WO2002054106A1 - Vorrichtung und verfahren zur detektion von bewegten oder stehenden objekten mittels radarstrahlung - Google Patents

Vorrichtung und verfahren zur detektion von bewegten oder stehenden objekten mittels radarstrahlung Download PDF

Info

Publication number
WO2002054106A1
WO2002054106A1 PCT/DE2001/004634 DE0104634W WO02054106A1 WO 2002054106 A1 WO2002054106 A1 WO 2002054106A1 DE 0104634 W DE0104634 W DE 0104634W WO 02054106 A1 WO02054106 A1 WO 02054106A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
pulse modulator
narrowband
modulator
signal
Prior art date
Application number
PCT/DE2001/004634
Other languages
English (en)
French (fr)
Inventor
Klaus Voigtlaender
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2002054106A1 publication Critical patent/WO2002054106A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/536Discriminating between fixed and moving objects or between objects moving at different speeds using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present invention relates to an apparatus and a method for the detection of moving or stationary
  • Pulse-modulated carrier vibrations are emitted for object detection, the reflected partial waves of which are received and evaluated.
  • By sending an unmodulated carrier in the time intervals between two neighboring pulses it is also possible to carry out a Doppler measurement with which a reliable speed measurement can be carried out.
  • a radar-based detection system is known from US Pat. No. 6,067,040, which comprises a generator for generating a pulse repetition frequency, which is connected to a first and a second narrow-band pulse modulator.
  • a transmission channel is connected to the first narrow-band pulse modulator, which transmits pulse-modulated carrier signals which have a predetermined carrier frequency and duration.
  • With the second narrowband pulse modulator is a receive channel connected.
  • a time delay element delays the output of the second pulse modulator onto the reception channel, where a mixer mixes part of the pulse-modulated transmission signal reflected by an object with the output of the second narrow-band pulse modulator.
  • the essence of the present invention is to provide a device and an associated method with which a reliable distance and speed measurement can be carried out by means of radar waves. According to the invention, this is achieved by a circuit arrangement according to FIG. 1, in which a pulsed carrier or an unmodulated carrier can be transmitted in a predetermined change.
  • this device can be used in a motor vehicle to monitor the immediate environment.
  • distances and relative speeds of objects relative to one's own motor vehicle can be determined and these values can be evaluated for predictions with regard to a collision probability.
  • a method according to the invention provides that a pulsed carrier or an unmodulated carrier is sent alternately and in each case for a predetermined period of time in order to determine the distance and the relative speed of objects.
  • the distance can be determined from the running time of the pulsed carrier by means of the circuit described in FIG.
  • the relative speed of the detected object can be in determine which the unmodulated carrier is transmitted from the Doppler shift of the transmitted carrier frequency.
  • the pulses of the pulse generator which is used for modulating the carrier frequency, advantageously have one
  • the pulses of the pulse generator have a repetition frequency that is between 1 megahertz and 50 megahertz.
  • unmodulated carrier vibrations are transmitted for a period of at least 1 microsecond after a period of at most 50 microseconds in which a sequence of pulse-modulated carrier vibrations has been transmitted. Subsequently, pulse-modulated carrier vibrations are sent out again.
  • FIG. 1 shows a block diagram of a preferred one
  • Figure 2 shows a possible temporal course of the emitted signals
  • Figure 3 shows another possible temporal course of the transmitted signals.
  • FIG. 1 shows a block diagram of an inventive device.
  • a pulse generator (1) generates short pulses, advantageously between 200 picoseconds and 400 picoseconds, with a fixed pulse repetition frequency, which is advantageously between 1 megahertz and 50 megahertz.
  • the pulses generated by this pulse generator (1) are applied to a transmission channel (28) and a reception channel (29) via a power divider (not shown).
  • the pulse sequence supplied to the transmission channel (28) is applied as a modulation signal to a first narrowband pulse modulator (3).
  • the first narrowband pulse modulator (3) is supplied with a carrier signal via a further input. This carrier signal, which is advantageously in the range of approximately 24 gigahertz, is generated in a high-frequency oscillator (5).
  • This oscillator signal is fed to the first (3) and the second (4) narrowband pulse modulator via a power divider, not shown.
  • the first pulse modulator (3) In the event of an incoming pulse, the first pulse modulator (3) generates a short, high-frequency wave packet which is passed on to the transmission antenna (10) via a line of the transmission channel (28) and is radiated there into the area to be monitored.
  • the second part of the pulse generated in the pulse modulator (1) is sent to the receiving channel (29), where it passes through a time delay element (2).
  • This time delay element (2) can consist of one or more digital logic modules.
  • a preferred embodiment has two NOT links connected in series.
  • Another preferred embodiment variant consists of one or more AND gates connected in series, the second input of which is permanently at 1. In this way, the output signal of the time delay element (2) is delayed in time compared to its own input signal, the
  • Delay time can also take a variable value.
  • the time delay element does not change the shape of the input signal.
  • the output of the time delay element is fed to the control input of the second narrow-band pulse modulator (4), where the high-frequency oscillator signal, which is supplied by the high-frequency oscillator (5) via the power divider, not shown, is modulated in the same way as in the first pulse modulator (3).
  • the output signal of the second pulse modulator (4) is sent to a receiving mixer (12), which can advantageously also be designed as a quadrature mixer.
  • the output signal of the second pulse modulator (4) is identical to the output signal of the first pulse modulator (3) and only has one caused by the time delay element (2)
  • the radar waves emitted by the transmitting antenna (10) are reflected on an object to be detected and partially absorbed by the receiving antenna (11).
  • the received signal from the receiving antenna (11) is also received in the receiving channel (29)
  • the mixer (12) in the case that the mixer (12) is a quadrature mixer, is a signal consisting of two components.
  • the quadrature mixer has two outputs, one for the in-phase signal and the second for the quadrature signal. Additional is in A first switch (7) is provided between the power divider of the pulse source (1) and the first pulse modulator (3).
  • a second changeover switch (8) is provided in the receiving channel between the time delay element (2) and the second pulse modulator (4). These first (7) and second (8) changeover switches are each actuated by means of a common control signal (9).
  • this control signal (9) changes due to a change in state, the device switches from a pulse measurement mode to a Doppler measurement mode in that the first (3) and the second (4) changeover switch no longer change the pulses of the pulse generator (1) to the first (3 ) and second (4) pulse modulator, but a square wave signal.
  • This square-wave signal is generated in a square-wave generator (6) and passed to the alternative inputs of the first (3) and second (4) pulse generator via a power divider (not shown).
  • the duration of the square-wave signal generated and its repetition time are chosen so that exactly one square-wave pulse is generated for the time in which the changeover switch control signal (9) operates the changeover switches (7, 8) in the Doppler measurement mode.
  • the changeover control signal (9) switches the changeover switch (7,8) between pulse measurement mode and Doppler measurement mode.
  • This procedure makes it possible that when the first and second changeover switches (7, 8) activate the Doppler measurement mode, the pulse modulators (3, 4) unpulsed the high-frequency oscillation that is generated in the RF oscillator (5) and thus unmodulated on the transmission - or receive channel (28, 29) are transmitted.
  • Reflections that occur on objects in the detection area of the device depending on their relative movement to the device, cause a Doppler shift, which is expressed in a frequency shift.
  • the device can alternately carry out pulse measurements using a pulsed carrier and Doppler measurements using an unmodulated carrier signal.
  • Another variant is the duration of the control signal for the
  • a pure pulse measurement or a pure Doppler measurement can also be carried out for a certain time.
  • a temporally nested combination of these two measurement modes can be adapted to the situation in the event of a changing environmental situation.
  • FIG. 1 An advantageous chronological sequence of this procedure is described in FIG.
  • the diagram (14) shown above shows the time course of the changeover control signal (9).
  • the lower diagram (15) shows the output signal of the first narrowband pulse modulator (3), as it is also emitted by the transmitting antenna. Both diagrams have identical time scaling on the abscissa. The time in milliseconds is plotted on the abscissa, with a complete periodic sequence of the transmission signal between the zero marking and the time stamp “1 / n” being shown. In an advantageous embodiment variant, the value n divides a millisecond into approximately 15 to 30 equally long time intervals.
  • the upper diagram (14) in FIG. 2 shows the changeover control signal (9), which in this example has a "low" state (16) shortly after the time "0".
  • the device transmits pulse-modulated carrier vibrations, as they do are shown sketched in the simultaneous section (19) in the lower diagram (15).
  • the pulse measurement mode is activated.
  • the changeover control signal (9) switches from “low” -State in the "high” state and activates the Doppler measurement mode up to the point in time "1 / n" (18), for which the changeover switches (7, 8) are switched back from the Doppler measurement mode to the pulse measurement mode.
  • the output signal of the first pulse modulator (3) has an unmodulated one Carrier vibration on, as it was sketched in the lower diagram (15). After the time "1 / n", this process is repeated again.
  • the time course of the switch control signal (9) is plotted in the upper diagram (21).
  • the lower diagram (22) shows the output signal of the first narrowband pulse modulator (3) as it is emitted by the transmitting antenna (10).
  • Both diagrams have an identical time scaling on the abscissa, which is divided into milliseconds.
  • the switch control signal (9) assumes a “low” level (23) and thereby activates the pulse measurement mode.
  • the device transmits pulse-modulated carrier vibrations, as are shown by way of example in the diagram below (26).
  • the control signal (9) changes to the "high" state and switches from the pulse measurement mode to the Doppler measurement mode (24).
  • this time period after switching to the Doppler measurement mode, this is for an exemplary period of 1.5 milliseconds remains activated, the device emits an unmodulated carrier oscillation (27) and uses the Doppler effect to determine the
  • the switch control signal (9) switches the device back into the pulse measurement mode, as a result of which it again emits pulse-modulated carrier vibrations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Die vorliegende Erfindung bezieht sich auf eine Vorrichtung und ein Verfahren zur Detektion bewegter oder stehender Objekte mittels Radarstrahlung, insbesondere für den Einsatz in Kraftfahrzeugen. Zur Objektdetektion werden pulsmodulierte Trägerschwingungen ausgesandt, deren reflektierte Teilwellen empfangen und ausgewertet werden. Durch das Senden eines unmodulierten Trägers in den zeitlichen Zwischenräumen zweier benachbarter Pulse ist es möglich, zusätzlich noch eine Dopplermessung vorzunehmen, mit der eine zuverlässige Geschwindigkeitsmessung vorgenommen werden kann.

Description

Vorrichtung und Verfahren zur Detektion von bewegten oder stehenden Objekten mittels Radarstrahlung
Die vorliegende Erfindung bezieht sich auf eine Vorrichtung und ein Verfahren zur Detektion bewegter oder stehender
Objekte mittels Radarstrahlung, insbesondere für den Einsatz in Kraftfahrzeugen. Zur Objektdetektion werden pulsmodulierte Tragerschwingungen ausgesandt, deren reflektierte Teilwellen empfangen und ausgewertet werden. Durch das Senden eines unmodulierten Tragers in den zeitlichen Zwischenräumen zweier benachbarter Pulse ist es möglich, zusatzlich noch eine Dopplermessung vorzunehmen, mit der eine zuverlässige Geschwindigkeitsmessung vorgenommen werden kann.
Stand der Technik
Aus der US 6,067,040 ist ein radarbasiertes Detektionssystem bekannt, das einen Generator zur Erzeugung einer Pulswiederholfrequenz umfaßt, der mit einem ersten und einem zweiten schmalbandigen Pulsmodulator verbunden ist. Mit dem ersten schmalbandigen Pulsmodulator ist ein Sendekanal verbunden, der pulsmodulierte Tragersignale aussendet, die eine vorbestimmte Tragerfrequenz und Dauer haben. Mit dem zweiten schmalbandigen Pulsmodulator ist ein Empfangskanal verbunden. Ein Zeitverzogerungsglied verzögert den Ausgang des zweiten Pulsmodulators auf den Empfangskanal, wo ein Mischer einen Teil des von einem Objekt reflektierten, pulsmodulierten Sendesignals mit dem Ausgang des zweiten schmalbandigen Pulsmodulators mischt.
Kern und Vorteile der Erfindung
Der Kern der vorliegenden Erfindung ist es, eine Vorrichtung sowie ein zugehöriges Verfahren bereitzustellen, mit der eine zuverlässige Entfernungs- und Geschwindigkeitsmessung mittels Radarwellen durchgeführt werden kann. Erfindungsgemaß wird dieses durch eine Schaltungsanordnung gemäß Figur 1 erreicht, bei der in vorgegebenem Wechsel ein gepulster Trager oder ein unmodulierter Trager gesendet werden kann.
Besonders vorteilhaft ist, dass diese Vorrichtung in einem Kraftfahrzeug zur Überwachung der unmittelbaren Umgebung eingesetzt werden kann. Durch diese Vorrichtung lassen sich Abstände und Relativgeschwindigkeiten von Objekten relativ zum eigenen Kraftfahrzeug ermitteln und diese Werte für Vorhersagen bezuglich einer Kollisionswahrscheinlichkeit auswerten.
Ein erfindungsgemaßes Verfahren sieht vor, dass zur Ermittlung des Abstands und der Relativgeschwindigkeit von Objekten abwechselnd und jeweils für eine vorbestimmte Zeitdauer ein gepulster Trager bzw. ein unmodulierter Trager gesendet wird. Aus der Laufzeit des gepulsten Tragers laßt sich mittels der in Figur 1 beschriebenen Schaltung der Abstand bestimmen. Die Relativgeschwindigkeit des detektierten Objektes laßt sich wahrend der Zeitdauer, in der der unmodulierte Trager gesendet wird, aus der Dopplerverschiebung der gesendeten Tragerfrequenz ermitteln.
Vorteilhafterweise weisen die Pulse des Pulsgenerators, der zum Modulieren der Tragerfrequenz verwendet wird, eine
Zeitdauer zwischen 200 Pikosekunden und 400 Pikosekunden auf.
Weiterhin vorteilhaft ist es, dass die Pulse des Pulsgenerators eine Wiederholfrequenz aufweisen, die zwischen 1 Megahertz und 50 Megahertz liegt.
Es ist weiterhin vorteilhaft, wenn für die Dauer von 1 Millisekunde eine Folge pulsmodulierter Tragerschwingungen ausgesendet wird und im Anschluß daran für die Dauer von etwa 1,5 Millisekunden unmodulierte Tragerschwingungen ausgesendet werden. Im Anschluß wird wieder eine Folge pulsmodulierter Tragerschwingungen ausgesandt.
Vorteilhafterweise wird nach einer Zeitdauer von maximal 50 Mikrosekunden, in der eine Folge pulsmodulierter Tragerschwingungen ausgesandt wurde, für die Dauer von mindestens 1 Mikrosekunde unmodulierte Tragerschwingungen ausgesandt. Im Anschluß werden wieder pulsmodulierte Tragerschwingungen ausgesandt.
Zeichnungen
Nachfolgend werden Ausfuhrungsbeispiele der Erfindung anhand einer Zeichnung erläutert. Es zeigen Figur 1 ein Blockschaltbild einer bevorzugten
Ausfuhrungsform der erfindungsgemaßen Vorrichtung, Figur 2 einen möglichen, zeitlichen Verlauf der ausgesandten Signale und Figur 3 einen weiteren möglichen, zeitlichen Verlauf der ausgesandten Signale.
Beschreibung von Ausfuhrungsbeispielen.
Figur 1 zeigt ein Blockschaltbild einer erfindungsgemaßen Vorrichtung. Ein Pulsgenerator (1) , erzeugt kurze, vorteilhafterweise zwischen 200 Pikosekunden und 400 Pikosekunden dauernde Pulse mit einer fest vorgegebenen Pulswiederholfrequenz, die vorteilhafterweise zwischen 1 Megahertz und 50 Megahertz liegt. Die von diesem Pulsgenerator (1) erzeugten Pulse werden über einen nicht gezeigten Leistungsteiler auf einen Sendekanal (28) sowie einen Empfangskanal (29) gegeben. Die dem Sendekanal (28) zugefuhrte Pulsfolge wird als Modulationssignal auf einen ersten schmalbandigen Pulsmodulator (3) gegeben. Dem ersten schmalbandigen Pulsmodulator (3) wird über einen weiteren Eingang ein Tragersignal zugeführt. Dieses Tragersignal, das vorteilhafterweise im Bereich von etwa 24 Gigahertz liegt, wird in einem Hochfrequenzoszillator (5) erzeugt. Dieses Oszillatorsignal wird über einen nicht gezeigten Leistungsteiler dem ersten (3) sowie dem zweiten (4) schmalbandigen Pulsmodulator zugeführt. Der erste Pulsmodulator (3) erzeugt im Falle eines ankommenden Pulses ein kurzes hochfrequentes Wellenpaket, das über eine Leitung des Sendekanals (28) auf die Sendeantenne (10) weitergeleitet wird und dort in den zu überwachenden Bereich abgestrahlt wird. Der zweite Teil, des im Pulsmodulator (1) erzeugten Pulses, wird auf den Empfangskanal (29) gegeben, wo es ein Zeitverzogerungsglied (2) passiert. Dieses Zeitverzogerungsglied (2) kann aus einem oder mehreren digitalen Logikbausteinen bestehen. So weist eine bevorzugte Ausfuhrungsform zwei hintereinandergeschaltete NOT-Glieder auf. Eine weitere zu bevorzugende Ausfuhrungsvariante besteht aus einem oder mehreren hinteremandergeschalteten AND-Gliedern, deren zweiter Eingang permanent auf 1 liegt. Auf diese Weise wird das Ausgangssignal des Zeitverzogerungsgliedes (2) gegenüber dem eigenen Eingangssignal zeitlich verzögert, wobei die
Verzogerungszeit auch einen variablen Wert annehmen kann. Das Zeitverzogerungsglied verändert jedoch die Form des Eingangssignals nicht. Der Ausgang des Zeitverzogerungsgliedes wird dem Steuereingang des zweiten schmalbandigen Pulsmodulators (4) zugeführt, wo in gleicher Weise wie im ersten Pulsmodulator (3) das hochfrequente Oszillatorsignal moduliert wird, das vom Hochfrequenzoszillator (5) über den nicht gezeigten Leistungsteiler zugeführt wird. Das Ausgangssignal des zweiten Pulsmodulators (4) wird auf einen Empfangsmischer (12) gegeben, der vorteilhafterweise auch als Quadraturmischer ausgeführt sein kann. Das Ausgangssignal des zweiten Pulsmodulators (4) ist mit dem Ausgangssignal des ersten Pulsmodulators (3) identisch und weist lediglich eine durch das Zeitverzogerungsglied (2) verursachte
Zeitverzogerung von td auf. Die von der Sendeantenne (10) ausgestrahlten Radarwellen werden an einem zu detektierenden Objekt reflektiert und von der Empfangsantenne (11) teilweise absorbiert. Das Empfangssignal der Empfangsantenne (11) wird im Empfangskanal (29) ebenfalls dem
Empfangsmischer (12) zugeführt, wo es mit dem Ausgangssignal des zweiten Pulsmodulators (4) gemischt wird. Das im Mischer
(12) erzeugte Signal (13) wird sodann über eine Ausgangsleitung einer Empfangsschaltung zugeführt, wo das Signal aufbereitet und ausgewertet wird. Das Ausgangssignal
(13) des Mischers (12) ist in dem Fall, dass der Mischer (12) ein Quadraturmischer ist, ein Signal, das aus zwei Komponenten, besteht. In diesem Fall besitzt der Quadraturmischer zwei Ausgange, einen für das Inphase-Signal und den zweiten für das Quadratur-Signal. Zusatzlich ist im Sendekanal zwischen dem Leistungsteiler der Pulsquelle (1) und dem ersten Pulsmodulator (3) ein erster Umschalter (7) vorgesehen. In gleicher Weise ist im Empfangskanal zwischen dem Zeitverzogerungsglied (2) und dem zweiten Pulsmodulator (4) ein zweiter Umschalter (8) vorgesehen. Dieser erste (7) und zweite (8) Umschalter wird jeweils mittels einem gemeinsamen Steuersignal (9) betätigt. Ändert sich dieses Steuersignal (9) durch eine Zustandsanderung, so schaltet die Vorrichtung von einem Pulsmessmodus auf einen Dopplermessmodus um, indem der erste (3) und der zweite (4) Umschalter nicht mehr die Pulse des Pulsgenerators (1) auf den ersten (3) und zweiten (4) Pulsmodulator weiterleitet, sondern ein Rechtecksignal. Dieses Rechtecksignal wird in einem Rechteckgenerator (6) erzeugt und über einen nicht gezeigten Leistungsteiler auf die Alternativeingange des ersten (3) und zweiten (4) Pulsgenerators gegeben. Die Zeitdauer des erzeugten Rechtecksignals sowie dessen Wiederholzeit werden dabei so gewählt, dass für die Zeit, in der das Umschaltersteuersignal (9) die Umschalter (7,8) im Dopplermessmodus betreibt, genau ein Rechteckimpuls erzeugt wird. In der Momenten, in denen das Rechtecksignal des Rechteckgenerators (6) zwischen einem „high"- in einen „low"-Zustand wechselt, schaltet das Umschaltersteuersignals (9) die Umschalter (7,8) zwischen Pulsmessmodus und Dopplermessmodus hin- oder her. Dieses Vorgehen ermöglicht es, dass wenn der erste und zweite Umschalter (7,8) den Dopplermessmodus aktiviert, dass die Pulsmodulatoren (3,4) die Hochfrequenzschwingung, die im RF-Oszillator (5) erzeugt wird, ungepulst und damit unmoduliert auf den Sende- bzw. Empfangskanal (28,29) übertragen werden. Durch die
Reflexionen, die an Objekten im Erfassungsbereich der Vorrichtung entstehen, wird in Abhängigkeit von deren Relativbewegung zur Vorrichtung eine Dopplerverschiebung verursacht, die sich in einer Frequenzverschiebung äußert. Die Vorrichtung kann j e nach Auslegung des Steuersignals (9) für die Umschalter abwechselnd Pulsmessungen mittels eines gepulsten Tragers und Dopplermessungen mittels eines unmodulierten Tragersignals ausfuhren. Eine weitere Variante besteht darin, die Dauer des Steuersignals für die
Umschalter (9) je nach Umgebungssituation variabel zu gestalten. So kann auch für eine bestimmte Zeit eine reine Pulsmessung oder eine reine Dopplermessung durchgeführt werden. Außerdem kann bei einer sich verändernden Umgebungssituation eine zeitlich verschachtelte Kombination aus diesen beiden Messmoden der Situation angepaßt werden.
In Figur 2 ist eine vorteilhafte zeitliche Abfolge dieses Vorgehens beschrieben. Im oberen dargestellten Diagramm (14) ist der zeitliche Verlauf des Umschaltersteuersignals (9) dargestellt. Im unteren Diagramm (15) ist das Ausgangssignal des ersten schmalbandigen Pulsmodulators (3) dargestellt, wie es auch von der Sendeantenne abgestrahlt wird. Beide Diagramme besitzen eine identische Zeitskalierung auf der Abszisse. Auf der Abszisse ist die Zeit in Millisekunden aufgetragen, wobei eine komplette periodische Abfolge des Sendesignals zwischen der Nullmarkierung und der Zeitmarke „1/n" abgebildet ist. Der Wert n teilt in einer vorteilhaften Ausfuhrungsvariante eine Millisekunde in etwa 15 bis 30 gleichlange Zeitintervalle auf. Im oberen Diagramm (14) der Figur 2 erkennt man das Umschaltersteuersignal (9), das in diesem Beispiel kurz nach dem Zeitpunkt „0" einen „low"-Zustand (16) hat. Wahrend dieser Zeit sendet die Vorrichtung pulsmodulierte Tragerschwingungen, wie sie im zeitgleichen Abschnitt (19) im unteren Diagramm (15) skizziert dargestellt sind. Wahrend dieser Zeitdauer ist der Pulsmessmodus aktiviert. Zu einem Zeitpunkt (17) zwischen „0" und „1/n" schaltet das Umschaltersteuersiganl (9) vom „low"-Zustand in den „high"-Zustand und aktiviert in beschriebener Weise den Dopplermessmodus bis zum Zeitpunkt „1/n" (18), zu dem die Umschalter (7,8) aus dem Dopplermessmodus wieder in den Pulsmessmodus zurückgeschaltet werden. Während der Zeitdauer, in der der Dopplermessmodus aktiviert ist, weist das Ausgangssignal des ersten Pulsmodulators (3) eine unmodulierte Trägerschwingung auf , wie es im unteren Diagramm (15) skizziert wurde. Nach dem Zeitpunkt „1/n" wiederholt sich dieser Vorgang wieder von Neuem.
In Figur 3 ist eine weitere vorteilhafte zeitliche
Signalabfolge der erfindungsgemäßen Vorrichtung dargestellt. Im oberen Diagramm (21) ist der zeitliche Verlauf des Umschaltersteuersignals (9) aufgetragen. Im unteren Diagramm (22) ist das Ausgangssignal des ersten schmalbandigen Pulsmodulators (3) dargestellt, wie es von der Sendeantenne (10) abgestrahlt wird. Beide Diagramme besitzen eine identische Zeitskalierung auf der Abszisse, die in Millisekunden eingeteilt ist. Zum Zeitpunkt „0" nimmt das Umschaltersteuersignal (9) einen „low"-Pegel (23) an und aktiviert dadurch den Pulsmessmodus. Für eine beispielhafte Zeitdauer von etwa 1 Millisekunde sendet die Vorrichtung pulsmodulierte Trägerschwingungen, wie sie beispielhaft im unteren Diagramm dargestellt sind (26) . Nach dieser Zeitspanne geht das Steuersignal (9) in den „high"-Zustand über und schaltet vom Pulsmessmodus in den Dopplermessmodus um (24) . In dieser Zeitspanne, nach dem Umschalten in den Dopplermessmodus, der für eine beispielhafte Zeitspanne von 1,5 Millisekunden aktiviert bleibt, emittiert die Vorrichtung eine unmodulierte Trägerschwingung (27), und ermittelt unter Ausnutzung des Dopplereffekts die
Relativgeschwindigkeit eines erkannten Objekts relativ zur Vorrichtung. Nach Ablauf dieser beispielhaften 1,5 Millisekunden schaltet das Umschaltersteuersignal (9) die Vorrichtung wieder in den Pulsmessmodus zurück, wodurch diese wieder pulsmodulierte Trägerschwingungen emittiert.

Claims

Ansprüche
1. Vorrichtung zur Detektion von bewegten oder stehenden Objekten mittels Radarstrahlung, bestehend aus einem Pulsgenerator (1) , der mit mit einem ersten (3) und einem zweiten (4) schmalbandigen Pulsmodulator verbunden ist, - einem Hochfrequenzoszillator (5) , dessen Ausgangssignal durch den ersten (3) und den zweiten (4) schmalbandigen Pulsmodulator moduliert wird einem Sendekanal (28) , der mit dem ersten schmalbandigen Pulsmodulator (3) verbunden ist, wobei besagter Sendekanal pulsmodulierte Tragersignale oder unmodulierte Tragerschwingungen aussendet, die eine vorgeschriebene Tragerfrequenz und eine vorgeschriebene Dauer haben, einem Empfangskanal (29), der mit dem zweiten schmalbandigen Pulsmodulator (4) verbunden ist, einem Zeitverzogerungsglied (2) zur zeitlichen Verzögerung des Ausgangssignals des zweiten schmalbandigen Pulsmodulators (4) auf den Empfangskanal einem Mischer (12) zur Mischung des von der Empfangsantenne (11) empfangenen Teils des ausgesendeten und reflektierten, pulsmodulierten Trägersignals mit dem Ausgangssignal des zweiten schmalbandigen Pulsmodulators (29) dadurch gekennzeichnet, dass im Sendekanal zwischen der Pulsquelle (1) und dem ersten schmalbandigen Pulsmodulator (3) ein Umschalter (7) vorgesehen ist, der bei einem aktivierten Steuersignal (9) zur Einschaltung eines
Dopplermessmoduses statt dem Ausgangssignal des Pulsgenerators (1) ein Rechtecksignal mit variabler Zeitdauer auf den Eingang des ersten schmalbandigen Pulsmodulators (3) gibt und - dass im Empfangskanal (29) zwischen dem
Zeitverzogerungsglied (2) und dem zweiten schmalbandigen Pulsmodulator (4) ein weiterer Umschalter (8) vorgesehen ist, der bei einem aktivierten Steuersignal (9) zur Einschaltung eines Dopplermessmoduses statt dem Ausgangssignal des Pulsgenerators (1) ein Rechtecksignal mit variabler Zeitdauer auf den Eingang des zweiten schmalbandigen Pulsmodulators (4) gibt.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Vorrichtung in einem Kraftfahrzeug zur Detektion von bewegten oder stehenden Objekten eingesetzt wird.
3. Verfahren zum Betrieb einer Vorrichtung zur Detektion von bewegten oder stehenden Objekten mittels Radarstrahlung, dadurch gekennzeichent, daß abwechselnd eine Folge pulsmodulierter Trägerschwingungen (19,26) und unmodulierter Trägerschwingungen (20,27) ausgesendet werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Impulse des Pulsgenerators eine Dauer zwischen 200 und 400 Pikosekunden aufweisen.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Impulse des Pulsgenerators (1) eine Pulswiederholfrequenz zwischen 1 MHz und 50 MHz aufweisen.
6. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass für die Dauer von etwa 1 Millisekunde eine Folge pulsmodulierter Tragerschwingungen (26) ausgesendet wird und für die Dauer von etwa 1,5 Millisekunden unmodulierte Tragerschwingungen (27) ausgesendet werden.
7. Verfahren nach Anspruch 3, dadurch gekennzeichent, dass nach einer Zeitdauer von maximal 50 Mikrosekunden in der eine Folge pulsmodulierter Tragerschwingungen ausgesendet wurde, für mindestens 1 Mikrosekunde die unmodulierten Tragerschwingungen gesendet werden.
PCT/DE2001/004634 2000-12-28 2001-12-08 Vorrichtung und verfahren zur detektion von bewegten oder stehenden objekten mittels radarstrahlung WO2002054106A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10065521A DE10065521A1 (de) 2000-12-28 2000-12-28 Vorrichtung und Verfahren zur Detektion von bewegten oder stehenden Objekten mittels Radarstrahlung
DE10065521.1 2000-12-28

Publications (1)

Publication Number Publication Date
WO2002054106A1 true WO2002054106A1 (de) 2002-07-11

Family

ID=7669307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/004634 WO2002054106A1 (de) 2000-12-28 2001-12-08 Vorrichtung und verfahren zur detektion von bewegten oder stehenden objekten mittels radarstrahlung

Country Status (2)

Country Link
DE (1) DE10065521A1 (de)
WO (1) WO2002054106A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004054761A1 (de) * 2004-11-12 2006-05-18 Rohde & Schwarz Gmbh & Co. Kg PIN-Dioden-Pulsmodulator
CN105954728A (zh) * 2016-05-31 2016-09-21 电子科技大学 一种井中雷达双路可调瞬态脉冲信号源

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10254982A1 (de) 2002-11-26 2004-06-03 Robert Bosch Gmbh Verfahren und Einrichtung zur adaptiven Leistungsregelung
US20050238113A1 (en) * 2004-04-26 2005-10-27 John Santhoff Hybrid communication method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4212685A1 (de) * 1991-04-26 1992-11-05 Telefunken Systemtechnik Dopplerradarsensor
US5510794A (en) * 1989-07-07 1996-04-23 Asbury; Jimmie R. Vehicular radar wayside transponder system
US6067040A (en) * 1997-05-30 2000-05-23 The Whitaker Corporation Low cost-high resolution radar for commercial and industrial applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510794A (en) * 1989-07-07 1996-04-23 Asbury; Jimmie R. Vehicular radar wayside transponder system
DE4212685A1 (de) * 1991-04-26 1992-11-05 Telefunken Systemtechnik Dopplerradarsensor
US6067040A (en) * 1997-05-30 2000-05-23 The Whitaker Corporation Low cost-high resolution radar for commercial and industrial applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004054761A1 (de) * 2004-11-12 2006-05-18 Rohde & Schwarz Gmbh & Co. Kg PIN-Dioden-Pulsmodulator
DE102004054761B4 (de) * 2004-11-12 2009-04-09 Rohde & Schwarz Gmbh & Co. Kg PIN-Dioden-Pulsmodulator
CN105954728A (zh) * 2016-05-31 2016-09-21 电子科技大学 一种井中雷达双路可调瞬态脉冲信号源

Also Published As

Publication number Publication date
DE10065521A1 (de) 2002-07-25

Similar Documents

Publication Publication Date Title
DE19803660C2 (de) Kraftfahrzeugradar
DE60132386T2 (de) FM-CW-Radarsystem
DE3107444C2 (de) Hochauflösendes kohärentes Pulsradar
DE69733511T2 (de) Radaranlage mit vereinfachter Bauart
DE2724093C2 (de) Radargerät zum Erfassen eines Fahrzeuges
DE3640449C1 (de) Einrichtung zum Bestimmen der Entfernung zwischen zwei Objekten,insbesondere zwei Kraftfahrzeugen
DE2839643A1 (de) Radarsystem fuer kraftfahrzeuge
CH622105A5 (de)
DE2411806C2 (de) Modulationsgenerator für ein Puls-Doppler-Radarsystem
EP1235079A2 (de) Verfahren zum Entstören einer Radareinrichtung und Radareinrichtung
DE2542628A1 (de) Radar zur entfernungsmessung
DE4104907C1 (de)
DE19963005A1 (de) Verfahren und Vorrichtung zur Erfassung und Auswertung von Objekten im Umgebungsbereich eines Fahrzeuges
EP0519361B1 (de) Dauerstrich-Radargerät, zusätzlich als Sender für die Informationsübertragung verwendbar
DE10142172A1 (de) Pulsradaranordnung
DE2249386C3 (de) Peiler
WO2002054106A1 (de) Vorrichtung und verfahren zur detektion von bewegten oder stehenden objekten mittels radarstrahlung
WO2003027702A2 (de) Pulsradaranordnung
EP1245964A1 (de) Verfahren zur Generierung und Auswertung von Radarpulsen sowie Radarsensor
DE19902076B4 (de) Sensor zum Messen eines Abstands zu einem Objekt
EP1516200B1 (de) Verfahren und vorrichtung zum erzeugen von hf-signalen zum bestimmen eines abstandes und/oder einer geschwindigkeit eines objektes
DE10163653A1 (de) Vorrichtung für ein Radarsystem
DE102009013300A1 (de) Funktionsmoduliertes FMCW-Radar mit Integratorempfänger
DE10142171A1 (de) Radaranordnung
DE102011051969A1 (de) Radargerät und Verfahren zum Betreiben des Radargerätes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP