア物質としてキセノン(Xe)が用いられており、キャリア供給部3の貯溜部6から供給されるキセノンガスを、コンデンサ7によりLN2(液化窒素ガス)で冷却することにより液化してキャリア流体を生成し、これを耐圧容器2に供給し得るようになされている。
 ここで、キセノンは臨界圧力が5.84 MPa、臨界温度が16.6 ℃であることから、当該キセノンガスを液化したキャリア流体を用いて超臨界流体又は亜臨界流体を生成する場合には、圧力3~12MPa、温度12~24℃に耐圧容器2内を調整することが好ましい。因みに、この実施の形態においては、キャリア物質としてキセノンを適用した場合について述べたが、本発明はこれに限らず、二酸化炭素等この他種々のキャリア物質を適用してもよい。
 この場合、各キャリア物質に応じて耐圧容器2内を当該キャリア物質の臨界温度近傍及び臨界圧力近傍に調整し、これにより超臨界流体又は亜臨界流体を生成し得る。例えば、使用する所定のキャリア物質の臨界圧力をPcとした場合、耐圧容器2内の圧力Pは、0.5Pc<P<10Pc、好ましくは0.8Pc<P<1.5Pcに設定され得る。また、キャリア物質の臨界温度をTcとした場合、耐圧容器2内の温度Tは、0.5Tc<T(K)<2Tc、好ましくは0.9Tc<T(K)<1.2Tcに設定され得る。
 かかる構成に加えて、この耐圧容器2には、図示しない供給路から耐圧容器2内にアダマンタンが供給されることにより、超臨界流体中又は亜臨界流体中にアダマンタンを溶解させ得るようになされている。ここで、アダマンタンは、一般式C6+4nH12+4nで表されるn次ダイヤモンドイドのうち、図7に示すような1つのケージ100からなるC10H16(n=1)で表される1次ダイヤモンドイドである。
 因みに、耐圧容器2は、必要に応じて冷却水供給路10から冷却水が供給され、当該耐圧容器2内の所定箇所を循環させた冷却水を冷却水排出路11から外部に排出し得るようになされており、冷却水により耐圧容器2内の所定箇所の温度上昇を抑制し得るようになされている。なお、13は、耐圧容器2内に水素を供給する供給路であり、耐圧容器2内に水素を供給することにより、耐圧容器2内に生成された生成物の格子を水素で終端させ得るようになされている。
 また、耐圧容器2の内部には、図2に示すように、例えば誘電体バリア放電(dielectric barrier discharge : DBD)を用いたプラズマ発生部15が設けられており、電源部16からプラズマ発生部15に交流電圧が印加されることにより超臨界流体中又は亜臨界流体中にプラズマを発生させ得る。実際上、プラズマ発生部15は、例えば電導性ペーストからなる接地電極17が接地され、この接地電極17上に例えばマシナブルセラミックからなる誘電体18が設けられており、当該誘電体18上に例えばモリブデン(Mo)からなるメッシュ状の対向電極19が設けられた構成を有する。
 誘電体18には、中央領域が凹んだ凹部21が形成されており、当該凹部21の周壁上に板状の対向電極19が配置されていることにより、凹部21と対向電極19との間に空間Gが形成され得る。因みに、この実施の形態の場合、凹部21の底部の厚さt1が約100μm、凹部21の底部表面から対向電極までの距離t2が70μm、空間Gの内容積が約0.0003ccに選定されている。
 プラズマ発生部15には、この空間Gにキャリア流体が供給され、当該空間G内に超臨界流体又は亜臨界流体が生成される。この実施の形態の場合には、キャリア物質としてキセノンを用いていることから、空間G内がヒータによりキャリア流体の臨界温度以上又は臨界温度近傍である12~24 ℃の間に調整されると共に、当該空間G内がキャリア流体の臨界圧力以上又は臨界圧力近傍である3~12 MPaの間に調整されることにより、空間G内でキャリア流体を超臨界流体又は亜臨界流体にさせ得る。
 この際、プラズマ発生部15には、超臨界流体又は亜臨界流体が生成された空間Gに、所定の供給路から所定量のアダマンタンが供給されることにより、内容積が約3ccの耐圧容器2内にアダマンタンが0.5~15 mgの範囲で溶解され得る。なお、アダマンタンの溶解量は0.5~15 mgの範囲でなくとも、本発明のダイヤモンドイドが合成できれば種々の溶解量であってもよい。
 これに加えて、プラズマ発生部15は、数kHz(例えば7kHz)の交流電圧が電源部16から対向電極19に印加されることにより、対向電極19と接地電極17との間の空間Gにプラズマを発生させ得る。因みに、この実施の形態の場合、対向電極19は、図3Aに示すように、面積が約5mm2の電極部25を作製し、同じ電極部25を約17個アレイ化した電極であり、当該電極部25をアレイ化することで、図3Cに示すようなメッシュ状に形成された対向電極19となり得る。
 なお、図3Bは電極部25にプラズマを発生させた際の写真であり、図3Dは電極部25をアレイ化した対向電極19にプラズマを発生させた際の写真を示すものであり、電極部25をアレイ化することで広範囲(この場合、約85mm2)に亘って所定強度のプラズマを発生させ得るようになされている。
 このようにしてプラズマ発生部15は、アダマンタンを溶解させた超臨界流体又は亜臨界流体で満たされた空間G内にプラズマを所定時間発生させ、当該超臨界流体又は亜臨界流体中にプラズマを発生させ得るようになされている。
 かくしてプラズマ発生部15は、複数のアダマンタンが結合したダイヤモンドイドを空間G内に生成し得るようになされている。このようにこの合成装置1では、プラズマ発生部15の空間G内の温度と、圧力と、超臨界流体中又は亜臨界流体中のアダマンタンの濃度とを調整することにより、一般式C6+4nH12+4nで表されるn次ダイヤモンドイドのうち、n=2~15の2次~15次ダイヤモンドイドを含有した生成物を生成できる。
 因みに、複数のアダマンタンが結合した高次ダイヤモンドイドは、アダマンタンを増やした際に、アダマンタンが既にある炭素原子を共有する位置にくると、トータルの炭素数が少なくなることから、上述した一般式C6+4nH12+4nを満たさないn次ダイヤモンドイドとなることもある。従って、以下の5次~15次ダイヤモンドイドは、一般式C6+4nH12+4nを必ずしも満たすものでもなく、その同族体がそれぞれ含まれるものとする。
 この場合、この合成方法により得られた生成物には、2次ダイヤモンドイドであるジアマンタンと、3次ダイヤモンドイドであるトリアマンタンと、4次ダイヤモンドイドであるテトラマンタンとが生成されている。
 また、この合成方法により得られた生成物には、5次ダイヤモンドイドであるペンタマンタンと、6次ダイヤモンドイドであるヘキサマンタンと、7次ダイヤモンドイドであるヘプタマンタンと、8次ダイヤモンドイドであるオクタマンタンと、9次ダイヤモンドイドであるノナマンタンと、10次ダイヤモンドイドであるデカマンタンと、11次ダイヤモンドイドであるウンデカマンタンのような、人工的に合成されていなかった分子についても生成されている。さらに、この合成方法により得られた生成物には、その他、12次~15次ダイヤモンドイドも生成されている。
 例えばその一例として、上述した合成装置1を用い、温度18 ℃、圧力5.9 MPaとした高圧のXeからなる超臨界流体を生成し、この超臨界流体にアダマンタンを約10 mg溶解させ、この状態で電極に7 kHzの交流電圧を印加してプラズマを1~2時間発生させる合成実験を行った。そして、耐圧容器2内に得られた生成物を捕集し、マトリックス支援レーザー脱離イオン化飛行時間型質量分析計(Applied Biosystems社製、以下、これをMALDI-TOFと呼ぶ)と、顕微ラマン散乱分光計とを用いて、捕集した生成物を分析した。
 このようにして得られた生成物は白色の粉末であり、この生成物を顕微ラマン散乱分光計により分析したところ、ラマン分光によりsp3結合を有することが確認できた。また、この生成物について、MALDI-TOFにより質量スペクトルを測定したところ、図4に示すような結果が得られた(図4において、生成物を「sample」と示す)。
 図4に示すように、上述した条件の下では、n=6のC30H36で表されるヘキサマンタンに対応する分子が生成物に含有されていることが確認できた。すなわち、この合成方法によってアダマンタンからヘキサマンタンを合成できたことが確認できた。
 なお、このようにして得られたヘキサマンタンは、天然の石油から抽出、単離に成功しているものの、人工的に合成されていなかった分子であり、本発明による合成方法によって、アダマンタンから初めて人工的に合成できた。
 ここで、得られた生成物について、HPLC法で分離した後、この分離物から単結晶を蒸発法等により作製し、これからX線構造解析法及びNMR(核磁気共鳴法)により、分子構造(炭素原子及び水素原子の位置)を決定したところ、ヘキサマンタンについては、図5に示すような分子構造を確認できた(Cが炭素原子、Hが水素原子)。但し、これはヘキサマンタンの代表的な分子構造であって、本発明による合成方法により得られるヘキサマンタンには、図5に示す分子構造とは異なる分子構造を有した異性体も含まれるものである。
 また、このようにして得られた生成物には、他のダイヤモンドイドも含有されており、その一つとして、10次ダイヤモンドイドであるデカマンタンも生成されている。すなわち、上述した生成物について、MALDI-TOFにより質量スペクトルによる分析を行ったところ、10次ダイヤモンドイドであるデカマンタンも合成されていることが確認できた。
 なお、このようにして得られたデカマンタンも、人工的に合成されていなかった分子であり、本発明による合成方法によって、アダマンタンから初めて人工的に合成できた。ここで、得られたデカマンタンについては、上述したHPLC法や蒸発法等を用いた分子構造解析手法から図6に示すような分子構造を確認できた(Cが炭素原子、Hが水素原子)。但し、これはデカマンタンの代表的な分子構造であって、本発明による合成方法により得られたデカマンタンには、図6に示す分子構造とは異なる分子構造を有した異性体も含まれるものである。
 以上の構成において、合成装置1では、アダマンタンを溶解させた超臨界流体又は亜臨界流体を耐圧容器2内に生成し、当該超臨界流体中又は亜臨界流体中にプラズマを発生させる。これにより合成装置1では、複数のアダマンタンを結合させた2次~15次ダイヤモンドイド、これら2次~15次ダイヤモンドイドの各異性体を生成でき、触媒や有機溶媒を用いずに低次ダイヤモンドイドを合成できると共に、高次ダイヤモンドイドについても合成により得ることができる。
 特に、この合成方法では、従来、天然の石油から抽出・単離して人工的に合成されていなかった分子である5次~15次ダイヤモンドイドやこれらの異性体を人工的に合成できる。
 なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、上述した実施の形態においては、キャリア流体から超臨界流体又は亜臨界流体を生成した後に、超臨界流体又は亜臨界流体にアダマンタンを溶解するようにした場合について述べたが、本発明はこれに限らず、キャリア流体にアダマンタンを予め溶解させた原料流体を耐圧容器2に供給し、当該原料流体を所定の温度、圧力に調整することで、アダマンタンが溶解した超臨界流体又は亜臨界流体を生成するようにしてもよい。

Claims (8)

  1.  アダマンタンを溶解させた流体中に、プラズマを発生させることにより、複数の前記アダマンタンを結合させたダイヤモンドイドを合成する
     ことを特徴とするダイヤモンドイドの合成方法。
  2.  前記流体は、超臨界状態又は亜臨界状態である
     ことを特徴とする請求項1記載のダイヤモンドイドの合成方法。
  3.  前記流体は、キセノン又は二酸化炭素からなる
     ことを特徴とする請求項1又は2記載のダイヤモンドイドの合成方法。
  4.  合成により得られる前記ダイヤモンドイドは、ペンタマンタン、ヘキサマンタン、ヘプタマンタン、オクタマンタン、ノナマンタン及びデカマンタンのうち少なくともいずれか1種である
     ことを特徴とする請求項1~3のうちいずれか1項記載のダイヤモンドイドの合成方法。
  5.  アダマンタンを溶解させた流体中に、プラズマを発生させることにより、複数の前記アダマンタンが結合することにより合成される
     ことを特徴とするダイヤモンドイド。
  6.  前記流体は、超臨界状態又は亜臨界状態である
     ことを特徴とする請求項5記載のダイヤモンドイド。
  7.  前記流体は、キセノン又は二酸化炭素からなる
     ことを特徴とする請求項5又は6記載のダイヤモンドイド。
  8.  複数の前記アダマンタンの結合により、ペンタマンタン、ヘキサマンタン、ヘプタマンタン、オクタマンタン、ノナマンタン及びデカマンタンのうち少なくともいずれか1種となる
     ことを特徴とする請求項5~7のうちいずれか1項記載のダイヤモンドイド。
PCT/JP2011/051168 2010-02-12 2011-01-24 ダイヤモンドイドの合成方法及びダイヤモンドイド WO2011099351A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011505309A JPWO2011099351A1 (ja) 2010-02-12 2011-01-24 ダイヤモンドイドの合成方法及びダイヤモンドイド

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010029284 2010-02-12
JP2010-029284 2010-12-08

Publications (1)

Publication Number Publication Date
WO2011099351A1 true WO2011099351A1 (ja) 2011-08-18

Family

ID=44367633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051168 WO2011099351A1 (ja) 2010-02-12 2011-01-24 ダイヤモンドイドの合成方法及びダイヤモンドイド

Country Status (2)

Country Link
JP (1) JPWO2011099351A1 (ja)
WO (1) WO2011099351A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103367A (ja) * 1985-10-28 1987-05-13 Nippon Telegr & Teleph Corp <Ntt> 炭素膜の合成方法
JPH04300291A (ja) * 1991-03-27 1992-10-23 Semiconductor Energy Lab Co Ltd ダイヤモンド膜作製方法
JPH09501696A (ja) * 1993-08-23 1997-02-18 モービル・オイル・コーポレイション 高純度ダイヤモンドイドフラクションおよび成分の分離
JP2004517887A (ja) * 2001-01-19 2004-06-17 シェブロン ユー.エス.エー. インコーポレイテッド シクロヘキサマンタンを含む組成物
JP2004517886A (ja) * 2001-01-19 2004-06-17 シェブロン ユー.エス.エー. インコーポレイテッド 高級ダイヤモンド様化合物を含む組成物及びその分離方法
JP2004517989A (ja) * 2001-01-19 2004-06-17 シェブロン ユー.エス.エー. インコーポレイテッド 重合可能な高級ダイヤモンド様体誘導体
JP2005503352A (ja) * 2001-01-19 2005-02-03 シェブロン ユー.エス.エー. インコーポレイテッド 高級ダイヤモンドイドの精製方法とかかるダイヤモンドイドを含む組成物
JP2006509258A (ja) * 2002-12-06 2006-03-16 シェブロン ユー.エス.エー. インコーポレイテッド ダイヤモンドイド含有材料の光学的用途
JP2008081409A (ja) * 2006-09-26 2008-04-10 Fujifilm Corp ダイヤモンドイド合成法
JP2008201982A (ja) * 2007-02-22 2008-09-04 Idemitsu Kosan Co Ltd 多環脂環式化合物を前駆体物質とする薄膜、及びその製造方法
JP2008229968A (ja) * 2007-03-19 2008-10-02 Mitsubishi Plastics Ind Ltd ダイヤモンドライクカーボン膜コーティングガスバリア性フィルム
JP2009530227A (ja) * 2006-03-24 2009-08-27 シェブロン ユー.エス.エー. インコーポレイテッド Cvdダイヤモンド膜核形成のための化学的に付着されたダイヤモンドイド

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103367A (ja) * 1985-10-28 1987-05-13 Nippon Telegr & Teleph Corp <Ntt> 炭素膜の合成方法
JPH04300291A (ja) * 1991-03-27 1992-10-23 Semiconductor Energy Lab Co Ltd ダイヤモンド膜作製方法
JPH09501696A (ja) * 1993-08-23 1997-02-18 モービル・オイル・コーポレイション 高純度ダイヤモンドイドフラクションおよび成分の分離
JP2004517887A (ja) * 2001-01-19 2004-06-17 シェブロン ユー.エス.エー. インコーポレイテッド シクロヘキサマンタンを含む組成物
JP2004517886A (ja) * 2001-01-19 2004-06-17 シェブロン ユー.エス.エー. インコーポレイテッド 高級ダイヤモンド様化合物を含む組成物及びその分離方法
JP2004517989A (ja) * 2001-01-19 2004-06-17 シェブロン ユー.エス.エー. インコーポレイテッド 重合可能な高級ダイヤモンド様体誘導体
JP2005503352A (ja) * 2001-01-19 2005-02-03 シェブロン ユー.エス.エー. インコーポレイテッド 高級ダイヤモンドイドの精製方法とかかるダイヤモンドイドを含む組成物
JP2006509258A (ja) * 2002-12-06 2006-03-16 シェブロン ユー.エス.エー. インコーポレイテッド ダイヤモンドイド含有材料の光学的用途
JP2009530227A (ja) * 2006-03-24 2009-08-27 シェブロン ユー.エス.エー. インコーポレイテッド Cvdダイヤモンド膜核形成のための化学的に付着されたダイヤモンドイド
JP2008081409A (ja) * 2006-09-26 2008-04-10 Fujifilm Corp ダイヤモンドイド合成法
JP2008201982A (ja) * 2007-02-22 2008-09-04 Idemitsu Kosan Co Ltd 多環脂環式化合物を前駆体物質とする薄膜、及びその製造方法
JP2008229968A (ja) * 2007-03-19 2008-10-02 Mitsubishi Plastics Ind Ltd ダイヤモンドライクカーボン膜コーティングガスバリア性フィルム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIRA NAKAHARA ET AL.: "Cho Rinkai Ryutai Chu Laser Ablation ni yoru Tanso Nano Busshitsu Gosei", 2010 NEN SHUKI DAI 71 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, 30 August 2010 (2010-08-30) *
HIROYUKI MIYAZOE ET AL.: "Cho Rinkai Ryutai Plasma ni yoru Diamondoid no Gosei -Dai 4 no Carbon Nano Material no Sosei", 2010 NEN SHUKI DAI 71 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, 30 August 2010 (2010-08-30) *
SVEN STAUSS ET AL.: "Synthesis of the Higher-Order Diamondoid Hexamantane Using Low-Temperature Plasmas Generated in Supercritical Xenon", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 49, no. 7 IS.1, 25 July 2010 (2010-07-25), pages 070213-1 - 070213-3 *

Also Published As

Publication number Publication date
JPWO2011099351A1 (ja) 2013-06-13

Similar Documents

Publication Publication Date Title
McFARLAND et al. Bent fatty acid chains in lecithin bilayers
Arnold et al. Vibrationally resolved spectra of C2–C11 by anion photoelectron spectroscopy
Ondrechen et al. Model calculations of potential surfaces of van der Waals complexes containing large aromatic molecules
Diederich et al. Templated regioselective and stereoselective synthesis in fullerene chemistry
Sobota et al. Dehydrogenation of dodecahydro‐N‐ethylcarbazole on Pd/Al2O3 model catalysts
Ito et al. Application of microscale plasma to material processing
Pereira et al. Spontaneous symmetry breaking in cyclo [18] carbon
Bazarnik et al. Light driven reactions of single physisorbed azobenzenes
Hitosugi et al. Pentagon‐Embedded Cycloarylenes with Cylindrical Shapes
Fantuzzi et al. Chemical bonding in the pentagonal-pyramidal benzene dication and analogous isoelectronic hexa-coordinate species
Crawford et al. Structure and energetics of isomers of the interstellar molecule C5H
Yin et al. Anionic copper clusters reacting with NO: An open-shell superatom Cu18–
Nakahara et al. Pulsed laser ablation synthesis of diamond molecules in supercritical fluids
Shizuno et al. Synthesis of diamondoids by supercritical xenon discharge plasma
Dewar Studies of the mechanisms of some organic reactions and photoreactions by semiempirical SCF MO methods
Pan et al. Numerical modeling and mechanism investigation of nanosecond-pulsed DBD plasma-catalytic CH4 dry reforming
Ómarsson et al. Stabilization, fragmentation and rearrangement reactions in low-energy electron interaction with tetrafluoro-para-benzoquinone: a combined theoretical and experimental study
Robert George et al. Infrared spectrum of the amantadine cation: opening of the diamondoid cage upon ionization
Tseng et al. Photoisomerization and photodissociation of aniline and 4-methylpyridine
Bro-Jørgensen et al. Quantification of the helicality of helical molecular orbitals
Szczepaniak et al. Cryogenic photochemical synthesis and electronic spectroscopy of cyanotetracetylene
WO2011099351A1 (ja) ダイヤモンドイドの合成方法及びダイヤモンドイド
Björneholm et al. Free clusters studied by core-level spectroscopies
Lu et al. Spectroscopic Identification of Diphosphene HPPH and Isomeric Diphosphinyldene PPH2
Holz et al. Electronic absorption spectra of C60+–L (L= He, Ne, Ar, Kr, H2, D2, N2) complexes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011505309

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742098

Country of ref document: EP

Kind code of ref document: A1