WO2002055567A2 - Procede de preparation de polymeres halogenes en deux etapes et polymeres halogenes plurimodales - Google Patents

Procede de preparation de polymeres halogenes en deux etapes et polymeres halogenes plurimodales Download PDF

Info

Publication number
WO2002055567A2
WO2002055567A2 PCT/EP2001/015211 EP0115211W WO02055567A2 WO 2002055567 A2 WO2002055567 A2 WO 2002055567A2 EP 0115211 W EP0115211 W EP 0115211W WO 02055567 A2 WO02055567 A2 WO 02055567A2
Authority
WO
WIPO (PCT)
Prior art keywords
halogenated
polymers
monomers
carbon dioxide
plurimodal
Prior art date
Application number
PCT/EP2001/015211
Other languages
English (en)
Other versions
WO2002055567A8 (fr
WO2002055567A3 (fr
Inventor
Jean-Marie Blaude
Roland Martin
Jean-Marie Chauvier
Charles Bienfait
Original Assignee
Solvay (Société Anonyme)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0100445A external-priority patent/FR2819257A1/fr
Application filed by Solvay (Société Anonyme) filed Critical Solvay (Société Anonyme)
Priority to US10/451,630 priority Critical patent/US20040087741A1/en
Priority to EP01273118A priority patent/EP1379563A2/fr
Priority to JP2002556634A priority patent/JP2004532903A/ja
Priority to AU2002217151A priority patent/AU2002217151A1/en
Publication of WO2002055567A2 publication Critical patent/WO2002055567A2/fr
Publication of WO2002055567A3 publication Critical patent/WO2002055567A3/fr
Publication of WO2002055567A8 publication Critical patent/WO2002055567A8/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • B01J2219/00166Controlling or regulating processes controlling the flow controlling the residence time inside the reactor vessel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a process for the preparation of halogenated polymers and the halogenated polymers obtained.
  • the objective of the present invention is therefore to overcome these limitations by proposing a continuous process for the preparation of halogenated polymers in a medium comprising liquid or supercritical carbon dioxide.
  • a process for the continuous preparation of halogenated polymers comprising the radical polymerization of halogenated monomers in a medium comprising liquid or supercritical carbon dioxide in at least two reactors mixed under pressure in series.
  • the process for the continuous preparation of halogenated polymers according to the invention comprises the radical polymerization of halogenated monomers in two reactors mixed under pressure in series.
  • monomers and polymers are understood to be in the singular as in the plural.
  • the term continuous process is intended to denote, for the purposes of the present invention, a process in which the supply of carbon dioxide, of monomers, of initiators and additives and the withdrawal of the content of each of the reactors are carried out continuously.
  • the continuous process according to the invention is such as the control of supplies, racking and other conditions of polymerization ensures stationary operating conditions for each of the reactors.
  • the process of the invention is carried out in a medium comprising carbon dioxide in the liquid or supercritical state.
  • the process according to the invention is carried out in a medium comprising carbon dioxide in the supercritical state.
  • the polymerization conditions of the process in accordance with the present invention are independently controlled and adapted in each reactor.
  • the temperature in each of the reactors is at least -
  • the temperature is at most 200 ° C, preferably at most 175 ° C, particularly preferably at most
  • the pressure in each of the reactors is at least 5 bar, preferably at least 35 bar, particularly preferably at least 40 bar. Usually, the pressure is at most 3000 bar, preferably at most 700 bar, particularly preferably at most 500 bar.
  • the density of the medium in each of the reactors is at least 500 kg / m, preferably at least 600 kg / m. Usually, the density of the medium in each of the reactors is at most 1200 kg / m 3 , preferably at most 1000 kg / m 3 .
  • a particular aspect of the process according to the invention is that the adjustment of the density of the medium makes it possible to control the mutual solubilities of carbon dioxide, of the monomers, of the initiators and of the additives on the one hand, and of the halogenated polymers obtained from somewhere else.
  • the polymerization conditions in the last reactor are adapted to make the halogenated polymers obtained insoluble in the medium.
  • Another aspect of the process according to the present invention provides, at least downstream of the last reactor, for a step of purifying the halogenated polymer.
  • the purification of the halogenated polymer can be carried out by means of pure carbon dioxide or by means of a mixture of carbon dioxide and of monomers either pure or recycled.
  • the purification is carried out by means of a mixture of carbon dioxide and monomers either pure or recycled.
  • the purification is carried out by means of a mixture of carbon dioxide and recycled monomers.
  • Another preferred aspect of the process according to the present invention further provides, at least downstream of the last reactor, a step of recycling carbon dioxide and unconverted monomers.
  • This step of recycling carbon dioxide and unconverted monomers can optionally be accompanied by a step of purifying carbon dioxide and unconverted monomers.
  • This step of recycling carbon dioxide and unconverted monomers can also optionally be accompanied by a step of separating one or more of the constituents of the mixture of carbon dioxide / unconverted monomers so as to be able to recycle separately.
  • Another particularly preferred aspect of the process according to the present invention provides that the step of purifying the halogenated polymer and / or the step of recycling carbon dioxide and unconverted monomers is preceded by a step of concentrating the suspension containing the halogenated polymer.
  • This concentration can be carried out in any device suitable for this purpose, for example, by means of filters, cyclones or any other device with a filtration, centrifugation or gravitation effect.
  • a very particularly preferred aspect contemplates that, in the process according to the invention, at least one of the steps of purifying the halogenated polymer, recycling carbon dioxide and unconverted monomers, concentrating the suspension containing the halogenated polymer is carried out at a pressure sufficiently close to that of the reactors to carry out these operations with a moderate energy cost of recompression.
  • radical polymerization of halogenated monomers is intended to denote, for the purposes of the present invention, both the homopolymerization of halogenated monomers and their copolymerization with other ethylenically unsaturated monomers which can be polymerized by the radical route, with a view to obtaining halogenated polymers.
  • halogenated polymers is meant for the purposes of the present invention, both homopolymers and copolymers of halogenated monomers.
  • halogenated monomers such as fluorolefins, for example vinylidene fluoride, vinyl fluoride, trifluoroethylene, tetrafluoroethylene, chlorotrifluoroethylene and hexafluoropropylene; fluoroacrylates; ethers fluorinated vinyls, for example perfluorinated vinyl ethers bearing perfluoroalkyl groups containing from 1 to 6 carbon atoms; vinyl chloride and vinylidene chloride.
  • fluorolefins for example vinylidene fluoride, vinyl fluoride, trifluoroethylene, tetrafluoroethylene, chlorotrifluoroethylene and hexafluoropropylene
  • fluoroacrylates such as fluorolefins, for example vinylidene fluoride, vinyl fluoride, trifluoroethylene,
  • the process for the polymerization of halogenated monomers according to the invention applies to the polymerization of monomers containing fluorine with a view to obtaining polymers containing fluorine.
  • fluorine-containing polymers is meant for the purposes of the present invention, both homopolymers and copolymers of fluorine-containing monomers.
  • fluorine-containing monomers such as fluorolefins, for example vinylidene fluoride, vinyl fluoride, trifluoroethylene, tetrafluoroethylene, chlorotrifluoroethylene and hexafluoropropylene; fluoroacrylates and fluorinated vinyl ethers, for example perfluorinated vinyl ethers carrying perfluoroalkyl groups containing from 1 to 6 carbon atoms.
  • copolymers formed by these fluorine-containing monomers with one another such as for example the copolymers of vinylidene fluoride with another fluorinated monomer as defined above and the copolymers of one of the fluorine-containing monomers mentioned above.
  • another ethylenically unsaturated monomer such as olefins, for example ethylene, propylene, styrene derivatives and styrene; halogenated olefins; vinyl ethers; vinyl esters such as for example vinyl acetate; acrylic acids, esters, nitriles and amides and methacrylic acids, esters, nitriles and amides.
  • the process for the polymerization of halogenated monomers according to the invention applies to the polymerization of vinylidene fluoride with a view to obtaining polymers of vinylidene fluoride.
  • vinylidene fluoride polymers is intended to denote, for the purposes of the present invention, both homopolymers of vinylidene fluoride and its copolymers with other ethylenically unsaturated monomers, which they are fluorinated (fluorolefins, for example vinyl fluoride, trifluoroethylene, tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene; fluoroacrylates; fluorinated vinyl ethers such as perfluorinated vinyl ethers carrying perfluoroalkyl groups containing from 1 to 6 carbon atoms) or not (olefins as for example ethylene, propylene, styrene derivatives and styrene; halogen
  • Homopolymers of vinylidene fluoride and copolymers of vinylidene fluoride with a fluorinated comonomer are preferred. Homopolymers of vinylidene fluoride and copolymers of vinylidene fluoride and chlorotrifluoroethylene and copolymers of vinylidene fluoride and hexafluoropropylene are particularly preferred.
  • the copolymers obtained preferably contain at least about 75% by weight of monomeric units derived from vinylidene fluoride.
  • the total concentration of monomers in each of the reactors is usually at least 0.5 mole / liter, preferably at least 1 mole / liter.
  • the total concentration of monomers in each of the reactors is usually at most 10 mole / liter, preferably at most 6 mole / liter.
  • the polymerization process according to the invention is carried out by radical route and usually provides for the use of one or more initiators, the nature, number and concentration of which can also be chosen independently in each reactor, according to requirements.
  • any suitable radical initiator can be used, in particular an organic radical initiator chosen for example from peroxides, such as diethyl peroxydicarbonate, diketyl peroxydicarbonate, dicyclohexyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxyisopropylcarbonate, t-butyl peroxy-n-decanoate, t-butyl peroxyacetate, di-t-butyl peroxide, dibenzoyl peroxide, dibenzoyl peroxide dioctanoyl, dilauroyl peroxide, dicumyl peroxide, di-t-amyl peroxide, t-but
  • the concentration of initiators in each of the reactors is usually between 5 ⁇ 10 ⁇ 5 mole / liter and 0.1 mole / liter.
  • the polymerization of the process of the present invention can optionally be carried out in the presence of one or more surfactants or one or more dispersing agents Any surfactant or any suitable dispersing agent known to those skilled in the art can be used.
  • the process according to the invention can optionally be carried out in the presence of other additives than the additives mentioned above (initiators, surfactants, dispersing agents) making it possible to improve the implementation of the process and / or the characteristics of the resulting polymer.
  • additives examples include chain transfer agents, anti-crusting agents, anti-static agents and co-solvents.
  • the polymerization step according to the present invention is carried out in reactors mixed under high pressure. These mixed reactors can be of any type known to those skilled in the art, provided that they withstand the temperatures and high pressures necessary for carrying out the process.
  • mixed reactor is intended to denote, for the purposes of the present invention, a reactor provided with a mixing device serving for the homogenization of the reaction medium, such as for example paddle, screw or turbine agitators.
  • a mixing device serving for the homogenization of the reaction medium, such as for example paddle, screw or turbine agitators.
  • Each of the reactors can be of a different type.
  • reactors can also be individually equipped with a heating system and / or a cooling system used to control the temperature in each of the reactors.
  • the reactor temperature will usually be controlled by a heat exchange system consisting, for example, of a jacket or a heat exchanger inside the reactor, conveying a heat transfer fluid.
  • the heat released can be used to bring the reactants and (co) solvents up to temperature downstream and / or upstream of the reactor in question.
  • the process of the invention also allows the pressure, density and other polymerization conditions to be adapted independently in each reactor, on the one hand, by regulating the flow rate and / or of the pressure at the outlet of each reactor for example by taking a part of the production of said reactor, and, on the other hand, by feeding each reactor with monomers, initiators, additives and / or carbon dioxide.
  • the present invention further relates to halogenated polymers, which can in particular be obtained by the process according to the invention, with bi- or plurimodal distribution of molecular weights.
  • the bi- or plurimodal distribution of the molecular masses of the polymers according to the invention is preferably characterized by a first mode situated between 10 kg / mole and 100 kg / mole and by a second mode 3 to 30 times greater than the first.
  • the bi- or plurimodal distribution of the molecular weights of the polymers according to the invention is particularly preferably characterized by a first mode situated between 20 kg / mole and 70 kg / mole and by a second mode 5 to 20 times greater than the first.
  • the bi- or plurimodal distribution of the molecular weights of the polymers according to the invention is preferably such that the weight fraction of the first sub-distribution is between 0.2 and 20% by weight and in a particularly preferred manner such that the weight fraction of the first sub-distribution is between 1 and 10% by weight.
  • the halogenated polymers according to the invention are characterized by a bimodal distribution of molecular weights which can have the abovementioned characteristics as regards the first and second modes and as regards the weight fraction of the first sub-distribution.
  • the halogenated polymers according to the invention are characterized by a ratio between the dynamic viscosity measured at a frequency of 0.1 rad / s and that measured at a frequency of 100 rad / s, greater than or equal to 10.
  • Halogenated polymers characterized by a ratio between the dynamic viscosity measured at a frequency of 0.1 rad / s and that measured at a frequency of 100 rad / s, greater than or equal to 20 are particularly desired and those characterized by a such a ratio greater than or equal to 40 are very particularly desired.
  • the halogenated polymers according to the invention are characterized by a bi- or plurimodal distribution of the degree of incorporation of the monomers.
  • the present invention further relates to halogenated polymers, which can in particular be obtained by the process according to the invention, with bi- or plurimodal distribution of the degree of incorporation of the monomers.
  • halogenated polymers can be characterized by a monomodal distribution or by a bi- or plurimodal distribution of molecular masses.
  • these halogenated polymers are characterized by a bi- or plurimodal distribution of molecular weights.
  • the bi- or plurimodal distribution of the molecular masses of the polymers according to the invention is preferably characterized by a first mode situated between 10 kg / mole and 100 kg / mole and by a second mode 3 to 30 times greater than the first.
  • the bi- or plurimodal distribution of the molecular weights of the polymers according to the invention is particularly preferably characterized by a first mode situated between 20 kg / mole and 70 kg / mole and by a second mode 5 to 20 times greater than the first.
  • the bi- or plurimodal distribution of the molecular weights of the polymers according to the invention is preferably such that the weight fraction of the first sub-distribution is between 0.2 and 20% by weight and in a particularly preferred manner such that the weight fraction of the first sub-distribution is between 1 and 10% by weight.
  • these halogenated polymers are characterized by a bimodal distribution of the molecular masses which can have the abovementioned characteristics as regards the first and second modes and as regards the weight fraction of the first sub-distribution.
  • the halogenated polymers according to the invention are characterized by a ratio between the dynamic viscosity measured at a frequency of 0.1 rad / s and that measured at a frequency of 100 rad / s, greater than or equal to 10
  • Halogenated polymers characterized by a ratio between the dynamic viscosity measured at a frequency of 0.1 rad / s and that measured at a frequency of 100 rad / s, greater than or equal to 20 are particularly desired and those characterized by such a ratio greater than or equal to 40 is very particularly desired.
  • molecular weight distribution is meant for the purposes of the present invention, that measured by steric exclusion chromatography.
  • the distribution of molecular weights is called unimodal if it can be described, in the case of an asymmetric distribution by the relation (1), or in the case of a symmetrical distribution by the relation (2) ):
  • the distribution of molecular masses is called bimodal, if it can only be described by the combination of two sub-distributions according to the relation (1) and / or (2), with a coefficient of determination d 'at least 0.99, the deconvolution of the bimodal distributions making it possible to quantify the mass proportions of each of two sub-distributions by the area of the peaks.
  • the deconvolution is carried out by the combination of relations (1) and / or (2) specific to each of the sub-distributions.
  • dynamic viscosity is meant, for the purposes of the present invention, the viscosity determined by means of an imposed deformation rheogoniometer, marketed by RHEOMETRICS under the name ARES (ADVANCED RHEOLOGICAL EXPANSION SYSTEM), on a sample, placed between 2 trays parallel and subjected to deformation, 25 mm in diameter and 2 mm thick cut from a pressed plate.
  • ARES ADVANCED RHEOLOGICAL EXPANSION SYSTEM
  • degree of incorporation of the monomers is meant, for the purposes of the present invention, the amounts expressed in percent of the different monomers which constitute the halogenated polymer.
  • bi- or plurimodal distribution of the incorporation rate of each monomer is meant, for the purposes of the present invention, any mass distribution of this incorporation rate which has two or more modes.
  • the process and the polymers according to the invention have multiple advantages.
  • the mechanical and rheological properties of polymers usually depend not only on the molecular weight and incorporation rate of the various monomers in the polymer, but also on their complete distributions.
  • the method according to the invention makes it possible to obtain halogenated polymers having bi- or plurimodal distributions of molecular weights and / or bi- or plurimodal distributions of the rate of incorporation of the various monomers in the polymer chain. Optimizing this type of distribution makes it possible to particularly improve the processability and the physical properties of the objects used.
  • the process according to the invention is particularly advantageous in this respect, thanks to better control of the parameters and more targeted control of the conditions under which the polymerization takes place in each of the reactors in series.
  • the different components of the bi- or plurimodal distributions are obtained directly as an intimate mixture on the molecular scale, which makes the polymers obtained more efficient compared to blends in the molten state of different polymers of monomodal distributions of molecular weights and incorporation rate of the different monomers.
  • the method according to the invention also makes it possible to vary the arrangement of the monomers in the polymer chain of the polymers obtained.
  • Figure 1 illustrates the present invention without limiting its scope. It represents a schematic view of an embodiment of the process of the present invention for two reactors connected in series.
  • a first reactor is continuously supplied with carbon dioxide, initiators, monomers and additives; part of the carbon dioxide and unconverted monomers recovered downstream from the second reactor can also be recycled there.
  • the control of the supplies of the first reactor makes it possible to control the residence time and the concentrations of the various constituents there.
  • the state of mixing in the reactor is obtained by an appropriate device.
  • the heat of polymerization is used to bring the contents of the reactor to the reaction temperature, any excess heat is removed by circulation of a cold fluid in a double jacket or in a heat exchange device located in the reactor. . This makes it possible to control the temperature of the first reactor.
  • the content of the first reactor comprising the polymer produced is withdrawn to the second reactor.
  • This controlled withdrawal makes it possible to regulate the pressure of the first reactor.
  • the second reactor can also be supplied with carbon dioxide, the initiator, monomers and pure additives, as well as with the rest of the carbon dioxide and unconverted monomers recovered downstream from the second reactor and recycled.
  • the control of the supplies of the second reactor makes it possible to control a residence time and concentrations of different compounds different from the residence time and the concentrations prevailing in the first reactor.
  • the thermal control of the second reactor follows the same principles as the thermal control of the first reactor, and allows it to impose a temperature different from the temperature of the first reactor.
  • the suspension of particles of the polymer is drawn off towards a sector for concentrating the suspension containing the halogenated polymer.
  • This controlled withdrawal makes it possible to regulate a pressure in the second reactor different from the pressure of the first reactor.
  • the fluid (continuous phase) separated from the polymer suspension in the concentration sector is recycled under high pressure to the reactors or also directed under high pressure, to a sector for purifying the polymer.
  • the concentrated polymer suspension is then directed to a polymer purification sector, where carbon dioxide and / or pure monomers can be used to rid the polymer of residues of initiators, polymerization additives and sub- products.
  • the carbon dioxide and / or the pure or recycled monomers added for the purification, as well as the carbon dioxide, the monomers and the unconverted monomers accompanying the polymer at the exit of the concentration sector of the suspension are then directed , depending on their pressure level, either directly to the high pressure recycling, ie towards a low pressure recycling sector.
  • the purified polymer is finally conditioned and packaged, constituting the finished product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Procédé de préparation en continu de polymères halogénés comprenant la polymérisation radicalaire de monomères halogénés dans un milieu comprenant du dioxyde de carbone liquide ou supercritique, dans au moins deux réacteurs sous pression en série. Polymères halogénés obtenus.

Description

Procédé de préparation de polymères halogènes et polymères halogènes obtenus
La présente invention concerne un procédé de préparation de polymères halogènes et les polymères halogènes obtenus.
Il est connu de préparer des polymères fluorés par polymérisation dans un milieu comprenant du dioxyde de carbone liquide ou supercritique selon un procédé continu dans un réacteur avec récupération du polymère fluoré par décompression éclair (WO 98/28351).
Un des inconvénients de ce procédé est que la polymérisation se déroule dans des conditions quasi uniques de température, de pression, de densité, de concentration des constituants et de temps de séjour. Cet inconvénient limite les degrés de liberté qui permettent de maîtriser les distributions des masses moléculaires des polymères ainsi produits.
Une autre critique que l'on peut adresser à ce procédé antérieur est la difficulté qu'il présente de maîtriser le taux d'incorporation de différents monomères et leur agencement dans les polymères halogènes. L'objectif de la présente invention est donc de remédier à ces limitations en proposant un procédé continu de préparation de polymères halogènes dans un milieu comprenant du dioxyde de carbone liquide ou supercritique.
Selon la présente invention, on propose un procédé de préparation en continu de polymères halogènes comprenant la polymérisation radicalaire de monomères halogènes dans un milieu comprenant du dioxyde de carbone liquide ou supercritique dans au moins deux réacteurs mélangés sous pression en série. De manière préférée, le procédé de préparation en continu de polymères halogènes selon l'invention comprend la polymérisation radicalaire de monomères halogènes dans deux réacteurs mélangés sous pression en série. Aux fins de la présente invention, les termes monomères et polymères s'entendent au singulier comme au pluriel.
Par procédé continu, on entend désigner, aux fins de la présente invention, un procédé dans lequel l'alimentation en dioxyde de carbone, en monomères, en initiateurs et additifs et le soutirage du contenu de chacun des réacteurs sont effectués en continu. De préférence, le procédé continu selon l'invention est tel que le contrôle des alimentations, du soutirage et des autres conditions de polymérisation assure des conditions de fonctionnement stationnaire pour chacun des réacteurs.
Le procédé de l'invention est effectué dans un milieu comprenant du dioxyde de carbone à l'état liquide ou supercritique. De préférence, le procédé selon l'invention est effectué dans un milieu comprenant du dioxyde de carbone à l'état supercritique.
De manière particulièrement préférée, les conditions de polymérisation du procédé conforme à la présente invention sont contrôlées et adaptées indépendamment dans chaque réacteur. Habituellement, la température dans chacun des réacteurs est d'au moins —
50 °O, de préférence d'au moins -20 °C, de manière particulièrement préférée d'au moins 0 °C. Habituellement, la température est d'au plus 200 °C, de préférence d'au plus 175 °C, de manière particulièrement préférée d'au plus
150 °C. Habituellement, la pression dans chacun des réacteurs est d'au moins 5 bar, de préférence d'au moins 35 bar, de manière particulièrement préférée d'au moins 40 bar. Habituellement, la pression est d'au plus 3000 bar, de préférence d'au plus 700 bar, de manière particulièrement préférée d'au plus 500 bar. Habituellement, la densité du milieu dans chacun des réacteurs est d'au moins 500 kg/m , de préférence d'au moins 600 kg/m . Habituellement, la densité du milieu dans chacun des réacteurs est d'au plus 1200 kg/m3, de préférence d'au plus 1000 kg/m3.
Un aspect particulier du procédé selon l'invention est que l'ajustement de la densité du milieu permet de contrôler les solubilités mutuelles du dioxyde de carbone, des monomères, des initiateurs et des additifs d'une part, et des polymères halogènes obtenus d'autre part.
De manière tout particulièrement préférée, on adapte les conditions de polymérisation dans le dernier réacteur pour rendre les polymères halogènes obtenus insolubles dans le milieu. Un autre aspect du procédé selon la présente invention prévoit, au moins en aval du dernier réacteur, une étape d'épuration du polymère halogène.
L'épuration du polymère halogène peut être réalisée au moyen de dioxyde de carbone pur ou au moyen d'un mélange de dioxyde de carbone et de monomères soit purs soit recyclés. De préférence, l'épuration est réalisée au moyen d'un mélange de dioxyde de carbone et de monomères soit purs soit recyclés. De manière particulièrement préférée, l'épuration est réalisée au moyen d'un mélange de dioxyde de carbone et de monomères recyclés.
Un autre aspect préféré du procédé selon la présente invention prévoit en outre, au moins en aval du dernier réacteur une étape de recyclage du dioxyde de carbone et des monomères non-convertis.
Cette étape de recyclage du dioxyde de carbone et des monomères non- convertis peut éventuellement s'accompagner d'une étape d'épuration du dioxyde de carbone et des monomères non-convertis.
Cette étape de recyclage du dioxyde de carbone et des monomères non- convertis peut en outre éventuellement s'accompagner d'une étape de séparation d'un ou de plusieurs des constituants du mélange dioxyde de carbone / monomères non-convertis de manière à pouvoir les recycler séparément.
Un autre aspect particulièrement préféré du procédé selon la présente invention prévoit que l'étape d'épuration du polymère halogène et/ou l'étape de recyclage du dioxyde de carbone et des monomères non-convertis est précédée d'une étape de concentration de la suspension contenant le polymère halogène. Cette concentration peut être effectuée dans tout dispositif approprié à cet effet, par exemple, au moyen de filtres, de cyclones ou de tout autre dispositif à effet de filtration, de centrifugation ou de gravitation. Un aspect tout particulièrement préféré envisage que, dans le procédé selon l'invention, au moins une des étapes d'épuration du polymère halogène, de recyclage du dioxyde de carbone et des monomères non-convertis, de concentration de la suspension contenant le polymère halogène est effectuée à une pression suffisamment proche de celles des réacteurs pour réaliser ces opérations avec un coût énergétique de recompression modéré.
Par polymérisation radicalaire de monomères halogènes, on entend désigner aux fins de la présente invention, aussi bien l'homopolymérisation de monomères halogènes que leur copolymérisation avec d'autres monomères éthyléniquement insaturés polymérisables par voie radicalaire, en vue d'obtenir des polymères halogènes.
Par polymères halogènes, on entend désigner aux fins de la présente invention, aussi bien les homopolymères que les copolymères de monomères halogènes. Parmi ceux-ci, on peut citer notamment les homopolymères de monomères halogènes tels que les fluoroléfines, par exemple le fluorure de vinylidène, le fluorure de vinyle, le trifluoroéthylène, le tétrafluoroéthylène, le chlorotrifluoroéthylène et l'hexafluoropropylène ; les fluoroacrylates ; les éthers vinyliques fluorés, par exemple les éthers vinyliques perfluorés porteurs de groupements de perfluoroalkyle contenant de 1 à 6 atomes de carbone ; le chlorure de vinyle et le chlorure de vinylidène. On peut citer également les copolymères que forment ces monomères halogènes entre eux et les copolymères d'un de ces monomères halogènes avec un autre monomère à insaturation éthylénique tel que les oléfines, par exemple l'éthylène, le propylène, les dérivés styréniques et le styrène ; les oléfines halogénées ; les éthers vinyliques ; les esters vinyliques tels que par exemple l'acétate de vinyle ; les acides, esters, nitriles et amides acryliques et les acides, esters, nitriles et amides méthacry liques .
De préférence, le procédé de polymérisation de monomères halogènes selon l'invention s'applique à la polymérisation de monomères contenant du fluor en vue d'obtenir des polymères contenant du fluor.
Par polymères contenant du fluor, on entend désigner aux fins de la présente invention, aussi bien les homopolymères que les copolymères de monomères contenant du fluor. Parmi ceux-ci, on peut citer notamment les homopolymères de monomères contenant du fluor tels que les fluoroléfines, par exemple le fluorure de vinylidène, le fluorure de vinyle, le trifluoroéthylène, le tétrafluoroéthylène, le chlorotrifluoroéthylène et l'hexafluoropropylène ; les fluoroacrylates et les éthers vinyliques fluorés, par exemple les éthers vinyliques perfluorés porteurs de groupements de perfluoroalkyle contenant de 1 à 6 atomes de carbone. On peut citer également les copolymères que forment ces monomères contenant du fluor entre eux tels que par exemple les copolymères du fluorure de vinylidène avec un autre monomère fluoré tel que défini ci-dessus et les copolymères d'un des monomères contenant du fluor cité ci-dessus avec un autre monomère à insaturation éthylénique tel que les oléfines, par exemple l'éthylène, le propylène, les dérivés styréniques et le styrène ; les oléfines halogénées ; les éthers vinyliques ; les esters vinyliques tels que par exemple l'acétate de vinyle ; les acides, esters, nitriles et amides acryliques et les acides, esters, nitriles et amides méthacry liques.
De manière particulièrement préférée, le procédé de polymérisation de monomères halogènes selon l'invention s'applique à la polymérisation du fluorure de vinylidène en vue d'obtenir des polymères du fluorure de vinylidène. Par polymères du fluorure de vinylidène, on entend désigner aux fins de la présente invention aussi bien les homopolymères du fluorure de vinylidène, que ses copolymères avec d'autres monomères à insaturation éthylénique, qu'ils soient fluorés (fluoroléfines, par exemple fluorure de vinyle, trifluoroéthylène, tétrafluoroéthylène, chlorotrifluoroéthylène, hexafluoropropylène ; fluoroacrylates ; éthers vinyliques fluorés comme par exemple les éthers vinyliques perfluorés porteurs de groupements de perfluoroalkyle contenant de 1 à 6 atomes de carbone) ou non (oléfines telles que par exemple l'éthylène, le propylène, les dérivés styréniques et le styrène ; oléfines halogénées ; éthers vinyliques ; esters vinyliques tels que par exemple l'acétate de vinyle ; acides, esters, nitriles et amides acryliques ; acides, esters, nitriles et amides méthacryliques). Les homopolymères du fluorure de vinylidène et les copolymères du fluorure de vinylidène avec un comonomère fluoré sont préférés. Les homopolymères du fluorure de vinylidène et les copolymères du fluorure de vinylidène et du chlorotrifluoroéthylène et les copolymères du fluorure de vinylidène et de l' hexafluoropropylène sont particulièrement préférés. Les copolymères obtenus contiennent de préférence au moins environ 75 % en poids d'unités monomériques dérivées du fluorure de vinylidène.
Dans le procédé selon l'invention, la concentration totale en monomères dans chacun des réacteurs est habituellement d'au moins 0,5 mole/litre, de préférence d'au moins 1 mole/litre. La concentration totale en monomères dans chacun des réacteurs est habituellement d'au plus 10 mole/litre, de préférence d'au plus 6 mole/litre.
Le procédé de polymérisation selon l'invention est réalisé par voie radicalaire et prévoit habituellement l'utilisation d'un ou de plusieurs initiateurs, dont la nature, le nombre et la concentration peuvent également être choisis indépendamment dans chaque réacteur, en fonction des besoins. Comme initiateurs utiles dans le cadre de la présente invention, on peut utiliser tout initiateur radicalaire approprié, en particulier un initiateur radicalaire organique choisi par exemple parmi les peroxydes, tels que le peroxydicarbonate de diéthyle, le peroxydicarbonate de dicétyle, le peroxydicarbonate de dicyclohexyle, le peroxydicarbonate de di-2-éthylhexyle, le peroxyisopropylcarbonate de t-butyle, le peroxy-n-décanoate de t-butyle, le peroxyacétate de t-butyle, le peroxyde de di-t-butyle, le peroxyde de dibenzoyle, le peroxyde de dioctanoyle, le peroxyde de dilauroyle, le peroxyde de dicumyle, le peroxyde de di-t-amyle, le per-2-éthylhexanoate de t-butyle, le peroxymaléate de t-butyle, l'hydroperoxyde de cumène, l'hydroperoxyde de pinane, l'hydroperoxyde de p-menthane ; les nitriles, tels que le 2,2'-azobis(méthoxy-2,4- diméthylvaléronitrile), le 2,2'-azobis(2,4-diméthylvaléronitrile), et les composés semblables.
La concentration en initiateurs dans chacun des réacteurs est habituellement comprise entre 5 x 10"5 mole/litre et 0,1 mole/litre. La polymérisation du procédé de la présente invention peut être effectuée éventuellement en présence d'un ou de plusieurs surfactants ou d'un ou plusieurs agents dispersants. Tout surfactant ou tout agent dispersant approprié connu de l'homme du métier peut être employé.
Le procédé selon l'invention peut être effectué éventuellement en présence d'autres additifs que les additifs mentionnés ci-dessus (initiateurs, surfactants, agents dispersants) permettant d'améliorer la mise en oeuvre du procédé et/ou les caractéristiques du polymère résultant. Des exemples d'autres additifs sont les agents de transfert de chaîne, les agents anti-croûtage, les agents antistatiques et les co-solvants. L'étape de polymérisation conforme à la présente invention est réalisée dans des réacteurs mélangés sous haute pression. Ces réacteurs mélangés peuvent être de n'importe quel type connu de l'homme de métier, à condition de résister aux températures et aux hautes pressions nécessaires à la réalisation du procédé. Par réacteur mélangé, on entend désigner, aux fins de la présente invention, un réacteur muni d'un dispositif de mélange servant à l'homogénéisation du milieu réactionnel, tel que par exemple des agitateurs à pales, à vis ou à turbine. Chacun des réacteurs peut être d'un type différent.
Ces réacteurs peuvent également être équipés individuellement d'un système de chauffage et/ou d'un système de refroidissement servant à contrôler la température dans chacun des réacteurs. La température des réacteurs sera habituellement contrôlée par un système d'échange de chaleur constitué, par exemple, d'une double enveloppe ou d'un échangeur de chaleur à l'intérieur du réacteur, véhiculant un fluide caloporteur. La chaleur libérée peut servir à la mise à température des réactifs et des (co)solvants en aval et/ou en amont du réacteur considéré.
Outre le contrôle indépendant de la température, le procédé de l'invention permet aussi l'adaptation de la pression, de la densité et des autres conditions de polymérisation indépendamment dans chaque réacteur, d'une part, par la régulation du débit et/ou de la pression à la sortie de chaque réacteur par exemple en prélevant une partie de la production dudit réacteur, et, d'autre part, par l'alimentation de chaque réacteur en monomères, en initiateurs, en additifs et/ou en dioxyde de carbone.
La présente invention concerne en outre des polymères halogènes, qui peuvent notamment être obtenus par le procédé selon l'invention, à distribution bi- ou plurimodale des masses moléculaires.
Selon une première variante, la distribution bi- ou plurimodale des masses moléculaires des polymères selon l'invention se caractérise de préférence par un premier mode situé entre 10 kg/mole et 100 kg/mole et par un deuxième mode 3 à 30 fois supérieur au premier. La distribution bi- ou plurimodale des masses moléculaires des polymères selon l'invention se caractérise de manière particulièrement préférée par un premier mode situé entre 20 kg/mole et 70 kg/mole et par un deuxième mode 5 à 20 fois supérieur au premier.
Selon une deuxième variante, la distribution bi- ou plurimodale des masses moléculaires des polymères selon l'invention est de préférence telle que la fraction pondérale de la première sous-distribution est comprise entre 0,2 et 20 % en poids et de manière particulièrement préférée telle que la fraction pondérale de la première sous-distribution est comprise entre 1 et 10 % en poids.
De préférence, les polymères halogènes selon l'invention se caractérisent par une distribution bimodale des masses moléculaires qui peut présenter les caractéristiques susmentionnées quant aux premier et deuxième modes et quant à la fraction pondérale de la première sous-distribution.
De manière particulièrement préférée, les polymères halogènes selon l'invention se caractérisent par un rapport entre la viscosité dynamique mesurée à une fréquence de 0,1 rad/s et celle mesurée à une fréquence de 100 rad/s, supérieur ou égal à 10. Des polymères halogènes se caractérisant par un rapport entre la viscosité dynamique mesurée à une fréquence de 0,1 rad/s et celle mesurée à une fréquence de 100 rad/s, supérieur ou égal à 20, sont particulièrement souhaités et ceux se caractérisant par un tel rapport supérieur ou égal à 40 sont tout particulièrement souhaités. De manière tout particulièrement préférée, les polymères halogènes selon l'invention se caractérisent par une distribution bi- ou plurimodale du taux d'incorporation des monomères.
La présente invention concerne en outre des polymères halogènes, qui peuvent notamment être obtenus par le procédé selon l'invention, à distribution bi- ou plurimodale du taux d'incorporation des monomères. Ces polymères halogènes peuvent se caractériser par une distribution monomodale ou par une distribution bi- ou plurimodale des masses moléculaires. De préférence, ces polymères halogènes se caractérisent par une distribution bi- ou plurimodale des masses moléculaires.
Selon une première variante, la distribution bi- ou plurimodale des masses moléculaires des polymères selon l'invention se caractérise de préférence par un premier mode situé entre 10 kg/mole et 100 kg/mole et par un deuxième mode 3 à 30 fois supérieur au premier. La distribution bi- ou plurimodale des masses moléculaires des polymères selon l'invention se caractérise de manière particulièrement préférée par un premier mode situé entre 20 kg/mole et 70 kg/mole et par un deuxième mode 5 à 20 fois supérieur au premier.
Selon une deuxième variante, la distribution bi- ou plurimodale des masses moléculaires des polymères selon l'invention est de préférence telle que la fraction pondérale de la première sous-distribution est comprise entre 0,2 et 20 % en poids et de manière particulièrement préférée telle que la fraction pondérale de la première sous-distribution est comprise entre 1 et 10 % en poids. De manière particulièrement préférée, ces polymères halogènes se caractérisent par une distribution bimodale des masses moléculaires qui peut présenter les caractéristiques susmentionnées quant aux premier et deuxième modes et quant à la fraction pondérale de la première sous-distribution. De manière tout particulièrement préférée, les polymères halogènes selon l'invention se caractérisent par un rapport entre la viscosité dynamique mesurée à une fréquence de 0,1 rad/s et celle mesurée à une fréquence de 100 rad/s, supérieur ou égal à 10. Des polymères halogènes se caractérisant par un rapport entre la viscosité dynamique mesurée à une fréquence de 0,1 rad/s et celle mesurée à une fréquence de 100 rad/s, supérieur ou égal à 20, sont particulièrement souhaités et ceux se caractérisant par un tel rapport supérieur ou égal à 40 sont tout particulièrement souhaités.
Par distribution des masses moléculaires, on entend désigner, aux fins de la présente invention, celle mesurée par chromatographie stérique d'exclusion. Aux fins de la présente invention, la distribution des masses moléculaires est appelée unimodale si elle peut être décrite, dans le cas d'une distribution asymétrique par la relation (1), ou dans le cas d'une distribution symétrique par la relation (2) :
Figure imgf000011_0001
Les différents symboles ont la signification suivante : an : amplitude a\ : mode a2 : largeur à demi hauteur a3 : facteur de forme y : = d(w) / d(logM) x : = M w : fraction massique du polymère M : masse moléculaire Ln : logarithme népérien
Aux fins de la présente invention, la distribution des masses moléculaires est appelée bimodale, si elle ne peut être décrite que par la combinaison de deux sous-distributions suivant la relation (1) et / ou (2), avec un coefficient de détermination d'au moins 0,99, la déconvolution des distributions bimodales permettant de quantifier les proportions massiques de chacune de deux sous- distributions par la surface des pics. Dans le cas de distributions plurimodales, la déconvolution est effectuée par la combinaison de relations (1) et / ou (2) propres à chacune des sous-distributions.
Par viscosité dynamique, on entend désigner, aux fins de la présente invention, la viscosité déterminée au moyen d'un rhéogoniomètre à déformation imposée, commercialisé par RHEOMETRICS sous la dénomination ARES (ADVANCED RHEOLOGICAL EXPANSION SYSTEM), sur un échantillon, placé entre 2 plateaux parallèles et soumis à une déformation, d'un diamètre de 25 mm et d'une épaisseur de 2 mm coupé dans une plaque pressée. Le résultat de la mesure est exprimé par la variation, à la température typique de mise en oeuvre, en particulier à une température supérieure de 30 °C à la température de fusion du polymère, de la viscosité dynamique, exprimée en Pa.s, en fonction de la fréquence exprimée en rad/s.
Par taux d'incorporation des monomères, on entend désigner, aux fins de la présente invention, les quantités exprimées en pourcent des différents monomères qui constituent le polymère halogène.
Par distribution bi- ou plurimodale du taux d'incorporation de chaque monomère, on entend désigner, aux fins de la présente invention, toute distribution massique de ce taux d'incorporation qui présente deux ou plusieurs modes.
Le procédé et les polymères selon l'invention présentent de multiples avantages. Généralement, les propriétés mécaniques et rhéologiques des polymères dépendent habituellement non seulement des moyennes en masses moléculaires et en taux d'incorporation des différents monomères dans le polymère, mais aussi de leurs distributions complètes. Le procédé selon l'invention permet d'obtenir des polymères halogènes présentant des distributions bi- ou plurimodales des masses moléculaires et/ou des distributions bi- ou plurimodales du taux d'incorporation des différents monomères dans la chaîne polymérique. L'optimisation de ce type de distributions permet d'améliorer particulièrement la processabihté et les propriétés physiques des objets mis en œuvre. Le procédé suivant l'invention est particulièrement avantageux à cet égard, grâce à une meilleure maîtrise des paramètres et à un contrôle plus ciblé des conditions dans lesquelles se déroule la polymérisation dans chacun des réacteurs en série. Les différents composants des distributions bi- ou plurimodales sont obtenus directement en mélange intime à l'échelle moléculaire, ce qui rend les polymères obtenus plus performants par rapport à des mélanges à l'état fondu de différents polymères de distributions monomodales des masses moléculaires et du taux d'incorporation des différents monomères. Le procédé selon l'invention permet également de varier l'agencement des monomères dans la chaîne polymérique des polymères obtenus.
La Figure 1 illustre la présente invention sans pour autant en limiter la portée. Elle représente une vue schématique d'un mode de réalisation du procédé de la présente invention pour deux réacteurs connectés en série. Un premier réacteur est alimenté de façon continue en dioxyde de carbone, en initiateurs, en monomères et en additifs ; une partie du dioxyde de carbone et des monomères non-convertis récupérés en aval du deuxième réacteur peut également y être recyclée. Le contrôle des alimentations du premier réacteur permet d'y maîtriser le temps de séjour et les concentrations des différents constituants. L'état de mélange dans le réacteur est obtenu par un dispositif approprié. La chaleur de polymérisation est utilisée pour amener le contenu du réacteur à la température de réaction, l'éventuel excédent de chaleur est évacué par circulation d'un fluide froid dans une double enveloppe ou dans un dispositif d'échange de chaleur situé dans le réacteur. Ceci permet de contrôler la température du premier réacteur. Le contenu du premier réacteur comprenant le polymère produit est soutiré vers le deuxième réacteur. Ce soutirage contrôlé permet de réguler la pression du premier réacteur. Le deuxième réacteur peut être alimenté en outre par du dioxyde de carbone, de l'initiateur, des monomères et des additifs purs, ainsi que par le reste du dioxyde de carbone et des monomères non-convertis récupérés en aval du deuxième réacteur et recyclés. Le contrôle des alimentations du deuxième réacteur permet d'y maîtriser un temps de séjour et des concentrations en différents composés différents du temps de séjour et des concentrations régnant dans le premier réacteur. Le contrôle thermique du deuxième réacteur suit les mêmes principes que le contrôle thermique du premier réacteur, et permet de lui imposer une température différente de la température du premier réacteur.
A la sortie du deuxième réacteur, la suspension de particules du polymère est soutirée vers un secteur de concentration de la suspension contenant le polymère halogène. Ce soutirage contrôlé permet de réguler une pression dans le deuxième réacteur différente de la pression du premier réacteur. Le fluide (phase continue) séparé de la suspension de polymère dans le secteur de concentration est recyclé sous haute pression vers les réacteurs ou dirigés également sous haute pression, vers un secteur d'épuration du polymère.
La suspension concentrée en polymère est alors dirigée vers un secteur d'épuration du polymère, où du dioxyde de carbone et/ou des monomères purs peuvent être utilisés pour débarrasser le polymère de résidus d'initiateurs, d'additifs de polymérisation et de sous-produits. Le dioxyde de carbone et/ou les monomères purs ou recyclés ajoutés pour l'épuration, ainsi que le dioxyde de carbone, les monomères et les monomères non-convertis accompagnant le polymère à la sortie du secteur de concentration de la suspension, sont alors dirigés, suivant leur niveau de pression, soit directement vers le secteur de recyclage sous haute pression, soit vers un secteur de recyclage basse pression. Le polymère épuré est enfin conditionné et emballé, constituant le produit fini.

Claims

R E V E N D I C A T I O N S
1. Procédé de préparation en continu de polymères halogènes comprenant la polymérisation radicalaire de monomères halogènes dans un milieu comprenant du dioxyde de carbone liquide ou supercritique dans au moins deux réacteurs mélangés sous pression en série.
2. Procédé selon la revendication 1, comprenant la polymérisation radicalaire de monomères halogènes dans deux réacteurs mélangés sous pression en série.
3. Procédé selon l'une quelconque des revendications 1 à 2, dans lequel est prévu au moins en aval du dernier réacteur une étape d'épuration du polymère halogène.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel est prévu au moins en aval du dernier réacteur une étape de recyclage du dioxyde de carbone et des monomères non-convertis.
5. Procédé selon l'une quelconque des revendications 3 à 4, dans lequel l'étape d'épuration du polymère halogène et/ou l'étape de recyclage du dioxyde de carbone et des monomères non-convertis est précédée d'une étape de concentration de la suspension contenant le polymère halogène.
6. Procédé selon l'une quelconque des revendication 3 à 5, dans lequel au moins une des étapes d'épuration du polymère halogène, de recyclage du dioxyde de carbone et des monomères non-convertis, de concentration de la suspension contenant le polymère halogène est effectuée à une pression suffisamment proche de celles des réacteurs pour réaliser ces opérations avec un coût énergétique de recompression modéré.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les polymères obtenus sont des polymères contenant du fluor.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les polymères obtenus sont des polymères du fluorure de vinylidène.
9. Polymères halogènes à distribution bi- ou plurimodale des masses moléculaires.
10. Polymères halogènes selon la revendication 9, caractérisés par une distribution bi- ou plurimodale du taux d'incorporation des monomères.
11. Polymères halogènes à distribution bi- ou plurimodale du taux d'incorporation des monomères.
PCT/EP2001/015211 2001-01-10 2001-12-24 Procede de preparation de polymeres halogenes en deux etapes et polymeres halogenes plurimodales WO2002055567A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/451,630 US20040087741A1 (en) 2001-01-10 2001-12-24 Method for preparing halogenated polymers, and resulting halogenated polymers
EP01273118A EP1379563A2 (fr) 2001-01-10 2001-12-24 Procede de preparation de polymeres halogenes en deux etapes et polymeres halogenes plurimodales
JP2002556634A JP2004532903A (ja) 2001-01-10 2001-12-24 ハロポリマーの製造方法及び得られるハロポリマー
AU2002217151A AU2002217151A1 (en) 2001-01-10 2001-12-24 Method for two-step preparation of halogenated polymers and halogenated plurimodal polymers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0100445A FR2819257A1 (fr) 2001-01-10 2001-01-10 Procede de preparation de polymeres halogenes et polymeres halogenes obtenus
FR01.00445 2001-01-10
US26431201P 2001-01-29 2001-01-29
US60/264,312 2001-01-29

Publications (3)

Publication Number Publication Date
WO2002055567A2 true WO2002055567A2 (fr) 2002-07-18
WO2002055567A3 WO2002055567A3 (fr) 2003-10-16
WO2002055567A8 WO2002055567A8 (fr) 2004-03-04

Family

ID=26212828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/015211 WO2002055567A2 (fr) 2001-01-10 2001-12-24 Procede de preparation de polymeres halogenes en deux etapes et polymeres halogenes plurimodales

Country Status (5)

Country Link
US (1) US20040087741A1 (fr)
EP (1) EP1379563A2 (fr)
JP (1) JP2004532903A (fr)
AU (1) AU2002217151A1 (fr)
WO (1) WO2002055567A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2953845A1 (fr) * 2009-12-16 2011-06-17 Solvay Procede de preparation d'un polymere halogene et dispositif pour sa mise en oeuvre
FR2953842A1 (fr) * 2009-12-16 2011-06-17 Solvay Procede de preparation d'un polymere halogene et dispositif pour sa mise en oeuvre
FR2953843A1 (fr) * 2009-12-16 2011-06-17 Solvay Procede de preparation d'un polymere halogene et dispositif pour sa mise en oeuvre
FR2953844A1 (fr) * 2009-12-16 2011-06-17 Solvay Procede de preparation d'un polymere halogene et dispositif pour sa mise en oeuvre
EP2915821A1 (fr) 2014-03-04 2015-09-09 Synthomer Ltd. Procédé de traitement d'une composition de poly(chlorure de vinyle) avec du dioxyde de carbone à phase dense

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1589052A1 (fr) * 2004-04-20 2005-10-26 SOLVAY (Société Anonyme) Composition à base d'une résine thermoplastique fluorée et un polysiloxane elastomèrique
US7091288B2 (en) * 2004-09-30 2006-08-15 Arkema Inc. Polymerization of vinylidene fluoride (VF2) in a supercritical fluid medium
CN1308360C (zh) * 2005-07-20 2007-04-04 上海三爱富新材料股份有限公司 聚偏氟乙烯的合成方法及其制得的聚偏氟乙烯

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1172713A (en) * 1966-05-19 1969-12-03 Sumitomo Chemical Co A Novel Method for Polymerizing a Vinyl Compound.
FR2207933A1 (fr) * 1972-11-22 1974-06-21 Du Pont
FR2309569A1 (fr) * 1975-04-30 1976-11-26 Rhone Poulenc Ind Procede de polymerisation du chlorure de vinyle en microsuspension ensemencee
FR2329682A1 (fr) * 1975-10-30 1977-05-27 Pennwalt Corp Resine de polymere de fluorure de vinylidene ayant de meilleures caracteristiques d'ecoulement a l'etat fondu
FR2344579A2 (fr) * 1976-03-19 1977-10-14 Rhone Poulenc Ind Procede de polymerisation du chlorure de vinyle en microsuspension ensemencee
WO1983002280A1 (fr) * 1981-12-30 1983-07-07 Goodrich Co B F Procede de preparation de resines de dispersion a faible point de fusion
EP0186180A2 (fr) * 1984-12-26 1986-07-02 Asahi Kasei Kogyo Kabushiki Kaisha Elastomère fluoré ayant un poids moléculaire élevé
EP0270436A1 (fr) * 1986-11-24 1988-06-08 Elf Atochem S.A. Procédé de préparation en microsuspension ensemencée d'homo- et copolymères du chlorure de vinyle
EP0434046A1 (fr) * 1989-12-20 1991-06-26 E.I. Du Pont De Nemours And Company Composition d'élastomère comprenant du fluor
WO1996028477A1 (fr) * 1995-03-10 1996-09-19 The University Of North Carolina At Chapel Hill Polymerisation non aqueuse de fluoromonomeres
WO1996032428A1 (fr) * 1993-10-15 1996-10-17 E.I. Du Pont De Nemours And Company Fuoroelastomere
EP0810241A1 (fr) * 1996-05-31 1997-12-03 Elf Atochem S.A. Latex bipopulé de copolymères du chlorure de vinyle, son procédé de fabrication et ses applications
EP0824121A1 (fr) * 1995-05-02 1998-02-18 E.I. Du Pont De Nemours And Company Elastomere fluore
EP0824120A1 (fr) * 1995-05-02 1998-02-18 E.I. Du Pont De Nemours And Company Elastomere fluore
EP0826703A1 (fr) * 1996-08-27 1998-03-04 Elf Atochem S.A. Latex à deux populations de particules à base polymères de chlorure de vinyle, ses procédés d'obtention et son application dans des plastisols
WO1998028351A1 (fr) * 1996-12-23 1998-07-02 E.I. Du Pont De Nemours And Company Polymerisation de fluoromonomeres dans du co¿2?
EP1127896A1 (fr) * 2000-02-22 2001-08-29 Ausimont S.p.A. Procédé de préparation de dispersions aqueuses de fluoropolymères
WO2001090206A2 (fr) * 2000-05-19 2001-11-29 University Of North Carolina At Chapel Hill Polymeres fluores multimodaux et leurs procedes de production
WO2002050140A2 (fr) * 2000-12-21 2002-06-27 Solvay (Société Anonyme) Procede de preparation de latex

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182333A (en) * 1987-12-11 1993-01-26 Exxon Chemical Patents Inc. Production of rubbery isoolefin polymers
US5071913A (en) * 1987-12-11 1991-12-10 Exxon Chemical Patents Inc. Rubbery isoolefin polymers exhibiting improved processability
JP2580299B2 (ja) * 1988-12-15 1997-02-12 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 含フッ素エラストマー
JP2549255B2 (ja) * 1989-12-20 1996-10-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 含フッ素エラストマー
JPH04258614A (ja) * 1991-02-14 1992-09-14 Asahi Chem Ind Co Ltd 含フッ素エラストマー
JP3508171B2 (ja) * 1993-08-19 2004-03-22 三菱化学株式会社 塩化ビニル系樹脂の製造方法
JPH07118349A (ja) * 1993-10-15 1995-05-09 E I Du Pont De Nemours & Co 含フッ素エラストマー
DE69523923T2 (de) * 1994-07-08 2002-06-27 Minnesota Mining & Mfg Superatmosphärische reaktion
US5548043A (en) * 1994-11-30 1996-08-20 Xerox Corporation Processes for producing bimodal toner resins
US5527865A (en) * 1995-03-24 1996-06-18 The University Of North Carolina At Chapel Hill Multi-phase polymerization process
JP3552407B2 (ja) * 1996-06-19 2004-08-11 三菱化学株式会社 塩化ビニル系重合体の製造法
JP3623631B2 (ja) * 1997-02-18 2005-02-23 株式会社カネカ 塩化ビニル系樹脂粉末及びこれを用いたペーストゾル組成物
JPH10306187A (ja) * 1997-05-06 1998-11-17 Zeon Kasei Co Ltd 粉末成形用塩化ビニル系樹脂組成物
US6242548B1 (en) * 1999-05-13 2001-06-05 Dyneon Llc Fluoroplastic polymers with improved characteristics

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1172713A (en) * 1966-05-19 1969-12-03 Sumitomo Chemical Co A Novel Method for Polymerizing a Vinyl Compound.
FR2207933A1 (fr) * 1972-11-22 1974-06-21 Du Pont
FR2309569A1 (fr) * 1975-04-30 1976-11-26 Rhone Poulenc Ind Procede de polymerisation du chlorure de vinyle en microsuspension ensemencee
FR2329682A1 (fr) * 1975-10-30 1977-05-27 Pennwalt Corp Resine de polymere de fluorure de vinylidene ayant de meilleures caracteristiques d'ecoulement a l'etat fondu
FR2344579A2 (fr) * 1976-03-19 1977-10-14 Rhone Poulenc Ind Procede de polymerisation du chlorure de vinyle en microsuspension ensemencee
WO1983002280A1 (fr) * 1981-12-30 1983-07-07 Goodrich Co B F Procede de preparation de resines de dispersion a faible point de fusion
EP0186180A2 (fr) * 1984-12-26 1986-07-02 Asahi Kasei Kogyo Kabushiki Kaisha Elastomère fluoré ayant un poids moléculaire élevé
EP0270436A1 (fr) * 1986-11-24 1988-06-08 Elf Atochem S.A. Procédé de préparation en microsuspension ensemencée d'homo- et copolymères du chlorure de vinyle
EP0434046A1 (fr) * 1989-12-20 1991-06-26 E.I. Du Pont De Nemours And Company Composition d'élastomère comprenant du fluor
WO1996032428A1 (fr) * 1993-10-15 1996-10-17 E.I. Du Pont De Nemours And Company Fuoroelastomere
WO1996028477A1 (fr) * 1995-03-10 1996-09-19 The University Of North Carolina At Chapel Hill Polymerisation non aqueuse de fluoromonomeres
EP0824121A1 (fr) * 1995-05-02 1998-02-18 E.I. Du Pont De Nemours And Company Elastomere fluore
EP0824120A1 (fr) * 1995-05-02 1998-02-18 E.I. Du Pont De Nemours And Company Elastomere fluore
EP0810241A1 (fr) * 1996-05-31 1997-12-03 Elf Atochem S.A. Latex bipopulé de copolymères du chlorure de vinyle, son procédé de fabrication et ses applications
EP0826703A1 (fr) * 1996-08-27 1998-03-04 Elf Atochem S.A. Latex à deux populations de particules à base polymères de chlorure de vinyle, ses procédés d'obtention et son application dans des plastisols
WO1998028351A1 (fr) * 1996-12-23 1998-07-02 E.I. Du Pont De Nemours And Company Polymerisation de fluoromonomeres dans du co¿2?
EP1127896A1 (fr) * 2000-02-22 2001-08-29 Ausimont S.p.A. Procédé de préparation de dispersions aqueuses de fluoropolymères
WO2001090206A2 (fr) * 2000-05-19 2001-11-29 University Of North Carolina At Chapel Hill Polymeres fluores multimodaux et leurs procedes de production
WO2002050140A2 (fr) * 2000-12-21 2002-06-27 Solvay (Société Anonyme) Procede de preparation de latex

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHARPENTIER P A ET AL: "COMMUNICATIONS TO THE EDITOR CONTINUOUS POLYMERIZATIONS IN SUPERCRITICAL CARBON DIOXIDE: CHAIN-GROWTH PRECIPITATION POLYMERIZATIONS" MACROMOLECULES,AMERICAN CHEMICAL SOCIETY. EASTON,US, vol. 32, no. 18, 7 septembre 1999 (1999-09-07), pages 5973-5975, XP000868657 ISSN: 0024-9297 *
DATABASE WPI Section Ch, Week 199243 Derwent Publications Ltd., London, GB; Class A14, AN 1992-354775 XP002220135 & JP 04 258614 A (ASAHI CHEM IND CO LTD), 14 septembre 1992 (1992-09-14) *
DATABASE WPI Section Ch, Week 199527 Derwent Publications Ltd., London, GB; Class A14, AN 1995-203880 XP002220136 & JP 07 118349 A (DU PONT DE NEMOURS & CO E I), 9 mai 1995 (1995-05-09) *
DATABASE WPI Section Ch, Week 199811 Derwent Publications Ltd., London, GB; Class A14, AN 1998-114811 XP002220134 & JP 10 001502 A (MITSUBISHI CHEM CORP), 6 janvier 1998 (1998-01-06) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 423 (C-0757), 12 septembre 1990 (1990-09-12) & JP 02 160810 A (ASAHI CHEM IND CO LTD), 20 juin 1990 (1990-06-20) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 01, 28 février 1995 (1995-02-28) & JP 06 279548 A (ASAHI CHEM IND CO LTD), 4 octobre 1994 (1994-10-04) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 05, 30 juin 1995 (1995-06-30) & JP 07 053627 A (MITSUBISHI KASEI CORP), 28 février 1995 (1995-02-28) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 14, 31 décembre 1998 (1998-12-31) & JP 10 231322 A (KANEGAFUCHI CHEM IND CO LTD), 2 septembre 1998 (1998-09-02) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2953845A1 (fr) * 2009-12-16 2011-06-17 Solvay Procede de preparation d'un polymere halogene et dispositif pour sa mise en oeuvre
FR2953842A1 (fr) * 2009-12-16 2011-06-17 Solvay Procede de preparation d'un polymere halogene et dispositif pour sa mise en oeuvre
FR2953843A1 (fr) * 2009-12-16 2011-06-17 Solvay Procede de preparation d'un polymere halogene et dispositif pour sa mise en oeuvre
FR2953844A1 (fr) * 2009-12-16 2011-06-17 Solvay Procede de preparation d'un polymere halogene et dispositif pour sa mise en oeuvre
WO2011073130A1 (fr) * 2009-12-16 2011-06-23 Solvay Sa Procédé de préparation de polymère halogéné et dispositif de mise en oeuvre associé
WO2011073132A1 (fr) * 2009-12-16 2011-06-23 Solvay Sa Procédé de préparation de polymère halogéné et dispositif de mise en oeuvre associé
WO2011073129A1 (fr) * 2009-12-16 2011-06-23 Solvay Sa Procédé de préparation de polymère halogéné et dispositif de mise en oeuvre associé
WO2011073133A1 (fr) * 2009-12-16 2011-06-23 Solvay Sa Procédé de préparation de polymère halogéné et dispositif de mise en oeuvre associé
EP2915821A1 (fr) 2014-03-04 2015-09-09 Synthomer Ltd. Procédé de traitement d'une composition de poly(chlorure de vinyle) avec du dioxyde de carbone à phase dense

Also Published As

Publication number Publication date
EP1379563A2 (fr) 2004-01-14
WO2002055567A8 (fr) 2004-03-04
JP2004532903A (ja) 2004-10-28
WO2002055567A3 (fr) 2003-10-16
AU2002217151A1 (en) 2002-07-24
US20040087741A1 (en) 2004-05-06

Similar Documents

Publication Publication Date Title
JP6363071B2 (ja) テトラフルオロエチレンコポリマー
JP5593071B2 (ja) フルオロポリエーテル酸または塩およびシロキサン界面活性剤を含む重合剤を用いるフッ素化モノマーの水性重合
JP5439186B2 (ja) フルオロポリエーテル酸または塩および炭化水素系界面活性剤を含む重合剤を用いるフッ素化モノマーの水性重合
EP0120524B1 (fr) Procédé pour la polymérisation dans un milieu aqueux de mise en suspension du fluorure de vinylidène
EP2841474A1 (fr) Copolymerisation radicalaire controlee a partir de trifluoroethylene
JP2010159430A (ja) フルオロポリマー粒子を含む分散液
WO2007116031A1 (fr) Procédé de polymérisation
EP2310430B1 (fr) Fluoropolymère pouvant s'écouler à l'état fondu comportant des unités se répétant provenant de tétrafluoroéthylène et d'un monomère hydrocarbure ayant un groupe fonctionnel et une double liaison carbone-carbone polymérisable
EP1153946A1 (fr) Procede de production de fluoropolymere
FR2983484A1 (fr) Copolymerisation radicalaire controlee de monomeres fluores par un xanthate ou trithiocarbonate
WO2002055567A2 (fr) Procede de preparation de polymeres halogenes en deux etapes et polymeres halogenes plurimodales
US20100036053A1 (en) Aqueous Polymerization Process for the Manufacture of Fluoropolymer Comprising Repeating Units Arising from a Perfluoromonomer and a Monomer Having a Functional Group and a Polymerizable Carbon-Carbon Double Bond
CA2088023C (fr) Nouveaux materiaux plastiques formes de copolymeres heterogenes de fluorure de vinylidene et de chlortrifluorethylene, utilisation et procede de fabrication
EP2310429B1 (fr) Perfluoromonomère ne pouvant pas s'écouler à l'état fondu comportant des unités se répétant provenant d'un tétrafluoroéthylène et d'un monomère ayant un groupe fonctionnel et une double liaison carbone-carbone polymérisable
EP0013229B1 (fr) Procédé pour l'élargissement de la répartition moléculaire du polyéthylène par emploi de deux réacteurs et de deux séparateurs et appareil pour sa mise en oeuvre
FR2888582A1 (fr) Procede de preparation d'un polymere halogene et dispositif pour sa mise en oeuvre
JP2005029704A (ja) 含フッ素共重合体及びその造粒物の製造方法
EP1380605A1 (fr) Procédé de fabrication du polymère du fluorure de vinylidène
FR2666337A1 (fr) Procede regule de polymerisation d'olefine en phase gazeuse effectue a l'aide d'un catalyseur de type ziegler-natta.
FR2656613A1 (fr) Procede de (co-) polymerisation de l'ethylene en phase gazeuse, en presence d'un catalyseur comprenant un oxyde de chrome et un compose de titane et d'un compose organometallique.
FR2819257A1 (fr) Procede de preparation de polymeres halogenes et polymeres halogenes obtenus
FR2772383A1 (fr) Procede de demarrage d'une polymerisation d'olefine en phase gazeuse
FR2772384A1 (fr) Procede de demarrage d'une polymerisation d'olefine en phase gazeuse
EP0417585A1 (fr) Procédé pour la polymérisation en discontinu dans un milieu aqueux de mise en suspension du fluorure de vinylidène
EP0423097A1 (fr) Procédé pour réduire le croûtage des réacteurs en cours de polymérisation du fluorure de vinylidène dans un milieu aqueux de mise en suspension

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001273118

Country of ref document: EP

Ref document number: 2002556634

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10451630

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001273118

Country of ref document: EP

WR Later publication of a revised version of an international search report
WWW Wipo information: withdrawn in national office

Ref document number: 2001273118

Country of ref document: EP