WO2002047170A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2002047170A1
WO2002047170A1 PCT/JP2001/007433 JP0107433W WO0247170A1 WO 2002047170 A1 WO2002047170 A1 WO 2002047170A1 JP 0107433 W JP0107433 W JP 0107433W WO 0247170 A1 WO0247170 A1 WO 0247170A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
silicon nitride
sidewall
gate electrode
nitride film
Prior art date
Application number
PCT/JP2001/007433
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Ohta
Yukihiro Kumagai
Toshio Ando
Hidenori Sato
Akihiro Shimizu
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO2002047170A1 publication Critical patent/WO2002047170A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823412MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials

Definitions

  • the present invention relates to a semiconductor integrated circuit device and a method of manufacturing the same, and more particularly to a semiconductor device having a P-channel field-effect transistor.
  • MISF ET Metal Insulator Semiconductor Field Effect Transistor
  • SAC Self-aligned contacts
  • Silicon nitride film to be used in contour click preparative formation step is generally a monosilane (S i H 4) and ammonia (NH 3) is formed by a thermal CVD method using a gas source.
  • S i H 4 monosilane
  • NH 3 ammonia
  • the gate electrode of the n-channel MISFET is made of n-type polycrystalline silicon
  • the gate electrode of the P-channel MISFET is The so-called dual-gate CMOS structure, which is made of p-type polycrystalline silicon and both are surface channel types, has been adopted.
  • a single-wafer thermal CVD apparatus that processes wafers one by one in a single chamber is easier to set precise temperature conditions than the above-mentioned patch-type thermal CVD apparatus, and has a film thickness within the wafer plane. Because of its good uniformity, application to self-alignment silicon nitride film for contact is being considered.
  • a cold-wall type single-wafer thermal CVD apparatus that forms a film with the inner wall temperature of the champer lower than the wafer temperature has many advantages because it can compensate for the decrease in throughput that is a problem with single-wafer apparatuses. It is thought to be the mainstream of self-alignment silicon contact film deposition equipment.
  • a high-density semiconductor device which used to form a silicon nitride film for self-alignment contact with a hot-wall batch type thermal CVD device, was tested on a cold-wall type single-wafer thermal CVD device.
  • a silicon nitride film for self-aligned contact was formed, it was observed that the source / drain current of the ⁇ -channel MISFET was greatly reduced. Reduction of source and drain current needs to be prevented to reduce the operation speed of the semiconductor device.
  • ⁇ -channel type MISFETs are a serious problem because their source and drain currents are smaller than those of n-channel MISFETs.
  • the present invention provides a silicon substrate and a gate oxide film provided on the surface thereof, a gate electrode film provided in contact with the gate oxide film, a sidewall film provided on a side surface of the good electrode film, A silicon nitride film provided so as to include the gate electrode film and the sidewall film, wherein the silicon nitride film has a tensile stress of 850 MPa or less at room temperature.
  • a semiconductor device characterized in that the sidewall film has a bow I tensile stress of 850 MPa or less at room temperature.
  • the present invention provides a step of forming a gate oxide film on a silicon substrate, a step of forming a gate electrode film thereon, a step of forming a gate electrode pattern, Forming a sidewall film, and depositing a silicon nitride film so as to include the gut electrode film and the sidewall film, wherein the silicon nitride film is formed by using a CVD device and the CVD device.
  • FIG. 1 is a schematic view showing a cross section of a semiconductor device according to a first embodiment of the present invention.
  • Figure 2 is a graph showing the experimental results of the stress dependence of the source / drain current of a p-channel field-effect transistor.
  • FIG. 3 is a graph showing the relationship between the minimum line width of the semiconductor device and the stress dependence of the source / drain current of the p-channel field-effect transistor.
  • Fig. 4 is a graph showing the relationship between the film stress of the silicon nitride film for self-aligned contact and the stress in the silicon substrate near the good electrode by stress analysis.
  • Fig. 5 shows the experimental results showing the relationship between the inner wall temperature of the chamber of the above-mentioned CVD device and the film stress of the silicon nitride film formed by the device when formed by a cold wall type single wafer thermal CVD device.
  • FIG. 6 shows the temperature of the inner wall of the chamber of the CVD device and the silicon nitride film formed by the cold wall type single-wafer thermal CVD device.
  • FIG. 9 is a schematic diagram of an experimental result showing a relationship with a variation in stress.
  • FIG. 7 is a conceptual diagram of a cold-wall single-wafer thermal CVD apparatus 100 used for forming the silicon nitride film 19 for self-alignment contact.
  • FIG. 8 is a graph showing the relationship between the film stress of a silicon nitride film at room temperature and the etching rate of the silicon nitride film with hot phosphoric acid.
  • FIG. 9 is a schematic sectional view showing a part of a semiconductor device according to a second embodiment of the present invention.
  • FIG. 10 is a schematic sectional view showing a part of a semiconductor device according to a third embodiment of the present invention.
  • FIG. 11 is a schematic sectional view showing a part of a semiconductor device according to a fourth embodiment of the present invention.
  • FIG. 12 is a schematic sectional view showing a part of a semiconductor device according to a second other embodiment of the present invention.
  • the present invention provides a silicon substrate and a gate oxide film provided on a surface thereof, a gate electrode film provided in contact with the gate oxide film, and a gate electrode film provided on a side surface of the gate electrode film.
  • a semiconductor device characterized by having a stress, or the sidewall film has a tensile stress of 850 MPa or less at room temperature.
  • the present invention provides a step of forming a gate oxide film on a silicon substrate, a step of forming a gate electrode film thereon, a step of forming a gate electrode pattern, Forming a sidewall film, and depositing a silicon nitride film so as to include the gate electrode film and the sidewall film.
  • the silicon nitride film is formed by using a CVD apparatus.
  • a method for manufacturing a semiconductor device wherein the inner wall temperature of a chamber of a CVD device is deposited at 30 ° C. or less.
  • a gate oxide film can be formed by thermal oxidation or CVD.
  • a gate electrode film can be formed by a sputtering method or a CVD method.
  • a pattern of the gate electrode is locally formed by photolithography.
  • the side wall is formed by sputtering or CVD. Forming a film. Further, the sidewall film is etched to leave the sidewall film only on the side surface of the gate electrode film. Then, a silicon nitride film is deposited so as to include the gate electrode film and the sidewall film.
  • a cold-wall type single-wafer thermal CVD apparatus is used for the deposition of the silicon nitride film.
  • the silicon nitride film of the sidewall film is deposited by using a CVD device at an inner wall temperature of 30 ° C. or lower of the chamber of the CVD device.
  • the present invention provides a silicon substrate and a gate oxide film provided on the surface thereof; and a gate electrode film provided in contact with the gut oxide film, and a side provided on a side surface of the gate electrode film.
  • an etching rate of the silicon nitride film against hot phosphoric acid at 120 ° C. is ll nm / It is characterized by being less than min.
  • the sidewall film includes a silicon nitride film, and an etching rate of the silicon nitride film with respect to hot phosphoric acid at 120 ° C. is ll nm / min or less.
  • the present invention provides a step of forming a gate oxide film on a silicon substrate, a step of forming a gate electrode film thereon, a step of locally forming a pattern of the gut electrode, Forming a film, etching the sidewall film to leave the sidewall film on a side surface of the good electrode film, and enclosing the gate electrode film and the sidewall film.
  • the ionic species is Si or Ge or a combination thereof.
  • the present invention is characterized in that the upper surface of the silicon nitride film contains an element having a higher concentration than the lower surface.
  • the element is Si or Ge or a combination thereof.
  • the threshold voltage of the MISFET is prevented from fluctuating, and the source-drain current of the p-channel type MISFET is reduced and fluctuated.
  • a high-speed and highly reliable semiconductor device can be provided.
  • a cold wall type single wafer type thermal CVD apparatus was used as a test for self-line contact.
  • the source / drain current of a p-channel MIS FET may drop significantly, or a transistor with a significantly different source / drain current in the wafer plane may be manufactured. was observed.
  • the inventors conducted a stress load experiment, a stress analysis, and the like to determine the cause.
  • (1) When the tensile stress of the silicon nitride film for the self-aligned contact increases, the compressive stress in the silicon substrate near the gate electrode decreases, and the source-drain current of the p-type transistor decreases.
  • (2) As the miniaturization of highly integrated semiconductor devices progresses and the minimum line width falls below 0.25 ⁇ m, the stress dependence of the source / drain current rises sharply and rapidly with miniaturization. It became clear that the problem had become apparent.
  • Fig. 2 shows the experimental results of the stress dependence of the source / drain current of a p-channel MISFET with a minimum line width of 0.14 microns.
  • a four-point bending test was performed on a silicon substrate on which a semiconductor device was formed, and the characteristics of the transistor were measured while applying a known stress to the silicon substrate surface, which is the device formation region.
  • the directions of the stresses are the uniaxial stress in the channel plane parallel to the source and drain currents flowing through the channel of the field effect transistor (stress parallel to the channel), and the The stress is the uniaxial stress in the channel plane perpendicular to the drain current (stress perpendicular to the channel).
  • the sign of the stress is plus for tensile stress and minus for compressive stress.
  • the source-drain current increases (approximately 4 o / o! OOMPa) in the direction perpendicular to the channel when a tensile stress is applied, and in the direction parallel to the channel.
  • the source / drain current decreased (about 7% / 100MPa).
  • the tensile stress of the silicon substrate under the gate electrode increases as the tensile stress increases.
  • the source-drain current will decrease as the compressive stress decreases in some levels.
  • Fig. 3 shows the change in the stress dependence of the source-drain current when the gate width was changed.
  • the stress dependency is small, and it is hidden by other fluctuation factors such as process variation.However, when the minimum line width is less than 0.25 ⁇ m, the stress dependency sharply increases. Become larger. In other words, this problem was the first one that became a problem in the manufacture of semiconductor devices as a result of the progress of high integration of semiconductor devices.
  • the ff dimension was determined by stress analysis using the finite element method.
  • Figure 4 shows the relationship between the stress in the silicon substrate near the gate, which affects the change in source and drain current, and the stress in the silicon nitride film for self-aligned contact. From this relationship, it was clarified that the smaller the tensile stress of the film stress of the silicon nitride film, the more the compressive stress in the silicon substrate near the gate can be increased.
  • the inventors of the present invention have developed a silicon nitride film for self-aligned contact. It was found that by forming the film so that the tensile stress becomes small in a state where the film stress is at room temperature, it is possible to prevent a decrease in the source / drain current. Therefore, it would be sufficient if this could be realized using a cold wall type single wafer thermal CVD apparatus.
  • FIG. 5 shows the relationship between the temperature of the chamber and the film stress of the cold wall type single wafer thermal CVD apparatus.
  • the temperature of the chamber of the cold wall type single-wafer thermal CVD apparatus becomes 30 ° C. or more, the film stress of the silicon nitride film increases remarkably. That is, by setting the temperature of the chamber of the cold-wall type single-wafer thermal CVD apparatus to 30 ° C. or less, the tensile stress of the silicon nitride film can be suppressed low. Since it is possible to increase the compressive stress of the p-channel MISFET, it is possible to prevent the source / drain current of the p-channel MISFET from dropping significantly.
  • Fig. 6 shows the relationship between the temperature of the chamber and the width of variation of the film stress in the single-wafer thermal CVD apparatus of the coal dwell type. A similar relationship is also observed for variations in film stress, and when the temperature of the chamber of a cold-dual type single-wafer thermal CVD apparatus falls below 30 ° C, the variation in film stress in the wafer plane sharply decreases. Understand.
  • a silicon nitride film for self-aligned contact is formed by using a cold wall type single-wafer thermal CVD device so that the temperature of the chamber of the CVD device becomes 30 ° C or less.
  • the tensile stress of the silicon nitride film can be reduced.
  • the compressive stress in the silicon substrate near the gate electrode can be increased! )
  • the film stress of the silicon nitride film for self-align contact in the wafer does not vary, the variation of the compressive stress in the silicon substrate near the gate electrode can be reduced. As a result, variations in the source / drain current in the wafer surface can be suppressed, and the reliability and yield of semiconductor devices can be improved.
  • Fig. 1 is a schematic diagram of the cross section of the semiconductor device of this embodiment.
  • Fig. 2 is the stress dependence of the source-drain current of the p-channel field-effect transistor.
  • Fig. 4 shows a stress analysis of the effect of the intrinsic stress of the SiN film enclosing the gate electrode from the top surface on the channel partial stress (stress in the channel plane parallel to the source / drain current). Results, Fig. 5 shows the relationship between the inner wall temperature of the champer and the film stress, Fig. 6 shows the relationship between the inner wall temperature of the chamber and the variation of the film stress in the wafer surface, and Fig. 7 shows the single-wall thermal CVD system of the common wall type.
  • FIG. 8 is a conceptual diagram, FIG. 8 is an etching rate dependency of the SiN film stress, and FIG. 9 to FIG. 11 are explanatory diagrams of an embodiment of the present invention.
  • the semiconductor device of this embodiment includes an n-channel field-effect transistor ⁇ formed on the main surface of a silicon substrate 1 and a p-channel field-effect transistor 30.
  • the n-channel field-effect transistor is composed of an n- type source 'drain (12, 13) formed in a p-type well 11, a gate insulating film 14, a gate electrode 15, and a side wall 16; Silicides 17 and 18 are formed on the upper surface of the source and drains (12, 13). Further, a silicon nitride film 19 1 for a self-line contact is formed above the contact hole and wiring.
  • the P-channel field-effect transistor of the present invention focuses on the p-type source / drain (32, 33) formed in the n-type well 31 and the gate insulating film 34, the gate electrode 35, the side wall.
  • the silicides 37 and 38 are formed on the upper surface of the gate electrode 35 and the upper surfaces of the source and drain (32, 33).
  • a silicon nitride film 39 for self-line contact, a contact hole, a wiring, and an interlayer insulating film are formed thereon.
  • These Trang registers a silicon oxide film (S i 0 2) and consists of silicon nitride (S i N), the device isolation film 2, the insulation of the other transistor is made.
  • the material of the gut insulating films 14 and 34 is, for example, silicon oxide film (S i Op;), Silicon nitride film (S i N), titanium oxide (T I_ ⁇ 2), zirconium oxide (Z r ⁇ 2), hafnium oxide (H f ⁇ 2) Yuden such tantalum pentoxide (T a 2 0 5) A body film or a laminated structure thereof is desirable.
  • the material of the gate electrodes 15 and 35 is, for example, a polycrystalline silicon film or a material such as tungsten (W), molybdenum ( ⁇ ), platinum (Pt), ruthenium (Ru), or iridium (Ir). A metal film, a silicide of these metals, or a laminated structure thereof is desirable.
  • the silicon nitride film (S i N) and silico phosphorylation film (S i 0 2) the polycrystalline silicon film is desirable.
  • the silicon nitride film 39 for self-aligned contact is used to form contact holes in a self-aligning manner, and the thickness of the silicon nitride film 39 is preferably in the range of 10 plates to 200 nra.
  • the silicon nitride film 39 is formed by a cold wafer type single wafer thermal CVD apparatus.
  • FIG. 7 is a conceptual diagram of a cold wall type single-wafer thermal CVD apparatus 100 used for forming the silicon nitride film 39 for the self-alignment contact.
  • a stage 102 on which the silicon substrate 1 is mounted is provided at the center of the chamber 101 of the cold wall type single wafer thermal CVD apparatus 100. Inside the stage 102, a heater 104 for heating the silicon substrate 1 is provided. Above the stage 102, a shuttle gas for supplying a source gas composed of monosilane (SiH 4 ) and ammonia (NH 3 ) to the surface of the silicon substrate 1 together with a carrier gas such as nitrogen (N 2 ) is provided.
  • C 103 is provided above the stage 102.
  • a temperature control mechanism 105 for setting the inner wall of the chamber 101 at a lower temperature than the stage 102 and the silicon substrate 1 is provided.
  • the temperature control mechanism 105 is provided with a temperature indicator 106.
  • the temperature control mechanism 105 can be configured to include, for example, a detection unit that detects a wall surface temperature by a temperature sensor or the like, and a control unit that controls the wall surface temperature to a predetermined temperature based on a signal from the detection unit.
  • the cold-wall type single-wafer thermal CVD apparatus 100 processes silicon substrates 1 one by one on the stage 102, so that more precise temperature conditions can be realized compared to the conventional patch-type thermal CVD apparatus. . Therefore, since the temperature of the silicon substrate 1 can be accurately controlled, the diffusion of impurities into the Si substrate can be controlled. Even when the data is miniaturized, it is possible to suppress the occurrence of fluctuations and variations in the value voltage. Another advantage is that the film thickness uniformity within the wafer surface is better than that of a conventional batch type thermal CVD apparatus.
  • the temperature control mechanism 105 controls the temperature of the inner wall of the chamber 101, and the stage 102 ⁇ a cold-wafer type single-wafer thermal C VD apparatus 10 for forming a film at a lower temperature than the silicon substrate 1.
  • the source gas reacts on the surface of the wafer composed of the silicon substrate 1 and the like to form a film, and the film hardly deposits on the inner wall of the low-temperature champer 101 Therefore, high-throughput film formation becomes possible.
  • a hot-wall type thermal CVD apparatus that uniformly heats the entire inner wall of the chamber 101 to form a film, the film is easily deposited on the inner wall of the chamber 101, and the film is deposited. Throughput decreases because periodic removal is required.
  • the silicon nitride film 39 is formed under the following conditions: the temperature of the silicon substrate 1 is set between 700 ° C. and 800 ° C.
  • the gas pressure was set between 200 Torr and 350 Torr.
  • a silane-based gas and an ammonia gas as a gas source so that the flow ratio of the ammonia gas to the silane-based gas is at least 14 times.
  • the flow rate of monosilane was 70 sccm
  • the flow rate of ammonia was 1000 sccm
  • the flow rate of nitrogen was 7000 sccm
  • the gas pressure was 350 Torr.
  • the temperature of the wall surface of the chamber 101 was kept at 30 ° C. or lower.
  • monosilane was used as the silane-based gas, but disilane, dichlorosilane, and tetraethoxysilane may also be used.
  • an organic compound containing a cyano group or an amino group can be used.
  • the CVD device is to have a wall temperature control mechanism or a temperature display function associated with the CVD device.
  • a wall temperature control mechanism or a temperature display function associated with the CVD device.
  • the film stress at room temperature of the silicon nitride film 39 for the self-aligned contact can be reduced to a tensile stress of 850 MPa or less, and the silicon nitride film acts to reduce the silicon stress near the gate electrode 35.
  • Reduce the stress of the substrate 31 to the more compressive stress side. Can be Here, it is described that "the stress should be on the compressive stress side" .This means that if the stress of the silicon substrate 31 near the gate electrode 35 was conventionally a tensile stress, the tensile stress would be lower. In other words, if the stress of the silicon substrate 31 near the gate electrode 35 is the conventional compressive stress, it means that the compressive stress is higher.
  • by reducing the stress of the silicon substrate 31 near the gate electrode 35 to the compressive stress side it is possible to prevent a decrease in the source-drain current of the p-channel transistor.
  • a chamber of a cold wall type single wafer thermal CVD apparatus is used, and the temperature of the wall surface of the chamber 101 is set to 30 ° C. or less. Since variations in stress in the wafer surface can be suppressed, variations in source / drain current of the p-channel transistor in the wafer surface can be prevented. As a result, the reliability of the semiconductor device is improved and the yield can be improved.
  • the inner wall temperature of the champer 101 may be set to 35 ° C or less.
  • the lower limit temperature differs depending on the cooling means, it will not be described in detail.
  • the temperature is higher than 0 ° C. at which solidification occurs.
  • the temperature will be higher than the solidification temperature.
  • FIG. 9 shows a second embodiment of the present invention.
  • the side wall 36 is formed by a cold dwell type single wafer thermal CVD apparatus, and the temperature of the chamber of the CVD apparatus is set to 30 ° C. or lower.
  • the film stress at room temperature of the silicon nitride film to be formed can be set to a tensile stress of 850 MPa or less.
  • the stress of the silicon substrate 31 in the vicinity below the gate electrode 35 becomes more compressive stress side. can do. This can prevent a decrease in the source-drain current of the p-channel transistor.
  • the sidewall 36 may be formed of a silicon nitride film and a silicon nitride film.
  • the silicon nitride portion may be formed under the above conditions. That is, a silicon nitride film of a sidewall 36 is manufactured under a film forming condition in which a chamber of the CVD apparatus is formed at a temperature of 30.degree. As shown in FIG. 12, even when there is no silicon nitride film for a self-aligned contact, the same effect can be obtained by applying the present invention.
  • This embodiment has the following features in addition to the advantages listed in the first embodiment of the present invention. That is, if a silicon nitride film of sidewall 36 is formed under a film forming condition of forming a cold wall type single wafer type thermal CVD apparatus and setting a temperature of a chamber of the CVD apparatus to 30 ° C. or lower. Since the number of hydrogen atoms contained in the silicon nitride film can be reduced, electric characteristics of the transistor can be improved.
  • FIG. 10 shows a third embodiment of the present invention.
  • a silicon nitride film 39 for a self-align contact is also manufactured under the above conditions.
  • the stress of the silicon substrate under the electrode can be made more tensile, and the effect is further increased.
  • both the sidewall 36 and the silicon nitride film 19 for the self-aligned contact are made of exactly the same material, the sidewall 16 and the self-aligned contact are not used. Since the stress concentration at the material interface of the silicon nitride film 39 is reduced, there is an advantage that the risk of film peeling at the interface is small, in addition to the advantage of the second embodiment.
  • FIG. 11 shows a fourth embodiment of the present invention, in which the sidewall 36 is composed of two or more layers, and one or more of these layers is formed as a silicon film.
  • the film may be formed under the above conditions.
  • the sidewall 36 is formed by a combination of the silicon oxide film and the silicon nitride film, and the silicon oxide film is in contact with the silicon substrate.
  • the silicon nitride film directly contacts the silicon substrate This has the further advantage that impurities such as nitrogen in silicon nitride are unlikely to diffuse into the silicon substrate.
  • a fifth embodiment of the present invention will be described with reference to FIGS.
  • ions are implanted into the entire upper surface of the silicon nitride film. That is, the silicon nitride film 39 is formed, and then ion implantation is performed on the entire surface of the wafer. After that, the silicon nitride film is locally etched to perform a via forming process.
  • the same effect can be obtained by changing the order and performing ion implantation after processing for via formation, but in this case, ions are also implanted into the silicon substrate in the via formation hole. This is not desirable because it is likely to cause dislocations.
  • the film stress of the silicon nitride film 39 can be made more compressive, that is, the tensile stress can be reduced.
  • the stress of the silicon substrate 31 near the lower part of the gate electrode 35 can be made to be more on the compressive stress side.
  • a decrease in the source / drain current of the p-channel transistor can be prevented.
  • ion implantation is performed on the entire upper surface of the silicon nitride film 39, there is an advantage that a mask for ion implantation is not required and the number of steps or masks can be reduced.
  • the sidewall portion may be formed as described above.
  • This embodiment may be combined with the first, second, and third embodiments of the present invention, but is effective even if used alone, and in that case, other advantages also occur.
  • the monosilane flow rate is 10 sccm
  • the ammonia flow rate is 5000 sccm
  • the nitrogen flow rate is 5000 sccm
  • the gas pressure is 350 Torr
  • the silicon nitride film 39 for self-alignment contact is formed. Is extremely higher than the tensile strength of 1 GPa.
  • the impurity in the silicon nitride film 39 is reduced, and there is an advantage that the influence of the diffusion of the impurity on the silicon substrate can be minimized.
  • reducing the impurities in the silicon nitride film is one of the electrical characteristics of the device.
  • the tensile stress of the silicon nitride film increases, which causes a decrease in the source / drain current of the p-channel transistor. This phenomenon is remarkable when the minimum line width is 0.25 ⁇ m or less. It has become.
  • the tensile film stress of the silicon nitride film 39 can be reduced or the compressive film stress can be increased, so that the miniaturization is advanced. Even in such a case, it is possible to prevent the source / drain current of the p-channel transistor from being lowered, and to further minimize the influence of impurities.
  • the ion species used for the ion implantation treatment those having an ion radius larger than Si are desirable because of a large change in stress, and Ge and Si that do not have a risk of changing the electrical characteristics of the device are more desirable. If the ion species are assumed to be commonly used in the semiconductor industry such as Ga, As, In, Sb, Tl, and Bi, the investment in the ion implanter or its peripheral equipment must be invested because the existing equipment can be used. The advantage is that it can be minimized.
  • the acceleration voltage is desirably about lOkeV to about 200 KeV depending on the thickness of the silicon nitride film 39. When the film thickness is small, the acceleration voltage tends to be low.
  • the dose is desirably in the range of 10 12 to 10 16 dose Zcm 2 .
  • these ion species are detected in the silicon nitride film, and the concentration distribution in the thickness direction is peculiar to the ion implantation process, and the upper surface of the film has a higher concentration than the lower surface.
  • the present invention it is possible to provide a high-speed and highly-reliable semiconductor device that prevents fluctuation of the threshold voltage of the MISFET and prevents a decrease in the source-drain current of the p-channel MISFET.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

A high-reliability, high-speed semiconductor device which can be produced with a reduction in a source/drain current of a p-channel type transistor prevented even when a self-align contact-use silicon nitride film is formed by using a cold-wall-type single-wafer thermal CVD system to lower an inner wall temperature of a chamber to 30 °C or below.

Description

技術分野 Technical field
本発明は、 半導体集積回路装置、 およびその製造方法に関し、 特に Pチャネル 電界効果型トランジスタを有している半導体装置に関する。  The present invention relates to a semiconductor integrated circuit device and a method of manufacturing the same, and more particularly to a semiconductor device having a P-channel field-effect transistor.
背景技術 Background art
 Light
最近の微細化された半導体集積回路装置の製造プロセスでは、 酸化シリコン膜 と窒ィ匕シリコン膜の膜とのエッチング速度田差を利用することによって、 MI SF ET (Metal Insulator semiconductor Field Effect Transistor) < ケ' 卜電 極に対してコンタクトホールを自己整合的に形成する技術が行われている。 この ようなセルファライン -コンタクト (Se Align Contact; SAC) の形成に関 しては、 例えば特開平 11- 17147号に示されている。 このセルファライン.コンタ ク トの形成工程で使用されるシリコン窒化膜は、 一般にモノシラン (S i H4) とアンモニア (NH3) とをガスソースに用いた熱 CVD法によって形成されて いる。 この熱 CVD装置には複数枚 (例えば 100枚程度) のウェハを一括して 処理するホットゥォ一ノレ型のバッチ式熱 C V D装置が用いられる。 In the recent manufacturing process of miniaturized semiconductor integrated circuit devices, MISF ET (Metal Insulator Semiconductor Field Effect Transistor) <is used by utilizing the difference in etching rate between the silicon oxide film and the silicon nitride film. A technique for forming a contact hole in a self-aligned manner with a gate electrode has been used. The formation of such self-aligned contacts (Se Align Contact; SAC) is disclosed, for example, in Japanese Patent Application Laid-Open No. 11-17147. The self-alignment. Silicon nitride film to be used in contour click preparative formation step is generally a monosilane (S i H 4) and ammonia (NH 3) is formed by a thermal CVD method using a gas source. For this thermal CVD system, a hot-hot batch type thermal CVD system that processes a plurality of (for example, about 100) wafers at once is used.
前述のように、 従来はセルファライン ·コンタクトを実現するためにホットウ オール型のバッチ式熱 CVD装置が用いられてきたが、 高集積化が進むに伴って 問題点が発生してきたため、 現在はコールドウオール型の枚葉式熱 CVD装置の 導入が検討されている段階にある。 その背景を以下に述べる。  As mentioned above, hot wall type batch thermal CVD equipment has been used to realize self-aligned contacts, but problems have arisen with the progress of high integration, The introduction of a wall-type single-wafer thermal CVD system is under consideration. The background is described below.
最近では微細化に伴う M I S F E T (トランジスタ) のしきい値電圧の低下を 防止するために、 nチャネル型 MI SFETのゲート電極を n型多結晶シリコン によって構成し、 Pチャネル型 MI SFETのゲート電極を p型多結晶シリコン で構成し、 両者をともに表面チャネル型とする、 いわゆるデュアルゲート CMO S構造が採用されるようになつてきた。  Recently, to prevent the threshold voltage of MISFETs (transistors) from decreasing due to miniaturization, the gate electrode of the n-channel MISFET is made of n-type polycrystalline silicon, and the gate electrode of the P-channel MISFET is The so-called dual-gate CMOS structure, which is made of p-type polycrystalline silicon and both are surface channel types, has been adopted.
この構造においては、 ゲート電極形成後の工程で高温の熱処理が加わると、 ゲ 一ト電極である多結晶シリコン中に含まれる p型あるいは n型の不純物がゲート 酸ィ匕膜を通してシリコン基盤に拡散し、 MI SFETのしきい値電圧を容易に変 動させる。 よって前記熱処理工程の温度条件がばらつくと、 しきい値電圧が大き く変動し、 結果として半導体デバイスの大きな歩留まり低下をもたらす。 すなわ ち、 グート電極形成後の工程でセノレファライン 'コンタクト用等の窒化シリコン 膜を堆積させる場合にも、 成膜温度が高いため、 成膜の温度条件を特に精密に制 御する必要があるが、 バッチ式熱 C VD装置では精密な温度条件の制御が困難で あ ο。 In this structure, if high-temperature heat treatment is applied in the process after the formation of the gate electrode, p-type or n-type impurities contained in the polycrystalline silicon, which is the gate electrode, become It diffuses into the silicon substrate through the oxide film and easily changes the threshold voltage of the MISFET. Therefore, if the temperature conditions in the heat treatment step vary, the threshold voltage greatly changes, resulting in a large decrease in the yield of semiconductor devices. In other words, even when depositing a silicon nitride film for a contactor line or a contact in the process after the formation of the good electrode, the film formation temperature is high, so it is necessary to precisely control the film formation temperature conditions. However, it is difficult to precisely control temperature conditions with a batch thermal CVD unit.
そこで 1つのチャンバ内でウェハを 1枚ずつ処理する枚葉式熱 CVD装置は、 上記のパッチ式熱 CVD装置に比べて精密な温度条件の設定が容易であり、 かつ ウェハ面内での膜厚均一性も良好なことから、 セルファライン ' コンタクト用窒 化シリコン膜の成膜に対して適用を検討されている。 特にチャンパの内壁温度を ウェハ温度よりも低温にして成膜を行うコールドウオール型の枚葉式熱 CVD装 置は、 枚葉式の装置で問題となるスループットの低下を補償できることから利点 が多く、 セルファライン ' コンタクト用窒化シリコン膜の成膜装置の主流になる ものと考えられる。  Therefore, a single-wafer thermal CVD apparatus that processes wafers one by one in a single chamber is easier to set precise temperature conditions than the above-mentioned patch-type thermal CVD apparatus, and has a film thickness within the wafer plane. Because of its good uniformity, application to self-alignment silicon nitride film for contact is being considered. In particular, a cold-wall type single-wafer thermal CVD apparatus that forms a film with the inner wall temperature of the champer lower than the wafer temperature has many advantages because it can compensate for the decrease in throughput that is a problem with single-wafer apparatuses. It is thought to be the mainstream of self-alignment silicon contact film deposition equipment.
しかしながら本発明者らは、 高集積半導体デバイスにおけるセルファライン - コンタクト用窒化シリコン膜の成膜処理にコールドウォール型の枚葉式熱 CVD 装置の導入を検討した結果、 以下のような問題があることを発見した。  However, as a result of studying the introduction of a cold-wall type single-wafer thermal CVD apparatus for the deposition process of silicon nitride film for self-alignment and contact in highly integrated semiconductor devices, the following problems were found. Was found.
従来はホットウオール型のバッチ式熱 CVD装置でセルフ .ァラインコンタク ト用の窒化シリコン膜を形成していた高集積半導体デバイスに、 試験的にコール ドウオール型の枚葉式熱 CVD装置を用いてセルフ ·ァラインコンタクト用の窒 化シリコン膜を形成したところ、 ρチャネル型 M I S FETのソース . ドレイン 電流が大幅に低下する場合が観察された。 ソース ' ドレイン電流の低下は半導体 デバイスの動作速度を低下させるために防止する必要がある。 特に ρチャネル型 MI SFETでは、 nチャネル型 MI SFETに比べてソース . ドレイン電流が 小さいため、 深刻な問題である。  A high-density semiconductor device, which used to form a silicon nitride film for self-alignment contact with a hot-wall batch type thermal CVD device, was tested on a cold-wall type single-wafer thermal CVD device. When a silicon nitride film for self-aligned contact was formed, it was observed that the source / drain current of the ρ-channel MISFET was greatly reduced. Reduction of source and drain current needs to be prevented to reduce the operation speed of the semiconductor device. In particular, ρ-channel type MISFETs are a serious problem because their source and drain currents are smaller than those of n-channel MISFETs.
発明の開示 Disclosure of the invention
本発明の目的は、 MI S FETのしきい値電圧の変動を防止し、 かつ pチヤネ ル型 MI SFETのソース · ドレイン電流の低下を防いだ、 高速で信頼' I生の高い 半導体デバイスを提供することにある。 It is an object of the present invention to prevent fluctuations in the threshold voltage of a MISFET and to prevent a decrease in the source / drain current of a p-channel type MISFET. It is to provide a semiconductor device.
本発明は、 シリコン基板とその表面に設けられたゲート酸化膜と、 前記ゲート 酸ィ匕膜に接して設けられたゲート電極膜と、 前記グート電極膜の側面に設けられ たサイドウオール膜と、 前記ゲート電極膜とサイドウオール膜を内包するように 設けられた窒化シリコン膜と、 を有する半導体装置において、 前記窒化シリコン 膜が室温において 850MPa以下の引張り応力を持つことを特徴とする, 或いは、 前 記サイドウォール膜が室温において 850MPa以下の弓 I張り応力を持つことを特徴と する半導体装置を提供する。  The present invention provides a silicon substrate and a gate oxide film provided on the surface thereof, a gate electrode film provided in contact with the gate oxide film, a sidewall film provided on a side surface of the good electrode film, A silicon nitride film provided so as to include the gate electrode film and the sidewall film, wherein the silicon nitride film has a tensile stress of 850 MPa or less at room temperature. A semiconductor device characterized in that the sidewall film has a bow I tensile stress of 850 MPa or less at room temperature.
または、 本発明は、 シリコン基板上にゲート酸ィ匕膜を形成する工程と、 その上 にゲート電極膜を形成する工程と、 ゲート電極のパターンを形成する工程と、 前 記グート電極膜の側面に前記サイドウォール膜形成する工程と、 前記グート電極 膜と前記サイドウオール膜を内包するように窒化シリコン膜を堆積させる工程と を有し、 前記窒化シリコン膜は C V D装置を用いて、 前記 C V D装置のチャンバ の内壁温度を 3 0 °C以下にして堆積させることを特徴とする半導体装置の製造方 法を提供する。  Alternatively, the present invention provides a step of forming a gate oxide film on a silicon substrate, a step of forming a gate electrode film thereon, a step of forming a gate electrode pattern, Forming a sidewall film, and depositing a silicon nitride film so as to include the gut electrode film and the sidewall film, wherein the silicon nitride film is formed by using a CVD device and the CVD device. A method of manufacturing a semiconductor device, wherein the inner wall temperature of the chamber is reduced to 30 ° C. or lower.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第一の実施例の半導体装置の断面を示す模式図である。  FIG. 1 is a schematic view showing a cross section of a semiconductor device according to a first embodiment of the present invention.
図 2は pチャネル型電界効果トランジスタのソース · ドレイン電流の応力依存 性の実験結果を示すグラフである。  Figure 2 is a graph showing the experimental results of the stress dependence of the source / drain current of a p-channel field-effect transistor.
図 3は半導体デパイスの最小線幅と、 pチヤネノレ型電界効果トランジスタのソ ース · ドレイン電流の応力依存性との関係を示したグラフである。  FIG. 3 is a graph showing the relationship between the minimum line width of the semiconductor device and the stress dependence of the source / drain current of the p-channel field-effect transistor.
図 4はセルフ ·ァラインコンタクト用の窒化シリコン膜の膜応力と、 グート電 極近傍のシリコン基板内の応力の関係を応力解析によつて求めた結果を示したグ ラフである。  Fig. 4 is a graph showing the relationship between the film stress of the silicon nitride film for self-aligned contact and the stress in the silicon substrate near the good electrode by stress analysis.
図 5はコールドウォール型の枚葉式熱 C V D装置で形成した場合における、 前 記 C V D装置のチャンバの内壁温度と、 前記装置で成膜した窒化シリコン膜の膜 応力との関係を示した実験結果の概要図である。  Fig. 5 shows the experimental results showing the relationship between the inner wall temperature of the chamber of the above-mentioned CVD device and the film stress of the silicon nitride film formed by the device when formed by a cold wall type single wafer thermal CVD device. FIG.
図 6はコールドウオール型の枚葉式熱 C V D装置で形成した場合における、 前 記 C V D装置のチャンバの内壁温度と、 前記装置で成膜した窒化シリコン膜の膜 応力のばらつきとの関係を示した実験結果の概要図である。 Fig. 6 shows the temperature of the inner wall of the chamber of the CVD device and the silicon nitride film formed by the cold wall type single-wafer thermal CVD device. FIG. 9 is a schematic diagram of an experimental result showing a relationship with a variation in stress.
図 7は上記のセルフ ·ァラインコンタクト用の窒化シリコン膜 1 9の成膜に用 いるコールドウォール型の枚葉式熱 C V D装置 1 0 0の概念図である。  FIG. 7 is a conceptual diagram of a cold-wall single-wafer thermal CVD apparatus 100 used for forming the silicon nitride film 19 for self-alignment contact.
図 8は窒化シリコン膜の室温での膜応力と、 窒化シリコン膜の熱リン酸による エッチングレートの関係を示したグラフである。  FIG. 8 is a graph showing the relationship between the film stress of a silicon nitride film at room temperature and the etching rate of the silicon nitride film with hot phosphoric acid.
図 9は本発明の第二の実施例の半導体装置の一部を示す断面模式図である。 図 1 0は本発明の第三の実施例の半導体装置の一部を示す断面模式図である。 図 1 1は本発明の第四の実施例の半導体装置の一部を示す断面模式図である。 図 1 2は本発明の第二の他の実施例の半導体装置の一部を示す断面模式図であ る。  FIG. 9 is a schematic sectional view showing a part of a semiconductor device according to a second embodiment of the present invention. FIG. 10 is a schematic sectional view showing a part of a semiconductor device according to a third embodiment of the present invention. FIG. 11 is a schematic sectional view showing a part of a semiconductor device according to a fourth embodiment of the present invention. FIG. 12 is a schematic sectional view showing a part of a semiconductor device according to a second other embodiment of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
前記課題を達成すべく、 本発明は、 シリコン基板とその表面に設けられたゲー ト酸化膜と、 前記ゲート酸化膜に接して設けられたゲート電極膜と、 前記ゲート 電極膜の側面に設けられたサイドゥォ一ノレ膜と、 前記グート電極膜とサイドゥォ 一ル膜を内包するように設けられた窒化シリコン膜と、 を有する半導体装置にお いて、 前記窒ィ匕シリコン膜が室温において 850MPa以下の引張り応力を持つことを 特徴とする, 或いは、 前記サイドウオール膜が室温において 850MPa以下の引張り 応力を持つことを特徴とする半導体装置を提供する。  In order to achieve the above object, the present invention provides a silicon substrate and a gate oxide film provided on a surface thereof, a gate electrode film provided in contact with the gate oxide film, and a gate electrode film provided on a side surface of the gate electrode film. A silicon nitride film provided so as to enclose the good electrode film and the silo film, wherein the silicon nitride film has a tensile strength of 850 MPa or less at room temperature. A semiconductor device characterized by having a stress, or the sidewall film has a tensile stress of 850 MPa or less at room temperature.
または、 本発明は、 シリコン基板上にゲート酸ィ匕膜を形成する工程と、 その上 にゲート電極膜を形成する工程と、 ゲート電極のパターンを形成する工程と、 前 記ゲート電極膜の側面に前記サイドウオール膜形成する工程と、 前記ゲート電極 膜と前記サイドウオール膜を内包するように窒ィ匕シリコン膜を堆積させる工程と を有し、 前記窒化シリコン膜は C V D装置を用いて、 前記 C VD装置のチャンバ の内壁温度を 3 0 °C以下にして堆積させることを特徴とする半導体装置の製造方 法を提供する。  Alternatively, the present invention provides a step of forming a gate oxide film on a silicon substrate, a step of forming a gate electrode film thereon, a step of forming a gate electrode pattern, Forming a sidewall film, and depositing a silicon nitride film so as to include the gate electrode film and the sidewall film. The silicon nitride film is formed by using a CVD apparatus. Provided is a method for manufacturing a semiconductor device, wherein the inner wall temperature of a chamber of a CVD device is deposited at 30 ° C. or less.
具体的には、 例えば、 熱酸化もしくは C V D法によってゲート酸化膜を形成す ることができる。 また、 スパッタ法もしくは C VD法によってゲート電極膜を形 成することができる。 また、 フォトリソグラフィによってゲート電極のパターン を局所的に形成する。 また、 スパッタ法もしくは C V D法によってサイドウォー ル膜を形成する。 また、 前記サイドウォール膜をエッチングすることにより前記 ゲート電極膜の側面にのみ前記サイドウォール膜を残留させる。 そして、 前記ゲ 一ト電極膜と前記サイドウオール膜を内包するように窒化シリコン膜を堆積させ る。 そして例えば、 前記窒化シリコン膜堆積にはコールドウォール型の枚葉式熱 C VD装置を用いる。 Specifically, for example, a gate oxide film can be formed by thermal oxidation or CVD. Further, a gate electrode film can be formed by a sputtering method or a CVD method. In addition, a pattern of the gate electrode is locally formed by photolithography. Also, the side wall is formed by sputtering or CVD. Forming a film. Further, the sidewall film is etched to leave the sidewall film only on the side surface of the gate electrode film. Then, a silicon nitride film is deposited so as to include the gate electrode film and the sidewall film. For example, a cold-wall type single-wafer thermal CVD apparatus is used for the deposition of the silicon nitride film.
或いは、 前記サイドウォール膜の窒化シリコン膜は、 C V D装置を用いて、 前 記 C V D装置のチャンバの内壁温度を 3 0 °C以下にして堆積させることを特徴と する。  Alternatively, the silicon nitride film of the sidewall film is deposited by using a CVD device at an inner wall temperature of 30 ° C. or lower of the chamber of the CVD device.
または、 本発明は、 シリコン基板とその表面に設けられたゲート酸ィ匕膜、 およ ぴ前記グート酸化膜に接して設けられたゲート電極膜、 および前記ゲート電極膜 の側面に設けられたサイドウオール膜、 および前記ゲート電極膜とサイドウォー ル膜を内包するように設けられた窒化シリコン膜、 を有する半導体装置において、 前記窒化シリコン膜の 1 2 0 °C熱りん酸に対するエッチングレートが llnm/min以 下であることを特徴とする。  Alternatively, the present invention provides a silicon substrate and a gate oxide film provided on the surface thereof; and a gate electrode film provided in contact with the gut oxide film, and a side provided on a side surface of the gate electrode film. In a semiconductor device having a wall film, and a silicon nitride film provided so as to include the gate electrode film and the sidewall film, an etching rate of the silicon nitride film against hot phosphoric acid at 120 ° C. is ll nm / It is characterized by being less than min.
或いは、 前記サイドウオール膜が窒化シリコン膜を含み、 前記窒化シリコン膜 の 1 2 0 °C熱りん酸に対するエッチングレートが llnm/min以下である。  Alternatively, the sidewall film includes a silicon nitride film, and an etching rate of the silicon nitride film with respect to hot phosphoric acid at 120 ° C. is ll nm / min or less.
または、 本発明は、 シリコン基板上にゲート酸ィ匕膜を形成する工程と、 その上 部にゲート電極膜を形成する工程と、 前記グート電極のパターンを局所的に形成 する工程と、 サイドウォール膜を形成する工程と、 前記サイドウォール膜をエツ チングすることにより前記グート電極膜の側面に前記サイドウォ一ル膜を残留さ せる工程と、 前記ゲート電極膜と前記サイドウオール膜を内包するようにセルフ .ァラインコンタクト用の窒化シリコン膜を堆積させる工程とを有し、 前記セル フ .ァラインコンタクト用の窒化シリコン膜を C V D法により堆積させた後に、 前記窒化シリコン膜にイオン注入を行うことを特徴とする。 なお、 前記イオン種 は S i或いは G e又はこれらの組み合わせたものである。  Alternatively, the present invention provides a step of forming a gate oxide film on a silicon substrate, a step of forming a gate electrode film thereon, a step of locally forming a pattern of the gut electrode, Forming a film, etching the sidewall film to leave the sidewall film on a side surface of the good electrode film, and enclosing the gate electrode film and the sidewall film. Depositing a silicon nitride film for self-alignment contact, and ion-implanting the silicon nitride film after depositing the silicon nitride film for self-alignment contact by a CVD method. It is characterized by. The ionic species is Si or Ge or a combination thereof.
また、 本発明は、 前記窒化シリコン膜の上面が下面に比べて濃度の高い元素を 含有することを特徴とする。 なお、 前記前記元素が S i或いは G e又はれらの組 み合わせたものである。  Further, the present invention is characterized in that the upper surface of the silicon nitride film contains an element having a higher concentration than the lower surface. The element is Si or Ge or a combination thereof.
また、 発明者らによる実験の結果、 このソース ' ドレイン電流の低下現象は半 導体デバィスの微細化が進み、 最小線幅 0· 25ミクロン以下となると顕著となるこ とが明らかとなった。 In addition, as a result of experiments by the inventors, this phenomenon of source / drain current drop is half It became clear that the miniaturization of conductor devices has progressed, and it has become remarkable when the minimum line width is 0.25 microns or less.
よって、 本発明により、 半導体デバイスの高集積ィヒが進行した場合においても、 MI SFETのしきい値電圧の変動を防止するとともに、 pチャネル型 MI SF E Tのソース ' ドレイン電流の低下や変動を防ぎ、 高速で信頼性の高い半導体デ バイスを提供することができる。  Therefore, according to the present invention, even when the integration density of a semiconductor device advances, the threshold voltage of the MISFET is prevented from fluctuating, and the source-drain current of the p-channel type MISFET is reduced and fluctuated. Thus, a high-speed and highly reliable semiconductor device can be provided.
また、 MI S FETのしきい値電圧の変動やソース . ドレイン電流の減少は、 半導体デバイスを量産する段階においては歩留まりの低下となって顕在化する。 よって、 本 明により、 歩留まりの良い、 製造コストに優れた半導体デバイス を提供することができる。  In addition, fluctuations in the threshold voltage of the MISFET and a decrease in the source / drain current become apparent at the stage of mass-producing semiconductor devices as a reduction in yield. Therefore, according to the present invention, a semiconductor device with high yield and excellent manufacturing cost can be provided.
なお、 前述したように、 微細化 MI SFETのしきい値電圧の変動を抑えるこ とを目的として、 試験的にコールドウォール型の枚葉式熱 CVD装置を用いてセ ルフ .ァラインコンタクト用の窒化シリコン膜を形成した半導体デバイスを作成 したところ、 pチャネル型 MI S FETのソース · ドレイン電流が大幅に低下す る場合やウェハ面内でソース ' ドレイン電流が大きく異なるトランジスタが製造 される場合が観察された。  As described above, in order to suppress the fluctuation of the threshold voltage of the miniaturized MI SFET, a cold wall type single wafer type thermal CVD apparatus was used as a test for self-line contact. When a semiconductor device with a silicon nitride film is created, the source / drain current of a p-channel MIS FET may drop significantly, or a transistor with a significantly different source / drain current in the wafer plane may be manufactured. Was observed.
発明者らは、 この原因を究明するために応力負荷実験や応力解析等を行つた。 その結果、 (1) セルフ ·ァラインコンタクト用の窒化シリコン膜の引張り応力 が増加すると、 ゲート電極近傍のシリコン基板内の圧縮応力が減少し、 これによ つて p型トランジスタのソース ' ドレイン電流が減少すること、 (2) 高集積半 導体デバイスの微細化が進行し、 最小線幅 0.25ミクロンを下回るようになるとソ ース · ドレイン電流の応力依存性が急上昇し、 微細化に伴って急速に問題が顕在 化してきた、 ということが明らかとなった。  The inventors conducted a stress load experiment, a stress analysis, and the like to determine the cause. As a result, (1) When the tensile stress of the silicon nitride film for the self-aligned contact increases, the compressive stress in the silicon substrate near the gate electrode decreases, and the source-drain current of the p-type transistor decreases. (2) As the miniaturization of highly integrated semiconductor devices progresses and the minimum line width falls below 0.25 μm, the stress dependence of the source / drain current rises sharply and rapidly with miniaturization. It became clear that the problem had become apparent.
一例として、 図 2に, 最小線幅 0.14ミクロンの pチャネル型 M I S F E Tのソ 一ス · ドレイン電流の応力依存性の実験結果を示す。 本実験は半導体デバイスを 形成したシリコン基板に 4点曲げ試験を行レ、、 デバイス形成領域であるシリコン 基板表面に既知の応力を負荷しながら、 トランジスタの特性を測定したものであ る。 応力の方向は電界効果トランジスタのチャネルを流れるソース ' ドレイン電 流に対して平行方向のチャネル面内一軸応力 (チャネルに平行な応力) と, ソー ス - ドレイン電流に対して直角方向のチャネル面内一軸応力 (チャネルに直角な 応力) であり, 応力の符号は, プラスは引張り応力, マイナスは圧縮応力を表す。 チャネル型電界効果トランジスタの場合には, 引張り応力を加えるとチャネル に直角な方向に対してはソース · ドレイン電流は増加 (約 4 o/o !OOMPa) する力 S, チャネルに平行な方向に対しては, ソース · ドレイン電流は減少 (約 7 % / lOOMPa) することが明らかになった。 また, この結果から, チャネル面内の二軸 応力の場合には pチャネル型電界効果トランジスタでは, 絶対値の同じ二軸応力 が作用した場合に, ゲート電極下のシリコン基板の引張り応力が大きいほど、 あ るレヽは圧縮応力が小さレ、ほど、 ソース ' ドレイン電流は減少することが予想され る。 As an example, Fig. 2 shows the experimental results of the stress dependence of the source / drain current of a p-channel MISFET with a minimum line width of 0.14 microns. In this experiment, a four-point bending test was performed on a silicon substrate on which a semiconductor device was formed, and the characteristics of the transistor were measured while applying a known stress to the silicon substrate surface, which is the device formation region. The directions of the stresses are the uniaxial stress in the channel plane parallel to the source and drain currents flowing through the channel of the field effect transistor (stress parallel to the channel), and the The stress is the uniaxial stress in the channel plane perpendicular to the drain current (stress perpendicular to the channel). The sign of the stress is plus for tensile stress and minus for compressive stress. In the case of a channel-type field-effect transistor, the source-drain current increases (approximately 4 o / o! OOMPa) in the direction perpendicular to the channel when a tensile stress is applied, and in the direction parallel to the channel. Thus, it was found that the source / drain current decreased (about 7% / 100MPa). Also, from this result, in the case of biaxial stress in the channel plane, in the case of a p-channel field-effect transistor, when the biaxial stress having the same absolute value acts, the tensile stress of the silicon substrate under the gate electrode increases as the tensile stress increases. On the other hand, it is expected that the source-drain current will decrease as the compressive stress decreases in some levels.
また、 図 3にはゲート幅を変化させた場合の、 ソース ' ドレイン電流の応力依 存性の変化を示した。 グート幅すなわち最小線幅が大きい場合には応力依存性は 小さく、 プロセスばらつき等の他の変動要因に隠れてしまうほどであるが、 最小 線幅が 0. 25ミクロンを下回ると応力依存性が急激に大きくなる。 すなわち、 本課 題は半導体デバイスの高集積ィヒが進んだ結果、 初めて半導体デバイスの製造上の 問題となったものである。  Fig. 3 shows the change in the stress dependence of the source-drain current when the gate width was changed. When the gut width or the minimum line width is large, the stress dependency is small, and it is hidden by other fluctuation factors such as process variation.However, when the minimum line width is less than 0.25 μm, the stress dependency sharply increases. Become larger. In other words, this problem was the first one that became a problem in the manufacture of semiconductor devices as a result of the progress of high integration of semiconductor devices.
よって以上の実験結果をもとに考察すると、 半導体デパイスを最小線幅 0. 25ミ クロン以下に微細化してもソース . ドレイン電流が低下しないようにするために は、 グート電極近傍のシリコン基板内の圧縮応力をできるだけ增加させればよい ことがわかる。 発明者らは、 これを実現するためにセルフ .ァラインコンタクト 用の窒化シリコン膜の膜応力を制御すればよいことに気付いた。  Therefore, considering the above experimental results, it can be seen that even if the semiconductor device is miniaturized to a minimum line width of 0.25 micron or less, in order to prevent source / drain current from decreasing, the silicon substrate near the good electrode must be It can be seen that it is sufficient to increase the compressive stress as much as possible. The inventors have realized that in order to realize this, it is only necessary to control the film stress of the silicon nitride film for the self-alignment contact.
そこで、 ゲート電極近傍のシリコン基板内の圧縮応力を増加させるための窒化 シリコン膜の膜応力を明らかにするために有限要素法を用いた応力解析による検 ff寸を行った。 図 4には、 ソース ' ドレイン電流の変化に影響を与えるゲート近傍 のシリコン基板中の応力と、 セルフ 'ァラインコンタクト用の窒化シリコン膜の 応力との関係を示す。 この関係から前記窒化シリコン膜の膜応力の引張り応力が 小さレ、ほど、 ゲート近傍のシリコン基板中の圧縮応力を増加させることが可能で あることが明らかとなった。  Therefore, in order to clarify the film stress of the silicon nitride film to increase the compressive stress in the silicon substrate near the gate electrode, the ff dimension was determined by stress analysis using the finite element method. Figure 4 shows the relationship between the stress in the silicon substrate near the gate, which affects the change in source and drain current, and the stress in the silicon nitride film for self-aligned contact. From this relationship, it was clarified that the smaller the tensile stress of the film stress of the silicon nitride film, the more the compressive stress in the silicon substrate near the gate can be increased.
以上のように、 発明者らはセルフ 'ァラインコンタクト用の窒化シリコン膜の 膜応力が室温状態において引張り応力が小さくなるように成膜することにより、 ソース . ドレイン電流の低下を防ぐことができることを見出すことができた。 よ つて、 これをコールドウオール型の枚葉式熱 C V D装置を用いて実現することが できればよいことになる。 As described above, the inventors of the present invention have developed a silicon nitride film for self-aligned contact. It was found that by forming the film so that the tensile stress becomes small in a state where the film stress is at room temperature, it is possible to prevent a decrease in the source / drain current. Therefore, it would be sufficient if this could be realized using a cold wall type single wafer thermal CVD apparatus.
そこでコールドゥォール型の枚葉式熱 C V D装置の成膜条件と成膜される窒化 シリコン膜の室温での膜応力との関係を調べたところ、 ある特殊な成膜条件の範 囲において、 引張りの膜応力を減少させられることに気付いた。 図 5にはコール ドウォール型の枚葉式熱 C V D装置のチャンバの温度と膜応力の関係を示す。 コ ールドウオール型の枚葉式熱 C V D装置のチャンバの温度が 3 0 °C以上になると 窒ィ匕シリコン膜の膜応力は著しく増加する。 すなわちコールドウォール型の枚葉 式熱 C V D装置のチャンバの温度を 3 0 °C以下にすることにより、 窒化シリコン 膜の引張り応力を低く抑えることができ、 これによつてゲート近傍のシリコン基 板中の圧縮応力を増カ卩させることが可能となるので、 pチャネル型 M I S F E T のソース · ドレイン電流が大幅に低下するのを防止できる。  The authors examined the relationship between the film formation conditions of a cold-dwell type single-wafer thermal CVD system and the film stress of the silicon nitride film to be formed at room temperature. Was found to be able to reduce the film stress. Figure 5 shows the relationship between the temperature of the chamber and the film stress of the cold wall type single wafer thermal CVD apparatus. When the temperature of the chamber of the cold wall type single-wafer thermal CVD apparatus becomes 30 ° C. or more, the film stress of the silicon nitride film increases remarkably. That is, by setting the temperature of the chamber of the cold-wall type single-wafer thermal CVD apparatus to 30 ° C. or less, the tensile stress of the silicon nitride film can be suppressed low. Since it is possible to increase the compressive stress of the p-channel MISFET, it is possible to prevent the source / drain current of the p-channel MISFET from dropping significantly.
また図 6にはコールドゥォール型の枚葉式熱 C V D装置のチヤンバの温度と膜 応力のばらつき幅の関係を示した。 膜応力のばらつきも同様な関係を示し、 コー ルドゥォール型の枚葉式熱 C V D装置のチャンバの温度が 3 0 °C以下となると急 激に膜応力のゥェハ面内でのばらつきが小さくなることがわかる。  Fig. 6 shows the relationship between the temperature of the chamber and the width of variation of the film stress in the single-wafer thermal CVD apparatus of the coal dwell type. A similar relationship is also observed for variations in film stress, and when the temperature of the chamber of a cold-dual type single-wafer thermal CVD apparatus falls below 30 ° C, the variation in film stress in the wafer plane sharply decreases. Understand.
以上より、 C V D装置のチャンバの温度が 3 0 °C以下となるようにコールドウ オール型の枚葉式熱 C VD装置を用いてセルフ ·ァラインコンタクト用の窒化シ リコン膜を成膜することにより、 前記窒化シリコン膜の引張り応力を低減するこ とができる。 これによつてゲート電極近傍のシリコン基板内の圧縮応力を増加さ せることができるので!)チヤネノレ型 M I S F E Tのソース . ドレイン電流の減少 を防止することができる。 また、 これによつてウェハ内のセルフ ·ァラインコン タクト用の窒化シリコン膜の膜応力がばらつかなくなるため、 ゲート電極近傍の シリコン基板内の圧縮応力のばらつきも小さくすることができる。 その結果、 ソ ース ' ドレイン電流のウェハ面内のばらつきを抑えることができ、 半導体デパイ スの信頼性および歩留まりの向上が可能となる。  As described above, a silicon nitride film for self-aligned contact is formed by using a cold wall type single-wafer thermal CVD device so that the temperature of the chamber of the CVD device becomes 30 ° C or less. The tensile stress of the silicon nitride film can be reduced. As a result, the compressive stress in the silicon substrate near the gate electrode can be increased! ) It is possible to prevent a decrease in the source / drain current of the channel type MISFET. In addition, since the film stress of the silicon nitride film for self-align contact in the wafer does not vary, the variation of the compressive stress in the silicon substrate near the gate electrode can be reduced. As a result, variations in the source / drain current in the wafer surface can be suppressed, and the reliability and yield of semiconductor devices can be improved.
以下、 本発明の第一実施例の形態を図面に基づいて詳細に説明する。 なお、 実 施の形態を説明するための全図において、 同一機能を有するものは同一の符号を 付し、 その繰り返しの説明は省略する。 Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. The actual In all the drawings for describing the embodiments, those having the same functions are denoted by the same reference numerals, and their repeated description will be omitted.
図 1は本実施例の半導体装置の断面の模式図、 図 2は pチャネル型電界効果ト ランジスタのソース ' ドレイン電流の応力依存性, 図 3はデバイスの微細化に伴 う、 応力に対するソース · ドレイン電流の変化率、 図 4はゲート電極を上面より 内包する S i N膜の真性応力が, チャネル部分応力 (ソース · ドレイン電流に平 行でチャネル面内の応力) に与える影響を応力解析した結果, 図 5はチャンパの 内壁温度と膜応力との関係、 図 6はチャンバの内壁温度と前記膜応力のウェハ面 内ばらつきの関係、 図 7はコ一ノレドウオール型の枚葉式熱 CVD装置の概念図、 図 8は S i N膜応力のエッチングレート依存性、 図 9から図 1 1までは本発明の 実施例の説明図である。  Fig. 1 is a schematic diagram of the cross section of the semiconductor device of this embodiment. Fig. 2 is the stress dependence of the source-drain current of the p-channel field-effect transistor. Fig. 4 shows a stress analysis of the effect of the intrinsic stress of the SiN film enclosing the gate electrode from the top surface on the channel partial stress (stress in the channel plane parallel to the source / drain current). Results, Fig. 5 shows the relationship between the inner wall temperature of the champer and the film stress, Fig. 6 shows the relationship between the inner wall temperature of the chamber and the variation of the film stress in the wafer surface, and Fig. 7 shows the single-wall thermal CVD system of the common wall type. FIG. 8 is a conceptual diagram, FIG. 8 is an etching rate dependency of the SiN film stress, and FIG. 9 to FIG. 11 are explanatory diagrams of an embodiment of the present invention.
本実施例の半導体装置は, 図 1に示すように, シリコン基板 1の主面に形成さ れた nチャネル型電界効果トランジスタ丄 と, pチャネル型電界効果トランジ スタ 30で構成される。  As shown in FIG. 1, the semiconductor device of this embodiment includes an n-channel field-effect transistor に formed on the main surface of a silicon substrate 1 and a p-channel field-effect transistor 30.
このうち nチャネル型電界効果トランジスタは, p型ゥエル 1 1に形成された n型ソース ' ドレイン (12, 13) と, ゲート絶縁膜 14, ゲート電極 15、 サイドウォール 1 6で構成され, ゲート電極 15の上面, およびソース ' ドレイ ン (1 2, 13) の上面には, シリサイド 1 7, 1 8が形成される。 さらに、 セ ルフ ·ァラインコンタクト用の窒化シリコン膜 1 9ゃコンタクトホール、 配線が その上方に形成される。 The n-channel field-effect transistor is composed of an n- type source 'drain (12, 13) formed in a p-type well 11, a gate insulating film 14, a gate electrode 15, and a side wall 16; Silicides 17 and 18 are formed on the upper surface of the source and drains (12, 13). Further, a silicon nitride film 19 1 for a self-line contact is formed above the contact hole and wiring.
また, 本発明の着目点である Pチャネル型電界効果トランジスタも同様に, n 型ウエノレ 31に形成された p型ソース · ドレイン (32, 33) と, ゲート絶縁 膜 34, ゲート電極 35、 サイドウォール 36で構成され, ゲート電極 35の上 面, およびソース . ドレイン (32, 33) の上面には, シリサイド 37, 38 が形成される。 さらに、 セルフ 'ァラインコンタクト用の窒化シリコン膜 39や コンタクトホール、 配線、 層間絶縁膜がその上方に形成される。 これらのトラン ジスタは, シリコン酸化膜 (S i 02) や, 窒化シリコン (S i N) からなる, 素子分離膜 2によって, 他のトランジスタとの絶縁がなされる。 Similarly, the P-channel field-effect transistor of the present invention focuses on the p-type source / drain (32, 33) formed in the n-type well 31 and the gate insulating film 34, the gate electrode 35, the side wall. The silicides 37 and 38 are formed on the upper surface of the gate electrode 35 and the upper surfaces of the source and drain (32, 33). Further, a silicon nitride film 39 for self-line contact, a contact hole, a wiring, and an interlayer insulating film are formed thereon. These Trang registers a silicon oxide film (S i 0 2) and consists of silicon nitride (S i N), the device isolation film 2, the insulation of the other transistor is made.
グート絶縁膜 14, 34の材料としては, 例えばシリコン酸ィ匕膜 (S i Op;) 、 窒化シリコン膜 (S i N) , 酸化チタン (T i〇2) , 酸化ジルコニウム (Z r 〇2) , 酸化ハフニウム (H f 〇2) , 五酸化タンタル (T a 205) などの誘 電体膜、 あるいはこれらの積層構造が望ましい。 また、 ゲート電極 1 5, 35の 材料としては、 例えば、 多結晶シリコン膜、 あるいはタングステン (W) 、 モリ ブデン (Μο) , 白金 (P t) , ルテニウム (Ru) 、 イリジウム (I r) 等の 金属膜やこれらの金属のシリサイド、 あるいはこれらの積層構造が望ましい。 サ イドウォール 16、 36の材料としては、 窒化シリコン膜 (S i N) や, シリコ ン酸化膜 (S i 02) 、 多結晶シリコン膜が望ましい。 The material of the gut insulating films 14 and 34 is, for example, silicon oxide film (S i Op;), Silicon nitride film (S i N), titanium oxide (T I_〇 2), zirconium oxide (Z r 〇 2), hafnium oxide (H f 〇 2) Yuden such tantalum pentoxide (T a 2 0 5) A body film or a laminated structure thereof is desirable. The material of the gate electrodes 15 and 35 is, for example, a polycrystalline silicon film or a material such as tungsten (W), molybdenum (Μο), platinum (Pt), ruthenium (Ru), or iridium (Ir). A metal film, a silicide of these metals, or a laminated structure thereof is desirable. As the material of the support id walls 16, 36, the silicon nitride film (S i N) and silico phosphorylation film (S i 0 2), the polycrystalline silicon film is desirable.
セルフ ·ァラインコンタクト用窒化シリコン膜 39は, コンタクトホールを自 己整合的に形成するために用いられるものであり、 前記窒化シリコン膜 39の厚 さは 10皿〜 200nraの範囲が望ましい。 前記窒化シリコン膜 39はコールドウォー ノレ型の枚葉式熱 CVD装置で形成する。  The silicon nitride film 39 for self-aligned contact is used to form contact holes in a self-aligning manner, and the thickness of the silicon nitride film 39 is preferably in the range of 10 plates to 200 nra. The silicon nitride film 39 is formed by a cold wafer type single wafer thermal CVD apparatus.
図 7は上記のセルフ 'ァラインコンタクト用の窒化シリコン膜 39の成 β莫に用 いるコールドウォール型の枚葉式熱 CVD装置 100の概念図である。 コールド ウォール型の枚葉式熱 CVD装置 100のチャンバ 101の中央部にはシリコン 基板 1を乗せるステージ 102が設けられている。 ステージ 102の内部には、 シリコン基板 1を加熱するヒータ 104が設けられている。 ステージ 102の上 方には、 モノシラン (S i H4) とアンモニア (NH3) とからなるソースガス を窒素 (N2) などのキャリアガスとともにシリコン基板 1の表面に供給するシ ャヮ一へッド 103が設けられている。 また、 チャンバ 101の外部にはチャン バ 101の内壁をステージ 102やシリコン基板 1よりも低温に設定する温調機 構 105が設けられている。 また温調機構 1 05には温度表示器 106が設けら れている。 前記温調機構 105は、 例えば、 温度センサ等により壁面温度を検知 する検知部と検知部の信号に基づき壁面温度を所定の温度に制御する制御部等を 備える構成にすることができる。 FIG. 7 is a conceptual diagram of a cold wall type single-wafer thermal CVD apparatus 100 used for forming the silicon nitride film 39 for the self-alignment contact. A stage 102 on which the silicon substrate 1 is mounted is provided at the center of the chamber 101 of the cold wall type single wafer thermal CVD apparatus 100. Inside the stage 102, a heater 104 for heating the silicon substrate 1 is provided. Above the stage 102, a shuttle gas for supplying a source gas composed of monosilane (SiH 4 ) and ammonia (NH 3 ) to the surface of the silicon substrate 1 together with a carrier gas such as nitrogen (N 2 ) is provided. C 103 is provided. Outside the chamber 101, a temperature control mechanism 105 for setting the inner wall of the chamber 101 at a lower temperature than the stage 102 and the silicon substrate 1 is provided. The temperature control mechanism 105 is provided with a temperature indicator 106. The temperature control mechanism 105 can be configured to include, for example, a detection unit that detects a wall surface temperature by a temperature sensor or the like, and a control unit that controls the wall surface temperature to a predetermined temperature based on a signal from the detection unit.
コールドウォール型の枚葉式熱 C V D装置 100ではシリコン基板 1を 1枚ず つステージ 102の上で処理するために、 従来のパッチ式熱 CVD装置に比べて 精密な温度条件の実現が可能である。 よって、 シリコン基板 1の温度制御が正確 にできるために S i基板内への不純物の拡散を制御することができ、 タが微細化された場合でもしきレ、値電圧の変動やばらっきを抑えることができる。 また、 従来のバッチ式熱 C V D装置に比べてウェハ面内の膜厚均一性も良好であ るという利点もある。 The cold-wall type single-wafer thermal CVD apparatus 100 processes silicon substrates 1 one by one on the stage 102, so that more precise temperature conditions can be realized compared to the conventional patch-type thermal CVD apparatus. . Therefore, since the temperature of the silicon substrate 1 can be accurately controlled, the diffusion of impurities into the Si substrate can be controlled. Even when the data is miniaturized, it is possible to suppress the occurrence of fluctuations and variations in the value voltage. Another advantage is that the film thickness uniformity within the wafer surface is better than that of a conventional batch type thermal CVD apparatus.
特にチャンバ 1 0 1の内壁温度を温調機構 1 0 5により制御して、 ステージ 1 0 2ゃシリコン基板 1より低温にして成膜を行うコールドゥォール型の枚葉式熱 C VD装置 1 0 0では、 ソースガスの大部分がシリコン基板 1等で構成されるゥ ェハの表面で反応して膜を形成し、 温度が低いチャンパ 1 0 1の内壁には膜がほ とんど堆積しないので、 スループットの高い成膜が可能となる。 これに対し、 チ ヤンバ 1 0 1の内壁全体を一様に加熱して成膜を行うホットウォール型の熱 C V D装置では、 チャンパ 1 0 1の内壁にも膜が容易に堆積し、 前記膜を定期的に除 去する必要が生じるためにスループットが低下する。  In particular, the temperature control mechanism 105 controls the temperature of the inner wall of the chamber 101, and the stage 102 ゃ a cold-wafer type single-wafer thermal C VD apparatus 10 for forming a film at a lower temperature than the silicon substrate 1. At 0, most of the source gas reacts on the surface of the wafer composed of the silicon substrate 1 and the like to form a film, and the film hardly deposits on the inner wall of the low-temperature champer 101 Therefore, high-throughput film formation becomes possible. In contrast, in a hot-wall type thermal CVD apparatus that uniformly heats the entire inner wall of the chamber 101 to form a film, the film is easily deposited on the inner wall of the chamber 101, and the film is deposited. Throughput decreases because periodic removal is required.
コールドウオール型の枚葉式熱 C V D装置 1 0 0を用いた場合の、 前記窒化シ リコン膜 3 9の成膜条件としては、 シリコン基板 1の温度を 700°Cから 800°Cの間 に、 またガス圧は 200Torrから 350Torrの間になるようにした。 また、 シラン系ガ スとアンモニアガスをガスソースとして用い、 シラン系ガスに対するアンモニア ガスの流量比が 1 4倍以上となるようにするのがのぞましい。 具体的一例を挙げ ると、 モノシラン流量 70sccm、 アンモニア流量 1000sccm、 窒素流量 7000sccmとし、 ガス圧を 350Torrとした。 また、 チャンバ 1 0 1の壁面の温度を 3 0 °C以下に保 つようにした。 シラン系ガスとしては、 本実施例ではモノシランを用いたが, 他 にジシラン、 ジクロルシラン、 テトラエトキシシランも用いることが可能である。 また、 アンモニアに替えてシァノ基、 アミノ基を含む有機化合物を使用すること もできる。  When a cold-wall type single wafer thermal CVD apparatus 100 is used, the silicon nitride film 39 is formed under the following conditions: the temperature of the silicon substrate 1 is set between 700 ° C. and 800 ° C. The gas pressure was set between 200 Torr and 350 Torr. Also, it is preferable to use a silane-based gas and an ammonia gas as a gas source so that the flow ratio of the ammonia gas to the silane-based gas is at least 14 times. As a specific example, the flow rate of monosilane was 70 sccm, the flow rate of ammonia was 1000 sccm, the flow rate of nitrogen was 7000 sccm, and the gas pressure was 350 Torr. The temperature of the wall surface of the chamber 101 was kept at 30 ° C. or lower. In this example, monosilane was used as the silane-based gas, but disilane, dichlorosilane, and tetraethoxysilane may also be used. Further, instead of ammonia, an organic compound containing a cyano group or an amino group can be used.
また C V D装置に対して望まれることは、 前記 C VD装置に付随して壁面の温 度の制御機構、 あるいは温度の表示機能を持つのが望ましい。 チャンバ 1 0 1の 壁面の温度を 3 0 °C以下に保っためには水による冷却が望ましく、 さらにはチラ 一ユニットを用いた水冷却系を備えればなおよレ、。  Also, what is desired for the CVD device is to have a wall temperature control mechanism or a temperature display function associated with the CVD device. In order to keep the temperature of the wall surface of the chamber 101 at 30 ° C. or less, it is desirable to cool with water, and furthermore, a water cooling system using one chiller unit must be provided.
これによつて、 セルフ ·ァラインコンタクト用の窒化シリコン膜 3 9の室温で の膜応力を引張りの 850MPa以下とすることができ、 前記窒化シリコン膜の作用に よってゲート電極 3 5下近傍のシリコン基板 3 1の応力を、 より圧縮応力側にす ることができる。 ここでは「より圧縮応力側にする」と記したが、 これはゲート電 極 3 5近傍のシリコン基板 3 1の応力が従来は引張り応力であったとするならば、 より低い引張り応力となることを意味し、 ゲート電極 3 5近傍のシリコン基板 3 1の応力が従来圧縮応力であった場合には、 より高い圧縮応力とすることを意味 する。 このように、 ゲート電極 3 5近傍のシリコン基板 3 1の応力を、 より圧縮 応力側にすることにより、 pチャネル型トランジスタのソース ' ドレイン電流の 減少を防止することができる。 As a result, the film stress at room temperature of the silicon nitride film 39 for the self-aligned contact can be reduced to a tensile stress of 850 MPa or less, and the silicon nitride film acts to reduce the silicon stress near the gate electrode 35. Reduce the stress of the substrate 31 to the more compressive stress side. Can be Here, it is described that "the stress should be on the compressive stress side" .This means that if the stress of the silicon substrate 31 near the gate electrode 35 was conventionally a tensile stress, the tensile stress would be lower. In other words, if the stress of the silicon substrate 31 near the gate electrode 35 is the conventional compressive stress, it means that the compressive stress is higher. As described above, by reducing the stress of the silicon substrate 31 near the gate electrode 35 to the compressive stress side, it is possible to prevent a decrease in the source-drain current of the p-channel transistor.
また、 前記窒ィ匕シリコン膜 3 9の成膜には、 コールドウォール型の枚葉式熱 C V D装置のチャンバを用い、 そのチャンバ 1 0 1の壁面の温度が 3 0 °C以下とす ると、 ウェハ面内の応力のばらつきを抑えることができるので、 ウェハ面内の p チャネル型トランジスタのソース · ドレイン電流のばらつきを防止することがで きる。 これにより半導体デバイスの信頼性が向上するとともに歩留まり向上が可 能となる。  Further, when forming the silicon nitride film 39, a chamber of a cold wall type single wafer thermal CVD apparatus is used, and the temperature of the wall surface of the chamber 101 is set to 30 ° C. or less. Since variations in stress in the wafer surface can be suppressed, variations in source / drain current of the p-channel transistor in the wafer surface can be prevented. As a result, the reliability of the semiconductor device is improved and the yield can be improved.
また、 応力の観点から考えるとチャンバ 1 0 1の内壁温度を 3 0 °C以下にする ことが望ましいが、 その場合にはエッチングレートが上昇してしまうために、 セ ルフ ·ァライン.コンタクト形成時にゲート電極部とのエッチレートの差が小さ くなるために加工が難しくなるという欠点がある。 これを考慮すると、 次善の策 としてはチャンパ 1 0 1の内壁温度を 3 5 °C以下としてもよい。  From the viewpoint of stress, it is desirable to keep the inner wall temperature of the chamber 101 at 30 ° C. or lower, but in that case, the etching rate rises, so that when forming the self-aligned contacts. There is a disadvantage that processing becomes difficult because the difference in etch rate from the gate electrode portion is small. Considering this, as a next best measure, the inner wall temperature of the champer 101 may be set to 35 ° C or less.
下限の温度は冷却手段によって異なるため特には詳述しない。 例えば水等の冷 媒を用いる場合は凝固する 0 °Cより高い温度までとなる。 もっとも、 水に不凍成 分が入っている場合は、 当該凝固温度より高い温度までとなる。  Since the lower limit temperature differs depending on the cooling means, it will not be described in detail. For example, when a cooling medium such as water is used, the temperature is higher than 0 ° C. at which solidification occurs. However, if the water contains antifreeze, the temperature will be higher than the solidification temperature.
なお、 窒化シリコン膜の室温での膜応力と、 前記条件で成膜した窒化シリコン 膜の熱リン酸によるエッチングレートの間には図 8に示すような明確な関係があ ることがわかっている。 これから、 コールドウォール型の枚葉式熱 C V D装置で 成膜した窒化シリコン膜の膜応力が 850MPa以下の場合には、 1 2 0 °Cの熱リン酸 によるエッチングレートは 1 l nm/min以上となることがわかる。  It is known that there is a clear relationship as shown in FIG. 8 between the film stress of the silicon nitride film at room temperature and the etching rate of the silicon nitride film formed under the above conditions by hot phosphoric acid. . From this, when the film stress of a silicon nitride film formed by a cold wall type single wafer thermal CVD apparatus is 850 MPa or less, the etching rate by hot phosphoric acid at 120 ° C is 1 lnm / min or more. It turns out that it becomes.
図 9には本発明における第二の実施例を示す。 本実施例ではサイドウォーノレ 3 6をコールドゥォール型の枚葉式熱 C V D装置で形成し、 C V D装置のチャンバ の温度を 3 0 °C以下にしたものである。 これによつて、 サイドウォール 3 6を構 成する窒化シリコン膜の室温での膜応力を引張りの 850MPa以下とすることができ、 前記窒化シリコン膜の作用によって、 ゲート電極 3 5下近傍のシリコン基板 3 1 の応力を、 より圧縮応力側にすることができる。 これによつて pチャネル型トラ ンジスタのソース ' ドレイン電流の減少を防止することができる。 サイドウォー ル 3 6は窒ィ匕シリコン膜と酸ィ匕シリコン膜によって構成されていてもよく、 この 場合には窒化シリコンの部分を上記条件で作成すればよい。 すなわち、 コーノレド ウォール型の枚葉式熱 C V D装置で形成し、 前記 C V D装置のチヤンバの温度を 3 0 °C以下にする成膜条件のもとでサイドウオール 3 6の窒化シリコン膜を製造 する。 なお図 1 2に示すように、 セルフ 'ァラインコンタク ト用の窒化シリコン 膜がない場合においても、 本発明を適用すれば同様な効果を有する。 FIG. 9 shows a second embodiment of the present invention. In the present embodiment, the side wall 36 is formed by a cold dwell type single wafer thermal CVD apparatus, and the temperature of the chamber of the CVD apparatus is set to 30 ° C. or lower. As a result, the sidewall 36 is constructed. The film stress at room temperature of the silicon nitride film to be formed can be set to a tensile stress of 850 MPa or less. By the action of the silicon nitride film, the stress of the silicon substrate 31 in the vicinity below the gate electrode 35 becomes more compressive stress side. can do. This can prevent a decrease in the source-drain current of the p-channel transistor. The sidewall 36 may be formed of a silicon nitride film and a silicon nitride film. In this case, the silicon nitride portion may be formed under the above conditions. That is, a silicon nitride film of a sidewall 36 is manufactured under a film forming condition in which a chamber of the CVD apparatus is formed at a temperature of 30.degree. As shown in FIG. 12, even when there is no silicon nitride film for a self-aligned contact, the same effect can be obtained by applying the present invention.
本実施例では、 本発明の第一の実施例に挙げてある利点に加えて、 さらに以下 の特徴がある。 すなわち、 コールドウォール型の枚葉式熱 C V D装置で形成し、 前記 C V D装置のチャンバの温度を 3 0 °C以下にする成膜条件のもとでサイドウ オール 3 6の窒ィヒシリコン膜を製造すれば、 前記窒化シリコン膜の内部に含まれ る水素原子を少なくすることができるため、 トランジスタの電気的特性を良好に することができる。  This embodiment has the following features in addition to the advantages listed in the first embodiment of the present invention. That is, if a silicon nitride film of sidewall 36 is formed under a film forming condition of forming a cold wall type single wafer type thermal CVD apparatus and setting a temperature of a chamber of the CVD apparatus to 30 ° C. or lower. Since the number of hydrogen atoms contained in the silicon nitride film can be reduced, electric characteristics of the transistor can be improved.
また図 1 0には本発明における第三の実施例を示すが、 サイドウオール 3 6に 加えて、 セルフ ·ァラインコンタク ト用の窒化シリコン膜 3 9も上記の条件で製 造すると、 さらにゲート電極下のシリコン基板の応力をより引張り側にすること ができ、 さらに効果が増す。 この実施例の場合には、 サイドウォール 3 6とセル フ ·ァラインコンタクト用の窒化シリコン膜 1 9の両方が全く同じ材質となるこ とから、 サイドウオール 1 6とセルフ ·ァラインコンタクト用の窒化シリコン膜 3 9の材料界面において応力集中が小さくなるため、 界面において膜はがれの危 険が少ないという利点が第二の実施例の利点に加えて存在する。  FIG. 10 shows a third embodiment of the present invention. In addition to the sidewalls 36, a silicon nitride film 39 for a self-align contact is also manufactured under the above conditions. The stress of the silicon substrate under the electrode can be made more tensile, and the effect is further increased. In the case of this embodiment, since both the sidewall 36 and the silicon nitride film 19 for the self-aligned contact are made of exactly the same material, the sidewall 16 and the self-aligned contact are not used. Since the stress concentration at the material interface of the silicon nitride film 39 is reduced, there is an advantage that the risk of film peeling at the interface is small, in addition to the advantage of the second embodiment.
また図 1 1には本発明における第四の実施例を示すが、 サイドウオール 3 6を 2層以上の膜から構成し、 このうちの 1層以上の膜を窆ィ匕シリコン膜として、 上 記の条件で成膜してもよレ、。 本実施例では酸ィヒシリコン膜と窒化シリコン膜との 組み合わせにおいてサイドウオール 3 6を構成しており、 酸化シリコン膜はシリ コン基板と接している。 本実施例では窒化シリコン膜がシリコン基板に直接接触 していないことから、 窒化シリコン中の窒素等の不純物がシリコン基板に拡散し にくいという利点がさらにある。 また、 同様に窒化シリコン膜とシリコン基板の 間に酸化シリコン膜が存在していることから、 窒化シリコン膜の応力を酸ィヒシリ コン膜が応力緩和することにより、 シリコン基板内での転位の発生を防止すると いう利点がさらにある。 FIG. 11 shows a fourth embodiment of the present invention, in which the sidewall 36 is composed of two or more layers, and one or more of these layers is formed as a silicon film. The film may be formed under the above conditions. In this embodiment, the sidewall 36 is formed by a combination of the silicon oxide film and the silicon nitride film, and the silicon oxide film is in contact with the silicon substrate. In this embodiment, the silicon nitride film directly contacts the silicon substrate This has the further advantage that impurities such as nitrogen in silicon nitride are unlikely to diffuse into the silicon substrate. Similarly, since a silicon oxide film exists between the silicon nitride film and the silicon substrate, the stress of the silicon nitride film is relaxed by the oxy-silicon film, so that the generation of dislocations in the silicon substrate is suppressed. There is the additional benefit of preventing it.
さらに図 1 1及び 1 2を用いて本発明における第五の実施例を示す。 本実施例 ではセルフ ·ァラインコンタクト用の窒化シリコン膜 3 9を形成した後に前記窒 化シリコン膜上面の全面にイオン注入を行ったものである。 すなわち、 前記窒化 シリコン膜 3 9を成膜し、 続いてウェハ表面全面にイオン注入処理を施す。 その 後に、 前記窒化シリコン膜を局所的にエッチングし、 ヴィァ形成用の加工を行う。 なお、 この順番を入れ替えて、 ヴィァ形成用の加工を行ってからイオン注入を行 つても同様な効果が得られるが、 この場合にはヴィァ形成孔の部分のシリコン基 板にもイオンが注入され、 転位発生の原因となりやすいため、 望ましくない。 本実施例によつて前記窒化シリコン膜にィオンが注入されるために前記窒化シ リコン膜 3 9の膜応力をより圧縮側にする、 すなわち引張り応力を減少させるこ とができ、 これによつてゲート電極 3 5下近傍のシリコン基板 3 1の応力を、 よ り圧縮応力側にすることができる。 その結果、 pチャネル型トランジスタのソー ス . ドレイン電流の減少を防止することができる。 また、 イオン注入は前記窒化 シリコン膜 3 9の上面全面に行われるために、 イオン注入のマスクが不要であり、 工程あるいはマスクが削減できるという利点がある。 なお、 図 1 2のような構成 の場合は前記サイドウオール部を前記のように形成してもよい。  Further, a fifth embodiment of the present invention will be described with reference to FIGS. In this embodiment, after a silicon nitride film 39 for self-aligned contact is formed, ions are implanted into the entire upper surface of the silicon nitride film. That is, the silicon nitride film 39 is formed, and then ion implantation is performed on the entire surface of the wafer. After that, the silicon nitride film is locally etched to perform a via forming process. The same effect can be obtained by changing the order and performing ion implantation after processing for via formation, but in this case, ions are also implanted into the silicon substrate in the via formation hole. This is not desirable because it is likely to cause dislocations. According to this embodiment, since the ion is implanted into the silicon nitride film, the film stress of the silicon nitride film 39 can be made more compressive, that is, the tensile stress can be reduced. The stress of the silicon substrate 31 near the lower part of the gate electrode 35 can be made to be more on the compressive stress side. As a result, a decrease in the source / drain current of the p-channel transistor can be prevented. In addition, since ion implantation is performed on the entire upper surface of the silicon nitride film 39, there is an advantage that a mask for ion implantation is not required and the number of steps or masks can be reduced. In the case of the configuration shown in FIG. 12, the sidewall portion may be formed as described above.
本実施例は本発明の第一、 第二、 第三の実施例と組み合わせても良いが、 単独 で用いても有効であり、 その場合には他の利点も発生する。 たとえば、 モノシラ ン流量 10sccm、 アンモニア流量 5000sccm、 窒素流量 5000sccmとし、 ガス圧を 350Torrの条件下でセルフ 'ァラインコンタク ト用の窒化シリコン膜 3 9を形成 すると、 前記窒化シリコン膜 3 9の膜応力は引張りの lGPa以上と非常に高くなる 、 その一方で前記窒化シリコン膜 3 9中の不純物が減少し、 前記不純物の拡散 によるシリコン基板への影響を最小にできるという利点が発生する。 従来の技術 では前記窒ィヒシリコン膜中の不純物を減少させるとデバイスの電気特性の 1項目 が良好になる一方で、 前記窒化シリコン膜の引張りの膜応力が増加するため、 p チャネルトランジスタのソース · ドレイン電流が低下するという弊害が起こり、 この現象が最小線幅 0. 25ミクロン以下で顕著となってきた。 本実施例を適用すれ ば、 不純物を少なくする成膜条件において、 前記窒化シリコン膜 3 9の引張りの 膜応力をも減少させる、 あるいは圧縮の膜応力を増加させることができるので、 微細化が進んだ場合でも pチャネルトランジスタのソース · ドレイン電流の低下 を防止することが可能となり、 さらに不純物の影響も最小にできる。 This embodiment may be combined with the first, second, and third embodiments of the present invention, but is effective even if used alone, and in that case, other advantages also occur. For example, when the monosilane flow rate is 10 sccm, the ammonia flow rate is 5000 sccm, the nitrogen flow rate is 5000 sccm, and the gas pressure is 350 Torr, the silicon nitride film 39 for self-alignment contact is formed. Is extremely higher than the tensile strength of 1 GPa. On the other hand, the impurity in the silicon nitride film 39 is reduced, and there is an advantage that the influence of the diffusion of the impurity on the silicon substrate can be minimized. According to the conventional technology, reducing the impurities in the silicon nitride film is one of the electrical characteristics of the device. On the other hand, the tensile stress of the silicon nitride film increases, which causes a decrease in the source / drain current of the p-channel transistor. This phenomenon is remarkable when the minimum line width is 0.25 μm or less. It has become. By applying this embodiment, under the film formation conditions for reducing impurities, the tensile film stress of the silicon nitride film 39 can be reduced or the compressive film stress can be increased, so that the miniaturization is advanced. Even in such a case, it is possible to prevent the source / drain current of the p-channel transistor from being lowered, and to further minimize the influence of impurities.
前記イオン注入処理に使用するイオン種としてはイオンの半径が Siより大きい ものが応力変化が大きくなるために望ましく、 デバイスの電気特性を変化させる 恐れのない G e、 S iがさらに望ましい。 また、 イオン種を G a、 A s、 I n、 S b、 T l、 B iなどの半導体産業でよく用いられるものとすると、 現有設備が 使えるためにィォン注入装置あるいはその周辺設備に対する投資を最小限にでき るという利点が生じる。 加速電圧は前記窒化シリコン膜 3 9の厚さに応じて lOkeVから 200KeV程度が望ましく、 膜厚が薄い場合には加速電圧が低くても良い 傾向にある。 また、 ドーズ量は 1 0 1 2〜1 0 1 6ドーズ Zcm2の範囲が望ましい。 本実施例を行った場合には、 窒化シリコン膜中にこれらのイオン種が検出され、 ィオン注入処理に特有の膜厚方向濃度分布となり、 膜の上面は下面よりも濃度が 高くなる。 As the ion species used for the ion implantation treatment, those having an ion radius larger than Si are desirable because of a large change in stress, and Ge and Si that do not have a risk of changing the electrical characteristics of the device are more desirable. If the ion species are assumed to be commonly used in the semiconductor industry such as Ga, As, In, Sb, Tl, and Bi, the investment in the ion implanter or its peripheral equipment must be invested because the existing equipment can be used. The advantage is that it can be minimized. The acceleration voltage is desirably about lOkeV to about 200 KeV depending on the thickness of the silicon nitride film 39. When the film thickness is small, the acceleration voltage tends to be low. The dose is desirably in the range of 10 12 to 10 16 dose Zcm 2 . When this embodiment is performed, these ion species are detected in the silicon nitride film, and the concentration distribution in the thickness direction is peculiar to the ion implantation process, and the upper surface of the film has a higher concentration than the lower surface.
産業上の利用可能性 Industrial applicability
本発明により、 M I S F E Tのしきい値電圧の変動を防止し、 かつ pチャネル 型 M I S F E Tのソース ' ドレイン電流の低下を防いだ、 高速で信頼性の高い半 導体デバィスを提供することができる。  According to the present invention, it is possible to provide a high-speed and highly-reliable semiconductor device that prevents fluctuation of the threshold voltage of the MISFET and prevents a decrease in the source-drain current of the p-channel MISFET.

Claims

請求の範囲 The scope of the claims
1. シリコン基板と、 その表面に設けられたゲート酸化膜と、 前記ゲート酸ィ匕 膜に接して設けられたグート電極膜と、 前記グート電極膜の側面に設けられたサ ィドウオール膜と、 前記ゲート電極膜とサイドウオール膜を内包するように設け られた窒化シリコン膜と、 を有する半導体装置において、 前記窒化シリコン膜が 室温において 850MPa以下の引張り応力を持つことを特徴とする半導体装置。 1. a silicon substrate, a gate oxide film provided on the surface thereof, a good electrode film provided in contact with the gate oxide film, a side wall film provided on a side surface of the good electrode film, A semiconductor device comprising: a silicon nitride film provided so as to include a gate electrode film and a sidewall film; wherein the silicon nitride film has a tensile stress of 850 MPa or less at room temperature.
2. シリコン基板と、 その表面に設けられたゲート酸化膜と、 前記ゲート酸化 膜に接して設けられたグート電極膜と、 前記グート電極膜の側面に設けられたサ イドウォール膜と、 を有する半導体装置において、 前記サイドウォール膜が室温 において 850MPa以下の引張り応力を持つことを特徴とする半導体装置。  2. It has a silicon substrate, a gate oxide film provided on the surface thereof, a gut electrode film provided in contact with the gate oxide film, and a side wall film provided on a side surface of the gut electrode film. In the semiconductor device, the sidewall film has a tensile stress of 850 MPa or less at room temperature.
3. シリコン基板と、 その表面に設けられたゲート酸ィヒ膜と、 前記ゲート酸ィ匕 膜に接して設けられたグート電極膜と、 前記グート電極膜の側面に設けられてお り窒化シリコン膜を含むサイドウオール膜と、 前記ゲート電極膜とサイドウォー ル膜を内包するように設けられた窒ィヒシリコン膜と、 を有する半導体装置におい て、 前記窒化シリコン膜とサイドウオール膜とが室温において 850MPa以下の引張 り応力を持つことを特徴とする半導体装置。  3. a silicon substrate, a gate oxide film provided on the surface thereof, a gut electrode film provided in contact with the gate oxide film, and silicon nitride provided on a side surface of the gut electrode film. In a semiconductor device having a sidewall film including a film, a silicon nitride film provided so as to include the gate electrode film and the sidewall film, the silicon nitride film and the sidewall film may be 850 MPa at room temperature. A semiconductor device having the following tensile stress.
4. シリコン基板上にゲート酸化膜を形成する工程と、 その上にゲート電極膜 を形成する工程と、 ゲート電極のパターンを形成する工程と、 前記ゲート電極膜 の側面に前記サイドウォ一ル膜を形成する工程と、 前記グート電極膜と前記サイ ドウオール膜を内包するように窒化シリコン膜を堆積させる工程と、 を有し、 前 記窒化シリコン膜は C V D装置を用いて、 前記 C V D装置のチャンパの内壁温度 を 3 0 °C以下にして堆積させることを特徴とする半導体装置の製造方法。  4. a step of forming a gate oxide film on a silicon substrate, a step of forming a gate electrode film thereon, a step of forming a pattern of a gate electrode, and forming the side wall film on a side surface of the gate electrode film. Forming a silicon nitride film so as to include the gut electrode film and the side wall film, wherein the silicon nitride film is formed by using a CVD device to form a champer of the CVD device. A method for manufacturing a semiconductor device, wherein the deposition is performed at an inner wall temperature of 30 ° C. or lower.
5. シリコン基板上にゲート酸化膜を形成する工程と、 その上にゲート電極膜 を形成する工程と、 窒化シリコン膜を堆積させてサイドウオール膜を形成するェ 程と、 前記サイドウォール膜をェツチングすることにより前記グート電極膜の側 面に前記サイドウォール膜を残留させる工程と、 を有し、 前記サイドウォール膜 の窒化シリコン膜は、 C V D装置を用いて、 前記 C V D装置のチャンバの内壁温 度を 3 0 °C以下にして堆積させることを特徴とする半導体装置の製造方法。 5. a step of forming a gate oxide film on a silicon substrate, a step of forming a gate electrode film thereon, a step of depositing a silicon nitride film to form a sidewall film, and etching the sidewall film. And leaving the sidewall film on the side surface of the good electrode film by performing a CVD process. The silicon nitride film of the sidewall film is formed by using a CVD device to measure the inner wall temperature of the chamber of the CVD device. And depositing at a temperature of 30 ° C. or less.
6. シリコン基板上にゲート酸化膜を形成する工程と、 その上にゲート電極膜 を形成する工程と、 サイドウオール膜を形成する工程と、 前記サイドウオール膜 をェツチングすることにより前記ゲート電極膜の側面に前記サイドウォール膜を 残留させる工程と、 前記ゲート電極膜と前記サイドウオール膜を内包するように セルフ 'ァラインコンタクト用の窒化シリコン膜を堆積させる工程と、 を有し、 前記サイドウオールの窒化シリコン膜と前記セルフ ·ァラインコンタクト用の窒 化シリコン膜は、 C V D装置を用いて、 前記 C V D装置のチャンバの内壁温度を 3 0 °C以下にして堆積させることを特徴とする半導体装置の製造方法。 6. a step of forming a gate oxide film on a silicon substrate, a step of forming a gate electrode film thereon, a step of forming a side wall film, and etching the side wall film to form the gate electrode film. A step of leaving the sidewall film on a side surface, and a step of depositing a silicon nitride film for a self-aligned contact so as to include the gate electrode film and the sidewall film. The semiconductor device according to claim 1, wherein the silicon nitride film and the silicon nitride film for the self-alignment contact are deposited by using a CVD apparatus at an inner wall temperature of 30 ° C. or lower in a chamber of the CVD apparatus. Production method.
7. シリコン基板とその表面に設けられたゲート酸化膜、 および前記ゲート酸 化膜に接して設けられたゲート電極膜、 および前記ゲート電極膜の側面に設けら れたサイドウオール膜、 および前記ゲート電極膜とサイドウオール膜を内包する ように設けられた窒化シリコン膜、 を有する半導体装置において、 前記窒化シリ コン膜の 1 2 0 °C熱りん酸に対するエッチングレート力 Sllnm/fflin以下であること を特徴とする半導体装置。  7. A silicon substrate and a gate oxide film provided on the surface thereof, a gate electrode film provided in contact with the gate oxide film, a sidewall film provided on a side surface of the gate electrode film, and the gate In a semiconductor device having a silicon nitride film provided so as to include an electrode film and a sidewall film, an etching rate force of the silicon nitride film to hot phosphoric acid at 120 ° C. is not more than Sllnm / fflin. Characteristic semiconductor device.
8. シリコン基板とその表面に設けられたゲート酸ィヒ膜、 および前記ゲート酸 化膜に接して設けられたゲート電極膜、 および前記グート電極膜の側面に設けら れたサイドウオール膜、 を少なくとも有する半導体装置において、 前記サイドウ オール膜が窒ィヒシリコン膜を含み、 前記窒化シリコン膜の 1 2 0 °C熱りん酸に対 するエッチングレートが 1 lnm/min以下であることを特徴とする半導体装置。  8. a silicon substrate and a gate oxide film provided on the surface thereof, a gate electrode film provided in contact with the gate oxide film, and a sidewall film provided on a side surface of the good electrode film. A semiconductor device having at least a sidewall film including a silicon nitride film, wherein an etching rate of the silicon nitride film to hot phosphoric acid at 120 ° C. is 1 lnm / min or less. .
9. シリコン基板とその表面に設けられたゲート酸ィ匕膜、 および前記ゲート酸 化膜に接して設けられたゲート電極膜、 および前記ゲート電極膜の側面に設けら れており窒化シリコン膜を含むサイドウォール膜、 およぴ前記ゲート電極膜とサ ィドウオール膜を内包するように設けられた窒化シリコン膜、 を有する半導体装 置において、 前記窒ィ匕シリコン S莫とサイドウオール膜を構成する窒化シリコン膜 とは、 1 2 0 °C熱りん酸に対するエッチングレートが llnm/min以下であることを 特徴とする半導体装置。  9. A silicon substrate and a gate oxide film provided on the surface thereof, a gate electrode film provided in contact with the gate oxide film, and a silicon nitride film provided on a side surface of the gate electrode film. A silicon nitride film provided so as to include the gate electrode film and the sidewall film, and a nitride film forming the sidewall film with the silicon nitride film. A silicon film is a semiconductor device characterized in that the etching rate with respect to hot phosphoric acid at 120 ° C. is not more than ll nm / min.
10. シリコン基板上にゲート酸化膜を形成する工程と、 その上部にゲート電極 膜を形成する工程と、 前記ゲート電極のパターンを局所的に形成する工程と、 サ ィドウオール膜を形成する工程と、 前記サイドウオール膜をエッチングすること により前記ゲート電極膜の側面に前記サイドウオール膜を残留させる工程と、 前 記ゲート電極膜と前記サイドウオール膜を内包するようにセルフ ·ァラインコン タクト用の窒化シリコン膜を堆積させる工程と、 を有し、 前記セルフ .ァライン コンタクト用の窒化シリコン膜を堆積させた後に、 前記窒化シリコン膜にイオン 注入を行うことを特徵とする半導体装置の製造方法。 10. A step of forming a gate oxide film on a silicon substrate, a step of forming a gate electrode film thereon, a step of locally forming a pattern of the gate electrode, and a step of forming a sidewall film Etching the sidewall film A step of leaving the sidewall film on the side surface of the gate electrode film, and a step of depositing a silicon nitride film for self-alignment contact so as to include the gate electrode film and the sidewall film. Then, after depositing the silicon nitride film for the self-aligned contact, ion implantation is performed on the silicon nitride film.
11. シリコン基板上にゲート酸ィヒ膜を形成する工程と、 その上部にゲート電極 膜を形成する工程と、 前記ゲート電極のパターンを局所的に形成する工程と、 サ ィドウオール膜を形成する工程と、 前記サイドウオール膜をエッチングすること により前記ゲート電極膜の側面に前記サイドウオール膜を残留させる工程と、 前 記ゲート電極膜と前記サイドウオール膜を内包するようにセルフ ·ァラインコン タクト用の窒化シリコン膜を堆積させる工程と、 を有し、 前記サイドウォール膜 を堆積させた後に、 前記サイドウオール膜にイオン注入を行うことを特徴とする 半導体装置の製造方法。  11. A step of forming a gate oxide film on a silicon substrate, a step of forming a gate electrode film thereon, a step of locally forming a pattern of the gate electrode, and a step of forming a side wall film Etching the sidewall film to leave the sidewall film on the side surface of the gate electrode film; and nitriding for self-align contact so as to include the gate electrode film and the sidewall film. A method of manufacturing a semiconductor device, comprising: depositing a silicon film; and ion-implanting the sidewall film after depositing the sidewall film.
12. 請求項 1 0と 1 1において前記イオン種が S i或いは G e又はこれらの組 み合わせたものであることを特徴とする半導体装置の製造方法。  12. The method for manufacturing a semiconductor device according to claim 10, wherein the ionic species is Si or Ge or a combination thereof.
13. シリコン基板とその表面に設けられたゲート酸ィ匕膜、 および前記ゲート酸 化膜に接して設けられたグート電極膜、 および前記ゲート電極膜の側面に設けら れたサイドウオール膜、 および前記ゲート電極膜とサイドウオール膜を内包する ように設けられた窒化シリコン膜、 を有する半導体装置において、 前記窒化シリ コン膜の上面が下面に比べて濃度の高い元素を含有することを特徴とする半導体  13. a silicon substrate and a gate oxide film provided on the surface thereof, a gut electrode film provided in contact with the gate oxide film, and a sidewall film provided on a side surface of the gate electrode film; and A silicon nitride film provided so as to include the gate electrode film and the sidewall film, wherein an upper surface of the silicon nitride film contains an element having a higher concentration than a lower surface. Semiconductor
14. 請求項 1 2において前記元素が S i或いは G e又はれらの組み合わせたも のであることを特徴とする半導体集積回路装置。 14. The semiconductor integrated circuit device according to claim 12, wherein the element is Si, Ge, or a combination thereof.
PCT/JP2001/007433 2000-12-08 2001-08-29 Semiconductor device WO2002047170A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000379786A JP4441109B2 (en) 2000-12-08 2000-12-08 Manufacturing method of semiconductor device
JP2000-379786 2000-12-08

Publications (1)

Publication Number Publication Date
WO2002047170A1 true WO2002047170A1 (en) 2002-06-13

Family

ID=18848087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007433 WO2002047170A1 (en) 2000-12-08 2001-08-29 Semiconductor device

Country Status (3)

Country Link
JP (1) JP4441109B2 (en)
TW (1) TW513799B (en)
WO (1) WO2002047170A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060076A (en) * 2001-08-21 2003-02-28 Nec Corp Semiconductor device and manufacturing method therefor
JP4406200B2 (en) * 2002-12-06 2010-01-27 株式会社東芝 Semiconductor device
US7001837B2 (en) * 2003-01-17 2006-02-21 Advanced Micro Devices, Inc. Semiconductor with tensile strained substrate and method of making the same
JP4982958B2 (en) * 2005-03-24 2012-07-25 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
JP2006332243A (en) 2005-05-25 2006-12-07 Toshiba Corp Semiconductor device and its manufacturing method
JP4618068B2 (en) * 2005-09-21 2011-01-26 ソニー株式会社 Semiconductor device
US7612414B2 (en) 2007-03-29 2009-11-03 International Business Machines Corporation Overlapped stressed liners for improved contacts
TWI345836B (en) 2007-06-12 2011-07-21 Au Optronics Corp Dielectric layer and thin film transistor,display planel,and electro-optical apparatus
WO2009008082A1 (en) 2007-07-12 2009-01-15 Fujitsu Microelectronics Limited Semiconductor device and manufacturing method of semiconductor device
US11562923B2 (en) 2020-05-05 2023-01-24 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor arrangement including a first electrical insulator layer and a second electrical insulator layer and method of making

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126880A (en) * 1976-02-13 1978-11-21 Hitachi, Ltd. Germanium-containing silicon nitride film
JPS5536935A (en) * 1978-09-06 1980-03-14 Hitachi Ltd Manufacturing of semiconductor device
JPS5556635A (en) * 1978-10-20 1980-04-25 Sanyo Electric Co Ltd Preparation of surface top coat in semiconductor device
JPS59114829A (en) * 1982-12-21 1984-07-03 Agency Of Ind Science & Technol Formation of silicon nitride film
JPS6012737A (en) * 1983-07-01 1985-01-23 Agency Of Ind Science & Technol Manufature of silicon nitride film
JPH0766139A (en) * 1993-08-30 1995-03-10 Ryoden Semiconductor Syst Eng Kk Chemical vapor deposition system
JPH07183291A (en) * 1993-12-24 1995-07-21 Sony Corp Method and apparatus for heat treatment
JPH07240410A (en) * 1994-02-28 1995-09-12 Sony Corp Formation of silicon nitride film
JPH09125251A (en) * 1995-11-01 1997-05-13 Tokyo Electron Ltd Film forming device
EP0831521A2 (en) * 1996-09-18 1998-03-25 Texas Instruments Incorporated Method for forming a silicide region
JP2000216377A (en) * 1999-01-20 2000-08-04 Nec Corp Method for manufacturing semiconductor device
US6146972A (en) * 1997-06-11 2000-11-14 Nec Corporation Method for fabricating semiconductor device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126880A (en) * 1976-02-13 1978-11-21 Hitachi, Ltd. Germanium-containing silicon nitride film
JPS5536935A (en) * 1978-09-06 1980-03-14 Hitachi Ltd Manufacturing of semiconductor device
JPS5556635A (en) * 1978-10-20 1980-04-25 Sanyo Electric Co Ltd Preparation of surface top coat in semiconductor device
JPS59114829A (en) * 1982-12-21 1984-07-03 Agency Of Ind Science & Technol Formation of silicon nitride film
JPS6012737A (en) * 1983-07-01 1985-01-23 Agency Of Ind Science & Technol Manufature of silicon nitride film
JPH0766139A (en) * 1993-08-30 1995-03-10 Ryoden Semiconductor Syst Eng Kk Chemical vapor deposition system
JPH07183291A (en) * 1993-12-24 1995-07-21 Sony Corp Method and apparatus for heat treatment
JPH07240410A (en) * 1994-02-28 1995-09-12 Sony Corp Formation of silicon nitride film
JPH09125251A (en) * 1995-11-01 1997-05-13 Tokyo Electron Ltd Film forming device
EP0831521A2 (en) * 1996-09-18 1998-03-25 Texas Instruments Incorporated Method for forming a silicide region
US6146972A (en) * 1997-06-11 2000-11-14 Nec Corporation Method for fabricating semiconductor device
JP2000216377A (en) * 1999-01-20 2000-08-04 Nec Corp Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2002176174A (en) 2002-06-21
TW513799B (en) 2002-12-11
JP4441109B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4653949B2 (en) Semiconductor device manufacturing method and semiconductor device
US6017784A (en) Manufacture method of semiconductor device with suppressed impurity diffusion from gate electrode
JP4890448B2 (en) Techniques for generating different mechanical stresses by forming etch stop layers with different intrinsic stresses in different channel regions
US6982465B2 (en) Semiconductor device with CMOS-field-effect transistors having improved drain current characteristics
US7453107B1 (en) Method for applying a stress layer to a semiconductor device and device formed therefrom
US7314793B2 (en) Technique for controlling mechanical stress in a channel region by spacer removal
US7396748B2 (en) Semiconductor device includes gate insulating film having a high dielectric constant
US20020008257A1 (en) Mosfet gate electrodes having performance tuned work functions and methods of making same
KR100685205B1 (en) Semiconductor device having a hmp metal gate and method for manufacturing the same
WO2002047170A1 (en) Semiconductor device
WO2009157042A1 (en) Semiconductor device and method for manufacturing the same
US7622348B2 (en) Methods for fabricating an integrated circuit
US6635938B1 (en) Semiconductor device and manufacturing method thereof
KR20010080635A (en) Method for forming tungsten silicide film and method for fabricating metal-insulator-semiconductor transistor
US20060014389A1 (en) Method of manufacturing semiconductor device
KR101134157B1 (en) Technique for creating different mechanical stress in different channel regions by forming an etch stop layer having differently modified intrinsic stress
US7956390B2 (en) Semiconductor device and manufacturing method thereof
JP2009016688A (en) Method of manufacturing semiconductor device
JPH10303207A (en) Semiconductor wafer, its manufacture, and semiconductor integrated circuit device
US9318345B2 (en) Enhancing transistor performance by reducing exposure to oxygen plasma in a dual stress liner approach
KR20030033995A (en) Method of fabricating deep sub-micron cmos source/drain with mdd and selective cvd silicide
KR20010008505A (en) Method of forming transistor provided with metal-gate electrode
KR20100108419A (en) Thin film and method for manufacturing semiconductor device using the thin film
JP2005243678A (en) Method of manufacturing semiconductor device
KR100472855B1 (en) Polycrystalline silicon thin film manufacturing method of semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase