WO2002056779A1 - Sonde d'ultrasonotherapie et dispositif ultrasonique - Google Patents
Sonde d'ultrasonotherapie et dispositif ultrasonique Download PDFInfo
- Publication number
- WO2002056779A1 WO2002056779A1 PCT/JP2002/000422 JP0200422W WO02056779A1 WO 2002056779 A1 WO2002056779 A1 WO 2002056779A1 JP 0200422 W JP0200422 W JP 0200422W WO 02056779 A1 WO02056779 A1 WO 02056779A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasonic
- treatment
- diagnostic
- probe
- transducer
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0078—Ultrasound therapy with multiple treatment transducers
Definitions
- the present invention relates to an ultrasonic treatment probe and an ultrasonic treatment device which are suitable for performing treatment by irradiating high-technical energy ultrasonic waves to a lesion in a body.
- a diagnostic probe for imaging an ultrasonic diagnostic image, and a therapeutic transducer for irradiating ultrasonic waves of high energy on a lesion portion specified by the captured diagnostic image and an ultrasonic treatment probe (hereinafter simply referred to as a treatment probe) formed integrally with the force S.
- a therapeutic transducer forms an ultrasonic emission surface as a curved surface having a radius of curvature R, focuses an ultrasonic beam radiated from the emission surface at the center of curvature (focal point), and places a treatment site at the focal point. It has been proposed to increase the ultrasonic energy applied to the treatment site by matching the parameters.
- a treatment transducer having a curved surface is formed by a single planar transducer, the treatment site is fixed at a position (one point) determined by the curvature R of the transducer. For this reason, a plurality of types of treatment probes or treatment transducers having different focal lengths R are prepared, and the treatment probe or the treatment vibration is adjusted according to the depth of the treatment site diagnosed using the diagnostic probe. The child must be replaced. As a result, it takes time from diagnosis to treatment, which may be painful for the patient.
- the treatment probe since the treatment probe is portable in terms of ease of use, if the time phase (point in time) of diagnosis and treatment is different, the treatment ultrasound may be irradiated to a site different from the site to be treated due to camera shake or the like. There is.
- the present invention uses one treatment probe to irradiate treatment ultrasound at treatment sites at different depths.
- the task is to be able to do so.
- Another object of the present invention is to enable ultrasound treatment while substantially observing a treatment site on a diagnostic image. Disclosure of the invention
- the treatment probe of the present invention comprises: a diagnostic probe; a treatment transducer; and a support portion that supports the diagnostic probe and the treatment transducer.
- the vibration element is divided into a plurality of vibration elements, and each of the vibration elements is connected to a wiring to which a drive signal is supplied.
- the focal position at which the ultrasonic wave emitted from each transducer converges can be freely set. Can be changed to Therefore, it is possible to irradiate therapeutic ultrasonic waves to treatment sites at different depths with one treatment probe.
- the ultrasonic therapy apparatus of the present invention includes a wave transmitting circuit that outputs an ultrasonic drive signal to a diagnostic probe, and a wave receiving circuit that receives and processes a received signal output from the diagnostic probe.
- An image processing unit that generates a diagnostic image based on the reception signal processed by the wave receiving circuit; a display unit that displays the diagnostic image generated by the image processing unit; and a plurality of vibration elements are arranged.
- a therapeutic wave transmitting circuit for outputting a drive signal of an ultrasonic wave supplied to each vibrating element of the therapeutic transducer, and controlling the wave transmitting circuit, the wave receiving circuit, the image processing unit, and the therapeutic wave transmitting circuit.
- a control unit that controls the treatment wave transmitting circuit to adjust the phase of the drive signal supplied to each of the vibration elements, and controls the focus of the ultrasonic beam emitted from each of the vibration elements. Characterized by having means for controlling the position .
- the therapeutic transducer can have an ultrasonic emission surface formed in a flat shape or a concave curved shape.
- the therapeutic vibrator has a width direction and a longitudinal direction, and is formed by dividing the longitudinal direction into a plurality. In this case, it is desirable to make the exit surface in the width direction have a concave curvature.
- the therapeutic transducer and the diagnostic probe are formed in an integral structure. In particular, emitted from the diagnostic probe It is preferable that the laser beam is integrally formed so that the focal point of the ultrasonic beam emitted from the therapeutic transducer is located on the scanning surface of the ultrasonic beam.
- FIG. 1 is a schematic cross-sectional view showing the configuration of an embodiment of the ultrasonic treatment probe according to the present invention.
- FIG. 2 is a diagram illustrating focus adjustment of the ultrasonic treatment probe of FIG.
- FIG. 3 is a configuration diagram of an embodiment of the ultrasonic therapy apparatus according to the present invention.
- FIG. 4 is a time chart for explaining the operation of the embodiment in FIG.
- FIG. 5 is a schematic diagram showing the configuration of an embodiment of the ultrasonic treatment probe according to the present invention.
- FIG. 6 is a schematic diagram showing one embodiment of the ultrasonic treatment according to the present invention.
- FIG. 1 shows a configuration diagram of an ultrasonic treatment probe according to the present invention
- FIG. 2 shows an explanatory diagram of an operation of adjusting a treatment site by the ultrasonic treatment probe.
- the treatment probe 1 includes a diagnostic probe 2, a treatment transducer 3, a probe support 4, a probe cover, and a variable focus controller 6.
- the diagnostic probe 2 is formed by arranging a plurality of transducers in a line like a convex type, and is attached to the probe support 4 in the same manner as that used in a known ultrasonic diagnostic apparatus. I have.
- the therapeutic transducer 3 is attached to the probe support 4 by symmetrically arranging a plurality of transducers 3..., 3 n on both sides of the diagnostic probe 2.
- the focal point of the ultrasonic beam emitted from the therapeutic transducer always exists at the center of the diagnostic screen.
- the diagnostic probe 2 and the therapeutic transducer 3 are formed integrally with the probe support 4. Further, a plurality of vibrating elements 3 have ⁇ ⁇ ⁇ , ultrasonic emitting surface of the 3 n are arranged to form a concave curved surface.
- the arrangement direction of the plurality of vibration elements of the therapeutic transducer 3 is orthogonal to the arrangement direction of the transducers of the diagnostic probe 2, but the present invention is not limited to this. Absent.
- a probe cover made of a substance is attached to the front surface of the diagnostic probe 2 and the therapeutic transducer 3 formed in this way so that acoustic impedance and matching of a living body can be easily removed.
- the inside of the probe cover is filled with a medium such as degassed water so that ultrasonic waves can easily pass therethrough.
- the probe support 4 is formed in a shape that can be gripped by hand. Thus, the treatment can be performed while holding the treatment probe 1 by hand, and the degree of freedom of the treatment is large.
- the variable focus control unit 6 supplies an ultrasonic drive pulse for driving the treatment transducer 3 to each of the transducer elements 3..., 3 n .
- the focal position of the beam formed by is controlled to the treatment site 7.
- FIG. 2 schematically shows the therapeutic oscillator 3.
- Each of the vibrating elements 3,..., 3 n is a vibrator having a size, and the ultrasonic wave emitted from each vibrator is emitted from the point sound source indicated by the X mark in the figure. Approximation.
- the vibrating element 3 m at the center position of the therapeutic transducer 3 is set as the center of the coordinates, and the coordinates are (0, 0).
- the treatment site 7 is located at a position (0, LJ) at a distance L m from the vibrating element 3 m in the vertical direction. If the coordinate of a point sound source of an arbitrary vibrating element 3 m + 1 is ( X l , yi )
- the distance L m + 1 from that point to the treatment site 8 is represented by the following equation (1).
- the propagation time T m + j of the ultrasonic wave reaching the treatment site 8 from any vibrating element 3 m + is
- FIG. 2 an embodiment of an ultrasonic treatment apparatus to which the treatment probe of the above embodiment is applied is shown in FIG. 2, components and the like having the same functions and configurations as those in the embodiment of FIG. 1 are denoted by the same reference numerals and description thereof will be omitted.
- the ultrasonic pulse generated by the treatment pulse generation circuit 11 is supplied to the treatment transducer 3 of the treatment probe 1 via the treatment wave delay circuit 12 and the amplifier 13.
- the treatment wave delay circuit 12 performs delay control for each vibrating element, converts the pulse into a driving pulse of high energy by the amplifier 13 and supplies it to each vibrating element.
- the treatment wave delay circuit 12 and the amplifier 13 basically correspond to the variable focus control section 6 shown in FIG.
- the diagnostic probe 2 of the treatment probe 1 focuses the diagnostic ultrasonic pulse generated from the diagnostic pulse generation circuit 21 on the diagnostic transmission delay circuit 22 and amplifies it on the amplifier 23. After that, it is supplied to the vibrating element constituting the diagnostic probe 2 via the transmission / reception separator 24.
- the ultrasonic reception signal received from the inside of the living body by the diagnostic probe 2 is guided to the amplifier 25 via the transmission / reception separator 24, amplified, and then received by the reception phasing circuit 26.
- the phase of the received signal is adjusted to convert the received signal from a desired part in the living body into an enhanced signal.
- a diagnostic image is generated by the signal processing unit 27 and the DSC (digital scan converter) 28 based on the received signal output from the wave receiving phasing circuit 26 and displayed on the monitor 29.
- a known ultrasonic diagnostic apparatus can be applied to the parts related to these diagnostic apparatuses.
- the above-described treatment pulse generation circuit 11, treatment wave delay circuit 12, diagnostic pulse generation circuit 21, diagnostic transmission delay circuit 22, reception phasing circuit 26, signal processing unit 27, DSC 28 are It is controlled by a command from a control unit 30 formed by a computer. Further, the operator can set various diagnostic conditions and treatment conditions by inputting a command from the operating device 31 to the control unit 30.
- the horizontal axis represents time
- the vertical axis represents operation.
- the control unit 30 responds to this by the diagnostic pulse generation circuit 21 and the diagnostic transmission delay circuit 23.
- the diagnostic pulse generation circuit 21 and the diagnostic transmission delay circuit 23 operate, and the ultrasonic beam is irradiated from the diagnostic probe 2 into the subject.
- the ultrasonic beam is scanned along the arrangement direction of the transducers of the diagnostic probe 2, and the ultrasonic beam is applied to a region along the fan-shaped tomographic plane of the subject. Ultrasonic waves reflected from the area irradiated with the ultrasonic waves are received by the transducer of the therapeutic probe 2.
- the received signal is subjected to phasing processing for each ultrasonic beam in a reception phasing circuit 26, and a two-dimensional image of a tomographic plane is generated by an image processing unit including a signal processing unit 27 and a DSC 28. Displayed in Moeta 29. In this way, the inside of the living body is diagnosed while observing the tomographic image. Then, if a treatment site appears on the tomographic image, treatment is performed.
- the control unit 30 calculates the distance L m to the treatment site 7 based on, for example, the central vibrating element 3 m of the therapeutic oscillator 3 based on the tomographic image stored in the DSC 28. You. Then, with the driving pulse to be supplied to the therapeutic transducer elements 3 m, the therapeutic vibrating element 3, ⁇ 3 n to seek the delay time tau ⁇ tau eta of drive pulse supplied treatment wave delay times Output to roads 1 and 2.
- Treatment wave delay circuit 1 2 on the basis of the ultrasonic pulse outputted from the therapy pulse generator 1 1, sequentially output in accordance with the therapeutic transducer elements 3 i to 3 delay time driving pulse to be supplied to the n ⁇ i T n I do. Thereby, the ultrasonic waves emitted from the therapeutic vibration elements 3 i to 3 n are focused on the treatment site 7, and the treatment site 7 is heated and cauterized to treat the lesion site.
- the above treatment operation is repeated at intervals to perform treatment.
- a tomographic image is taken again for a certain time ( ⁇ t) and the distance to the treatment site is re-measured.
- the drive pulse delay time ⁇ ⁇ n is calculated, and Correct the focal position of the transducer 3 for use. This makes it possible to irradiate the treatment site with ultrasonic waves of high energy from the treatment probe 1 while confirming the state of the ablation substantially in real time, thereby improving the reliability and safety of the treatment.
- the treatment probe 1 When the treatment of one treatment site is completed, return to the beginning, move the treatment probe 1 to observe the other treatment site, and aim and execute the treatment. In this way, the treatment by ultrasonic irradiation is completed for the desired treatment site in the living body.
- the irradiation time of the ultrasonic wave from the therapeutic transducer 3 is set with a sufficient time for the heat generated by the ultrasonic treatment to sufficiently diffuse so that the heat applied to the living body does not damage the area other than the treatment area. It is desirable.
- the focal position of the ultrasonic wave of the high energy emitted from the therapeutic transducer 3 can be changed, a plurality of probes having different focal positions can be used. It eliminates the need for replacement during treatment, reducing treatment time. Compared to the conventional method, the lesion can be treated in a relatively short time, so that the patient's pain can be reduced.
- the diagnostic probe 2 was placed between the therapeutic transducers 3, so that the treatment site was located on the tomographic image measured by the diagnostic probe 2. It is possible to treat while always observing the treatment site in the living body. That is, it is preferable that the focal point of the ultrasonic beam emitted from the treatment transducer 3 is integrally formed so as to be located on the scanning surface of the ultrasonic beam emitted from the diagnostic probe 2.
- the therapeutic transducer 3 of the embodiment of FIG. 1 has a configuration in which the ultrasonic emission surface in the arrangement direction of the vibration elements is formed in a concave shape and the ultrasonic element is formed in a flat shape in the width direction of the vibration element row. Investigation is not limited to this.
- the ultrasonic wave emitting surface may be formed in a flat shape.
- the inside of the living body having the target treatment site is observed from the organ surface in the state where the treatment probe is opened or the laparotomy during the operation using an ultrasonic tomography apparatus (not shown) to which the diagnostic probe 2 is connected.
- variable focus control unit 6 controls signals applied to the vibrators 3 i to 3 n so that the site 7 is adjusted to the affected area 51, and emits high energy energy ultrasound to the treatment area 7.
- the diagnostic probe 2 and the therapeutic ultrasonic transducer 3 are configured so that the treatment site 7 always moves in the depth direction at the center of the tomographic image 50.
- the radiated high energy energy ultrasonic waves are focused by the ultrasonic energy in the region of the focal position 7 and converted into heat, and the lesion is cauterized for treatment.
- the treatment ultrasonic transducer 3 is constantly checked in real time while checking the cauterization state. Can emit high energy energy.
- ultrasonic treatment can be performed while substantially observing the treatment site on the diagnostic image.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Description
明 細 書 超音波治療プローブ及び超音波治療装置 技術分野
本発明は、 体内の病変部に高工ネルギ超音波を照射して治療を行なうのに適 な超音波治療プローブ及び超音波治療装置に関する。 背景技術
生体内の病変部を治療する方法として、 体外から高工ネルギの超音波を病変 部に照射し、 病変部を加熱凝固させたり、 焼灼することにより治療することが 提案されている。 この超音波治療においては、 超音波診断像を撮像するための 診断用探触子と、 撮像された診断像により特定される病変部に高工ネルギの超 音波を照射するための治療用振動子とを、 一体に組み込んで形成された超音波 治療プローブ (以下、 単に治療プローブという) 力 S用いられる。
治療用振動子は、従来、超音波の射出面を曲率半径 Rを有する曲面に形成し、 その射出面から放射される超音波ビームをその曲率中心 (焦点) に収束させ、 その焦点に治療部位を合せることにより、 治療部位に照射する超音波エネルギ を高めることが提案されている。
しかしながら、 曲面を有する治療用振動子を 1枚の面状の振動子で形成する と、 治療部位は振動子の曲率 Rで決まる位置 (一点) に固定されてしまう。 そ のため、 焦点距離 Rが異なる複数種類の治療プローブ又は治療用振動子を用意 しておき、 診断用探触子を用いて診断した治療部位の深度に合わせて、 治療プ ローブ又は治療用振動子を交換しなければならない。 その結果、 診断から治療 までに時間がかかることになり、 患者に苦痛をあたえるおそれがある。
また、 一般に、 治療プローブは使い勝手の点から携帯型であるから、 診断と 治療の時相 (時点) が異なると、 手ぶれなどにより治療すべき部位とは異なる 部位に治療用超音波を照射するおそれがある。
本発明は、 1つの治療プローブで異なる深度の治療部位に治療用超音波を照射
できるようにすることを課題とする。
また、 診断像で治療部位を実質的に観察しながら、 超音波治療することを可 能にすることを他の課題とする。 発明の開示
本発明の治療プローブは、 診断用探触子と、 治療用振動子と、 前記診断用探 触子及び前記治療用振動子を支持する支持部とを有してなり、 前記治療用振動 子は複数の振動素子に分割して形成され、 該各振動素子は、 それぞれ駆動信号 が供給される配線に接続されてなることを特徴とする。
このように構成される治療プローブによれば、 治療用振動子の各振動素子に 供給する駆動信号の位相を調整することにより、 各振動子から射出される超音 波が収束する焦点位置を自由に変えることができる。 したがって、 一つの治療 'プローブで異なる深度の治療部位に治療用超音波を照射することができる。
また、 本発明の超音波治療装置は、 診断用探触子に超音波の駆動信号を出力 する送波回路と、 前記診断用探触子から出力される受信信号を取り込んで処理 する受波回路と、 該受波回路で処理された受信信号に基づいて診断画像を生成 する画像処理部と、 該画像処理部で生成された前記診断画像を表示する表示部 と、 複数の振動素子が配列された治療用振動子の各振動素子に供給する超音波 の駆動信号を出力する治療送波回路と、 前記送波回路と前記受波回路と前記画 像処理部と前記治療送波回路とを制御する制御部とを備え、 該制御部は、 前記 治療送波回路を制御して前記各振動素子に供給する前記駆動信号の位相を調整 し、 前記各振動素子から射出される超音波ビームの焦点位置を制御する手段を 備えてなることを特徴とする。
上記の場合において、 治療用振動子は、 超音波射出面を平面状又は凹曲面状 に形成することができる。 また、治療用振動子は、幅方向と長手方向とを有し、 長手方向を複数に分割して形成することが好ましい。 この場合、 幅方向の射出 面に凹状の曲率を持たせることが望ましい。 また、 治療用振動子と診断用探触 子は一体構造に形成することが望ましい。 特に、 診断用探触子から射出される
超音波ビームの走査面に、 治療用振動子から射出される超音波ビームの焦点が 位置するように一体形成することが好ましい。 図面の簡単な説明
図 1は、 本発明に係る超音波治療プローブの一実施形態の構成を示す摸式図 の断面図である。 図 2は、 図 1の超音波治療プローブの焦点調整を説明する図 である。 図 3は、 本発明に係る超音波治療装置の一実施形態の構成図である。 図 4は、 図 3の実施形態の動作を説明するためのタイムチャートである。 図 5 は、 本発明に係る超音波治療プローブの一実施形態の構成を示す摸式図である。 図 6は、 本発明に係る超音波治療の一実施形態を示す摸式図である。 発明を実施するための最良の形態
以下、 本発明を実施の形態に基づいて説明する。 図 1に本発明に係る超音波 治療プローブの構成図を示し、 図 2にその超音波治療プローブによる治療部位 の調整動作の説明図を示す。
《装置構成》
図 1及び図 5に示すように、 治療プローブ 1は、 診断用探触子 2と、 治療用 振動子 3と、 プローブ支持部 4と、 プローブカバーと、 可変フォーカス制御部 6を有して形成されている。 診断用探触子 2は、 周知の超音波診断装置に用い られるものと同様、 例えばコンベックス型のように、 複数の振動子を一列に配 列して形成され、プローブ支持部 4に取り付けられている。治療用振動子 3は、 複数の振動素子 3い ··'、 3 nを診断用探触子 2の両側に分けて対称的に配列し て、 プローブ支持部 4に取り付けられている。 これにより、 診断画面中心上に 常に治療用振動子から発せられる超音波ビームの焦点が存在することになる。 したがって、 診断用探触子 2と治療用振動子 3はプローブ支持部 4に一体に形 成されている。 また、 複数の振動素子 3 い · · ·、 3 nの超音波射出面は、 凹状の 曲面を形成するように配列されている。 なお、 図示例では、 診断用探触子 2の 振動子の配列方向に対し、 治療用振動子 3の複数の振動素子の配列方向を直交 させているが、 本発明はこれに限られるものではない。
このように形成された診断用探触子 2と治療用振動子 3の前面には、 生体の 音響ィンピーダンスとマツチングが取り易レ、物質で形成されたプローブカバー が取り付けられている。 そして、 プローブカバーの内側には、 超音波が透過し 易いように脱気水などの媒質が満たされている。 プローブ支持部 4は手で把持 することができるような形状に形成されている。 これにより、 治療プローブ 1 を手で持ちながら治療を行なうことができ、 治療の自由度が大きい。
可変フォーカス制御部 6は、 治療用振動子 3を駆動する超音波駆動パルスを 各振動素子 3い ···、 3nに供給するものである。 特に、 可変フォーカス制御部 6は、 各振動素子 3ぃ ···、 3 nに供給する駆動パルスの位相を調整して、 各振 動素子 3い ··'、 3nから射出される超音波により形成されるビームの焦点位置 を治療部位 7に制御する。
ここで、 可変フォーカス制御部 6により超音波ビームの焦点位置を可変制御 する動作原理について、 図 2を参照しながら説明する。 図 2は、 治療用振動子 3を模式的に示したものである。 また、 各振動素子 3い ···、 3nは、 それぞれ 大きさを有する振動子であるが、 それぞれの振動子から射出される超音波は、 図に X印で示した点音源から射出されるものとして近似する。 治療用振動子 3 の中心位置にある振動素子 3mを座標の中心とし、その座標を(0, 0) とする。 そして、治療部位 7を振動素子 3 mから鉛直方向に距離 Lm離れた座標(0、 LJ の位置とする。 任意の振動素子 3 m+1の点音源座標を (X l、 y i) とすると、 そ の点から治療部位 8までの距離 Lm+1は、 次式 (1) で表わされる。
Lm+1=V" (xa 2+(Lm-y i) 2) (1) ここで、超音波の伝搬媒質の音速を Cとすると、 振動素子 3 mから治療部位 7に 達する超音波の伝播時間 T mは
Tm=Lm/C
で表わされ、
任意の振動素子 3 m+ から治療部位 8に達する超音波の伝播時間 T m+ jは
で表わされる。 いま、 Tm+1>Tmとすると、伝播時間は振動素子 3mよりも振動 素子 3m+1からの方が余分にかかるので、 その時間差 Tm+1 = Tra+1—Tmだけ
振動素子 3 m+ iから超音波を先に射出すると、治療部位 7に同時刻に超音波が到 達することになる。 全ての各振動素子について同様の計算を行ない、 治療部位 7に同時刻に超音波が到達するように、 各振動素子からの超音波の射出タイミ ングを制御する。これにより、各振動素子からの超音波が治療部位 7に収束し、 その部位に強力な超音波エネルギが与えられることになる。 そして、 治療部位 7の位置が変化して、 L mが変化した場合は、 上述の計算により各振動素子から 超音波を射出するタイミング、 つまり各振動素子を駆動する超音波パルスの印' 加タイミングを制御すればよい。
次に、 上記実施形態の治療プローブを適用した超音波治療装置の実施形態を 図 3に示す。 図 2において、 図 1の実施形態と同一の機能、 構成を有する部品 等には、 同一の符号を付して説明を省略する。 治療プローブ 1の治療用振動子 3には、 治療パルス発生回路 1 1で発生された超音波パルスが、 治療波遅延回 路 1 2と増幅器 1 3を介して供給されるようになっている。 つまり、 治療波遅 延回路 1 2において各振動素子用に遅延制御されるとともに、 増幅器 1 3によ つて高工ネルギの駆動パルスに変換されて各振動素子用に供給される。 なお、 治療波遅延回路 1 2と増幅器 1 3は、 基本的に、 図 1に示した可変フォーカス 制御部 6に対応する。
一方、 治療プローブ 1の診断用探触子 2には、 診断パルス発生回路 2 1から 発生された診断用の超音波パルスが診断送波遅延回路 2 2においてフォーカス 処理され、 増幅器 2 3において増幅された後、 送受分離器 2 4を介して診断用 探触子 2を構成する振動素子に供給されるようになっている。 診断用探触子 2 により生体内から受信された超音波の受信信号は、 送受分離器 2 4を介して増 幅器 2 5に導びかれて増幅された後、 受波整相回路 2 6において受信信号の位 相を調整することにより生体内の所望の部位からの受信信号を強調した信号に 変換する。 受波整相回路 2 6から出力される受信信号に基づいて、 信号処理部 2 7と D S C (ディジタルスキャンコンバータ) 2 8にて診断像が生成され、 モニタ 2 9に表示される。 これらの診断装置に係る部分は、 周知の超音波診断 装置を適用できる。
上述の治療パルス発生回路 1 1、 治療波遅延回路 1 2、 診断パルス発生回路 2 1、 診断送波遅延回路 2 2、 受波整相回路 2 6、 信号処理部 2 7、 D S C 2 8は、 コンピュータにより形成される制御部 3 0の指令によって制御されるよ うになつている。 また、 操作者は、 操作器 3 1から制御部 3 0に指令を入力す るによって、 各種の診断条件や治療条件を設定できるようになつている。
このように構成される超音波治療装置を用いて、 超音波治療を行なう場合の 動作について、図 4のタイムチャートを参照しながら、次に説明する。図 4は、 横軸に時間を示し、 縦軸は動作を示している。 まず、 治療プローブ 1を被検体 の体表面に接触させて、 又は術中に開腹した状態の臓器表面に接触させて、 所 望の治療部位を含む生体内に向けて把持する。
(治療部位の観察: t l〜t 2 )
まず、 治療に先立って治療部位を撮像するため、 操作器 3 1から撮像開始の 指令を入力すると、 これに応答して制御部 3 0は診断パルス発生回路 2 1と診 断送波遅延回路 2 3に指令を出力する。 これにより、 診断パルス発生回路 2 1 と診断送波遅延回路 2 3が動作し、 診断用探触子 2から被検体内に超音波ビー ムが照射される。 この超音波ビームは、 診断用探触子 2の振動子の配列方向に 沿って走査され、 被検体の扇形の断層面に沿った領域に超音波ビームが照射さ れる。 超音波が照射された領域から反射される超音波は、 治療用探触子 2の振 動子により受信される。 その受信信号は、 受波整相回路 2 6において超音波ビ ームごとに整相処理され、 信号処理部 2 7及び D S C 2 8からなる画像処理部 により断層面の 2次元画像が生成され、 モエタ 2 9に表示される。 このように して断層像を観察しながら生体内を診断する。 そして、 断層像上に治療部位が 現れた場合は、 治療を実行する。
(治療動作: t 2〜 t 3 )
治療部位が断像上に現れた場合、 治療プローブ 1を現在位置に保持する。 ま ず、 制御部 3 0は、 D S C 2 8に記憶されている断層像に基づいて、 治療用振 動子 3の例えば中心の振動素子 3 mを基準に治療部位 7までの距離 L mを計算す る。 そして、 治療用振動素子 3 mに供給する駆動パルスに対し、 各治療用振動素 子 3,〜 3 nに供給する駆動パルスの遅延時間 τ 〜 τ ηを求めて治療波遅延回
路 1 2に出力する。 治療波遅延回路 1 2は治療パルス発生回路 1 1から出力さ れる超音波パルスに基づいて、 各治療用振動素子 3 i〜 3 nに供給する駆動パル スを遅延時間 τ i T nに従って順次出力する。 これにより、 治療用振動素子 3 i〜 3 nから射出される超音波は治療部位 7に収束され、 治療部位 7を加熱し、 焼灼して病変部位を治療する。
(治療の繰返し操作: t 4〜 t 5、 t 6〜 t 7、 - ")
上述の治療操作を間隔をおいて繰返し治療を行なう。 この治療の繰返しごと に、一定時間 (Δ t ) 、断層像を再度撮像して治療部位までの距離を再計測し、 これに基づいて駆動パルスの遅延時間て 〜τ nの計算を行ない、 治療用振動子 3の焦点位置を修正する。 これにより、 実質的に、 リアルタイムで焼灼の状態 を確認しながら、 治療プローブ 1から高工ネルギの超音波を治療部位に照射す ることができるので、 治療の信頼性、 安全性が向上する。
一箇所の治療部位の治療が終了したら、 最初に戻り、 治療プローブ 1を移動 して他の治療部位を観察し、 照準を合わせて治療を実行する。 このようにして 生体内の所望とする治療部位について超音波照射による治療を終了する。 とこ ろで、 治療用振動子 3からの超音波の照射時間は、 生体に与えた熱により治療 域以外が損傷を受けないように、 超音波治療による熱が十分に拡散する時間を 空けて行なうことが望ましい。
上述したように、 図 1及び図 3の実施の形態によれば、 治療用振動子 3から 射出される高工ネルギの超音波の焦点位置を可変にできることから、 焦点位置 が異なる複数のプローブを用意して、 治療中に交換する必要がなくなり、 治療 時間を短縮することができる。 従来に比して、 比較的短時間で病変部を治療す ることができるから、 患者の苦痛を軽減できる。
また、 図 1に示すように、 治療用振動子 3の間に診断用探触子 2を配置した ことから、 治療部位が診断用探触子 2により計測される断層像上に位置するこ とになり、 生体内の治療部位を常に観察しながら治療することができる。 つま り、 治療用振動子 3から射出される超音波ビームの焦点位置が、 診断用探触子 2から射出される超音波ビームの走査面上に位置するように一体形成すること が好ましい。
図 1の実施形態の治療用振動子 3は、 振動素子の配列方向の超音波射出面を 凹面状に形成し、 振動素子列の幅方向には平面状に形成したものを示したが、 本究明はこれに限られるものではない。 例えば、 振動素子列の幅方向にも凹面 状に形成することができる。 また、 超音波射出面の全面を平面状に形成しても よレ、。 治療プローブを体表あるいは術中に開腹した状態における臓器表面から 目的とする治療部位のある生体内部を診断用探触子 2が接続された図示してい ない超音波断層装置にて観察する。
次に、 図 6に示すように上記超音波断層装置で得られた生体の断層画像 5 0 上に患部 5 1が現れた時には、 上記治療用超音波振動子 3の焦点位置、 すなわ ち治療部位 7をその患部 5 1に合わせるよう、 可変フォーカス制御部 6にて振 動子 3 i〜 3 nに与える信号を制御し、 上記治療部位 7に高工ネルギ超音波を放 射する。
その際、 治療部位 7は常に断層画像 5 0のセンター部分を深度方向に移動す るように診断用探触子 2と治療用超音波振動子 3が構成されている。
放射された高工ネルギ超音波は、 上記焦点位置 7の領域において超音波エネ ルギが集束し、 熱へと変化し、 病変部を焼灼して治療する。 このとき、 生体内 の治療部位 7は、 上記診断用探触子 2で得られる断層面上にあるとされている ため、 常にリアルタイムで焼灼の状態を確認しながら治療用超音波振動子 3か ら高工ネルギ超音波を放射することができる。
また、 図 4に示すように、 治療操作の繰返しごとに断層像を撮像するように していることから、 体動や手ぶれなどの影響により、 誤って正常部位を焼灼す ることを防ぐことができ、 安全性を向上させることができる。
本発明によれば、 1つの治療プローブで異なる深度の治療部位に治療用超音波 を照射することができる。 また、 診断像で治療部位を実質的に観察しながら、 超音波治療することができる。
Claims
Big 求 の 範
1 診断用探触子と、 治療用振動子と、 前記診断用探触子及び前記治療用振 動子を支持する支持部とを有してなり、 前記治療用振動子は複数の振動素子に 分割して形成され、 前記複数の振動素子はそれぞれ駆動信号が供給される配線 に接続してなる超音波治療プローブとを備え、 前記超音波治療プローブの診断 用探触子に超音波の駆動信号を出力する送波回路と、 前記診断用探触子から出 力される受信信号を取り込んで処理する受波回路と、 該受波回路で処理された 受信信号に基づいて診断画像を生成する画像処理部と、 該画像処理部で生成さ れた前記診断画像を表示する表示部と、 前記超音波プローブの前記治療用振動 子の前記振動素子に供給する超音波の駆動信号を出力する治療送波回路と、 前 記送波回路と前記受波回路と前記画像処理部と前記治療送波回路とを制御する 制御部とを備え、 前記治療用振動子から射出される超音波ビームの焦点位置が 前記診断用探触子から射出される超音波ビームの走査面上に位置することを特 徴とする超音波治療装置。
2 前記超音波治療プローブの前記治療振動子から射出される前記超音波ビ ームの前記焦点位置は前記診断画像の深度方向に移動することを特徴とする請 求項 1記載の超音波治療装置。
3 前記治療振動子から射出される前記超音波ビームの前記焦点位置は前記 診断画像の中心にあることを特徴とする請求項 1記載の超音波治療装置。
4 前記治療振動子から射出される前記超音波ビ ムの前記焦点位置は深度 方向付近を移動することを特徴とする請求項 1記載の超音波治療装置。
5 前記受信信号の位相を調整することにより、 生体内の所望の部位からの 前記受信信号を強調した信号に変換することを特徴とする請求項 1記載の超音 波治療装置。
6 前記制御部を用い、 前記診断用探触子を用いた超音波撮影より第 1の診 断画像を表示し、 前記第 1の診断画像を観察しながら治療部位を治療し、 第 2 の診断画像を表示することを特徴とする請求項 1記載の超音波治療装置。
7 前記制御部を用い、 前記第 2の診断画像の断層像より治療部位までの距
離を再計測し、 再計測から前記駆動パルスの遅延時間の計算し、 焦点位置を修 正し、 治療することを特徴とする請求項 6記載の超音波治療装置。
8 前記制御部を用い、 前記第 2の診断画像の前記超音波撮影及び前記超音 波治療を連続して行なうことを特徴とする請求項 7記載の超音波治療装置。
9 前記制御部を用い、 時間間隔をおいて前記治療部位に前記超音波を照射 することを特徴とする請求項 7乃至請求項 8記載の超音波治療装置。
1 0 超音波プローブに設置された前記治療用振動子は前記診断用探触子の 両側に分けて配列されることを特徴とする請求項 1記載の超音波治療装置。
1 1 前記超音波治療プローブの前記治療用振動子は、 幅方向と長手方向と を有し、 長手方向を複数に分割して前記振動素子を形成されることを特徴とす る請求項 1記載の超音波治療装置。
1 2 前記治療用振動子の長手方向の超音波射出面は凹面状に形成され、 振 動素子列の幅方向は平面状に形成されることを特徴とする請求項 1 1記載の超
1 3 前記振動素子列の幅方向は凹面状に形成されることを特徴とする請求 項 1 1記載の超音波治療装置。
1 4 前記超音波射出面は平面状、 或は凹曲面状に形成されることを特徴と する請求項 1 1記載の超音波治療装置。
1 5 前記治療用振動子の振動素子の配列方向は前記治療用探触子の振動素 子の配列方向と直交することを特徴とする請求項 1 1記載の超音波治療装置。
1 6 超音波診断撮影手段と、 超音波治療手段と、 前記超音波診断撮影手段 から得られる受信信号を表示する画像表示手段とを備え、 超音波治療手段から 射出される超音波ビームの焦点位置が前記診断用探触子から射出される超音波 ビームの走査面上に位置することを特徴とする超音波治療装置。
1 7 前記焦点位置は診断画像の中心にあることを特徴とする請求項 1 6記
1 8 前記焦点位置は診断画像の深度方向付近を移動することを特徴とする 請求項 1 6記載の超音波治療装置。
1 9 前記焦点位置は診断画像の深度方向に移動することを特徴とする請求
項 1 6記載の超音波治療装置。
2 0 診断用探触子と、 治療用振動子と、 前記診断用探触子及び前記治療用 振動子を一体化した超音波プローブと、 治療パルス発生回路と、 治療波遅延回 路と、 診断パルス発生回路と、 診断送波遅延回路と、 送受分離器と、 受波整相 回路と、 信号処理部と、 ディジタルスキャンコンバータと、 モエタと、 前記診 断用探触子と前記治療用振動子と前記治療パルス発生回路と前記治療波遅延回 路と前記診断パルス発生回路と前記診断送波遅延回路と前記送受分離器と前記 受波整相回路と前記信号処理部と前記デイジタルスキャンコンバータとを制御 する制御部と、 前記制御部に指令を与える操作器と、 信号増幅器を備えること を特徴とする超音波治療装置。
2 1 診断用探触子と、 治療用振動子と、 前記診断用探触子及び前記治療用 振動子を一体化した超音波プローブと、 前記診断用探触子及び前記治療用振動 子の超音波を制御する可変フォーカス制御部を備えることを特徴とする超音波 プローブ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/466,199 US20040068186A1 (en) | 2001-01-22 | 2002-01-22 | Ultrasonic therapeutic probe and ultrasonic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001013650A JP2002209905A (ja) | 2001-01-22 | 2001-01-22 | 超音波治療プローブ及び超音波治療装置 |
JP2001-13650 | 2001-01-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002056779A1 true WO2002056779A1 (fr) | 2002-07-25 |
Family
ID=18880467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/000422 WO2002056779A1 (fr) | 2001-01-22 | 2002-01-22 | Sonde d'ultrasonotherapie et dispositif ultrasonique |
Country Status (3)
Country | Link |
---|---|
US (1) | US20040068186A1 (ja) |
JP (1) | JP2002209905A (ja) |
WO (1) | WO2002056779A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103537016A (zh) * | 2012-07-13 | 2014-01-29 | 重庆融海超声医学工程研究中心有限公司 | 超声换能器焦点的校正方法、装置及超声治疗设备 |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6050943A (en) | 1997-10-14 | 2000-04-18 | Guided Therapy Systems, Inc. | Imaging, therapy, and temperature monitoring ultrasonic system |
US6618620B1 (en) | 2000-11-28 | 2003-09-09 | Txsonics Ltd. | Apparatus for controlling thermal dosing in an thermal treatment system |
US7617005B2 (en) * | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US8088067B2 (en) * | 2002-12-23 | 2012-01-03 | Insightec Ltd. | Tissue aberration corrections in ultrasound therapy |
US7611462B2 (en) * | 2003-05-22 | 2009-11-03 | Insightec-Image Guided Treatment Ltd. | Acoustic beam forming in phased arrays including large numbers of transducer elements |
US7377900B2 (en) * | 2003-06-02 | 2008-05-27 | Insightec - Image Guided Treatment Ltd. | Endo-cavity focused ultrasound transducer |
US7699780B2 (en) * | 2004-08-11 | 2010-04-20 | Insightec—Image-Guided Treatment Ltd. | Focused ultrasound system with adaptive anatomical aperture shaping |
US8409099B2 (en) | 2004-08-26 | 2013-04-02 | Insightec Ltd. | Focused ultrasound system for surrounding a body tissue mass and treatment method |
US9011336B2 (en) | 2004-09-16 | 2015-04-21 | Guided Therapy Systems, Llc | Method and system for combined energy therapy profile |
US7824348B2 (en) * | 2004-09-16 | 2010-11-02 | Guided Therapy Systems, L.L.C. | System and method for variable depth ultrasound treatment |
US7393325B2 (en) | 2004-09-16 | 2008-07-01 | Guided Therapy Systems, L.L.C. | Method and system for ultrasound treatment with a multi-directional transducer |
US8444562B2 (en) | 2004-10-06 | 2013-05-21 | Guided Therapy Systems, Llc | System and method for treating muscle, tendon, ligament and cartilage tissue |
US8535228B2 (en) | 2004-10-06 | 2013-09-17 | Guided Therapy Systems, Llc | Method and system for noninvasive face lifts and deep tissue tightening |
US10864385B2 (en) | 2004-09-24 | 2020-12-15 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
CA2583600A1 (en) | 2004-10-06 | 2006-04-20 | Guided Therapy Systems, L.L.C. | Method and system for noninvasive cosmetic enhancement |
US11235179B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | Energy based skin gland treatment |
US20060111744A1 (en) | 2004-10-13 | 2006-05-25 | Guided Therapy Systems, L.L.C. | Method and system for treatment of sweat glands |
US9827449B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US7758524B2 (en) | 2004-10-06 | 2010-07-20 | Guided Therapy Systems, L.L.C. | Method and system for ultra-high frequency ultrasound treatment |
US8133180B2 (en) | 2004-10-06 | 2012-03-13 | Guided Therapy Systems, L.L.C. | Method and system for treating cellulite |
US11883688B2 (en) | 2004-10-06 | 2024-01-30 | Guided Therapy Systems, Llc | Energy based fat reduction |
EP2409729A1 (en) | 2004-10-06 | 2012-01-25 | Guided Therapy Systems, L.L.C. | Method and system for ultrasound tissue treatment |
US8690778B2 (en) | 2004-10-06 | 2014-04-08 | Guided Therapy Systems, Llc | Energy-based tissue tightening |
US9694212B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment of skin |
US11207548B2 (en) | 2004-10-07 | 2021-12-28 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US11724133B2 (en) | 2004-10-07 | 2023-08-15 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US20070016039A1 (en) * | 2005-06-21 | 2007-01-18 | Insightec-Image Guided Treatment Ltd. | Controlled, non-linear focused ultrasound treatment |
US20080319316A1 (en) * | 2005-08-30 | 2008-12-25 | Koninklijke Philips Electronics N.V. | Combination Imaging and Therapy Transducer |
CN101313354B (zh) * | 2005-11-23 | 2012-02-15 | 因赛泰克有限公司 | 超高密度超声阵列中的分级切换 |
US8235901B2 (en) * | 2006-04-26 | 2012-08-07 | Insightec, Ltd. | Focused ultrasound system with far field tail suppression |
US20100030076A1 (en) * | 2006-08-01 | 2010-02-04 | Kobi Vortman | Systems and Methods for Simultaneously Treating Multiple Target Sites |
WO2008065561A1 (en) * | 2006-11-28 | 2008-06-05 | Koninklijke Philips Electronics, N.V. | Apparatus for 3d ultrasound imaging and therapy |
US9216276B2 (en) | 2007-05-07 | 2015-12-22 | Guided Therapy Systems, Llc | Methods and systems for modulating medicants using acoustic energy |
US20150174388A1 (en) | 2007-05-07 | 2015-06-25 | Guided Therapy Systems, Llc | Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue |
US20090062724A1 (en) * | 2007-08-31 | 2009-03-05 | Rixen Chen | System and apparatus for sonodynamic therapy |
US8251908B2 (en) | 2007-10-01 | 2012-08-28 | Insightec Ltd. | Motion compensated image-guided focused ultrasound therapy system |
US20090149782A1 (en) * | 2007-12-11 | 2009-06-11 | Donald Cohen | Non-Invasive Neural Stimulation |
US20090171217A1 (en) * | 2007-12-27 | 2009-07-02 | Jeong Hwan Kim | Ultrasound system for diagnosing breast cancer |
HUE027536T2 (en) | 2008-06-06 | 2016-10-28 | Ulthera Inc | Cosmetic treatment and imaging system |
US12102473B2 (en) | 2008-06-06 | 2024-10-01 | Ulthera, Inc. | Systems for ultrasound treatment |
US8425424B2 (en) * | 2008-11-19 | 2013-04-23 | Inightee Ltd. | Closed-loop clot lysis |
WO2010075547A2 (en) | 2008-12-24 | 2010-07-01 | Guided Therapy Systems, Llc | Methods and systems for fat reduction and/or cellulite treatment |
US20100179425A1 (en) * | 2009-01-13 | 2010-07-15 | Eyal Zadicario | Systems and methods for controlling ultrasound energy transmitted through non-uniform tissue and cooling of same |
US8617073B2 (en) * | 2009-04-17 | 2013-12-31 | Insightec Ltd. | Focusing ultrasound into the brain through the skull by utilizing both longitudinal and shear waves |
WO2010143072A1 (en) * | 2009-06-10 | 2010-12-16 | Insightec Ltd. | Acoustic-feedback power control during focused ultrasound delivery |
US9623266B2 (en) * | 2009-08-04 | 2017-04-18 | Insightec Ltd. | Estimation of alignment parameters in magnetic-resonance-guided ultrasound focusing |
US9289154B2 (en) * | 2009-08-19 | 2016-03-22 | Insightec Ltd. | Techniques for temperature measurement and corrections in long-term magnetic resonance thermometry |
US20110046475A1 (en) * | 2009-08-24 | 2011-02-24 | Benny Assif | Techniques for correcting temperature measurement in magnetic resonance thermometry |
US9177543B2 (en) * | 2009-08-26 | 2015-11-03 | Insightec Ltd. | Asymmetric ultrasound phased-array transducer for dynamic beam steering to ablate tissues in MRI |
EP2489034B1 (en) | 2009-10-14 | 2016-11-30 | Insightec Ltd. | Mapping ultrasound transducers |
US8368401B2 (en) * | 2009-11-10 | 2013-02-05 | Insightec Ltd. | Techniques for correcting measurement artifacts in magnetic resonance thermometry |
US8715186B2 (en) | 2009-11-24 | 2014-05-06 | Guided Therapy Systems, Llc | Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy |
US9852727B2 (en) | 2010-04-28 | 2017-12-26 | Insightec, Ltd. | Multi-segment ultrasound transducers |
US8932237B2 (en) | 2010-04-28 | 2015-01-13 | Insightec, Ltd. | Efficient ultrasound focusing |
JP5520150B2 (ja) * | 2010-07-07 | 2014-06-11 | 日立アロカメディカル株式会社 | 超音波測定装置および超音波治療システム |
WO2012018390A2 (en) | 2010-08-02 | 2012-02-09 | Guided Therapy Systems, Llc | Systems and methods for treating acute and/or chronic injuries in soft tissue |
US9504446B2 (en) | 2010-08-02 | 2016-11-29 | Guided Therapy Systems, Llc | Systems and methods for coupling an ultrasound source to tissue |
US9981148B2 (en) | 2010-10-22 | 2018-05-29 | Insightec, Ltd. | Adaptive active cooling during focused ultrasound treatment |
EP2739357B1 (en) | 2011-07-10 | 2023-09-06 | Guided Therapy Systems, L.L.C. | Systems for improving an outside appearance of skin using ultrasound as an energy source |
US9011337B2 (en) | 2011-07-11 | 2015-04-21 | Guided Therapy Systems, Llc | Systems and methods for monitoring and controlling ultrasound power output and stability |
US9263663B2 (en) | 2012-04-13 | 2016-02-16 | Ardent Sound, Inc. | Method of making thick film transducer arrays |
US9510802B2 (en) | 2012-09-21 | 2016-12-06 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
CN113648552A (zh) | 2013-03-08 | 2021-11-16 | 奥赛拉公司 | 用于多焦点超声治疗的装置和方法 |
US10561862B2 (en) | 2013-03-15 | 2020-02-18 | Guided Therapy Systems, Llc | Ultrasound treatment device and methods of use |
JP2015204894A (ja) * | 2014-04-17 | 2015-11-19 | オリンパス株式会社 | 超音波治療装置 |
CN106470735B (zh) | 2014-04-18 | 2019-09-20 | 奥赛拉公司 | 带式换能器超声治疗 |
AU2017208980B2 (en) | 2016-01-18 | 2022-03-31 | Ulthera, Inc. | Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof |
SG11201809850QA (en) | 2016-08-16 | 2018-12-28 | Ulthera Inc | Systems and methods for cosmetic ultrasound treatment of skin |
TWI797235B (zh) | 2018-01-26 | 2023-04-01 | 美商奧賽拉公司 | 用於多個維度中的同時多聚焦超音治療的系統和方法 |
US11944849B2 (en) | 2018-02-20 | 2024-04-02 | Ulthera, Inc. | Systems and methods for combined cosmetic treatment of cellulite with ultrasound |
CN109674491A (zh) * | 2019-02-13 | 2019-04-26 | 飞依诺科技(苏州)有限公司 | 超声成像宽波束发射方法及发射系统 |
CN112545669A (zh) * | 2020-12-03 | 2021-03-26 | 长沙市第一医院 | 一种胸腹水体外压痕定位方法 |
KR20230101972A (ko) * | 2021-12-29 | 2023-07-07 | 동국대학교 산학협력단 | 초음파 빔의 회전력 제어가 가능한 초음파 변환자 및 이를 이용한 초음파 시스템 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06269454A (ja) * | 1993-03-16 | 1994-09-27 | Hitachi Medical Corp | 超音波診断装置 |
JPH0824268A (ja) * | 1994-07-13 | 1996-01-30 | Toshiba Corp | 衝撃波治療装置及び温熱治療装置 |
US5526815A (en) * | 1993-01-29 | 1996-06-18 | Siemens Aktiengesellschat | Therapy apparatus for locating and treating a zone located in the body of a life form with acoustic waves |
US5553618A (en) * | 1993-03-12 | 1996-09-10 | Kabushiki Kaisha Toshiba | Method and apparatus for ultrasound medical treatment |
WO1996039079A1 (en) * | 1995-06-06 | 1996-12-12 | Imarx Pharmaceutical Corp. | Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously |
JPH09122139A (ja) * | 1995-10-31 | 1997-05-13 | Olympus Optical Co Ltd | 超音波治療装置 |
JP2000229098A (ja) * | 1998-12-09 | 2000-08-22 | Toshiba Corp | 超音波治療装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6246898B1 (en) * | 1995-03-28 | 2001-06-12 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
EP0734742B1 (en) * | 1995-03-31 | 2005-05-11 | Kabushiki Kaisha Toshiba | Ultrasound therapeutic apparatus |
CN1058905C (zh) * | 1998-01-25 | 2000-11-29 | 重庆海扶(Hifu)技术有限公司 | 高强度聚焦超声肿瘤扫描治疗系统 |
US6533726B1 (en) * | 1999-08-09 | 2003-03-18 | Riverside Research Institute | System and method for ultrasonic harmonic imaging for therapy guidance and monitoring |
EP1241994A4 (en) * | 1999-12-23 | 2005-12-14 | Therus Corp | ULTRASONIC ENGINE FOR IMAGING AND THERAPY |
-
2001
- 2001-01-22 JP JP2001013650A patent/JP2002209905A/ja active Pending
-
2002
- 2002-01-22 WO PCT/JP2002/000422 patent/WO2002056779A1/ja active Application Filing
- 2002-01-22 US US10/466,199 patent/US20040068186A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5526815A (en) * | 1993-01-29 | 1996-06-18 | Siemens Aktiengesellschat | Therapy apparatus for locating and treating a zone located in the body of a life form with acoustic waves |
US5553618A (en) * | 1993-03-12 | 1996-09-10 | Kabushiki Kaisha Toshiba | Method and apparatus for ultrasound medical treatment |
JPH06269454A (ja) * | 1993-03-16 | 1994-09-27 | Hitachi Medical Corp | 超音波診断装置 |
JPH0824268A (ja) * | 1994-07-13 | 1996-01-30 | Toshiba Corp | 衝撃波治療装置及び温熱治療装置 |
WO1996039079A1 (en) * | 1995-06-06 | 1996-12-12 | Imarx Pharmaceutical Corp. | Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously |
JPH09122139A (ja) * | 1995-10-31 | 1997-05-13 | Olympus Optical Co Ltd | 超音波治療装置 |
JP2000229098A (ja) * | 1998-12-09 | 2000-08-22 | Toshiba Corp | 超音波治療装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103537016A (zh) * | 2012-07-13 | 2014-01-29 | 重庆融海超声医学工程研究中心有限公司 | 超声换能器焦点的校正方法、装置及超声治疗设备 |
Also Published As
Publication number | Publication date |
---|---|
US20040068186A1 (en) | 2004-04-08 |
JP2002209905A (ja) | 2002-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002056779A1 (fr) | Sonde d'ultrasonotherapie et dispositif ultrasonique | |
JP4558504B2 (ja) | 超音波治療における組織異常の修正 | |
JP4095729B2 (ja) | 治療用超音波装置 | |
EP1615696B1 (en) | Shear mode therapeutic ultrasound | |
JP4618810B2 (ja) | 剪断モード診断用超音波 | |
JP5337782B2 (ja) | 超音波診断装置 | |
JP3409051B2 (ja) | 超音波治療アプリケータ | |
JP2004514521A (ja) | 位相アレイ集束超音波システムを制御するためのシステムおよび方法 | |
KR102111453B1 (ko) | 체외 충격파 치료 장치 | |
JP2001327495A (ja) | 超音波装置 | |
JP2005253751A (ja) | 超音波用探触子及び超音波診断装置 | |
JP4434668B2 (ja) | 治療システム及び治療支援システム | |
JP5475971B2 (ja) | 超音波診断装置 | |
WO2003028556A1 (fr) | Titre | |
JP4489048B2 (ja) | 超音波治療装置 | |
JP4319427B2 (ja) | 医用超音波照射装置 | |
JPH0331456B2 (ja) | ||
JP2003339700A (ja) | 超音波プローブ及び超音波診断装置 | |
JP2005124920A (ja) | 超音波診断治療装置 | |
JPH0824268A (ja) | 衝撃波治療装置及び温熱治療装置 | |
JP3899455B2 (ja) | 超音波治療装置 | |
JPH10216145A (ja) | 超音波診断治療システム | |
JP3699046B2 (ja) | 超音波治療装置 | |
JP6653172B2 (ja) | 超音波治療装置 | |
JP4342167B2 (ja) | 超音波照射装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10466199 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |