WO2002044754A1 - Verfahren und vorrichtung zur frequenzsynthese in einem entfernungsmessgerat - Google Patents

Verfahren und vorrichtung zur frequenzsynthese in einem entfernungsmessgerat Download PDF

Info

Publication number
WO2002044754A1
WO2002044754A1 PCT/CH2001/000654 CH0100654W WO0244754A1 WO 2002044754 A1 WO2002044754 A1 WO 2002044754A1 CH 0100654 W CH0100654 W CH 0100654W WO 0244754 A1 WO0244754 A1 WO 0244754A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
multiplexer
delay elements
ring oscillator
low
Prior art date
Application number
PCT/CH2001/000654
Other languages
English (en)
French (fr)
Inventor
Kurt Giger
Original Assignee
Kurt Giger
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurt Giger filed Critical Kurt Giger
Priority to AU2002212027A priority Critical patent/AU2002212027A1/en
Priority to DE50113871T priority patent/DE50113871D1/de
Priority to KR1020037007216A priority patent/KR100802969B1/ko
Priority to JP2002546245A priority patent/JP3935841B2/ja
Priority to EP01980099A priority patent/EP1337875B1/de
Publication of WO2002044754A1 publication Critical patent/WO2002044754A1/de
Priority to US10/446,786 priority patent/US6859744B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement

Definitions

  • the invention relates to a method and a device for frequency synthesis in a distance measuring device according to the preamble of independent method claim 1 and the preamble of independent device claim 11.
  • the invention also relates to a distance measuring device according to the preamble of patent claim 19.
  • Electronic distance measuring devices are often used in building surveying or interior design, for example for three-dimensional measurement of rooms. They have a distance measuring range of a few tens of meters and are often designed as handheld devices. Further areas of application for distance measuring devices are geodetic and industrial surveying.
  • the basic principle of distance measurement with the known devices is based on the evaluation of a change over time in a parameter of the electromagnetic radiation emitted by the device and remitted by a targeted object.
  • the distance measuring device is equipped with a transmitter for the emission of an intensity-modulated radiation.
  • Handheld devices are primarily optical radiation in the visible wavelength spectrum in order to make it easier to aim at the measuring points. The optical radiation is remitted or scattered by the targeted measurement object and registered by a receiver built into the device. The distance to the measurement object results from the time delay of the received modulated radiation compared to the radiation emitted by the transmitter.
  • pin photodiodes or avalanche photodiodes are usually used as detectors for converting the radiation remitted or scattered by the measurement object into electrical signals.
  • Distance meters are very common and their distance determination is based on the measuring principle of phase measurement.
  • the electrical reception signal is directly on superimposed on the avalanche photodiode or after a preamplifier with a mixer frequency to form a low-frequency measurement signal.
  • the phase is determined on this low-frequency signal and compared with the phase of a reference signal.
  • the difference between the measured phase of the low-frequency measurement signal and the phase of the reference signal is a measure of the distance of the measurement object.
  • a laser modulation frequency of preferably greater than 100 MHz and a mixer frequency are required which only deviate from the laser modulation frequency by the amount of the low frequency. Determining the phase on the low-frequency measurement signal is much easier to implement than on the original high-frequency receive signal.
  • the low frequency in the kilohertz range for example 10 kHz, is therefore typically selected.
  • a mixer frequency must be generated for the generation of the desired low-frequency measurement signal, which is only 25 ppm different from the high frequency. To achieve this, the highest possible crosstalk attenuation is required for the two high frequencies. With such high frequencies close together, undesired sidebands, however, can only be suppressed, if at all, with an extraordinarily high filtering effort. These measures are costly and often lead to further sources of error.
  • the two high frequencies are generated with two separate crystal oscillators.
  • One of the two quartz oscillators is voltage-controlled and is regulated in a phase-locked loop (PLL) to the frequency which deviates from the high frequency of the other quartz oscillator by the amount of the low frequency.
  • PLL phase-locked loop
  • the quartz oscillators used to generate the two high frequencies must overlap with one another within very narrow tolerances. In order to ensure the small tolerances, complex and costly manufacturing processes are required. In addition, quartz oscillators can only be produced economically for frequency ranges of approximately 100 MHz. For modulation frequencies greater than 100 MHz, frequency multipliers are also required cause additional costs.
  • Alternative solution variants for the generation of high frequencies beyond 100 MHz use additional surf ace acoustic wave (SAW) resonators or filters in connection with the quartz oscillator.
  • SAW surf ace acoustic wave
  • DDS direct digital synthesis
  • the object of the present invention is therefore to remedy these disadvantages of the prior art.
  • a method and a device are to be provided with which the high frequencies required for the modulation frequency and for the mixer frequency can be generated simply and inexpensively.
  • the generation of the high frequencies should take place with the required accuracy and have a low power consumption, so that the use with handheld devices remains guaranteed.
  • the frequency generator should only require a small amount of space so that the size of the device can be reduced.
  • the structure of the frequency generator should advantageously enable inexpensive, reproducible mass production.
  • the solution to this problem consists in a method for frequency synthesis, in particular in a distance measuring device, which has the features listed in the characterizing section of claim 1.
  • a trained according to the invention Device for carrying out the method has in particular the features stated in the characterizing part of patent claim 11.
  • a distance measuring device equipped with a frequency generator according to the invention is the subject of claim 19.
  • Preferred embodiment variants and / or developments of the invention are the subject of the respective dependent method and device claims.
  • the method according to the invention for frequency synthesis is based on the fact that a frequency, preferably supplied by a quartz oscillator, is used is set in a ring oscillator with N delay elements to a desired first high frequency, which is used as a mixer frequency or as a modulation frequency.
  • the signals at the N delay elements are fed to a multiplexer which is switched over with a clock cycle which corresponds to 2 * N times the frequency of the low-frequency measurement signal to be evaluated.
  • a second high frequency which is different from the first high frequency by the frequency of the low-frequency measurement signal, is generated at the output of the multiplexer and can be used as a modulation frequency or as a mixer frequency.
  • a first high frequency for example the mixer frequency
  • the requirements for the accuracy of the quartz oscillator are not so high, so that inexpensive quartz crystals can be used.
  • the actual high frequency is generated with the ring oscillator, which has N delay elements. If a delay element has a delay time td, then the frequency 1 / (2 * N *) is present at the output of the ring oscillator. The voltage curve at the individual delay elements is phase-shifted by one delay time each. If the multiplexer is switched over with a clock cycle that is N times the frequency of the low-frequency measurement signal to be evaluated, the second high frequency at the modulation output for the radiation source loses exactly one high-frequency period during a low-frequency period.
  • the second high frequency, the modulation frequency is smaller than just by the frequency of the low-frequency measurement signal the first radio frequency, which represents the mixer frequency.
  • the low-frequency beat frequency that arises when the mixer frequency and the modulation frequency are superimposed does not have a continuous signal curve.
  • the result is a signal with 2N steps, corresponding to twice the number of delay elements in the ring oscillator. With a sufficiently high number of delay elements and the use of a smoothing filter, however, this is not a further problem.
  • the requirements for the phase noise of the ring oscillator are relatively small, since both high frequencies are derived from the same oscillator.
  • the phase of the low frequency resulting from the superimposition in the receiver is proportional to the difference in the phase of the two high frequencies. Large parts of the phase noise of the high-frequency oscillators in the receiver are eliminated, since both phase noise are correlated with one another.
  • the number of delay elements in the ring oscillator determines the phase steps.
  • the number of possible delay elements can be limited by the required modulation frequency and possibly also by the manufacturing method for the ring oscillator. If, on the other hand, smaller phase steps are required for accuracy requirements, these can be generated, for example, with a delay line at the output of the multiplexer.
  • the second high frequency present at the output of the multiplexer is fed to a further arrangement of delay elements and a further multiplexer, which is switched in time with the number of further delay elements multiplied by the frequency of the low-frequency measurement signal, in order to subdivide the coarse phase steps applied to the first multiplexer into finer phase steps , and to achieve a smoother low-frequency signal.
  • the intermediate stages of the high frequency can be digitally interpolated.
  • the output signal at the first multiplexer is not passed through a further delay circuit in order to switch directly from one phase step to the next. Rather, the time between the individual phase steps is divided into further time windows, for example into 8 time windows.
  • the multiplexer is first switched fully to the lower stage.
  • the multiplexer will be at the given example in a ratio of 1/8 . , 7/8 switched to higher or lower phase. The ratio is now increased with each subsequent time window. This results in ratios of 2/8, 6/8; 3/8, 5/8; etc. This method allows interpolation between the individual phase stages with little effort in order to obtain a smoothed signal curve.
  • the delay elements are designed with a voltage-controlled delay.
  • the ring oscillator frequency is preferably regulated from 8 times to 64 times the frequency of the quartz oscillator.
  • bistable flip-flops for example RS flip-flops, inverters or the like, are preferably used as delay elements.
  • a ring oscillator with 8 to 32, for example with 16, delay elements has proven to be advantageous for achieving the required high frequencies with the desired fine gradation of the phase steps.
  • the evaluation of the low-frequency measurement signal takes place synchronously with an internal low-frequency synchronization frequency derived from the mixer frequency by a divider. As the measuring distance increases, the phase of the received signal shifts to the phase of the internal low-frequency Synchronization signal. Due to the non-ideal delay elements and other tolerances, it is not possible to generate absolutely uniform phase steps by switching the multiplexer. The resulting systematic phase errors are greatly reduced by measuring and then averaging the same distance in different phase positions with respect to the internal synchronization signal. This is very easy to do by starting the switching process of the multiplexer not at input 1 but at another input.
  • the inventive device for frequency synthesis is characterized by a particularly simple structure.
  • the means for generating a first high frequency comprise a crystal oscillator which interacts with a ring oscillator with N delay stages.
  • the means for generating a second high frequency which is different from the first high frequency by the frequency of the low-frequency measurement signal comprise a multiplexer which can be switched over with a clock which corresponds to 2 * N times the frequency of the low-frequency measurement signal.
  • the requirements for the accuracy of the quartz oscillator are not so high, so that inexpensive quartz crystals can be used.
  • the actual high frequency is generated with the ring oscillator, which has N delay elements.
  • the requirements for the phase noise of the ring oscillator are relatively small, since both high frequencies are derived from the same oscillator.
  • the phase of the low frequency arising in the superposition in the receiver is proportional to the difference in the phase of the two high frequencies. Large parts of the phase noise of the high-frequency oscillators in the receiver are eliminated, since both phase noise
  • the number of delay elements gives the required modulation frequency and the fineness of the phase steps. On the other hand, the number of delay elements also determines the level of the low-frequency signal obtained from the superimposition of the two high frequencies. It has proven expedient for the ring oscillators 8 to 64, for example 16, delay elements. If, for example, the ring oscillator is tuned to 400 MHz and a low frequency of approx. 6J kHz is required, then 16 delay elements prove to be expedient. These are designed, for example, as RS flip-flops. In order to achieve the required low-frequency To obtain a frequency of 6J kHz, the ring oscillator frequency is divided by the factor 2 16 .
  • the multiplexer which must have 32 inputs for 16 RS flip-flops, must be switched with a frequency 32 times higher than the low frequency: sequentially. This results in a second high frequency at the output of the multiplexer that deviates from the ring oscillator frequency by the amount of the low frequency.
  • the ring oscillator is equipped with a phase-locked loop (PLL), by means of which the ring oscillator frequency can be adjusted to a multiple, preferably 8 to 64 times the frequency of the quartz oscillator.
  • PLL phase-locked loop
  • the PLL control loop reduces the phase noise of the ring oscillator, which primarily regulates the low-frequency phase noise components.
  • the possible number of delay elements is limited by the required modulation frequency and possibly also by the manufacturing process. If the gradation of the phase steps with the number of delay elements is too coarse for the required accuracy, the output of the multiplexer can be connected to a delay element which comprises a ring oscillator with delay stages and a downstream multiplexer. In this way, the required finer phase gradations can be generated from the rough phase steps.
  • ring oscillators and multiplexers are produced in an integrated semiconductor design, for example using C-MOS technology.
  • the components produced in this way can be reproduced as desired, are inexpensive to manufacture and, particularly in C-MOS technology, have low energy consumption.
  • a distance measuring device equipped according to the invention according to the principle of phase measurement has a transmitter for emitting optical radiation, a receiving optics for the optical measuring radiation remitted or scattered by a measurement object, a high-electrical receiver downstream of the receiving optics for converting the optical radiation into electrical measuring signals, and one Signalverarbei- processing system for comparing the measurement signals with reference signals and for examining their phase position in order to determine the distance of the measurement object and to make the result available to the user.
  • the emitted radiation is modulated with a high-frequency modulation frequency.
  • a high-frequency mixer frequency deviates from the modulation frequency by the frequency of the low-frequency measurement signal to be evaluated and is superimposed on the electrical signal supplied by the receiver.
  • the means for generating the high-frequency modulation frequency for the emitted optical radiation and the high-frequency mixer frequency different from the modulation frequency, which can be superimposed on the electrical signals supplied by the high-voltage receiver, are designed according to the invention or one of its modifications. This reduces the cost of manufacturing the distance measuring device. Its dimensions can be kept small. In particular when the means for generating the high frequencies are integrated on one or more semiconductor components, preferably in C-MOS technology, the device also has reduced energy consumption. This is a great advantage especially for battery-operated handheld devices.
  • FIG. 1 shows a distance measuring device according to the invention
  • FIG. 2 shows a first exemplary embodiment of a device for frequency synthesis
  • FIG. 3 shows a variant of the device from FIG. 2 for generating fine phase gradations
  • FIG. 5 shows a further variant of a device for frequency synthesis.
  • 1 shows an example of a distance measuring device which is equipped with a device for frequency synthesis according to the invention.
  • the distance measuring device has a laser source 1, which preferably emits visible laser radiation.
  • the laser radiation emitted and collimated by collimating optics 2 is split by a beam splitter 11 into a measuring beam S and into a reference beam R.
  • a partially permeable toy gel is used as the beam splitter 11.
  • the measurement radiation S arrives at a measurement object whose distance from the distance measuring device is to be measured.
  • the radiation L remitted or scattered by the measurement object is collected by an optical receiving system 3 and directed to a measurement receiver 4.
  • a PIN photodiode is used as the measuring receiver 4.
  • the reference radiation R is deflected by a deflecting mirror 12 and collected by an optical system 13 and directed to a reference receiver 14.
  • the reference receiver 14 is advantageously structurally identical to the receiver 14 for the measuring radiation L.
  • the path traveled by the reference radiation R from the beam splitter 11 to the reference receiver 14 forms the reference path required for determining the phase difference.
  • the optical radiation emitted by the laser source 1 is embossed with a high-frequency modulation frequency M which is generated by a frequency synthesizer 9 which is controlled by a reference quartz 10.
  • the high-frequency modulation frequency M generates high-frequency electrical measurement signals HFL, HFR on the receiver 4 and on the reference receiver 14, which are present at the input of devices for signal detection designed according to the invention, which have reference numerals 5 and 15 in FIG. 1.
  • the frequency synthesizer 9 also generates a control frequency F of a similarly high frequency, which is fed to the two devices for signal detection 5, 15 via a connecting line and indicates the clock for both devices 5, 15.
  • the high-frequency input signals HFL, HFR are converted into low-frequency measurement signals NF L or calibration signals NFR.
  • the low-frequency measurement signals NF L or calibration signals NF R present at the output of the two devices for signal detection 5, 15 according to the invention are transferred via an analog switch 17 is sequentially supplied to a low-frequency filter 6, in which the remaining high-frequency signal components are filtered out.
  • the filter is an anti-AHasing filter.
  • the filtered and amplified measurement or calibration signals NFL or NF R are digitized in an analog / digital converter 7 and their phase position is evaluated in a digital signal processing device 8. From the phase position, the distance of the measurement object is deduced, which is passed on as signal O to an output unit.
  • the control frequency F is thus an integer multiple of the modulation frequency M increased or decreased by the value of the low-frequency signal NF.
  • the value of n is greater than 0.
  • the frequency synthesizer is provided with the reference number 9 as a whole. It comprises a ring oscillator 19 with N delay elements Vt, V 2 , V 3 , ..., VN.
  • the delay elements Vi, V 2 , V 3 , ..., VN have a delay which is controlled by a voltage Vc is.
  • the delay elements Vi, V 2 , V 3 , ..., VN are bistable flip-flops, preferably RS FHp flops. Instead of FHp flops, inverters can also be used as delay elements.
  • the outputs of the delay elements Vi, V 2 , V 3 , ..., V are connected to a multiplexer 20, which is controlled via a frequency divider 21.
  • the voltage-controlled ring oscillator 19 is tuned to 400 MHz, for example.
  • This first high frequency is used, for example, as a mixer frequency F.
  • the ring oscillator 19 has, for example, 16 RS FHp flops as delay elements. In order to obtain a low frequency of approximately 6.1 kHz, the ring oscillator frequency in the frequency divider 21 is divided by the factor 2 16 .
  • the multiplexer 20, which has 32 inputs for 16 flip-flops, is switched sequentially with a frequency 32 times higher than the desired low frequency. This creates a second high frequency M at the output of the multiplexer 20, which has a value that deviates from the first high frequency F by the amount of the low frequency. This second high frequency serves, for example, as the modulation frequency M for the laser.
  • the frequency synthesizer shown in FIG. 2 is prepared in terms of its structure for integration on a semiconductor component. For example, it is manufactured using the C-MOS method.
  • the possible number of delay elements Vt, V 2 , V 3 , ..., VN is limited by the semiconductor technology used and the required modulation frequency M. If smaller phase steps are required for accuracy requirements, a further delay line at the output of the multiplexer can be used to produce finer phase steps.
  • This variant of the frequency synthesizer is shown in FIG. 3.
  • the high-frequency signal M * is fed to a further arrangement of delay elements 22 at the output of the multiplexer 20.
  • the outputs of the delay elements are in turn connected to the inputs of a further multiplexer 23, which is also controlled by the frequency divider 21.
  • the delay elements 22 can also be non-inverting buffers, for example, which are connected in series.
  • schHessHch applies the desired second radio frequency M.
  • the signals at the output of the multiplexer can also be digitally interpolated.
  • the radio frequencies In order to be able to determine the distance with the required accuracy, the radio frequencies must be precisely regulated. As indicated in FIG. 4, the frequency of the ring oscillator 19 with a phase locked loop, which consists of a phase detector 24, a loop feeder 25 and a divider 26, is exactly a multiple, for example 8 times to 64 times the frequency of the crystal oscillator 10 adjusted.
  • the phase noise of the ring oscillator 19 is also reduced by this control circuit, since the crystal oscillator 10 has a very low-noise signal Hefert and, above all, the low-frequency phase noise components are corrected.
  • the mixer frequency F can be produced, for example, via a ring oscillator according to FIG. 2. This can be arranged in an integrated design on a separate semiconductor component.
  • the mixer frequency is fed to a phase detector 27. After passing a loop feeder 28, the signal of the phase detector 27 arrives in a voltage-controlled delay arrangement 29 with N delay elements and a multiplexer.
  • the mixer frequency F is also used to control the delay arrangement 29. Order 29 the desired modulation frequency M. Due to the spatial separation of the synthesis of the two high frequencies F, M, a significantly improved signal separation is achieved. Crosstalk is practically eliminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Bei einem Verfahren und einer Vorrichtung zur Frequenzsynthese, insbesondere in einem auf dem Prinzip der Auswertung der zeitlichen Veränderung der Phase einer von einer Strahlungsquelle emitierten und von einem anvisierten Objekt remittierten elektromagnetischen Strahlung basierenden Entfernungsmessgerät, wird eine, vorzugsweise von einem Quarzoszillator gelieferte, Frequenz in einem Ringoszillator (19) mit N Verzögerungselementen (V1, V2, V3,..., VN) auf eine gewünschte erste Hochfrequenz (F) eingeregelt, die als Mischerfrequenz bzw. als Modulationsfrequenz verwendet wird. Die Signale an den N Verzögerungselementen (V1, V2, V3,..., VN) werden einem Multiplexer (20) zugeführt, der mit einem Takt umgeschaltet wird, der dem 2*N-fachen der Frequenz des auszuwertenden niederfrequenten Messsignals entspricht. Am Ausgang des Multiplexers (20) wird dadurch eine um die Frequenz des niederfrequenten Messsignals von der ersten Hochfrequenz (F) verschiedene zweite Hochfrequenz (M) erzeugt, die als Modulationsfrequenz bzw. als Mischerfrequenz einsetzbar ist. Ein mit einem derartigen Frequenzsynthesizer ausgestattetes Entfernungsmessgerät zeichnet sich durch seine einfache Bauweise, geringe Abmessunngen und den geringen Energieverbrauch für die Generierung der Hochfrequenzen aus.

Description

VERFAHREN UND VORRICHTUNG ZUR FREQUENZSYNTHESE IN EINEM ENTFERNUNGSMESSGERAT
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Frequenzsynthese in einem Entfernungsmessgerät gemäss dem Oberbegriff des unabhängigen Verfahrensanspruchs 1 bzw. dem Oberbegriff des unabhängigen Vorrichtungsanspruchs 11. Die Erfindung betrifft auch ein Entfernungsmessgerät gemäss dem Oberbegriff des Patentanspruchs 19.
In der Bauvermessung oder im Innenausbau, beispielsweise zum dreidimensionalen Vermessen von Räumen, werden vielfach elektronische Entfernungsmessgeräte eingesetzt. Sie weisen einen Entfernungsmessbereich von einigen zehn Metern auf und sind oftmals als Handgeräte ausgebildet. Weitere Anwendungsbereiche für Entfernungsmessgeräte sind die geodätische und die industrielle Vermessung. Das Grundprinzip der Ent- fernungsmessung mit den bekannten Geräten beruht auf der Auswertung einer zeitlichen Veränderung einer Kenngrösse der vom Gerät emitierten und von einem anvisierten Objekt remittierten elektromagnetischen Strahlung. Das Entfernungsmessgerät ist dazu mit einem Sender zur Emission einer intensitätsmodulierten Strahlung ausgestattet. Bei Handgeräten handelt es sich dabei vornehmlich um eine optische Strahlung im sichtbaren Wellenlängenspektrum, um das Anvisieren der Messpunkte zu erleichtern. Die optische Strahlung wird von dem anvisierten Messobjekt remittiert bzw. gestreut und von einem in das Gerät eingebauten Empfänger registriert. Aus der zeitlichen Verzögerung der empfangenen modulierten Strahlung gegenüber der vom Sender emittierten Strahlung ergibt sich die Entfernung zu Messobjekt.
Als Detektoren kommen in den bekannten Entfernungsmessgeräten üblicherweise Pin- Photodioden oder Avalanche-Photodioden zur Wandlung der vom Messobjekt remittierten oder gestreuten Strahlung in elektrische Signale zum Einsatz. Sehr gebräuchlich sind Entfernungsmessgeräte, deren Entferungsbestimmung auf dem Messprinzip der Phasen- messung beruht. Bei derartigen Geräten wird das elektrische Empfangssignal direkt an der Avalanche-Photodiode oder nach einem Vorverstärker mit einer Mischerfrequenz zu einem niederfrequenten Messsignal überlagert. Auf diesem niederfrequenten Signal wird die Phase bestimmt und mit der Phase eines Referenzsignals verglichen. Die Differenz der gemessenen Phase des niederfrequenten Messsignals zur Phase des Referenzsignals ist ein Mass für die Entfernung des Messobjekts.
Für die Urnsetzung des auf der Auswertung der Phasendifferenz beruhenden Messprinzips werden einerseits eine Lasermodulationsfrequenz von vorzugsweise grösser 100 MHz sowie Mischerfrequenz benötigt, die nur um den Betrag der Niederfrequenz von der Lasermodulationsfrequenz abweicht. Die Bestirrvmung der Phase auf dem niederfrequenten Messsignal ist wesentlich einfacher zu realisieren als auf dem ursprünglichen hochfrequenten Empfangssignal. Typischerweise wird daher die Niederfrequenz im Kilo- hertzbereich, beispielsweise zu 10 kHz, gewählt. Erfolgt die Lasermodulation beispielsweise mit einer Hochfrequenz von 400 MHz, so muss für die Erzeugung des gewünschten niederfrequenten Messsignals eine Mischerfrequenz generiert werden, die nur um 25 ppm von der Hochfrequenz verschieden ist. Dazu ist für die beiden Hochfrequenzen eine möglichst hohe Übersprechdämpfung gefordert. Bei derartig nahe beieinander liegenden Hochfrequenzen sind unerwünschte Seitenbänder jedoch, wenn überhaupt, nur mit au- sserordentlich hohem Filterungsaufwand unterdrückbar. Diese Massnahmen sind kost- spielig und führen vielfach zu weiteren Fehlerquellen.
Bei den meisten aus dem Stand der Technik bekannten Geräten werden die beiden Hochfrequenzen mit zwei separaten Quarzoszillatoren erzeugt. Einer der beiden Quarzoszillatoren ist dabei spannungsgesteuert und wird in einem Phase-Locked-Loop (PLL) auf die um den Betrag der Niederfrequenz von der Hochfrequenz des anderen Quarzoszillators abweichende Frequenz eingeregelt. Die für die Erzeugung der beiden Hochfrequenzen eingesetzten Quarzoszillatoren müssen innerhalb sehr enger Toleranzen miteinander überemstimrnen. Um die geringen Toleranzen zu gewährleisten, sind aufwändige und kostspielige Herstellverfahren erforderlich. Ausserdem sind Quarzoszillatoren nur für Frequenzbereiche von etwa 100 MHz wirtschaftlich sinnvoll herstellbar. Für Modulationsfrequenzen grösser als 100 MHz sind zusätzlich Frequenzvervielfacher erforderlich, die zusätzliche Kosten verursachen. Alternative Lösungsvarianten für die Erzeugung von Hochfrequenzen jenseits von 100 MHz verwenden in Verbindung mit dem Quarzoszillator zusätzliche Surf ace-Accoustic-Wave (SAW) Resonatoren oder Filter.
Ein weiterer bekannter Ansatz zur Generierung der Modulationshochfrequenz und der nur geringfügig davon abweichenden Mischerfrequenz besteht in der Direct Digital Syn- thesis (DDS). Bei diesem Verfahren wird mit einem Quarzoszillator eine Frequenz erzeugt, die elektronisch vervielfacht wird. Aus der derart erzielten Frequenz wird mit Hilfe eines digitalen Phasenakkumulators, einer Cosinustabelle und einem darauffolgenden D/A-Wandler die um die Niederfrequenz unterschiedBche Mischerfrequenz erzeugt. Zur Generierung der eigentlichen Hochfrequenzen für die Mudulationsfrequenz und die Mischerfrequenz sind -weitere Frequenzvervielfacher erforderlich. Diese Variante der Erzeugung der beiden Hochfrequenzen benötigt zwar nur einen einzigen Quarzoszillator. Das Verfahren ist jedoch schaltungstechnisch sehr aufwändig und weist wegen der Vielzahl der erforderlichen elektronischen Bauteile einen hohen Stromverbrauch auf. Dies ist jedoch insbesondere für kostengünstige Handgeräte ein entscheidender Nachteil.
Aufgabe der vorliegenden Erfindung ist es daher, diesen Nachteilen des Stands der Technik abzuhelfen. Es sollen ein Verfahren und eine Vorrichtung bereitgestellt werden, mit denen die für die Modulationsfrequenz und für die Mischerfrequenz erforderlichen Hochfrequenzen einfach und kostengünstig generierbar sind. Die Erzeugung der Hochfrequenzen soll mit der geforderten Genauigkeit erfolgen und einen geringen Stromverbrauch aufweisen, damit der Einsatz bei Handgeräten gewährleistet bleibt. Der Frequenzgenerator soll nur einen geringen Platzbedarf aufweisen, damit die Gerätegrösse verrin- gert werden kann. Vorteilhafterweise soll der Aufbau des Frequenzgenerators eine kostengünstige, reproduzierbare Massenfertigung ermöglichen.
Die Lösung dieser Aufgabe besteht in einem Verfahren zur Frequenzsynthese, insbesondere in einem Entfernungsmessgerät, welches die i kennzeichnenden Abschnitt des Pa- tentanspruchs 1 angeführten Merkmale aufweist. Eine erfindungsgemäss ausgebildete Vorrichtung zur Durchführung des Verfahrens weist insbesondere die im Kennzeichen des Patentanspruchs 11 angeführten Merkmale auf. Ein mit einem erfindungsgemässen Frequenzgenerator ausgestattetes Entfernungsmessgerat ist Gegenstand des Patentanspruchs 19. Bevorzugte Ausführungsvarianten und/ oder Weiterbildungen der Erfindung sind Gegenstand der jeweiligen abhängigen Verfahrens- und Vorrichtungsansprüche.
Das erfindungsgemässe Verfahren zur Frequenzsysnthese, insbesondere in einem auf dem Prinzip der Auswertung der zeitlichen Veränderung der Phase einer von einer Strahlungsquelle emitierten und von einem anvisierten Objekt remittierten elektroma- gnetischen Strahlung basierenden Entfernungsmessgerät, beruht darauf, dass eine, vorzugsweise von einem Quarzoszillator gelieferte, Frequenz in einem Ringoszillator mit N Verzögerungselementen auf eine gewünschte erste Hochfrequenz eingeregelt wird, die als Mischerfrequenz bzw. als Modulationsfrequenz verwendet wird. Die Signale an den N Verzögerungselementen werden einem Multiplexer zugeführt, der mit einem Takt umge- schaltet wird, der dem 2*N-fachen der Frequenz des auszuwertenden niederfrequenten Messsignals entspricht. Am Ausgang des Multiplexers wird dadurch eine um die Frequenz des niederfrequenten Messsignals von der ersten Hochfrequenz verschiedene zweite Hochfrequenz erzeugt, die als Modulationsfrequenz bzw. als Mischerfrequenz einsetzbar ist.
Mit Hilfe des Ringoszillators wird eine erste Hochfrequenz, beispielsweise die Mischerfrequenz erzeugt. Die Anforderungen an die Genauigkeit des Quarzoszillator sind dabei nicht so hoch, so dass kostengünstige Schwingquarze einsetzbar sind. Die eigentliche Hochfrequenz wird mit dem Ringoszillator erzeugt, der N Verzögerungselemente auf- weist. Hat ein Verzögerungselement eine Verzögerungszeit td, so liegt am Ausgang des Ringoszillators die Frequenz 1/(2 * N * ) an. Der Spannungsverlauf an den einzelnen Verzögerungselementen ist um je eine Verzögerungszeit phasenverschoben. Wird nun der Multiplexer mit einem Takt, der das N-fache der Frequenz des auszuwertenden, niederfrequenten Messsignals beträgt, umgeschaltet, so verliert die zweite Hochfrequenz am Modulationsausgang für die Strahlungsquelle während einer Niederfrequenzperiode exakt eine Hochfrequenzperiode. Das bedeutet, dass die zweite Hochfrequenz, die Modulationsfrequenz, gerade um die Frequenz des niederfrequenten Messsignals kleiner ist als die erste Hochfrequenz, welche die Mischerfrequenz darstellt. Die bei der Überlagerung der Mischerfrequenz und der Modulationsfrequenz entstehende niederfrequente Schwe- bungsfrequenz hat zwar keinen kontinuierlichen Signalverlauf. Es entsteht eine Signal mit 2N Stufen., entsprechend der doppelten Anzahl der Verzögerungselemente des Ringos- zillators. Bei einer ausreichend hohen Anzahl von Verzögerungselementen und dem Einsatz eines Glättungsfilters ist dieser jedoch nicht weiter störend. Die Anforderungen an das Phasenrauschen des Ringoszillators sind relativ klein, da ja beide Hochfrequenzen von dem selben Oszillator abgeleitet werden. Die Phase der bei der Überlagerung im Empfänger entstehenden Niederfrequenz ist proportional zu der Differenz der Phase der beiden Hochfrequenzen. So fallen grosse Teile des Phasenrauschens der Hochfrequenzoszillatoren im Empfänger wieder weg, da ja beide Phasenrauschen miteinander korreliert sind.
Die Anzahl der Verzögerungselemente im Ringoszillator legt die Phasenschritte fest. Die Anzahl der möglichen Verzögerungselemente kann aber durch die geforderte Modulationsfrequenz und ggf. auch durch das Herstellungsverfahren für den Ringsozillator beschränkt sein. Werden hingegen aus Genauigkeitsanforderungen kleinere Phasenschritte benötigt, so können diese beispielsweise mit einer Verzögerungsleitung am Ausgang des Multiplexers erzeugt werden. Dazu wird die am Ausgang des Multiplexers anliegende zweite Hochfrequenz einer weiteren Anordnung von Verzögerungselementen und einem im Takt der Anzahl der weiteren Verzögerungselemente multipliziert mit der Frequenz des niederfrequenten Messsignals umgeschalteten weiteren Multiplexers zugeführt, um die am ersten Multiplexer anliegenden, groben Phasenschritte in feinere Phasenschritte zu unterteilen, und ein glatteres niederfrequentes Signal zu erreichen.
In einer alternativen Variante, die Abstufungen auf dem niederfrequenten Signal zu reduzieren, können die Zwischenstufen der Hochfrequenz digital interpoliert werden. Dazu wird das Ausgangssignal am ersten Multiplexer nicht durch eine weitere Verzögerungsschaltung geleitet, um direkt von einem Phasenschritt auf den nächsten umzuschalten. Vielmehr wird die Zeit zwischen den einzelnen Phasenschritten in weitere Zeitfenster, beispielsweise in 8 Zeitfenster, unterteilt. Der Multiplexer wird in diesem Zeitfenster zuerst voll auf die untere Stufe geschaltet. Im nächsten Zeitfenster wird der Multiplexer bei dem angegebenen Beispiel im Verhältnis 1/8., 7/8 auf höhere, respektive die untere Phasenstufe geschaltet. Das Verhältnis wird nun mit jedem folgenden Zeitfenster erhöht. Daraus ergeben sich Verhältnisse von 2/8, 6/8; 3/8, 5/8; usw. Dieses Verfahren erlaubt es, mit wenig Aufwand zwischen den einzelnen Phasenstufen zu interpolieren, um einen geglätteten Signalverlauf zu erhalten.
Um die Modulationsfrequenz oder die Micherfrequenz auf eine Vielfaches der Quarzfrequenz einzuregeln, werden die Verzögerungselemente mit spannungsgesteuerter Verzögerung ausgebildet. In einem Phase-Locked-Loop (PLL) wird die Ringoszillatorfrequenz vorzugsweise zum 8-f achen bis zum 64-f achen der Frequenz des Quarzoszillators eingeregelt.
In einer sehr einfachen und kostengünstigen Variante werden als Verzögerungselemente vorzugsweise bistabile Kippstufen, beispielsweise RS Flip Flops, Inverter oder derglei- chen Bauelemente eingesetzt.
Besonders vorteilhaft erweist es sich, Ringoszillator und Multiplexer in integrierter Halbleiterbauweise, vorzugsweise in C-MOS Bauweise, zu erstellen. Die integrierte Halbleiterbauweise ist kostengünstig, platzsparend und benötigt insbesondere in C-MOS Bauweise sehr wenig Energie. Dies ist vor allem für batteriebetriebene Geräte ein entscheidender Vorteil.
Für die Erzielung der geforderten Hochfrequenzen mit der gewünschten Feinabstufung der Phasenschritte erweist sich ein Ringoszillator mit 8 bis 32, beispielsweise mit 16, Ver- zögerungselementen von Vorteil.
Die Auswertung des niederfrequenten Messsignals, insbesondere die Phasenmessung, erfolgt synchron zu einer durch einen Teiler von der Mischerfrequenz abgeleiteten internen niederfrequenten Synchronisationsfrequenz. Mit zunehmender Messdista z ver- schiebt sich die Phase des Empfangssignals zu der Phase des internen niederfrequenten Synchronisationssignals. Durch die nichtidealen Verzögerungselemente und andere Toleranzen ist es zwar nicht möglich, durch Umschalten des Multiplexers absolut gleichmä- ssige Phasenschritte zu erzeugen. Die dadurch entstehenden systematischen Phasenfehler werden dadurch stark reduziert, dass die gleiche Distanz bei unterschiedlichen Phasenla- gen in Bezug zu dem internen Synchronisationssignal gemessen und dann gemittelt werden. Dies ist sehr einfach zu bewerkstelligen, indem der Umschaltvorgang des Multiplexers nicht am Eingang 1 sondern an einem anderen Eingang gestartet wird.
Die erfindungsgemässe Vorrichtung zur Frequenzsysnthese zeichnet sich durch einen besonders einfachen Aufbau aus. Die Mittel zur Erzeugung einer ersten Hochfrequenz umfassen einen Quarzoszillator, der mit einem Ringoszillator mit N Verzögerungsstufen zusammenwirkt. Die Mittel zur Erzeugung einer um die Frequenz des niederfrequenten Messsignals von der ersten Hochfrequenz verschiedenen zweiten Hochfrequenz umfassen einen Multiplexer, der mit einem Takt umschaltbar ist, welcher dem 2*N-fachen der Frequenz des niederfrequenten Messsignals entspricht Die Anforderungen an die Genauigkeit des Quarzoszillator sind dabei nicht so hoch, so dass kostengünstige Schwingquarze einsetzbar sind. Die eigentliche Hochfrequenz wird mit dem Ringoszillator erzeugt, der N Verzögerungselemente aufweist Die Anforderungen an das Phasenrauschen des Ringoszillators sind relativ klein, da ja beide Hochfrequenzen von dem selben Oszillator abgeleitet werden. Die Phase der bei der Überlagerung im Empfänger entstehenden Niederfrequenz ist proportional zu der Differenz der Phase der beiden Hochfrequenzen.. So fallen grosse Teile des Phasenrauschens der Hochfrequenzoszillatoren im Empfhänger wieder weg, das ja beide Phasenrauschen miteinander korreliert sind.
Die Anzahl der Verzögerungselemente ergibt die geforderte Modulationsfrequenz und die Feinheit der Phasenschritte. Andererseits legt die Anzahl der Verzögerungselemente auch die Stufigkeit des aus der Überlagerung der beiden Hochfrequenzen gewonnenen niederfrequenten Signals fest. Zweckmässig erweisen sich für den Ringsoszillators 8 bis 64, beispielsweise 16, Verzögerungselemente. Wird der Ringsoszillator beispielsweise auf 400 MHz abgestimmt und ist eine Niederfrequenz von ca. 6J kHz gefordert, dann erweisen sich 16 Verzögerungselemente als zweckmässig. Diese sind beispielsweise als RS Flip Flops ausgebildet. Um aus der Hochfrequenz von 400 MHz die geforderte Niederfre- quenz von 6J kHz zu erhalten, wird die Ringoszillatorfrequenz durch den Faktor 216 geteilt. Der Multiplexer, der bei 16 RS Flip Flops 32 Eingänge besitzen muss, muss mit einer tun den Faktor 32 höheren Frequenz als die Niederfrequenz: sequentiell umgeschaltet werden. Damit ergibt sich am Ausgang des Multiplexers eine von der Ringoszülatorfre- quenz gerade um den Betrag der Niederfrequenz abweichende zweite Hochfrequenz.
Zur exakten Besitmmung der Hochfrequenz ist der Ringoszillator mit einem Phase- Locked-Loop (PLL) ausgestattet, über den die Ringoszillatorfrequenz auf ein Vielfaches, vorzugsweise das 8-fache bis 64-fache der Frequenz des Quarzoszillators einregelbar ist. Der PLL Regelkreis reduziert das Phasenrauschen des Ringoszillators, das er vor allem die tieffrequenten Phasenrauschanteile ausregelt.
Die mögliche Anzahl der Verzögerungselemente ist durch die geforderte Modulationsfre- quenz und gegebenenfalls auch durch den Herstellungsprozess beschränkt. Falls die mit der Anzahl der Verzögerungselemente vorliegende Abstufung der Phasenschritte für die geforderte Genauigkeit zu grob ist, kann der Ausgang des Multiplexers mit einem Verzögerungsglied verbunden sein, welches einen Ringoszillator mit Verzögerungsstufen und einen nachgeschalteten Multiplexer umfasst. Auf diese Weise sind aus den groben Phasenschritte die erforderlichen feineren Phasenabstufungen erzeugbar.
Besonders vorteilhaft erweist sich eine Integration des Frequenzsynthesizers auf einem Halbleiterbauelement. Insbesondere sind dabei Ringoszillator und Multiplexer in integrierter Halbleiterbauweise, beispielsweise in C-MOS Technik hergestellt. Die derart hergestellten Bauelemente sind beliebig reproduzierbar, kostengünstig in der Herstellung und weisen insbesondere in C-MOS Technologie einen geringen Energieverbrauch auf.
Ein erfindungsgemäss ausgestattetes Entfernungsmessgerät nach dem Prinzip der Phasenmessung, besitzt einen Sender zur Emission einer optischen Strahlung, eine Empfangsoptik für die von einem Messobjekt remittierte oder gestreute optische Messstrah- lung, einen der Empfangsoptik nachgeschalteten hchtelektrischen Empfänger zur Umwandlung der optischen Strahlung in elektrische Messsignale sowie eine Signalverarbei- tungsanlage zum Vergleich der Messsignale mit Referenzsignalen und zur Untersuchung hinsichtlich ihrer Phasenlage, um daraus den Abstand des Messobjekts zu bestimmen und das Ergebnis dem Anwender verfügbar zu machen. Die emittierte Strahlung wird mit einer hochfrequenten Modulationsfrequenz moduliert. Eine hochfrequente Mischer- frequenz weicht um die Frequenz des auszuwertenden niederfrequenten Messsignals von der Modulationsfrequenz ab und wird mit dem vom Empfänger gelieferten elektrischen Signal überlagert. Die Mittel zur Erzeugung der hochfrequenten Modulationsfrequenz für die emittierte optische Strahlung und der von der Modulationsfrequenz verschiedenen hochfrequenten Mischerfrequenz, die mit den vom hchtelektrischen Empfänger geliefer- ten elektrischen Signalen überlagerbar ist, sind gemäss der Erfindung oder einer ihrer Abwandlungen ausgebildet. Dies verbilligt die Herstellung des Entfernungsmessgeräts. Seine Abmessungen können klein gehalten werden. Insbesondere bei einer integrierten Ausbildung der Mittel zur Erzeugung der Hochfrequenzen auf einem oder mehreren Halbleiterbauelementen, vorzugsweise in C-MOS Technologie weist das Gerät auch einen reduzierten Energieverbrauch auf. Dies stellt vor allem für batteriebetriebene Handgeräte einen grossen Vorteil dar.
Im folgenden wird die Erfindung unter Bezugnahme auf in den Zeichnungen schematisch dargestellte Ausführungsbeispiele näher erläutert. Es zeigen:
Fig. 1 ein erfindungsgemässes Entfernungsmessgerät;
Fig. 2 ein erstes Ausführungsbeispiel einer Vorrichtung zur Frequenzsynthese;
Fig. 3 eine Variante der Vorrichtung aus Fig. 2 zur Erzeugung feiner Phasenabstufungen;
Fig. 4 ein Beispiel eines Regelkreises für eine Vorrichtung zur Frequenzsynthese;
Fig. 5 eine weitere Variante einer Vorrichtung zur Frequenzsynthese. In Fig. 1 ist ein Beispiel eines Entfernungsmessgeräts dargestellt, das mit einer erfin- dungsgemässen Vorrichtung zur Frequenzsynthese ausgestattet ist. Das Entfernungsmessgerät besitzt eine Laserquelle 1, die vorzugsweise sichtbare Laserstrahlung emittiert. Die emittierte und von einer Kollimationsoptik 2 kollimierte Laserstrahlung wird von einem Strahlteiler 11 in ein Messstrahlenbündel S und in ein Referenzstrahlenbündel R aufgeteilt. Als Strahlteiler 11 kommt beispielsweise ein teildurchlässiger Spielgel zu Einsatz. Die Messstrahlung S gelangt zu einem Messobjekt, dessen Abstand vom Entfernungsmessgerät gemessen -werden soll. Die vom Messobjekt remittierte oder gestreute Strahlung L wird von einer Empfangsoptik 3 gesammelt und auf einen Messempfänger 4 geleitet. Als Messempfänger 4 kommt beispielsweise eine PIN Fotodiode zum Einsatz. Die Referenzstrahlung R wird von einem Umlenkspiegel 12 umgelenkt und von einer Optik 13 gesammelt und auf einen Referenzempfänger 14 geleitet. Der Referenzempfänger 14 ist mit Vorteil baugleich zum Empfänger 14 für die Messstrahlung L. Die von der Referenzstrahlung R durchlaufene Wegstrecke vom Strahlteiler 11 zum Referenzempfänger 14 bildet die für die Bestimmung der Phasendifferenz benötigte Referenzstrecke.
Der von der Laserquelle 1 emittierten optische Strahlung ist eine hochfrequente Modulationsfrequenz M aufgeprägt, die von einem Frequenzsynthesizer 9 erzeugt ist, der von einem Referenzquarz 10 angesteuert ist. Durch die hochfrequente Modulationsfrequenz M werden am Empfän-ger 4 und am Referenzempfänger 14 jeweils hochfrequente elektrische Messsignale HFL, HFR erzeugt, die am Eingang von erfindungsgemäss ausgebildeten Vorrichtungen zur Signalerfassung anliegen, welche in Fig. 1 die Bezugszeichen 5 bzw. 15 tragen. Der Frequenzsynthesizer 9 erzeugt auch eine Steuerfrequenz F von ähnlich hoher Frequenz, die über eine Verbindungsleitung den beiden Vorrichtungen zur Signalerfassung 5, 15 zugeführt wird und für beide Vorrichtungen 5, 15 den Takt angibt. In den Vorrichtungen zur Signalerfassung 5, 15, die nachstehende noch näher erläutert werden, werden die hochfrequenten Eingangssignale HFL, HFR in niederfrequente Messsignale NFL bzw. Kalibriersignale NFR umgeformt.
Die am Ausgang der beiden erfindungsgemässen Vorrichtungen zur Signalerfassung 5, 15 anliegenden niederfrequenten Messsignale NFL bzw. Kalibriersignale NFR werden über einen analogen Schalter 17 sequentieU einem Niederfrequenzfilter 6 zugeführt, in dem die restlichen hochfrequenten Signalanteile herausgefiltert werden. Beispielsweise handelt es sich bei dem Filter um ein Anti-AHasingfilter. Die gefilterten und verstärkten Mess- bzw. KaHbriersignale NFL bzw. NFR werden in einem Analog/ Digital Wandler 7 digitaHsiert und in einer digitalen Signalverarbeitungsein- richtung 8 hinsichtHch ihrer Phasenlage ausgewertet. Aus der Phasenlage wird auf die die Entfernung des Messobjekts zurückgeschlossen, die als Signal O an eine Ausgabeeinheit weitergeleitet wird. Die Steuerfrequenz F wird mit Vorteil derart ewählt, dass gilt F = (n * M) + NF. Die Steuerfrequenz F ist somit ein ganzzahUges Vielfaches der Modulationsfrequenz M vermehrt oder vermindert um den Wert des niederfrequenten Signals NF. Der Wert von n ist dabei grösser als 0.
In Fig. 2 ist der Frequenzsynthesizer gesamthaft mit dem Bezugszeichen 9 versehen. Er umfasst einen Ringoszillator 19 mit N Verzögerungselementen Vt, V2, V3,..., VN- Die Verzögerungselemente Vi, V2, V3,..., VN weisen eine Verzögerung auf, die über eine Span- nung Vc gesteuert ist. Bespielsweise handelt es sich bei den Verzögerungselementen Vi, V2, V3,..., VN um bistabile Kippstufen, vorzugsweise RS FHp Flops. Anstelle von FHp Flops können auch Inverter als Verzögerungselemente eingesetzt werden. Die Ausgänge der Verzögerungselemente Vi, V2, V3,..., V sind mit einem Multiplexer 20 verbunden, der über einen Frequenzteiler 21 angesteuert ist. Der spannungsgesteuerte Ringoszillator 19 wird beispielsweise auf 400 MHz abgestimmt. Diese erste Hochfrequenz dient beispielsweise als Mischerfrequenz F. Der RingosziUator 19 besitzt beispielsweise 16 RS FHp Flops als Verzögerungselemente. Um eine Niederfrequenz von ca. 6,1 kHz zu erhalten, wird die Ringoszillatorfrequenz im Frequenzteiler 21 durch den Faktor 216 geteilt. Der Multiplexer 20, der bei 16 Flip Flops 32 Eingänge aufweist, wird mit einer um dne Faktor 32 höheren Frequenz als die gewünschte Niederfrequenz sequentieU umgeschaltet. Dadurch Hegt am Ausgang des Multiplexers 20 eine zweite Hochfrequenz M an, die einen um den Betrag der Niederfrequenz von der ersten Hochfrequenz F abweichenden Wert aufweist. Diese zweite Hochfrequenz dient beispielsweise als Modulationsfrequenz M für den Laser.
Der in Fig. 2 dargesteUte Frequenzsynthesizer ist hinsichtHch seines Aufbaus für eine Integration auf einem Halbleiterbauelement vorbereitet. Beispielsweise wird er in C-MOS Bauweise hergesteUt. Die mögliche Anzahl der Verzögerungselemente Vt, V2, V3,..., VN ist durch die verwendete Halbleitertechnologie und die geforderte Modulationsfrequenz M beschränkt. Werden aus Genauigkeitsanforderungen kleinere Phasenschritte benötigt, so können mit einer weiteren Verzögerungsleitung am Ausgang des Multiplexers feinere Phasenschritte erzeugt werden. Diese Variante des Frequenzsynthesizers ist in Fig. 3 dar- gesteUt. Dabei wird das hochfrequente Signal M* am Ausgang des Multiplexers 20 einer weiteren Anordnung von Verzögerungselementen 22 zugeführt. Die Ausgänge der Verzögerungselemente sind wiederum mit den Eingängen eines weiteren Multiplexers 23 verbunden, der gleichfaUs vom Frequenzteiler 21 angesteuert ist. Die Verzögerungselemente 22 können beispielsweise auch nichtinvertierende Puffer sein, die in Serie geschal- tet sind. Am Ausgang des weiteren Multiplexers 23 Hegt schHessHch die gewünschte zweite Hochfrequenz M an. In einer alternativen Variante, die ohne zusätzliche Verzögerungsschaltung auskommt, können die Signale am Ausgang des Multiplexers auch digital interpoliert werden.
Um die Distanz mit der erforderlichen Genauigkeit bestimmen zu können, müssen die Hochfrequenzen exakt eingeregelt sein. Wie es in Fig. 4 angedeutet ist, wird dazu Frequenz des Ringoszillators 19 mit einem Phase Locked Loop, der aus einem Phasendetektor 24, einem Loop-Füter 25und aus einem Teiler 26 besteht, genau auf ein Vielfaches, beispielsweise das 8-fache bis 64-fache der Frequenz des Quarzoszillators 10 eingeregelt. Durch diesen Regelkreis wird auch das Phasenrauschen des RingosziUators 19 reduziert, da der QuarzosziUator 10 ein sehr rauscharmes Signal Hefert und vor aUem die tieffre- quenten Phasenrauschanteile ausgeregelt werden.
Fig. 5 zeigt eine weitere Ausführungsvariante des Frequenzsynthesizers. Bei dieser Vari- ante sind die Generierung der Mischerfrequenz F und der Modulationsfrequenz M völHg voneinander getrennt. Die Mischerfrequenz F kann beispielsweise über einen Ringoszillator gemäss Fig. 2 hergesteUt werden. Dieser kann in integrierter Bauweise auf einem separaten Halbleiterbauelement angeordnet sein. Die Mischerfrequenz wird einem Phasendetektor 27 zugeführt. Das Signal des Phasendetektors 27 gelangt nach Passieren eines Loopfüters 28 in eine spannungsgesteuerte Verzögerungsanordnung 29 mit N Verzögerungselementen und einem Multiplexer. Die Mischerfrequenz F dient auch zur Ansteue- rung der Verzögerungsanordnung 29. Dadurch Hegt am Ausgang der Verzögerungsan- Ordnung 29 die gewünschte Modulationsfrequenz M an. Durch die räurrdiche Trennung der Synthese der beiden Hochfrequenzen F, M wird eine deutHch verbesserte Signaltrennung erzielt. Ein Übersprechen ist praktisch ausgeschaltet.

Claims

Patentansprüche
1. Verfahren zur Frequenzsysnthese, insbesondere in einem auf dem Prinzip der Auswertung der zeitlichen Veränderung einer Kenngrösse, vorzugsweise der
Phase, einer von einer StrahlungsqueUe (1) emitierten und von einem anvisierten Objekt remittierten elektromagnetischen Strahlung (S) basierenden Entfernungsmessgerät, bei dem eine hochfrequente Modulationsfrequenz (M) für die emittierte elektromagnetische Strahlung (S) und eine hochfrequente Mischerfre- quenz (F) zur Überlagerung mit der vom Objekt remittierten und von einem Detektor (4) in hochfrequent modulierte elektrische Signale umgewandelten Strahlung, welche Mischerfrequenz (F) um die Frequenz eines auszuwertenden niederfrequenten Messsignals (NF) von der Modulationsfrequenz (M) verschieden ist, erzeugt werden, dadurch gekennzeichnet, dass eine, vorzugsweise von ei- nem Quarzoszillator (10) gelieferte, Frequenz in einem RingosziUator (19) mit N
Verzögerungselementen (Vi, V2, V3,..., VN) auf eine gewünschte erste Hochfrequenz (F) eingeregelt wird, die als Mischerfrequenz bzw. als Modulationsfrequenz verwendet wird, und die Signale an den N Verzögerungselementen (Vi, ), V3,..., VN) einem Multiplexer (20) zugeführt werden, der mit einem Takt um- geschaltet wird, der dem 2*N-fachen der Frequenz des niederfrequenten Messsignals (NF) entspricht, wobei am Ausgang des Multiplexers (20) eine um die Frequenz des niederfrequenten Messsignals (NF) von der ersten Hochfrequenz (F) verschiedene zweite Hochfrequenz (M) erzeugt wird, die als Modulationsfrequenz bzw. als Mischerfrequenz einsetzbar ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die am Ausgang des Multiplexers anliegende zweite Hochfrequenz (M*) einer weiteren Anordnung von Verzögerungselementen (22) und einem im Takt der Anzahl der weiteren Verzögerungselemente multipliziert mit der Frequenz des niederfrequenten Messsignals (NF) umgeschalteten weiteren Multiplexer (23) zugeführt wird, um die am ersten Multiplexer arύiegenden groben Phasenschritte in feinere Phasenschritte zu unterteüen.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die am Ausgang des
Multiplexers anliegende zweiten Hochfrequenz digital interpoliert wird.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Verzögerungselemente (Vi, V2, V3,..., VN) mit einer spannungsgesteuerten Verzögerung ausgebüdet werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Ringoszülatorfre- quenz vorzugsweise mit einem Phase-Locked-Loop (PLL) (24, 25, 26) zu einem
Vielfachen, beispielsweise zum 16-fachen, der Frequenz des Quarzoszülators (10) eingeregelt wird.
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass als Verzögerungselemente (Vt, V2, V3,..., VN) vorzugsweise bistabile Kippstufen, beispielsweise RS FHp Flops, Inverter oder dergleichen Bauelemente eingesetzt werden.
7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass RingosziUator (19) und Multiplexer (20) in integrierter Halbleiterbauweise, vorzugsweise in C-MOS Bauweise, ersteüt werden.
8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der RingosziUator zur Erzeugung der ersten Hochfrequenz (F) und ein wei- terer Ringoszülator samt Multiplexer (29) zur Erzeugung der um die Frequenz des niederfrequenten Messsignals davon verschiedenen zweiten Hochfrequenz (M) auf zwei unterschiedlichen Halbleiterbauelementen angeordnet sind, wobei die an einem Ausgang des ersten Halbleiterbauelements anHegende erste Hochfrequenz (F) an einen Eingang des den Multiplexer aufweisenden zweiten Halb- leiterbauelements angelegt wird.
Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Ringoszülator (19) mit 8 bis 64, beispielsweise mit 16, Verzögerungselementen (Vi, V2, V3,..., VN) ausgestattet wird.
10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Auswertung des niederfrequenten Messsignals, beispielsweise die Phasenmessung, synchron zu einer durch einen Teiler von der Mischerfrequenz abgeleiteten internen niederfrequenten Synchronisationsfrequenz durchgeführt wird.
11. Vorrichtung zur Frequenzsysnthese, insbesondere in einem auf dem Prinzip der
Auswertung der zeitUchen Veränderung einer Kenngrösse, insbesondere der Phase, einer von einer Strahlungsquelle (1) emitierten und von einem anvisierten Objekt remittierten elektromagnetischen Strahlung basierenden Entfernungsmessgerät, mit Mitteln zur Erzeugung einer hochfrequenten Modulationsfrequenz (M) für die emittierte elektromagnetische Strahlung (S) und weiteren Mitteln zur Erzeugung einer hochfrequenten Mischerfrequenz (F) zur Überlagerung mit der vom Objekt remittierten und von einem Detektor (4) in hochfrequent moduHerte elektrische Signale umgewandelten Strahlung, welche Mischerfrequenz (F) um die Frequenz eines auszuwertenden niederfrequenten Messsignals (NF) von der Modulationsfrequenz (M) verschieden ist, dadurch gekennzeichnet, dass die Mittel zur Erzeugung einer ersten Hochfrequenz (F) einen Quarzos- zülator (10) umfassen, der mit einem RingosziUator (19) mit N Verzögerungsele- menten (Vα, V2, V3,..., VN) zusammenwirkt, und dass die Mittel zur Erzeugung einer um die Frequenz des niederfrequenten Messsignals (NF) von der ersten Hochfrequenz (F) verschiedenen zweiten Hochfrequenz (M) einen Multiplexer (20) umfassen, der mit einem Takt umschaltbar ist, welcher dem 2*N-fachen der Frequenz des niederfrequenten Messsignals (NF) entspricht, wodurch am Aus- ga*ιg des Multiplexers (20) die zweite Hochfrequenz (M) erzeugbar ist.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Verzögerungselemente (Vi, V^ V3,..., VN) des RingoszUlators (19) spannungsgesteuert sind und vorzugsweise bistabile Kippstufen, beispielsweise RS-FHp-Flops, In- verter oder dergleichen wirkende Bauelemente umfasst.
13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Anzahl der Verzögerungselemente (Vi, V2, V3,..., VN) des RingosziUators (19) 8 bis 64, beispielsweise 16, beträgt.
14. Vorrichtung nach einem der Ansprüche 11 - 13, dadurch gekennzeichnet, dass der RingosziUator (19) einen Phase-Locked-Loop (PLL) aufweist, über den die RingoszÜlatorfrequenz auf ein Vielfaches, vorzugsweise das 8-fache bis 64-fache der Frequenz des Quarzoszülators (10) einregelbar ist.
15. Vorrichtung nach einem der Ansprüche 11 - 14, dadurch gekennzeichnet, dass der Ausgang des Multiplexers (20) mit einem VerzögerungsgHed verbunden ist, welches einen weiteren RingosziUator (22) mit Verzögerungselementen und einen nachgeschalteten Multiplexer (23) umfasst.
16. Vorrichtung nach einem der Ansprüche 11 - 14, dadurch gekennzeichnet, dass der Ausgang des Multiplexers (20) mit einer Einrichtung zur digitalen Interpolation des hochfrequenten Ausgangssignals verbunden ist.
17. Vorrichtung nach einem der Ansprüche 11 - 16, dadurch gekennzeichnet, dass Ringoszülator (19) und Multiplexer (20) in integrierter Halbleiterbauweise, beispielsweise in C-MOS Technik ersteUt sind.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die Mittel zur Erzeugung der ersten Hochfrequenz (F) und die Mittel zur Erzeugung der zweiten Hochfrequenz (M) auf separaten integrierten Halbleiterbauelementen angeordnet sind.
19. Entfernungsmessgerät nach dem Prinzip der Phasenmessung, mit einem Sender
(1) zur Emission einer optischen Strahlung (S), einer Empfangsoptik (3) für die von einem Messobjekt remittierte oder gestreute optische Messstrahlung (L), ei- nem der Empfangsoptik (3) nachgeschalteten Hchtelektrischen Empfänger (4) zur
Umwandlung der optischen Strahlung (L) in elektrische Messsignale sowie einer Signalverarbeitungsanlage (8) zum Vergleich der Messsignale mit Referenzsignalen und zur Untersuchung hinsichtHch ihrer Phasenlage, um daraus den Abstand des Messobjekts zu bestimmen und das Ergebnis dem Anwender verfüg- bar zu machen, sowie mit Mitteln (9) zur Erzeugung einer hochfrequenten Modulationsfrequenz (M) für die emittierte optische Strahlung (S) und einer von der Modulationsfrequenz (M) verschiedenen hochfrequenten Mischerfrequenz (F), die mit den vom Hchtelektrischen Empfänger (4) geHeferten elektrischen Signalen überlagerbar ist, gekennzeichnet, durch eine Vorrichtung (9) zur Frequenzsyn- these gemäss einem der Patentansprüche 11 - 18.
PCT/CH2001/000654 2000-11-30 2001-11-08 Verfahren und vorrichtung zur frequenzsynthese in einem entfernungsmessgerat WO2002044754A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2002212027A AU2002212027A1 (en) 2000-11-30 2001-11-08 Method and device for carrying out frequency synthesis in a distance measuring device
DE50113871T DE50113871D1 (de) 2000-11-30 2001-11-08 Verfahren und vorrichtung zur frequenzsynthese in einem entfernungsmessgerät
KR1020037007216A KR100802969B1 (ko) 2000-11-30 2001-11-08 거리 측정 장치 내의 주파수 합성을 위한 방법 및 장치
JP2002546245A JP3935841B2 (ja) 2000-11-30 2001-11-08 距離計における周波数合成方法および装置並びに距離計
EP01980099A EP1337875B1 (de) 2000-11-30 2001-11-08 Verfahren und vorrichtung zur frequenzsynthese in einem entfernungsmessgerät
US10/446,786 US6859744B2 (en) 2000-11-30 2003-05-29 Method and device for carrying out frequency synthesis in a distance measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2333/00 2000-11-30
CH23332000 2000-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/446,786 Continuation US6859744B2 (en) 2000-11-30 2003-05-29 Method and device for carrying out frequency synthesis in a distance measuring device

Publications (1)

Publication Number Publication Date
WO2002044754A1 true WO2002044754A1 (de) 2002-06-06

Family

ID=4568637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2001/000654 WO2002044754A1 (de) 2000-11-30 2001-11-08 Verfahren und vorrichtung zur frequenzsynthese in einem entfernungsmessgerat

Country Status (9)

Country Link
US (1) US6859744B2 (de)
EP (1) EP1337875B1 (de)
JP (1) JP3935841B2 (de)
KR (1) KR100802969B1 (de)
CN (1) CN1304851C (de)
AT (1) ATE392632T1 (de)
AU (1) AU2002212027A1 (de)
DE (1) DE50113871D1 (de)
WO (1) WO2002044754A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1388739A1 (de) * 2002-08-09 2004-02-11 HILTI Aktiengesellschaft Laserdistanzmessgerät mit Phasenlaufzeitmessung
EP1909115A1 (de) * 2006-10-06 2008-04-09 Sick Ag Erzeugung eines Signals mit vorgegebener Phase auf einem programmierbaren Baustein und darauf basierende Entfernungsmessung
EP2088453A1 (de) * 2008-02-08 2009-08-12 Sick Ag Optoelektronischer Sensor zur Entfernungsmessung
US8401816B2 (en) 2010-05-21 2013-03-19 Sure-Shot Medical Device Inc. Apparatus and method for geometric measurement
US8615376B2 (en) 2010-05-21 2013-12-24 Sure-Shot Medical Device Inc. Method and apparatus for dimensional measurement
US9109877B2 (en) 2010-05-21 2015-08-18 Jonathan S. Thierman Method and apparatus for dimensional measurement
US11712741B2 (en) 2012-01-30 2023-08-01 Black & Decker Inc. Remote programming of a power tool
US12044530B2 (en) 2008-07-10 2024-07-23 Black & Decker Inc. Communication protocol for remotely controlled laser devices

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710209B2 (en) * 2007-03-16 2010-05-04 Exar Corporation Digital pulse frequency/pulse amplitude (DPFM/DPAM) controller for low-power switching-power supplies
US20080239281A1 (en) * 2007-03-30 2008-10-02 Faro Technologies, Inc. Absolute distance meter
WO2012141810A1 (en) 2011-03-03 2012-10-18 Faro Technologies, Inc. Target apparatus and method
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
US8659749B2 (en) 2009-08-07 2014-02-25 Faro Technologies, Inc. Absolute distance meter with optical switch
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US8619265B2 (en) 2011-03-14 2013-12-31 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
US8902408B2 (en) 2011-02-14 2014-12-02 Faro Technologies Inc. Laser tracker used with six degree-of-freedom probe having separable spherical retroreflector
US8850608B2 (en) 2011-03-07 2014-09-30 University Of Connecticut Embedded ring oscillator network for integrated circuit security and threat detection
US9164173B2 (en) 2011-04-15 2015-10-20 Faro Technologies, Inc. Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
DE112012001708B4 (de) 2011-04-15 2018-05-09 Faro Technologies, Inc. Koordinatenmessgerät
USD688577S1 (en) 2012-02-21 2013-08-27 Faro Technologies, Inc. Laser tracker
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
DE102012212397B4 (de) * 2011-12-21 2024-02-29 Apple Inc. Schaltung und Verfahren
WO2013112455A1 (en) 2012-01-27 2013-08-01 Faro Technologies, Inc. Inspection method with barcode identification
US20140103344A1 (en) * 2012-03-12 2014-04-17 Mohammad Tehranipoor Detection of recovered integrated circuits
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit
US9667231B1 (en) * 2015-03-25 2017-05-30 Sandia Corporation Fast frequency divider circuit using combinational logic
JP6572251B2 (ja) * 2017-03-17 2019-09-04 株式会社東芝 時間計測回路および距離計測装置
CN108957300A (zh) * 2018-09-03 2018-12-07 长鑫存储技术有限公司 晶片测试装置及测试方法
CN110716193B (zh) * 2019-12-12 2020-05-08 深圳市迈测科技股份有限公司 一种信号生成的方法和装置
US11747474B2 (en) 2019-11-18 2023-09-05 Shenzhen Mileseey Technology Co., Ltd. Systems and methods for laser distance measurement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19643287A1 (de) * 1996-10-21 1998-04-23 Leica Ag Verfahren und Vorrichtung zur Kalibrierung von Entfernungsmeßgeräten
US5838755A (en) * 1995-12-11 1998-11-17 Nokia Mobile Phones Limited Frequency forming circuit with pulse swallower
US5889436A (en) * 1996-11-01 1999-03-30 National Semiconductor Corporation Phase locked loop fractional pulse swallowing frequency synthesizer
DE19811550A1 (de) * 1998-03-18 1999-09-23 Bosch Gmbh Robert Schaltungsanordnung zur Erzeugung von Frequenzsignalen

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH551628A (de) * 1972-05-02 1974-07-15 Kern & Co Ag Elektrooptischer entfernungsmesser.
US4584477A (en) * 1983-11-29 1986-04-22 West Electric Company, Ltd. Method for measuring distance and optical distance meter
JPH04351008A (ja) * 1991-05-28 1992-12-04 Sony Corp ディジタルvco
JP2596313B2 (ja) * 1993-05-25 1997-04-02 日本電気株式会社 位相同期発振回路
US5561692A (en) * 1993-12-09 1996-10-01 Northern Telecom Limited Clock phase shifting method and apparatus
US5438300A (en) * 1994-04-01 1995-08-01 National Semiconductor Corporation Digital frequency multiplier utilizing digital controlled oscillator
FR2719432B1 (fr) * 1994-04-29 1996-07-19 Sgs Thomson Microelectronics Circuit de transmission d'un signal codé en ligne sur une ligne téléphonique.
EP0759149A4 (de) * 1994-05-09 1998-11-11 Robin H Hines Tragbares abstandsmessgerät und -system
US5471176A (en) * 1994-06-07 1995-11-28 Quantum Corporation Glitchless frequency-adjustable ring oscillator
FR2736776B1 (fr) * 1995-07-13 1997-09-26 Sgs Thomson Microelectronics Synthetiseur de frequences
US5745442A (en) * 1996-10-22 1998-04-28 Power Spectra, Inc. Digital time interval measurement engine for a time of flight system
FR2758422B1 (fr) * 1997-01-13 1999-02-05 Sgs Thomson Microelectronics Oscillateur en anneau en technologie cmos
US6025745A (en) * 1997-06-24 2000-02-15 Digital Equipment Corporation Auto-calibrating digital delay circuit
US6009534A (en) * 1998-06-01 1999-12-28 Texas Instruments Incorporated Fractional phase interpolation of ring oscillator for high resolution pre-compensation
TW449976B (en) * 1998-08-11 2001-08-11 Toshiba Corp Pulse width modulation waveform generation circuit
US6711227B1 (en) * 1999-02-05 2004-03-23 Broadcom Corporation Synchronizing method and apparatus
US6556249B1 (en) * 1999-09-07 2003-04-29 Fairchild Semiconductors, Inc. Jitter cancellation technique for video clock recovery circuitry
JP2001094417A (ja) * 1999-09-24 2001-04-06 Toshiba Microelectronics Corp デジタル方式pll回路
US6359519B1 (en) * 2000-02-11 2002-03-19 Agere Systems Guardian Corp. Self-timed numerically controlled ring oscillator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838755A (en) * 1995-12-11 1998-11-17 Nokia Mobile Phones Limited Frequency forming circuit with pulse swallower
DE19643287A1 (de) * 1996-10-21 1998-04-23 Leica Ag Verfahren und Vorrichtung zur Kalibrierung von Entfernungsmeßgeräten
US5889436A (en) * 1996-11-01 1999-03-30 National Semiconductor Corporation Phase locked loop fractional pulse swallowing frequency synthesizer
DE19811550A1 (de) * 1998-03-18 1999-09-23 Bosch Gmbh Robert Schaltungsanordnung zur Erzeugung von Frequenzsignalen

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1388739A1 (de) * 2002-08-09 2004-02-11 HILTI Aktiengesellschaft Laserdistanzmessgerät mit Phasenlaufzeitmessung
EP1909115A1 (de) * 2006-10-06 2008-04-09 Sick Ag Erzeugung eines Signals mit vorgegebener Phase auf einem programmierbaren Baustein und darauf basierende Entfernungsmessung
EP2088453A1 (de) * 2008-02-08 2009-08-12 Sick Ag Optoelektronischer Sensor zur Entfernungsmessung
US12044530B2 (en) 2008-07-10 2024-07-23 Black & Decker Inc. Communication protocol for remotely controlled laser devices
US8401816B2 (en) 2010-05-21 2013-03-19 Sure-Shot Medical Device Inc. Apparatus and method for geometric measurement
US8615376B2 (en) 2010-05-21 2013-12-24 Sure-Shot Medical Device Inc. Method and apparatus for dimensional measurement
US9109877B2 (en) 2010-05-21 2015-08-18 Jonathan S. Thierman Method and apparatus for dimensional measurement
US11712741B2 (en) 2012-01-30 2023-08-01 Black & Decker Inc. Remote programming of a power tool

Also Published As

Publication number Publication date
JP2004522145A (ja) 2004-07-22
CN1478204A (zh) 2004-02-25
US20030204345A1 (en) 2003-10-30
KR100802969B1 (ko) 2008-02-14
JP3935841B2 (ja) 2007-06-27
DE50113871D1 (de) 2008-05-29
EP1337875A1 (de) 2003-08-27
CN1304851C (zh) 2007-03-14
AU2002212027A1 (en) 2002-06-11
EP1337875B1 (de) 2008-04-16
US6859744B2 (en) 2005-02-22
KR20030057563A (ko) 2003-07-04
ATE392632T1 (de) 2008-05-15

Similar Documents

Publication Publication Date Title
EP1337875B1 (de) Verfahren und vorrichtung zur frequenzsynthese in einem entfernungsmessgerät
EP0010064B1 (de) Verfahren zur elektrooptischen Distanzmessung sowie Vorrichtung zur Durchführung des Verfahrens
EP2867693B1 (de) Distanzmessverfahren und distanzmesser
EP1825293B1 (de) Elektronisches messverfahren
WO2006063740A1 (de) Einkanal-heterodyn-distanzmessverfahren
DE3447721C2 (de)
DE10022054B4 (de) Optischer Distanzsensor
EP2867694B1 (de) Distanzmessverfahren und distanzmesser
EP1537437B1 (de) Entfernungsmessgerät
DE1798276B1 (de) Vorrichtung zur bestimmung der geschwindigkeit und/oder des weges von fahrzeugen durch messung des dopplereffektes
EP1782085B1 (de) Verfahren zum messen des phasenrauschens eines hochfrequenzsignals und messgerät zum ausführen dieses verfahrens
DE3151746C2 (de)
EP1540374B1 (de) Verfahren zum bestimmen einer entfernung und entfernungsmessgerät mit verbesserung der effektiven auflösung eines a/d-wandlers durch phasenmodulation des auswertesignals
DE2037810A1 (de) Elektro optische Dopplereffekt Anordnung
DE10350489B4 (de) Optischer Sensor
DE10348104B3 (de) Optischer Sensor
DE855586C (de) Funk-Entfernungsmesser
DE838788C (de) Anordnung zur Erzeugung und Messung von Frequenzen
DE10331376B3 (de) Optischer Sensor
DE102004004004A1 (de) Ansteuerung für ein Heterodyn-Interferometer
WO2024126139A1 (de) Prüfvorrichtung zum test eines mit elektromagnetischen wellen arbeitenden abstandssensors und eine frequenzteileranordnung für eine derartige prüfvorrichtung
DE2939172C2 (de) Verfahren zur Messung und Nachregelung der Frequenzlinearität von elektronisch durchstimmbaren Wobbeloszillatoren
DE2425656C3 (de) Überlagerungsempfänger
DE1516992C (de) Verfahren und Vorrichtung zur Klirr faktormessung
DE102005057278A1 (de) Vorrichtung zur Entfernungsmessung nach dem Laufzeitverfahren unter Verwendung vieler Oszillatoren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001980099

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002212027

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002546245

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10446786

Country of ref document: US

Ref document number: 1020037007216

Country of ref document: KR

Ref document number: 01819768X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037007216

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001980099

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001980099

Country of ref document: EP