WO2002043058A1 - Procede d'inspection et procede de production d un moyen d'enregistrement optique - Google Patents

Procede d'inspection et procede de production d un moyen d'enregistrement optique Download PDF

Info

Publication number
WO2002043058A1
WO2002043058A1 PCT/JP2001/010319 JP0110319W WO0243058A1 WO 2002043058 A1 WO2002043058 A1 WO 2002043058A1 JP 0110319 W JP0110319 W JP 0110319W WO 0243058 A1 WO0243058 A1 WO 0243058A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
recording
optical recording
recording medium
signal
Prior art date
Application number
PCT/JP2001/010319
Other languages
English (en)
French (fr)
Inventor
Isamu Kuribayashi
Masanori Shibahara
Hajime Utsunomiya
Toshiki Aoi
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to JP2002544715A priority Critical patent/JPWO2002043058A1/ja
Priority to US10/432,859 priority patent/US20040052165A1/en
Publication of WO2002043058A1 publication Critical patent/WO2002043058A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0037Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs
    • G11B7/00375Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs arrangements for detection of physical defects, e.g. of recording layer

Definitions

  • the present invention relates to a method for inspecting and manufacturing an optical recording medium having a phase-change recording layer and used as a write-once medium.
  • Conventional technology
  • Optical recording media capable of high-density recording have attracted attention.
  • Optical recording media include write-once media, which can be recorded only once and cannot be rewritten, and rewritable media, which can be repeatedly recorded.
  • phase change type rewritable optical recording media perform recording by changing the crystal state of the recording layer by irradiating laser light, The reproduction is performed by detecting a change in the reflectance of the recording layer.
  • a phase-change type medium that can be overwritten by overwriting
  • the crystalline recording layer is melted by irradiating the recording layer with laser light at the recording level, and rapidly cooled from the molten state to form an amorphous recording medium.
  • the amorphous recording mark is crystallized by irradiating a laser beam of an erasing power level to raise the temperature to a temperature higher than the crystallization temperature of the recording layer and lower than the melting point, and then slowly cooling. Therefore, overwriting is possible by irradiating a single laser beam while modulating the intensity.
  • a medium having a phase-change type recording layer can be used as a write-once medium in addition to the rewritable type described above. When used as a write-once medium, it is necessary that the once formed amorphous recording mark cannot be erased or rewritten.
  • phase-change type medium which is originally a rewritable medium, as a write-once medium, it must have the property that it is practically impossible to overwrite new data on data once recorded.
  • phase change type medium when writing new data to an unrecorded area, The conditions for overwriting new data on previously recorded data are stricter than the conditions for the above. Therefore, in order to use a phase-change type medium as a write-once medium, it is possible to write new data in an unrecorded area under predetermined recording conditions, but to write new data on the data once recorded. Must be impossible to overwrite.
  • the present invention provides a method for determining whether an optical recording medium to be inspected can be effectively used as a write-once medium, and the above object is to provide an optical recording medium having a phase-change recording layer.
  • the shortest signal is recorded on the recording medium so that the CNR of the shortest signal is 45 dB or more, and a DC laser beam with a power level that does not melt the recording layer is recorded in the shortest signal recording area.
  • the decrease in the carrier of the shortest signal is measured, and the optical recording medium in which the decrease in the carrier is not more than 20 dB is determined to be a write-once medium. Is achieved by:
  • the object of the present invention is also to record a random signal on an optical recording medium having a phase-change type recording layer, and record the random signal again at the same linear velocity as at the time of recording the random signal so as to overlap the random signal.
  • This is achieved by an optical recording medium inspection method in which when a reproducing operation is performed, an optical recording medium that cannot reproduce a signal is determined to be a write-once medium.
  • the object of the present invention is also to record a random signal on an optical recording medium having a phase change type recording layer, and to apply a direct current laser beam to the recording area of the random signal at the same linear velocity as when recording the random signal.
  • optical recording medium inspection method in which an optical recording medium that cannot reproduce a signal is determined to be a write-once medium when a reproducing operation is performed after irradiating and recording a random signal again in the irradiated area.
  • the optical recording medium According to the inspection method for each optical recording medium as described above, it is possible for the optical recording medium to be inspected to newly write data in an unrecorded area under a predetermined recording condition, It is possible to effectively determine whether it is impossible to overwrite new data on the data that has been written.
  • the object of the present invention is also a film forming step of forming at least a phase change type recording layer, an initialization step of crystallizing at least a recording target area of the recording layer, and the initialization step is completed.
  • the object of the present invention is also a film forming step of forming at least a phase change type recording layer, an initialization step of crystallizing at least a recording target area of the recording layer, and the initialization step is completed.
  • the object of the present invention is also a film forming step for forming at least a phase-change type recording layer, an initialization step for crystallizing at least a recording target area of the recording layer, and a light having the initialization step completed.
  • An optical recording medium manufacturing method comprising: determining whether the recording medium is a write-once medium or a rewritable medium, wherein the inspecting step records a random signal on the recording layer. Recording a random signal again at the same linear velocity as that at the time of recording the random signal, superimposing the random signal on the random signal. Determining a possible optical recording medium as a write-once medium.
  • the object of the present invention is also a film forming step of forming at least a phase change type recording layer, an initialization step of crystallizing at least a recording target area of the recording layer, and the initialization step is completed.
  • each optical recording medium As described above, it is possible to write new data in an unrecorded area under a predetermined recording condition, and to overwrite the previously recorded data with new data. It is possible to manufacture an optical recording medium that cannot be performed.
  • FIG. 1 is a flowchart showing an inspection method for determining whether or not a phase change type medium used as a write-once type satisfies a first condition to be satisfied.
  • FIG. 2 is a flowchart showing an inspection method for determining whether or not a phase change type medium used as a write-once type satisfies a second condition to be satisfied.
  • FIG. 3 is a flowchart showing an inspection method for determining whether or not a phase-change type medium used as a write-once type satisfies a third condition to be satisfied.
  • FIG. 4 is a flowchart showing an inspection method for determining whether or not a phase-change type medium used as a write-once type satisfies a fourth condition to be satisfied.
  • FIG. 5 is a partial cross-sectional view showing a configuration example of the optical recording medium of the present invention.
  • FIG. 6 is a partial cross-sectional view showing another configuration example of the optical recording medium of the present invention.
  • FIG. 7 is a graph showing the 5T signal and its recording waveform.
  • FIG. 8 is a drawing substitute photograph showing the crystal structure, and is a transmission electron micrograph of the recording layer.
  • FIG. 9 is a graph showing the relationship between the DC erase power and (R top + R bottom) Z 2 R ini. ⁇ Embodiments of the invention
  • the recording layer melted by the recording laser beam is rapidly cooled when the laser beam moves away, and an amorphous recording mark is formed.
  • the cooling rate near the rear end of the molten region is controlled by controlling the intensity modulation pattern of the laser beam, the latter half of the molten region can be recrystallized. As a result, only the first half of the molten region becomes amorphous, and a bat-like amorphous recording mark is formed.
  • the width of the recording mark can be increased relative to the length of the recording mark, thereby suppressing a decrease in the reproduction output due to the shortening of the recording mark length. Therefore, in the same publication, when the wavelength of the recording light is ⁇ and the numerical aperture of the objective lens of the recording optical system is ⁇ ⁇ ⁇ ⁇ , it is not sufficient to shorten the length of the shortest recording mark to 0.4 or less than ZNA.
  • the recording mark width can be secured, and as a result, sufficient reproduction output is obtained.
  • jitter is reduced by making the shortest recording mark into this shape.
  • phase-change media the conditions for overwriting new data on previously recorded data are more severe than the conditions for writing new data in unrecorded areas. Therefore, in order to enable overwriting of data at a high recording linear velocity, it is effective to use a recording layer with a high crystallization rate. This means that in order to use a phase change type medium as a write-once medium, new data can be written by using a recording layer with a relatively low crystallization rate and setting a relatively high linear velocity. When While overwriting data is not possible.
  • the inventors of the present invention disclose the above-mentioned Japanese Patent Application Laid-Open No. 2000-2317225 for a write-once type phase change medium by providing a recording layer having a relatively low crystallization rate and making the linear velocity used relatively high.
  • a recording layer having a relatively low crystallization rate and making the linear velocity used relatively high.
  • an experiment was conducted in which recording was performed under the condition that the length of the shortest recording mark was 0.4 / NA or less and that the rear part of the molten area was recrystallized.
  • the jitter was large unlike the rewritable medium described in the above-mentioned Japanese Patent Application Laid-Open No. 2000-231725.
  • the cause of the increase in jitter when performing high-density recording on a write-once medium is considered as follows.
  • a recording layer having a relatively low crystallization rate was provided, and the linear velocity used was relatively increased.
  • the shortest recording mark having a length of 0.4 ⁇ or less is formed.
  • the relatively slow speed makes it difficult for the melted recording layer to recrystallize, so the position of the trailing edge of the recording mark tends to vary, and the shape of the recording mark tends to vary.
  • the jitter is increased at the shortest recording mark that has the worst effect on the overall jitter.
  • the present inventors conducted recording under conditions to suppress recrystallization at the rear of the melted area of the recording layer in order to prevent variation in the shape of the recording mark, and to prevent variations in the shape of the recording mark. And Specifically, the crystallization speed of the recording layer and the thermal design of the medium are adjusted according to the recording linear velocity so that the recording sensitivity is sufficiently secured and the shape of the shortest recording mark is circular or oval. In addition to control, optimal recording conditions were set. However, if the shortest recording mark is simply circular or oval, the reproduction output will be low as in the comparative example described in Japanese Patent Application Laid-Open No. 2000-231725.
  • the composition of the recording layer is selected so that the crystallization speed is relatively slow and the change in reflectance between the crystal and the amorphous phase is large. Accordingly, the present invention provides a recording layer having a crystallization rate that can be used as a write-once medium, We realized a phase-change type medium with low jitter and sufficiently high reproduction output.
  • the CNR (carrier to noise) of the shortest signal. ratio) is at least 45 dB, preferably at least 48 dB.
  • the following first to fourth conditions are given as conditions that the phase-change medium used as a write-once type must satisfy.
  • the first condition is that recording is performed on an optical recording medium having a phase change type recording layer so that the CNR of the shortest signal is 45 dB or more, preferably 48 dB or more, and the shortest signal is recorded.
  • the carrier of the shortest signal decreases by 20 dB or less, preferably. Means less than 18 dB. If the carrier falls within this range, it is impossible to read the recorded signal again after the erasing operation.
  • a phase change type medium can be used as a write-once type.
  • the phase change recording layer is usually formed as an amorphous layer. It is formed. Therefore, before recording, It is necessary to crystallize at least a part of the recording layer of the ⁇ -gamma recording layer. This crystallization is generally called initialization. However, the recording layer immediately after formation is extremely difficult to crystallize.
  • the design is such that the decrease in the carrier of the shortest signal is extremely small, that is, if the recrystallization of the recording layer is extremely difficult, it is necessary to perform initialization at an extremely low linear velocity.
  • the properties are significantly reduced.
  • the reduction of the carrier of the shortest signal due to the erasing operation is 5 dB or more, and when the recording linear velocity is relatively slow, the reduction of the carrier is 1 dB.
  • 0 d c Figure 1 is preferably B or more is Furochiya one preparative showing a Ken ⁇ method for determining whether a first condition is satisfied as described above.
  • an optical recording medium to be inspected is set in an inspection device (not shown) (Step S1).
  • an inspection device at least, it is possible to record an arbitrary recording signal (recording mark) on an optical recording medium under arbitrary recording conditions (power of laser beam, recording linear velocity, etc.), and to record on an optical recording medium. It is necessary to be able to measure the carrier level and reflectivity of recorded recording marks. However, this does not mean that this inspection needs to be performed by a single inspection device, and this may be performed by multiple devices.
  • the inspection apparatus sets the “shortest signal” as a recording signal to be recorded on the optical recording medium (step S 2), and further sets the recording conditions to a predetermined power and a predetermined recording linear velocity. (Step S3).
  • step S4 a signal sequence consisting of the shortest signal is actually recorded on the optical recording medium to be inspected (step S4), and its CNR is measured (step S5).
  • CNR obtained in step S5 is defined as CNR1.
  • step S6 it is determined whether or not the CNR thus measured is equal to or more than a predetermined value (step S6). If the CNR is less than the predetermined value, the process returns to step S3 to re-record the recording conditions. Make settings.
  • the predetermined value Must be set to 45 dB or more, and preferably set to 48 dB or more.
  • step S6 If it is determined in step S6 that the CNR is equal to or greater than the predetermined value, a reproduction operation is performed on the optical recording medium, and the reflection level is detected (step S7).
  • the highest reflection level obtained in step S7 is defined as Rtop1.
  • the recording signal is set to “DC laser beam” (step S8), and the recording linear velocity is set to the same recording linear velocity set in step S3 as the recording condition.
  • the power of the DC laser beam changes stepwise (step S9).
  • Such a stepwise change must be made at a sufficiently long interval with respect to the period of the cycle.For example, it is set so that the power of the DC laser beam changes one step every time the optical recording medium makes one revolution. I just need.
  • the shortest signal sequence recorded in step S4 is irradiated with a DC laser beam whose power changes stepwise (step S10).
  • step S1 By comparing the reflection level Rtop2 obtained in S11 with Rtop2, it is determined whether Rtop2 is substantially lower than Rtopi (step S1).
  • step S12 if Rtop2 is not substantially reduced compared to Rtop1, it is determined that the recording layer was not melted by the DC laser beam irradiated in step S8. Again that CN Measure R (step S13).
  • the CNR obtained in step S13 is defined as CNR2.
  • Step S14 it is determined whether or not the difference (CNR 2-CNR 1) between CNR 1 obtained in step S 5 and CNR 2 obtained in step S 13 is equal to or less than a predetermined value (Ste S14).
  • the predetermined value needs to be set to 20 dB or less, and is preferably set to 18 dB or less.
  • the difference between CNR 1 and CNR 2 (CNR 2 — CNR 1) for the optical recording medium determined to be a write-once medium in step S 16. Is not less than 5 dB, preferably not less than 10 dB, and if it is less than 5 dB or 10 dB, the optical recording medium is Is not suitable for both rewritable media and write-once media. According to the method described above, an inspection for determining whether the first condition is satisfied can be performed.
  • the second condition is that the highest reflection level obtained when a random signal is recorded on an optical recording medium having a phase change type recording layer and a reproducing operation is performed in a recording area of the random signal is Rini, After erasing the recording area of the random signal by irradiating a DC laser beam at the same linear velocity as at the time of recording the random signal and performing an erasing operation, the highest value obtained when performing a reproducing operation in the irradiated area is obtained.
  • the reflection level is Rtop and the lowest reflection level is R bottom
  • the above-mentioned reflection level refers to the optical head This is the amount of returning light.
  • Rini is the reflection level of the crystalline region existing between the recording marks.
  • the random signal is preferably recorded under optimal recording conditions.
  • the optimum recording condition in this case is the recording condition that minimizes the jitter when recording on the recording layer immediately after initialization, the optimum recording condition recommended by the media manufacturer, or the standard to which the medium belongs. This is the specified optimum recording condition.
  • FIG. 2 is a slow-chart illustrating an inspection method for determining whether or not the above-described second condition is satisfied.
  • the inspection apparatus sets a "random signal" as a recording signal to be recorded on the optical recording medium (step S22), and further sets recording power to a predetermined power and a predetermined recording linear velocity. Yes (step S2 3).
  • a random signal sequence is actually recorded on the optical recording medium to be inspected (step S24), and its jitter is measured (step S25).
  • step S26 it is determined whether or not the jitter thus measured is equal to or smaller than a predetermined value. If the jitter exceeds the predetermined value, the process returns to step S23 to record. Reset the conditions.
  • the predetermined value is preferably set to 9% or less, more preferably 8% or less.
  • step S26 If it is determined in step S26 that the jitter is equal to or smaller than the predetermined value, a reproduction operation is performed on the optical recording medium, and the reflection level is detected (step S27).
  • the highest reflection level obtained in step S27 is defined as R ini.
  • step S 28 set the recording signal to “DC laser beam” (step S 28), and set the recording conditions to the same recording linear speed as the recording linear speed set in step S 23.
  • the power of the DC laser beam is set to change stepwise (step S29).
  • step S29 Such a stepwise change must be made at a sufficiently long interval with respect to the clock cycle.For example, each time the optical recording medium makes one revolution, the power of the DC laser beam changes one step. Should be set to.
  • step S32 the optical recording medium is determined to be a write-once medium (step S33), and conversely, the above-mentioned predetermined condition is satisfied. If not, the optical recording medium is determined to be a rewritable medium (step S34).
  • an inspection can be performed to determine whether or not the second condition is satisfied.
  • signal reproduction is not possible refers to a state in which a reproduced signal contains an error that cannot be corrected, and the clock jitter is preferably more than 13 ° / 0 , more preferably 1 ° / 0. Over 5%.
  • FIG. 3 is a flowchart showing an inspection method for determining whether or not the above third condition is satisfied.
  • an optical recording medium to be inspected is set in an inspection device (not shown). Step S4 1).
  • an inspection device at least an arbitrary recording signal (recording mark) can be recorded on an optical recording medium under arbitrary recording conditions (power of laser beam, recording linear velocity, etc.) and recorded on an optical recording medium. It is necessary to be able to measure the jitter of recorded marks. However, this does not mean that this inspection needs to be performed by a single inspection device, and this inspection may be performed by multiple devices.
  • the inspection apparatus sets a "random signal" as a recording signal to be recorded on the optical recording medium (step S42), and further sets recording power to a predetermined power and a predetermined recording linear velocity. Yes (step S43).
  • a random signal sequence is actually recorded on the optical recording medium to be inspected (step S44), and its jitter is measured (step S45).
  • step S46 it is determined whether the jitter thus measured is equal to or less than a predetermined value (step S46). If the jitter exceeds the predetermined value, the process returns to step S43 to return to the recording condition.
  • the predetermined value is preferably set to 9% or less, more preferably 8% or less.
  • step S46 If it is determined in step S46 that the jitter is equal to or less than the predetermined value, the random signal sequence is recorded again under the same conditions on the random signal sequence recorded in step S44 (step S47), The jitter is measured (step S48).
  • step S48 it is determined whether or not the jitter measured in step S48 exceeds a level indicating that the reproduced signal contains an error that cannot be corrected, more specifically, more than 13%, preferably 15 It is determined whether or not it is over (step S49). If it is over 13% or over 15%, it is determined that the optical recording medium is a write-once medium (step S50). ), Conversely, 1 3. /. If it is less than or equal to 15 ° / 0 , the optical recording medium is determined to be a rewritable medium (step S51).
  • the fourth condition is that a random signal is recorded on an optical recording medium having a phase-change type recording layer, and a DC laser beam is applied to the recording area of the random signal at the same linear velocity as when recording the random signal.
  • the random signal is recorded under the above-described optimum recording conditions.
  • the fourth condition needs to be satisfied regardless of the power of the DC laser light. That is, whether the DC laser beam does not melt the recording layer or melts the recording layer, it is necessary that the random signal recorded after the DC laser beam irradiation cannot be reproduced. If the fourth condition is satisfied when the DC laser beam does not melt the recording layer, it means that crystallization of the recording layer in the solid phase by irradiation of the DC laser beam is impossible. On the other hand, if the fourth condition is satisfied in the case of melting, it means that the recording layer becomes amorphous when cooled from the molten state.
  • the recording layer is crystallized in a solid phase or crystallized from a liquid phase by irradiating a direct current laser, so in either case, re-recording is performed in the area irradiated with the direct current laser Is possible.
  • FIG. 4 is a flowchart showing a detection method for determining whether or not the above-described fourth condition is satisfied.
  • an optical recording medium to be inspected is set in an inspection apparatus (not shown) (step S61).
  • an inspection device at least an arbitrary recording signal (recording mark) can be recorded on an optical recording medium under arbitrary recording conditions (power of laser beam, recording linear velocity, etc.) and recorded on an optical recording medium. It is necessary to be able to measure the jitter of recorded marks. However, this does not mean that this inspection needs to be performed by a single inspection device, and this inspection may be performed by multiple devices.
  • the inspection device is set to a “random signal” as a recording signal to be recorded on the optical recording medium (step S62), and further, as a recording condition, A constant power and a predetermined recording linear velocity are set (step S63).
  • a random signal sequence is actually recorded on the optical recording medium to be inspected (step S64), and its jitter is measured (step S65).
  • step S66 it is determined whether or not the jitter thus measured is equal to or smaller than a predetermined value. If the jitter exceeds the predetermined value, the process returns to step S63 to return to the recording condition. Set again.
  • the predetermined value is preferably set to 9% or less, more preferably 8% or less.
  • step S66 If it is determined in step S66 that the jitter is equal to or smaller than the predetermined value, the inspection apparatus sets the recording signal to “DC laser beam” (step S67), and further sets the recording conditions to step S66.
  • the recording linear velocity is set to be the same as the recording linear velocity set in step 3, and the power of the DC laser beam is set to change stepwise (step S68).
  • step S68 Such a gradual change must be made at a sufficiently long interval with respect to the clock cycle.
  • the power of a DC laser beam changes by one step each time the optical recording medium makes one revolution. Should be set to.
  • a DC laser beam whose power changes stepwise is irradiated onto the random signal sequence recorded in step S64 (step S69).
  • the inspection apparatus sets again the “random signal” as the recording signal to be recorded on the optical recording medium (step S 70), and further sets the recording conditions to the conditions set in step S 63. Set the same conditions (Step S71).
  • the random signal sequence is recorded again on the random signal sequence recorded in step S64 (step S72), and each region irradiated with a DC laser having a different power is irradiated. Is measured (step S73).
  • step S73 it is determined whether or not the jitter measured in step S73 exceeds a level indicating that the reproduced signal contains an error that cannot be corrected, specifically, more than 13%, preferably 15 Super or not (Step S74), and if this is more than 13% or more than 15%, the optical recording medium is determined to be a write-once medium (step S75), and conversely, If it is 13% or less or 15% or less, it is determined that the optical recording medium is a rewritable medium (step S76).
  • an inspection can be performed to determine whether the fourth condition is satisfied.
  • the inspection for determining whether or not the above-described first to fourth conditions are satisfied does not need to be performed for all optical recording media to be shipped, and the inspection is performed after the film forming process and the initialization process are completed.
  • the power of the optical recording medium constituting the lot is a write-once medium, , It can be determined whether the medium is a rewritable medium. Therefore, the inspection process described above can be a part of the manufacturing process of the optical recording medium. In this case, the manufacturing process of the optical recording medium is performed in the order of the film forming process, the initialization process, and the inspection process. become.
  • a drive signal that modulates the intensity of a laser beam for recording, reproduction, and erasure is generally superimposed with a high frequency that is orders of magnitude higher than the recording frequency, for example, a high frequency of several hundred megahertz. It is a target.
  • the DC laser light in the present specification includes a laser light driven by a DC signal on which such a high frequency is superimposed.
  • the composition of the thermal design of the medium and the composition of the recording layer are set so that the initialization can be performed at a relatively high linear velocity and the recording marks are not erased even at a relatively low linear velocity. It is preferable to optimize. Specifically, it is preferable that the recording layer has a structure in which the recording layer is cooled relatively quickly so as to make recrystallization of the amorphous recording mark difficult, that is, a quenching structure.
  • a quenching structure when performing initialization with a bulk eraser that irradiates a large-diameter laser beam, unlike when recording using a small-diameter laser beam, the cooling rate of the recording layer does not increase so fast even if the medium has a quenched structure.
  • a metal reflective layer as a heat radiating layer is provided on the recording layer with a dielectric layer interposed between the recording layer and the dielectric layer so that the heat of the recording layer is quickly conducted to the reflective layer.
  • the layer may be made thinner, or the thermal conductivity of the dielectric layer and / or the thermal conductivity of the reflective layer may be increased.
  • the recording linear velocity is not particularly limited.
  • the initializing linear velocity generally needs to be lower than the recording linear velocity
  • a recording layer optimized for a low recording linear velocity requires a significantly lower initializing linear velocity, and the medium productivity Will be low.
  • a recording layer optimized for extremely slow linear velocities may not be able to be initialized.
  • the recording linear velocity is usually preferably selected from the range of 2 to 20 m / s, particularly preferably 3 to 15 m / s.
  • a recording layer that is relatively easy to crystallize is provided, and at the time of initialization, an element that inhibits crystallization of the recording layer is diffused from a dielectric layer adjacent to the recording layer.
  • a recording layer containing at least Sb and Te may be provided, and a dielectric layer containing at least S (sulfur) may be provided in contact with the recording layer.
  • FIG. 5 shows a configuration example of the optical recording medium of the present invention.
  • This optical recording medium has a first dielectric layer 31, a recording layer 4, a second dielectric layer 32, a reflective layer 5 and a protective layer 6 in this order on a translucent substrate 2. Or for playback Each light is incident through the translucent substrate 2.
  • the translucent substrate 2 has translucency with respect to a laser beam for recording or reproduction.
  • the thickness of the light-transmitting substrate 2 is usually 0.2 to 1.2 mm, preferably 0.4 to 1.2 mm.
  • the translucent substrate 2 may be made of resin, but may be made of glass.
  • the group (guide groove) 21 normally provided in the optical recording medium is a region existing on the near side as viewed from the laser beam incident side, and the ridge existing between adjacent groups is a land 22.
  • a land and a nose or a group can be used as a recording track.
  • First dielectric layer 3 1 and second dielectric layer 3 2 are first dielectric layer 3 1 and second dielectric layer 3 2
  • Each dielectric layer protect the support base 20 and the translucent base 2 by preventing the recording layer from being oxidized and deteriorated, and by blocking or releasing heat transmitted from the recording layer during recording in the in-plane direction. In addition, by providing these dielectric layers, the degree of modulation can be improved.
  • Each dielectric layer may have a configuration in which two or more dielectric layers having different compositions are stacked.
  • the medium has a quenching structure.
  • the dielectric layer is made of a dielectric material having high thermal conductivity. Is preferred.
  • a dielectric having a high thermal conductivity for example, a mixture of zinc sulfide and silicon oxide (ZnS—SiO 2 ), aluminum nitride, aluminum oxide, silicon nitride, and tantalum oxide are preferable. A1 oxides and Z or nitrides, and Si oxides and / or nitrides are preferred.
  • Z n S- is a S i ⁇ 2, S i 0 2 3 0-6 0 mole 0/0 those containing preferred. If S i 0 2 containing chromatic amount is too small, the thermal conductivity is too low. On the other hand, if the content of Sio 2 is too large, the adhesion to other layers will be insufficient, and peeling between the layers will tend to occur during long-term storage.
  • the thermal conductivity of the second dielectric layer is preferably 1 W / mK or more, more preferably 1.5 W / mK or more.
  • the material that can be used as the dielectric layer usually has a thermal conductivity of about 20 W / mK or less. In this specification, the thermal conductivity of the second dielectric layer is not a measured value in a thin film state but a value in a bulk material.
  • Each dielectric layer is preferably formed by a sputtering method.
  • the composition of the recording layer is not particularly limited, and may be appropriately selected from various phase change materials.
  • the recording layer contains at least Sb and Te.
  • the recording layer consisting only of Sb and Te has a low crystallization temperature of about 130 ° C and insufficient storage reliability.
  • the added elements include In, Ag, Au, Bi, Se, Al, P, Ge, H, Si, C, V, W, Ta, Zn, Ti,
  • At least one selected from Sn, Pb, Pd and rare earth elements (Sc, Y and lanthanide) is preferred.
  • at least one selected from the group consisting of rare earth elements, Ag, In, and Ge is preferable because the effect of improving storage reliability is particularly high.
  • composition containing Sb and Te containing Sb and Te.
  • Elements other than Sb and Te are represented by M, and the atomic ratio of the constituent elements of the recording layer is
  • Equation I (S b X T e x _ x ) x _ y M y
  • X representing the content of Sb is too small, the crystallization speed becomes too slow, so that it is difficult to initialize the recording layer. In addition, since the reflectance in the crystalline region of the recording layer is low, the reproduction output is low. Also, if X is too small, recording becomes difficult. On the other hand, if X is too large, the crystallization speed will be too high, and it will be unsuitable as a recording layer of a write-once medium. On the other hand, if X is too large, the difference in reflectance between the crystalline state and the amorphous state will be small, and the reproduction output will be low. Therefore, by setting X within the above range, an appropriate crystallization speed can be obtained for the recording layer of the write-once medium, and the reproduction output can be sufficiently increased.
  • the specific value of X may be determined according to the recording linear velocity.
  • the element M is not particularly limited, but it is preferable to select at least one of the above-mentioned elements exhibiting the effect of improving storage reliability. If y, which represents the content of the element M, is too large, the crystallization speed will be too fast or the reproduction output will be low.
  • the structure of the recording layer is not particularly limited.
  • the present invention is applicable to a medium having a multi-layered recording layer described in Japanese Patent Application Laid-Open No. H08-221814 and Japanese Patent Application Laid-Open No. H10-226173. .
  • Reflective layer constituting material in the present invention is not particularly limited, usually, A l, A u, A g s P t, C u, N i, C r, T i, a single metal or halves genus such as S i Alternatively, it may be made of an alloy containing one or more of these. As described above, in the present invention, it is preferable that the medium has a quenching structure. Therefore, it is preferable that the reflective layer is formed of a material having high thermal conductivity. Ag or A1 is preferable as the material having high thermal conductivity. However, since Ag or A1 alone does not provide sufficient corrosion resistance, it is preferable to add an element for improving corrosion resistance.
  • the thermal conductivity decreases.
  • the thermal conductivity decreases.
  • the subcomponent elements that are preferably added to Ag include, for example, Mg, Pd, Ce, Cu, Ge, and La selected from S, Sb, Si, Te, and Zr. At least one species. It is desirable to use at least one, and preferably two or more of these subcomponent elements.
  • the content of the subcomponent element in the reflective layer is preferably 0.05 to 2.0% by atom, more preferably 0.2 to 2.0% by atom for each metal, and the total content of the subcomponent is preferably It is 0.2 to 5 atomic% / 0 , more preferably 0.5 to 3 atomic%. If the content of the subcomponent elements is too small, the effect of including these will be insufficient. On the other hand, if the content of the subcomponent element is too large, the thermal conductivity will be reduced.
  • the thermal conductivity of the reflective layer is preferably at least 10 OW / mK, more preferably Is greater than 15 OW / mK.
  • the thermal conductivity can be calculated, for example, from the electric resistance value of the reflective layer obtained using the four-probe method according to the Widemann-Franz law.
  • the thickness of the reflective layer is preferably set to 10 to 300 nm. If the thickness is less than the above range, it is difficult to obtain a sufficient reflectance. Further, even if the ratio exceeds the above range, the improvement of the reflectance is small, which is disadvantageous in cost.
  • the reflection layer is preferably formed by a vapor phase growth method such as a sputtering method and a vapor deposition method.
  • the protective layer 6 is provided for improving scratch resistance and corrosion resistance.
  • This protective layer is preferably composed of various organic substances, but is particularly composed of a substance obtained by curing a radiation-curable compound or its composition with radiation such as electron beam or ultraviolet ray. Is preferred.
  • the thickness of the protective layer is usually about 0.1 to 100 / zm, and may be formed by a usual method such as spin coating, gravure coating, spray coating, and diving. Structure shown in Figure 6
  • FIG. 6 shows another configuration example of the optical recording medium of the present invention.
  • This optical recording medium comprises a support layer 20, a reflective layer 5, a second dielectric layer 32, a recording layer 4, a first dielectric layer 31 and a light-transmissive substrate 2 made of metal or metalloid. Are laminated in this order.
  • a laser beam for recording or reproduction enters through the transparent substrate 2.
  • an intermediate layer made of a dielectric material may be provided between the support base 20 and the reflective layer 5.
  • a resin plate or a glass plate having the same thickness as the translucent substrate 2 in FIG. 5 may be used. However, in order to achieve a high recording density by increasing the NA of the recording / reproducing optical system, it is preferable to make the translucent substrate 2 thin.
  • a light-transmitting sheet made of a light-transmitting resin is attached to the first dielectric layer 31 with various adhesives or adhesives to form a light-transmitting substrate.
  • a light-transmitting resin layer may be formed directly on the first dielectric layer 31 by using a coating method to form a light-transmitting substrate.
  • the surface roughness of the reflective layer on the laser-light-incident side tends to increase due to crystal growth when the reflective layer 5 is formed.
  • the reproduction noise increases. Therefore, it is preferable to reduce the crystal grain size of the reflective layer or to form the reflective layer as an amorphous layer.
  • a reflective layer containing Ag or A1 as a main component and containing the above-mentioned additive element is preferable.
  • the thermal conductivity of the reflective layer becomes lower as the crystal grain size becomes smaller, if the reflective layer is amorphous, it is difficult to obtain a sufficient cooling rate during recording. Therefore, it is preferable to first form the reflection layer as an amorphous layer, and then perform heat treatment to crystallize the layer. Once formed as an amorphous layer and then crystallized, the surface roughness in the amorphous state can be substantially maintained, and the improvement in thermal conductivity due to crystallization is realized.
  • the thickness of the first dielectric layer 31 was 9 Onm.
  • the recording layer 4 was formed by a sputtering method in an Ar atmosphere.
  • the composition (atomic ratio) of recording layer 4 is
  • the thickness of the recording layer 4 was 2 Onm.
  • the second dielectric layer 3 2 is the target as Z n S (5 0 mole 0/0) - S i O 2 (5 0 mole 0/0) using, Ri by the sputtering in A r atmosphere forming did.
  • the thickness of the second dielectric layer 32 was 2 Onm.
  • Z n S using the target (5 0 mol%) - (. 5 0 mole 0 /) S i O 2 thermal conductivity was 1. 0 W / mK.
  • the reflective layer 5 was formed by a sputtering method in an Ar atmosphere using an Al-1.7 mole% Cr alloy as a target.
  • the thickness of the reflection layer 5 was 1 O.Onm.
  • the thermal conductivity of this reflective layer was 40 W / mK.
  • the protective layer 6 was formed by applying an ultraviolet curable resin by a spin coating method and then curing the resin by irradiation with ultraviolet light. The thickness of the protective layer after curing was 5.
  • FIG. 7 shows an example of a recording waveform in multi-pulse recording.
  • the recording waveform means a drive signal pattern for modulating the intensity of the recording light.
  • FIG. 7 shows a 5T signal of the NRZI signal and a recording waveform corresponding to the 5T signal.
  • Pw is the recording power
  • Pb is the bias power.
  • Bias power P b 0.5mW
  • the shortest signal (3T signal)
  • the number of upward pulses in the recording pulse was one, and the width was Ttop.
  • These recording conditions are optimal recording conditions that minimize the click jitter.
  • the CNR of the shortest signal was measured with a spectrum analyzer (manufactured by Advantest) and found to be 49.ldB. Ma
  • the jitter and the reproduction output of the random signal were measured, they were 8.5% and 1.04V, respectively. If the clock jitter is 9% or less, signal reproduction with no practical problem is possible.However, if the clock jitter exceeds 13%, especially if it exceeds 15%, errors frequently occur. Can no longer be used.
  • the clock jitter was measured using a time interval analyzer (manufactured by Yokogawa Electric Corporation) to determine the signal fluctuation.
  • Tw Determined by Tw is the detection window width.
  • the playback output was measured with an analog oscilloscope.
  • the track on which the signal was recorded was irradiated with a DC laser beam with a linear velocity of 3.5 m / s and an output of 2 to 7 mW to erase the recorded mark.
  • CNR ⁇ r was measured after irradiation, a maximum signal attenuation of 16.5 dB was observed for the shortest signal.
  • the ratio of the reproduction output after irradiation to the reproduction output before irradiation with DC laser beam was 0.29.
  • the recording layer of Sample No. 1 was observed with a transmission electron microscope. As shown in FIG. 8, the shortest recording mark was almost circular.
  • Sample No. 2 was fabricated in the same manner as in Example 1, except that the thickness of the first dielectric layer was set to 12 Onm and the thickness of the second dielectric layer 32 was set to 5 Onm.
  • the shortest signal and random signal were recorded in the same manner as in Example 1 except that the recording power Pw was changed to 8 mW, and the CNR, reproduction output, and jitter were measured.
  • the CNR of the shortest signal was 49 dB
  • the reproduction output of the random signal was 0.98 V
  • the jitter was 10%. That is, compared to Example 1, the CNR was the same, but the jitter was larger.
  • the carrier attenuation of the shortest signal was 18 dB or less.
  • the clock jitter of the re-recorded signal exceeded 15%.
  • Sample No. 3 was prepared in the same manner as in Sample No. 1 of Example 1 except for the above.
  • Sample No. 3 has a recording layer with a higher crystallization speed than Sample No. 1, so it was rewritten at a linear velocity of 3.5 m / s. Is possible.
  • sample No. 3 has a linear velocity of 3.5 m / s and a DC laser power of 1 mW or more.
  • a write-once phase change medium that has a small jitter when performing high-density recording and has a sufficiently high reproduction output is realized.
  • phase change type medium that can be used as a write-once type can be accurately determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

明細書 光記録媒体の検査方法及び光記録媒体の製造方法 技術分野
本発明は、 相変化型の記録層を有し、 追記型媒体として用いられる 光記録媒体の検査方法及び製造方法に関する。 従来の技術
近年、 高密度記録が可能な光記録媒体が注目されている。 光記録媒 体には、 1回だけ記録が可能で書き換えが不可能な追記型媒体と、 繰 り返し記録が可能な書き換え型媒体とがある。
追記型媒体は記録情報の書き換えが不可能であるため、 情報の改竄 が問題となる公文書等の記録に適している。 追記型媒体としては、 有 機色素を記録材料とするものが広く用いられている。 しかし、 有機色 素を記録材料とすると、 媒体の線速度を速く して高速記録を行う場合 に記録感度が不十分となりやすいので、 高転送レートの実現が困難で ある。 また、 有機色素は、 分光吸収特性や分光反射特性が比較的急峻 であるため、 記録 ·再生波長に対応した有機色素を使う必要がある。 したがって、 例えば、 より短い波長の記録 ·再生光を使う上位フォー マツトが存在する場合、 上位フォーマツト用の記録 ·再生光では下位 フォーマツ トの媒体の記録■再生ができなくなるという問題がある。 また、 短波長の記録 ·再生光に対応する有機色素の設計および入手が 難しいという問題もある。
—方、 書き換え可能型の光記録媒体のうち相変化型のものは、 レー ザ一光を照射することにより記録層の結晶状態を変化させて記録を行 い、 このような状態変化に伴なう記録層の反射率変化を検出すること により再生を行うものである。 オーバーライ トによる書き換えが可能 な相変化型媒体では、 結晶質記録層に記録パヮ一レベルのレーザー光 を照射して溶融させ、 溶融状態から急冷することにより非晶質記録マ ークを形成する。 消去に際しては、 消去パワーレベルのレーザー光を 照射して記録層の結晶化温度以上融点未満の温度まで昇温し、 次いで 徐冷することにより、 非晶質記録マークを結晶化する。 したがって、 単一のレーザー光を強度変調しながら照射することにより、 オーバー ライ トが可能である。
相変化型の記録層を有する媒体は、 上記した書き換え型のほか、 追 記型媒体として用いることも可能である。 追記型媒体として用いる場 合には、 いったん形成した非晶質記録マークを消去または書き換えで きないことが必要である。
有機色素を用いる追記型媒体では、 記録に際して有機色素の分解が 伴う。 そのため、 一般に、 記録時の線速度を 2倍にすると記録用レー ザ一光のパワーを 2 12倍にする必要があるといわれている。 これに 対し相変化型媒体を追記型媒体として用いる場合、 記録用レーザー光 を照射した部分が融点に達すればよい。 記録層はレーザー光を瞬時に 吸収して融点に達するため、 記録用レーザー光のパワーは記録時の線 速度に大きくは依存しない。 したがって、 記録時の線速度を 2倍にし ても、'記録用レーザー光のパワーはわずかな増加で済むという利点が ある。
しかし、 相変化型媒体を追記型媒体として利用するための有効な提 案はなされていない。
本発明は、 光記録媒体が有効に追記型媒体として用いることができ るか否かを検査する方法を提供することを目的とする。 また、 本発明 は、 相変化型の記録層を有し、 追記型媒体として用いられる光記録媒 体の製造方法を提供することを目的とする。 発明の開示
本来書き換え型媒体である相変化型媒体を追記型媒体として利用す るためには、 一旦記録されたデータ上に新しいデータを上書きするこ とが実質的に不可能であるという特性が求められることを意味する。 一般に、 相変化型媒体では、 未記録領域に新規にデータを書き込む場 合の条件よりも、 一旦記録されたデータ上に新しいデータを上書きす る場合の条件のほうが厳しい。 したがって、 相変化型媒体を追記型媒 体として利用するためには、 所定の記録条件において、 未記録領域に 新規にデータを書き込むことは可能である一方、 一旦記録されたデー タ上に新しいデータを上書きすることは不可能である必要がある。 本発明は、 検査対象となる光記録媒体が有効に追記型媒体として用 いることができるか否かを判定する方法を提供するものであり、 上記 目的は、 相変化型の記録層を有する光記録媒体に対し最短信号の C N Rが 4 5 d B以上となるように最短信号を記録し、 この最短信号の記 録領域に、 記録層を溶融させないパワーレベルの直流レーザー光を前 記最短信号記録時と同じ線速度で照射した後、 前記最短信号のキヤリ ァの低下を測定し、 このキヤリァの低下が 2 0 d B以下である光記録 媒体を追記型媒体と判定する光記録媒体の検査方法によって達成され る。
本発明の前記目的はまた、 相変化型の記録層を有する光記録媒体に 対しランダム信号を記録し、 このランダム信号の記録領域において再 生動作を行ったときに得られる最も高い反射レベルを R ini とし、 前 記ランダム信号の記録領域に、 前記ランダム信号記録時と同じ線速度 で直流レーザー光を照射した後、 その照射領域において再生動作を行 つたときに得られる最も高い反射レベルを R top、最も低い反射レベル を R bottomとしたとき、前記直流レーザー光のパワーレベルが前記記 録層を溶融させないものであっても溶融させるものであっても
( R top + R bottom) / 2 R iniく 1
を満足する光記録媒体を追記型媒体と判定する光記録媒体の検査方法 によって達成される。
本発明の前記目的はまた、 相変化型の記録層を有する光記録媒体に 対しランダム信号を記録し、 前記ランダム信号に重ねて、 前記ランダ ム信号記録時と同じ線速度で再びランダム信号を記録した後、 再生動 作を行ったときに、 信号再生が不可能である光記録媒体を追記型媒体 と判定する光記録媒体の検査方法によって達成される。 本発明の前記目的はまた、 相変化型の記録層を有する光記録媒体に 対し、 ランダム信号を記録し、 前記ランダム信号の記録領域に前記ラ ンダム信号記録時と同じ線速度で直流レーザー光を照射し、 その照射 領域に再びランダム信号を記録した後、 再生動作を行ったときに、 信 号再生が不可能である光記録媒体を追記型媒体と判定する光記録媒体 の検査方法によって達成される。
以上のような各光記録媒体の検査方法によれば、 検査対象である光 記録媒体が、 所定の記録条件において未記録領域に新規にデータを書 き込むことは可能であり、 且つ、 旦記録されたデータ上に新しいデ ータを上書きすることは不可能であるか否かを有効に判断することが 可能となる。
本発明の前記目的はまた、 相変化型の記録層を少なく とも形成する 成膜工程と、 前記記録層のうち少なく とも記録対象領域を結晶化する 初期化工程と、 前記初期化工程が完了した光記録媒体が追記型媒体で あるのか書き換え型媒体であるのかを判断する検査工程とを備える光 記録媒体の製造方法であって、 前記検査工程が、 最短信号の C N Rが 4 5 d B以上となるように最短信号を記録するステップと、 前記最短 信号が記録された領域に対し、 記録層を溶融きせないパワーレベルの 直流レーザー光を前記最短信号記録時と同じ線速度で照射するステツ プと、 前記最短信号のキャリアの低下を測定するステップと、 前記キ ャリァの低下が 2 0 d B以下である光記録媒体を追記型媒体と判定す るステップとを備えることを特徴とする光記録媒体の製造方法によつ て達成される。
本発明の前記目的はまた、 相変化型の記録層を少なく とも形成する 成膜工程と、 前記記録層のうち少なく とも記録対象領域を結晶化する 初期化工程と、 前記初期化工程が完了した光記録媒体が追記型媒体で あるのか書き換え型媒体であるのかを判断する検査工程とを備える光 記録媒体の製造方法であって、 前記検査工程が、 前記記録層にランダ ム信号を記録するステップと、 前記ランダム信号が記録された領域に 対し、 再生動作を行ったときに得られる最も高い反射レベル R ini を 測定するステップと、 前記ランダム信号が記録された領域に対し、 前 記ランダム信号記録時と同じ線速度で直流レーザー光を照射するステ ップと、 前記直流レーザー光が照射された領域に対して再生動作を行 つたときに得られる最も高い反射レベル R top 及び最も低い反射レべ ル R bottomを測定するステップと、前記反射レベル R ini、 R top及び R Dottom力 S、
( R top + R bottom) / 2 R ini< 1
を満足する光記録媒体を追記型媒体と判定するステップとを備えるこ とを特徴とする光記録媒体の製造方法によって達成される。
本発明の前記目的はまた、 相変化型の記録層を少なくとも形成する 成膜工程と、 前記記録層のうち少なく とも記録対象領域を結晶化する 初期化工程と、 前記初期化工程が完了した光記録媒体が追記型媒体で あるのか書き換え型媒体であるのかを判断する検查工程とを備える光 記録媒体の製造方法であって、 前記検査工程が、 前記記録層にランダ ム信号を記録するステップと、 前記ランダム信号に重ねて、 前記ラン ダム信号記録時と同じ線速度で再びランダム信号を記録するステップ と、前記重ねて記録したランダム信号に対して再生動作を行った場合、 信号再生が不可能である光記録媒体を追記型媒体と判定するステップ とを備えることを特徴とする光記録媒体の製造方法によって達成され る。
本発明の前記目的はまた、 相変化型の記録層を少なく とも形成する 成膜工程と、 前記記録層のうち少なく とも記録対象領域を結晶化する 初期化工程と、 前記初期化工程が完了した光記録媒体が追記型媒体で あるのか書き換え型媒体であるのかを判断する検査工程とを備える光 記録媒体の製造方法であって、 前記検査工程が、 前記記録層にランダ ム信号を記録するステップと、 前記ランダム信号が記録された領域に 対して前記ランダム信号記録時と同じ線速度で直流レーザー光を照射 するステップと、 前記直流レーザー光を照射した領域に再びランダム 信号を記録するステップと、 前記再び記録したランダム信号に対して 再生動作を行った場合、 信号再生が不可能である光記録媒体を追記型 媒体と判定するステップとを備えることを特徴とする光記録媒体の製 造方法によって達成される。
以上のような各光記録媒体の製造方法によれば、 所定の記録条件に おいて未記録領域に新規にデータを書き込むことは可能であり、且つ、 一旦記録されたデータ上に新しいデータを上書きすることは不可能で ある光記録媒体を製造することが可能となる。 図面の簡単な説明
図 1は、 追記型として使用される相変化型媒体が満足すべき第 1の 条件を満たすか否かを判断するための検査方法を示すフローチヤ一ト である。
図 2は、 追記型として使用される相変化型媒体が満足すべき第 2の 条件を満たすか否かを判断するための検査方法を示すフローチヤ一ト である。
図 3は、 追記型として使用される相変化型媒体が満足すべき第 3の 条件を満たすか否かを判断するための検査方法を示すフローチヤ一ト である。
図 4は、 追記型として使用される相変化型媒体が満足すべき第 4の 条件を満たすか否かを判断するための検査方法を示すフローチヤ一ト である。
図 5は、 本発明の光記録媒体の構成例を示す部分断面図である。 図 6は、本発明の光記録媒体の他の構成例を示す部分断面図である。 図 7は、 5 T信号およびその記録波形を示すグラフである。
図 8は、 結晶構造を示す図面代用写真であって、 記録層の透過型電 子顕微鏡写真である。
図 9は、 D C消去パワーと ( R top + R bottom) Z 2 R iniとの関係 を示すグラフである。 · 発明の実施の形態
以下、 添付図面を参照しながら、 本発明の好ましい実施態様につい て詳細に説明する。
相変化型媒体は、 書き換え型であっても追記型であっても記録密度 の向上が要求される。 し力 し、 高密度記録を行うために記録マーク長 を短くする場合、 再生出力低下およびジッタ増大が生じやすい。 これ に対し特開 2 0 0 0— 2 3 1 7 2 5号公報では、 最短記録マークの形 状を制御することにより、 高密度記録に伴う再生出力低下およぴジッ タ增大を改善する提案がなされている。 同公報には、 後端の少なく と も一部が前端に向かって凸状である形状、 具体的には蝙蝠状の最短記 録マークを形成する光記録方法が記載されている。 このような蝙蝠状 の最短記録マークは、 記録条件を制御することにより形成できる。 記 録用のレーザービームにより溶融した記録層は、 レーザービームが遠 ざかると急冷されて非晶質記録マークが形成される。 こめとき、 レー ザ一ビームの強度変調パターンを制御することにより溶融領域後端付 近における冷却速度を制御すれば、 溶融領域後半部を再結晶化するこ とができる。 その結果、 溶融領域前半部だけが非晶質化し、 蝙蝠状の 非晶質記録マークが形成される。
同公報記載の方法では、 記録マーク長に対して相対的に記録マーク 幅を大きくでき、 それにより記録マーク長の短縮による再生出力低下 を抑制できる。 そのため同公報では、 記録光の波長を λとし、 記録光 学系の対物レンズの開口数を Ν Αとしたとき、 最短記録マークの長さ を 0 . 4え Z N A以下と短く しても十分な記録マーク幅が確保でき、 その結果、 十分な再生出力が得られている。 また、 同公報では、 最短 記録マークをこの形状とすることにより、 ジッタを低減している。 一方、 相変化型媒体では、 未記録領域に新規にデータを書き込む場 合の条件よりも、 一旦記録されたデータ上に新しいデータを上書きす る場合の条件のほうが厳しい。 したがって、 高い記録線速度でのデー タの上書きを可能とするためには、 結晶化速度の速い記録層を用いる ことが有効である。 このことは、 相変化型媒体を追記型媒体として利 用するためには、 結晶化速度の比較的遅い記録層を用いると共に線速 度を比較的速く設定することにより、 新規データの書き込みを可能と しつつ、 データの上書きを不可能とすればよいことを意味する。
本発明者らは、 結晶化速度の比較的遅い記録層を設けると共に使用 線速度を比較的速くすることにより追記型とした相変化型媒体に対し, 上記特開 2000— 23 1 72 5号公報の実施例に記載された書き換 え型媒体と同様に、 最短記録マークの長さが 0. 4 /NA以下とな り、かつ、溶融領域後部が再結晶化する条件で記録する実験を行った。 しかし、 この場合には、 上記特開 2000— 23 1 72 5号公報記載 の書き換え型媒体と異なり、 ジッタが大きくなってしまった。
追記型媒体に高密度記録を行う場合にジッタが大きくなった原因は、 以下のように考えられる。 相変化型媒体を追記型媒体として使用する ため、 上記実験では、 結晶化速度の比較的遅い記録層を設けると共に 使用線速度を比較的速ぐした。 しカゝし、 このような条件であって、 か つ、 溶融領域後部が再結晶化する条件で長さ 0. 4 λΖΝΑ以下の最 短記録マークを形成すると、 この媒体では記録層の結晶化速度が比較 的遅いことから溶融した記録層が再結晶化しにくいため、 記録マーク 後端縁の位置がばらつきやすく、 また、 記録マーク形状がばらつきや すい。 その結果、 全体のジッタに最も悪影響を及ぼす最短記録マーク において、 ジッタが大きくなると考えられる。
このような実験結果に基づき、 本発明者らは記録マーク形状のばら つきを防ぐために、 記録層の溶融領域後部の再結晶化を抑制する条件 で記録を行い、 記録マーク形状のばらつきを防ぐこととした。 具体的 には、 記録感度が十分に確保でき、 かつ、 最短記録マークの形状が円 形または長円形となるように、 記録線速度に応じて、 記録層の結晶化 速度および媒体の熱設計を制御すると共に、 最適な記録条件を設定し た。 しカゝし、 単に最短記録マークを円形または長円形にすると、 上記 特開 2000— 23 1 72 5号公報記載の比較例のように再生出力が 低くなつてしまう。 そのため本発明では、 結晶化速度が比較的遅く、 かつ、 結晶一非晶質間での反射率変化が大きくなるように記録層の組 成を選択した。 これにより本発明では、 追記型媒体として使用可能な 結晶化速度を有する記録層を備え、 しかも、 高密度記嶽を行ったとき にジッタが小さく、 かつ再生出力が十分に高くなる相変化型媒体を実 現した。
本発明において、 高密度記録を行ったときに十分な再生出力が得ら れるとは、最短記録マークの長さが 0 . 4 λ ZN A以下である場合に、 最短信号の C N R (carrier to noise ratio) が 4 5 d B以上、 好まし くは 4 8 d B以上となることを意味する。
また、 本発明において、 追記型として使用される相変化型媒体が満 足すべき条件としては、 下記の第 1〜第 4の条件が挙げられる。 相変 化型媒体を追記型媒体として用いるためには、 下記 4条件のうちの少 なく とも 1つを満足する必要がある。
第 1の条件は、 相変化型の記録層を有する光記録媒体に対し、 最短 信号の C N Rが 4 5 d B以上、 好ましくは 4 8 d B以上となるように 記録を行い、 かつ、 最短信号記録後、 記録時と同じ線速度でその上か ら記録層を溶融させないパワーレベルのレーザー光を照射する消去動 作を行った後において、 最短信号のキャリアの低下が 2 0 d B以下、 好ましくは 1 8 d B以下であることを意味する。 キヤリァの低下がこ の範囲であれば、 消去動作後に再び記録した信号の読み取りが不可能 となる。 従来、 相変化型媒体を追記型として利用できることは知られ ている。 しかし、 追記型として使用するために満足すべき条件は明確 になっていなかった。 書き換え可能な相変化型媒体では、 消去率が 2 5 d B以上であれば、 消去後に再記録可能であること、 すなわち書き 換えが可能であることが知られている。 したがって、 消去率が 2 5 d B未満であれば、 書き換えが不可能、 すなわち記録データを改竄でき ない、 と推定される。 しかし、 本発明者らの研究によれば、 消去率が 2 5 d B未満であっても最短信号のキヤリァの低下が 2 0 d B以下で ないと、 消去動作後に再記録した信号が読み取れてしまうことがわか つた。
本発明では、 結晶質記録層に非晶質記録マークを形成する必要があ り、 一方、 スパッタ法等の気相成長法により形成する場合、 通常、 相 変化型記録層は非晶質層として形成される。 そのため、 記録前に、 あ ― らカ γじめ記録層の少な ども記録対—象 r域を—結晶化じておく必要があ る。 この結晶化は、 一般に初期化と呼ばれる。 しかし、 形成直後の記 録層は極めて結晶化しにくレ、。 そのため、 本発明において最短信号の キャリアの低下が著しく小さくなる設計とすると、 すなわち、 記録層 の再結晶化が著しく困難となる設計とすると、 初期化を極めて遅い線 速度で行う必要が生じ、 生産性が著しく低くなつてしまう。 この点を 考慮すると、 第 1の条件において、 消去動作による最短信号のキヤリ ァの低下は 5 d B以上であることが好ましく、 記録線速度が比較的遅 い場合には前記キヤリァの低下が 1 0 d B以上であることが好ましい c 図 1は、 上述した第 1の条件を満たすか否かを判断するための検查 方法を示すフローチヤ一トである。
第 1の条件を満たすか否かを判断するための検査においては、まず、 検査対象となる光記録媒体を検査装置 (図示せず) にセッ トする (ス テップ S 1 )。 検査装置としては、 少なく とも、 光記録媒体に任意の記 録信号 (記録マーク) を任意の記録条件. (レーザー光のパワー、 記録 線速度等) で記録可能であり、 且つ、 光記録媒体に記録されている記 録マークのキヤリァレベルの測定及び反射率の測定が可能である必要 がある。 伹し、 このことは、 本検査を単一の検査装置によって行う必 要があることを意味するものではなく、 複数の装置によってこれを行 つても構わない。
次に、検査装置に対し、光記録媒体に記録すべき記録信号として「最 短信号」 に設定し (ステップ S 2 )、 さらに、 記録条件として所定のパ ヮー及び所定の記録線速度に設定する (ステップ S 3 )。
このような設定が完了すると、検査対象となる光記録媒体に対して、 実際に最短信号からなる信号列を記録し(ステップ S 4 )、その C N R を測定する (ステップ S 5 )。 ここで、 ステップ S 5において得られた C N Rを C N R 1と定義する。
次に、 このようにして測定された C N Rが所定値以上であるか否か を判断し (ステップ S 6 )、 これが所定値未満である場合には、 ステツ プ S 3に戻って記録条件の再設定を行う。 ここで、 上記所定値として は、 4 5 d B以上に設定する必要があり、 4 8 d B以上に設定するこ とが好ましい。
ステップ S 6において CNRが所定値以上であると判断された場合, 当該光記録媒体に対して再生動作を行い、 その反射レベルの検出を行 う (ステップ S 7)。 ステップ S 7において得られた最も高い反射レべ ルを Rtop 1 と定義する。
次に、 検査装置に対し、 記録信号として 「直流レーザービーム」 に 設定し (ステップ S 8)、 さらに、記録条件としてステップ S 3におい て設定した記録線速度と同じ記録線速度に設定するとともに、 直流レ 一ザ一ビームのパワーが段階的に変化するよう設定する (ステップ S 9)。 かかる段階的な変化は、 ク口ック周期に対して十分に長い間隔で 行う必要があり、 例えば、 光記録媒体が 1周するごとに直流レーザー ビームのパワーが 1段階変化するように設定すればよい。 このような 設定が完了すると、ステップ S 4において記録された最短信号列上に、 パワーが段階的に変化する直流レーザビームの照射を行う (ステップ S 1 0 )。
次に、 検査対象となる光記録媒体に対して再び再生動作を行い、 そ れぞれ異なるパヮ一の直流レーザが照射ざれた各領域における反射レ ベルの検出を行う (ステップ S 1 1)。ステップ S 1 1において得られ た最も高い反射レベルを Rtop 2と定義する。
次に、ステップ S 7において得られた反射レベル Rtop 1 とステップ
S 1 1において得られた反射レベル Rtop 2とを比較し、 Rtop 2が R top iよりも実質的に低下しているか否かを判断する (ステップ S 1
2)。 その結果、 Rtop 2が Rtop 1よりも実質的に低下している場合に は、 ステップ S 8において照射した直流レーザービームによって記録 層が溶融したものと判断し、 ステップ S 4に戻って新たな領域に再び 最短信号からなる信号列を記録する。
一方、 ステップ S 1 2において、 Rtop2が Rtop 1 と比べて実質的 に低下していない場合には、 ステップ S 8において照射した直流レー ザ一ビームでは記録層は溶融しなかったものと判断し、 再びその CN Rを測定する (ステップ S 1 3 )。 ここで、 ステップ S 1 3において得 られた CNRを CNR 2と定義する。
' 次に、 ステップ S 5において得られた CNR 1 とステップ S 1 3に おいて得られた C NR 2との差 (CNR 2—CNR 1 ) が所定値以下 であるか否かを判断する (ステップ S 1 4 )。 ここで、 上記所定値とし ては、 2 0 d B以下に設定する必要があり、 1 8 d B以下に設定する ことが好ましい。
そして、 CNR 1 と CNR 2との差 (CNR 2— CNR 1 ) が所定 値以下である場合には、 当該光記録媒体を追記型媒体であると判定し (ステップ S 1 5)、 逆に、 所定値を越えている場合には、 当該光記録 媒体を書き換え型媒体であると判定する (ステップ S 1 6)。
尚、 光記録媒体の生産性を考慮すれば、 ステップ S 1 6において追 記型媒体であると判定された光記録媒体については、 CNR 1 と CN R 2との差 (CNR 2— CNR 1 ) が 5 d B以上であるか否か、 好ま しくは 1 0 d B以上であるか否かをさらに判断し、 これが 5 d Bまた は 1 0 d B未満である場合には、 当該光記録媒体が書き換え型媒体及 び追記型媒体のいずれにも適していないと判定することが好ましい。 以上説明した方法により、 第 1の条件を満たすか否かを判断するた めの検査を行うことができる。
第 2の条件は、 相変化型の記録層を有する光記録媒体に対しランダ ム信号を記録し、 このランダム信号の記録領域において再生動作を行 つたときに得られる最も高い反射レベルを Rini とし、 前記ランダム 信号の記録領域に、 前記ランダム信号記録時と同じ線速度で直流レー ザ一光を照射して消去動作を行った後、 その照射領域において再生動 作を行ったときに得られる最も高い反射レベルを Rtop、最も低い反射 レべノレを R bottomとしたとき、
( R top + R bottom) / 2 Rini< 1
を満足することであり、 好ましくは
( R top + R bottom) / 2 Rini≤ 0. 9 5
を満足することである。 なお、 上記反射レベルとは、 光学ヘッ ドへの 戻り光量である。 また、 上記 Rini は、 記録マーク間に存在する結晶 質領域の反射レベルである。
第 2の条件は、 上記直流レーザー光のパワーレベルによらず満足さ れる必要がある。 すなわち、 上記直流レーザー光が記録層を溶融させ ないものであっても溶融させるものであっても、 ( R top + R bottom) / 2 R ini が上記範囲内に存在している必要がある。 直流レーザー光 が記録層を溶融させない場合において第 2の条件が満足される場合、 直流レーザー光照射により記録層の固相での結晶化が不可能であるこ とを意味する。 一方、 溶融させる場合において第 2の条件が満足され る場合、 溶融状態から冷却したときに記録層が非晶質化することを意 味する。 これに対し書き換え可能な相変化型媒体に、 パワーレベルを 徐々に增大させながら直流レーザー光を照射すると、 記録層が固相で 結晶化ないし液相から結晶化するため、 (R top + R bottom) / 2 R ini ≥ 1 となるパワーレベルが存在することになる。
なお、 上記ランダム信号は、 最適記録条件で記録することが好まし い。 この場合の最適記録条件とは、 初期化直後の記録層に記録したと きにジッタが最小となる記録条件であるか、 媒体メーカ推薦の最適記 録条件であるか、 その媒体が属する規格において定められた最適記録 条件である。
図 2は、 上述した第 2の条件を満たすか否かを判断するための検査 方法を示すスローチヤ一トである。
第 2の条件を満たすか否かを判断するための検査においては、まず、 検査対象となる光記録媒体を検査装置 (図示せず) にセットする (ス テツプ S 2 1 )。 検査装置としては、 少なく とも、 光記録媒体に任意の 記録信号 (記録マーク) を任意の記録条件 (レーザー光のパワー、 記 録線速度等) で記録可能であり、 且つ、 光記録媒体に記録されている 記録マークのジッターの測定及ぴ反射率の測定が可能である必要があ る。 但し、 このことは、 本検査を単一の検査装置によって行う必要が あることを意味するものではなく、 複数の装置によってこれを行って も構わない。 次に、検査装置に対し、光記録媒体に記録すべき記録信号として「ラ ンダム信号」 に設定し (ステップ S 2 2 )、 さらに、 記録条件として所 定のパワー及び所定の記録線速度に設定する (ステップ S 2 3 )。 このよ うな設定が完了すると、検査対象となる光記録媒体に対して、 実際にランダム信号列を記録し (ステップ S 2 4 )、そのジッターを測 定する (ステップ S 2 5 )。
次に、 このよ うにして測定されたジッターが所定値以下であるか否 かを判断し (ステップ S 2 6 )、 これが所定値を越えている場合には、 ステップ S 2 3に戻って記録条件の再設定を行う。 ここで、 上記所定 値としては、 9 %以下に設定することが好ましく、 8 %以下に設定す ることがより好ましい。
ステップ S 2 6においてジッターが所定値以下であると判断された 場合、 当該光記録媒体に対して再生動作を行い、 その反射レベルの検 出を行う (ステップ S 2 7 )。 ステップ S 2 7において得られた最も高 い反射レベルを R iniと定義する。
次に、 検査装置に対し、 記録信号として 「直流レーザービーム」 に 設定し (ステップ S 2 8 )、 さらに、 記録条件としてステップ S 2 3に おいて設定した記録線速度と同じ記録線速度に設定するとともに、 直 流レーザービームのパワーが段階的に変化するよう設定する (ステツ プ S 2 9 )。 かかる段階的な変化は、 ク口ック周期に対して十分に長い 間隔で行う必要があり、 例えば、 光記録媒体が 1周するごとに直流レ 一ザ一ビームのパワーが 1段階変化するように設定すればよい。
このような設定が完了すると、 ステップ S 2 4において記録された ランダム信号列上に、 パワーが段階的に変化する直流レーザビームの 照射 行う (ステップ S 3 0 )。
次に、 検査対象となる光記録媒体に対して再び再生動作を行い、 そ れぞれ異なるパワーの直流レーザが照射された各領域における反射レ ベルの検出を行う (ステップ S 3 1 )。 ステップ S 3 1において得られ た最も高い反射レベルを R top、 最も低い反射レベルを R bottom と定 義する。 次に、 ステップ S 2 7において得られた反射レベルを R ini と、 ス テツプ S 3 1において得られた反射レベル R top及ぴ R bottomとを用 い、 これらが所定の条件を満たしているか否かを判断する (ステップ S 3 2 )。 ここで、 上記所定の条件としては、
( R top + R bottom) / 2 R iniく 1
であり、 好ましくは
( R top + R bottom) / 2 R ini≤ 0 . 9 5
である。
そして、 ステップ S 3 2において上記所定の条件を満たしている場 合には、 当該光記録媒体を追記型媒体であると判定し (ステップ S 3 3 )、 逆に、 上記所定の条件を満たしていない場合には、 当該光記録媒 体を書き換え型媒体であると判定する (ステップ S 3 4 )。
以上説明した方法により、 第 2の条件を満たすか否かを判断するた めの検査を行うことができる。
第 3の条件は、 相変化型の記録層を有する光記録媒体に対しランダ ム信号を記録し、 前記ランダム信号に重ねて、 前記ランダム信号記録 時と同じ線速度で再びランダム信号を記録した後、 再生動作を行った ときに、 信号再生が不可能であることである。 なお、 上記ランダム信 号は、 最適記録条件で記録することが好ましい。 この場合の最適記録 条件とは、 初期化直後の記録層に記録したときにジッタが最小となる 記録条件であるか、 媒体メーカ推薦の最適記録条件であるか、 その媒 体が属する規格において定められた最適記録条件である。
なお、 本明細書において信号再生が不可能であるとは、 再生信号に 誤り訂正ができない程度のエラーが含まれる状態をいい、 クロックジ ッタが好ましくは 1 3 °/0超、 より好ましくは 1 5 %超となることであ る。
図 3は、 上述した第 3の条件を満たすか否かを判断するための検査 方法を示すフローチヤ一トである。
第 3の条件を満たすか否かを判断するための検査においては、まず、 検査対象となる光記録媒体を検査装置 (図示せず) にセットする (ス テツプ S 4 1 )。 検査装置としては、 少なく とも、 光記録媒体に任意の 記録信号 (記録マーク) を任意の記録条件 (レーザー光のパワー、 記 録線速度等) で記録可能であり、 且つ、 光記録媒体に記録されている 記録マークのジッターの測定が可能である必要がある。 但し、 このこ とは、 本検査を単一の検査装置によって行う必要があることを意味す るものではなく、 複数の装置によってこれを行っても構わない。
次に、検査装置に対し、光記録媒体に記録すべき記録信号として「ラ ンダム信号」 に設定し (ステップ S 4 2 )、 さらに、 記録条件として所 定のパワー及び所定の記録線速度に設定する (ステップ S 4 3 )。 このような設定が完了すると、検査対象となる光記録媒体に対して、 実際にランダム信号列を記録し(ステップ S 4 4 )、そのジッターを測 定する (ステップ S 4 5 )。
次に、 このようにして測定されたジッターが所定値以下であるか否 かを判断し (ステップ S 4 6 )、 これが所定値を越えている場合には、 ステップ S 4 3に戻って記録条件の再設定を行う。 ここで、 上記所定 値としては、 9 %以下に設定することが好ましく、 8 %以下に設定す ることがより好ましい。
ステップ S 4 6においてジッターが所定値以下であると判断された 場合、 ステップ S 4 4において記録したランダム信号列上に、 同じ条 件にて再びランダム信号列を記録し (ステップ S 4 7 )、そのジッター を測定する (ステップ S 4 8 )。
そして、 ステップ S 4 8において測定されたジッターが、 再生信号 に誤り訂正ができない程度のエラーが含まれることを示すレベルを越 えているか否か、 具体的には 1 3 %超、 好ましくは 1 5超であるか否 かを判断し (ステップ S 4 9 )、 これが 1 3 %超または 1 5 %超である 場合には、 当該光記録媒体を追記型媒体であると判定し (ステップ S 5 0 )、 逆に、 1 3。/。以下または 1 5 °/0以下である場合には、 当該光記 録媒体を書き換え型媒体であると判定する (ステップ S 5 1 )。
以上説明した方法により、 第 3の条件を満たすか否かを判断するた めの検査を行うことができる。 第 4の条件は、 相変化型の記録層を有する光記録媒体に対し、 ラン ダム信号を記録し、 前記ランダム信号の記録領域に前記ランダム信号 記録時と同じ線速度で直流レーザー光を照射して消去動作を行い、 そ の照射領域に再ぴランダム信号を記録した後、 再生動作を行ったとき に、 信号再生が不可能であることである。 なお、 上記ランダム信号は、 上記した最適記録条件で記録することが好ましい。
第 4の条件は、 上記直流レーザー光のパワーによらず満足される必 要がある。 すなわち、 上記直流レーザー光が記録層を溶融させないも のであっても溶融させるものであっても、 上記直流レーザー光照射後 に記録したランダム信号の再生が不可能である必要がある。 直流レー ザ一光が記録層を溶融させない場合において第 4の条件が満足される 場合、 直流レーザー光照射により記録層の固相での結晶化が不可能で あることを意味する。 一方、 溶融させる場合において第 4の条件が満 足される場合、 溶融状態から冷却したときに記録層が非晶質化するこ とを意味する。 これに対し書き換え可能な相変化型媒体では、 直流レ 一ザ一光照射により記録層が固相で結晶化ないし液相から結晶化する ため、 どちらの場合でも直流レーザー光照射領域に対し再記録が可能 である。
図 4は、 上述した第 4の条件を満たすか否かを判断するための検查 方法を示すフローチャー トである。
第 4の条件を満たすか否かを判断するための検査においては、まず、 検査対象となる光記録媒体を検査装置 (図示せず) にセッ トする (ス テツプ S 6 1 )。 検査装置としては、 少なく とも、 光記録媒体に任意の 記録信号 (記録マーク) を任意の記録条件 (レーザー光のパワー、 記 録線速度等) で記録可能であり、 且つ、 光記録媒体に記録されている 記録マークのジッターの測定が可能である必要がある。 但し、 このこ とは、 本検査を単一の検査装置によって行う必要があることを意味す るものではなく、 複数の装置によってこれを行っても構わない。
次に、検査装置に対し、光記録媒体に記録すべき記録信号として「ラ ンダム信号」 に設定し (ステップ S 6 2 )、 さらに、 記録条件として所 定のパワー及び所定の記録線速度に設定する (ステップ S 6 3 )。 このよ うな設定が完了すると、検査対象となる光記録媒体に対して、 実際にランダム信号列を記録し(ステップ S 6 4 )、そのジッターを測 定する (ステップ S 6 5 )。
次に、 このようにして測定されたジッターが所定値以下であるか否 かを判断し (ステップ S 6 6 )、 これが所定値を越えている場合には、 ステップ S 6 3に戻って記録条件の再設定を行う。 ここで、 上記所定 値としては、 9 %以下に設定することが好ましく、 8 %以下に設定す ることがより好ましい。
ステップ S 6 6においてジッターが所定値以下であると判断された 場合、 検査装置に対し、 記録信号として 「直流レーザービーム」 に設 定し (ステップ S 6 7 )、 さらに、記録条件としてステップ S 6 3にお いて設定した記録線速度と同じ記録線速度に設定するとともに、 直流 レーザービームのパワーが段階的に変化するよう設定する (ステップ S 6 8 )。 かかる段階的な変化は、 ク口ック周期に対して十分に長い間 隔で行う必要があり、 例えば、 光記録媒体が 1周するごとに直流レー ザ一ビームのパワーが 1段階変化するように設定すればよい。 このよ うな設定が完了すると、 ステップ S 6 4において記録されたランダム 信号列上に、 パワーが段階的に変化する直流レーザビームの照射を行 う (ステップ S 6 9 )。
次に、 検査装置に対し、 光記録媒体に記録すべき記録信号として再 び 「ランダム信号」 に設定し (ステップ S 7 0 )、 さらに、 記録条件と してステップ S 6 3において設定した条件と同じ条件に設定する (ス テツプ S 7 1 )。 このような設定が完了すると、ステップ S 6 4におい て記録したランダム信号列上に、 再びランダム信号列を記録し (ステ ップ S 7 2 )、それぞれ異なるパワーの直流レーザが照射された各領域 におけるジッターを測定する (ステップ S 7 3 )。
そして、 ステップ S 7 3において測定されたジッターが、 再生信号 に誤り訂正ができない程度のエラーが含まれることを示すレベルを越 えているか否か、 具体的には 1 3 %超、 好ましくは 1 5超であるか否 かを判断し(ステップ S 7 4 )、 これが 1 3 %超または 1 5 %超である 場合には、 当該光記録媒体を追記型媒体であると判定し (ステップ S 7 5 )、 逆に、 1 3 %以下または 1 5 %以下である場合には、 当該光記 録媒体を書き換え型媒体であると判定する (ステップ S 7 6 )。
以上説明した方法により、 第 4の条件を満たすか否かを判断するた めの検査を行うことができる。
上述した第 1乃至第 4の条件を満たすか否かを判断するための検査 は、 出荷される全ての光記録媒体に対して行う必要はなく、 成膜工程 及び初期化工程が完了した口ッ トの中から少なく とも 1つの光記録媒 体をピックアップし、 ピックアップされた光記録媒体について上記検 查工程を行うことにより、 当該ロッ トを構成する光記録媒体が追記型 媒体であるの力、、書き換え型媒体であるのかを判断することができる。 したがって、 上述した検査工程は、 光記録媒体の製造工程の一部とす ることができ、 この場合、 光記録媒体の製造工程は成膜工程、 初期化 工程及び検査工程の順で行われることになる。
光記録媒体の駆動装置において、 記録 ·再生 ·消去用のレーザー光 を強度変調する駆動信号には、記録周波数に比べ桁違いに高い高周波、 例えば数百メガヘルツ程度の高周波が重畳されることが一般的である。 本明細書における直流レーザー光は、 このような高周波が重畳された 直流信号によって駆動されるレーザー光を包含する。
以下、 本発明による検査方法の対象となる光記録媒体の構成の一例 について説明する。
本発明では、 比較的速い線速度での初期化を可能とし、 しかも、 比 較的遅い線速度でも記録マークが消去されないようにするために、 媒 体の熱設計おょぴ記録層の組成を最適化することが好ましい。 具体的 には、 非晶質記録マークの再結晶化が困難となるように、 記録層が比 較的速く冷却される構造、すなわち、急冷構造とすることが好ましい。 大径のレーザービームを照射するバルクイレーザーによって初期化を 行う場合、 小径のレーザービームを用いる記録時と異なり、 媒体が急 冷構造であっても記録層の冷却速度はそれほど速くならないため、 初 期化に要する線速度はそれほど低下しない。 したがって、.媒体を急冷 構造とすれば、 比較的速い線速度での初期化が可能で、 かつ、 比較的 遅い線速度での記録が可能となる。 なお、 急冷構造とするためには、 記録層上に、 誘電体層を挟んで放熱層としての金属反射層を設ける構 造とし、 記録層の熱が反射層に速やかに伝導するように誘電体層を薄 く したり、 誘電体層の熱伝導率および または反射層の熱伝導率を高 く したりすればよい。
本発明において記録線速度は特に限定されない。 ただし、 一般に初 期化線速度は記録線速度よりも遅くする必要があるため、 遅い記録線 速度に最適化された記録層では、 初期化線速度を著しく遅くする必要 があり、 媒体の生産性が低くなつてしまう。 また、 著しく遅い線速度 に最適化された記録層は、 初期化が不可能となることもある。 一方、 記録線速度が速すぎると、 機械精度の極めて良好な媒体でないと面振 れを許容範囲内に収めることが難しくなったり、 媒体を駆動するため のモータの振動が大きくなつたりするため、 安定して記録を行うこと が困難となる。 そのため、 記録線速度は、 通常、 2〜 2 0 m/s、 特に 3〜 1 5 m/sの範囲から選択することが好ましい。
また、 本発明では、 結晶化が比較的容易な記録層を設け、 かつ、 初 期化の際に、 記録層に隣接する誘電体層から記録層の結晶化を阻害す る元素を拡散させることが好ましい。 これにより、 比較的速い線速度 での初期化が可能で、 かつ、 記録マークの再結晶化が困難な媒体が実 現できる。 すなわち、 追記型であって、 かつ、 初期化が容易な相変化 型媒体が実現できる。 そのためには、 少なく とも S bおよび T eを含 有する記録層を設けると共に、この記録層に接して、少なく とも S (硫 黄) を含有する誘電体層を設ければよい。
次に、 本発明の媒体の構成例を説明する。
図 5に示す構造
本発明の光記録媒体の構成例を、 図 5に示す。 この光記録媒体は、 透光性基体 2上に、 第 1誘電体層 3 1、記録層 4、 第 2誘電体層 3 2、- 反射層 5および保護層 6をこの順で有し、 記録または再生のためのレ 一ザ一光は、 透光性基体 2を通して入射する。
透光性基体 2
透光性基体 2は、 記録または再生のためのレーザー光に対し透光性 を有する。 透光性基体 2の厚さは、 通常、 0 . 2〜1 . 2 mm、 好ま しくは 0 . 4〜1 . 2 mm とすればよい。 透光性基体 2は樹脂から構 成すればよいが、 ガラスから構成してもよい。 光記録媒体において通 常設けられるグループ (案内溝) 2 1は、 レーザー光入射側から見て 手前側に存在する領域であり、 隣り合うグループ間に存在する凸条が ランド 2 2である。
本発明では、 ランドおよびノまたはグループを記録トラックとして 利用することができる。
第 1誘電体層 3 1および第 2誘電体層 3 2
これらの誘電体層は、 記録層の酸化、 変質を防ぎ、 また、 記録時に 記録層から伝わる熱を遮断ないし面内方向に逃がすことにより、 支持 基体 2 0や透光性基体 2を保護する。 また、 これらの誘電体層を設け ることにより、 変調度を向上させることができる。 各誘電体層は、 組 成の相異なる 2層以上の誘電体層を積層した構成としてもよい。
これらの誘電体層に用いる誘電体としては、 例えば、 S i、 G e、 Z n、 A 1、 希土類元素等から選択される少なく とも 1種の金属成分 を含む各種化合物が好ましい。 化合物としては、 酸化物、 窒化物また は硫化物が好ましく、 これらの化合物の 2種以上を含有する混合物を 用いることもできる。
前述したように本発明では、 記録層に隣接する誘電体層が、 記録層 の結晶化を阻害する元素を含有し、 初期化の際にこの元素が記録層中 に拡散するように初期化条件を設定することが好ましい。 記録層の結 晶化を阻害する元素としては Sが好ましい。 したがって、本発明では、 第 1誘電体層 3 1および第 2誘電体層 3 2の少なく とも一方、 特に第 1誘電体層が、 硫化物を含有することが好ましい。 硫化物としては、 高屈折率が得られることから硫化亜鉛 (Z n S ) が好ましい。 ただし、 Z n S単体で誘電体層を構成すると誘電体層の応力が強くなりすぎる ため、 Z n Sと S i〇2との混合物 (Z n S— S i 02) を用いること が好ましい。
また、 前述したように本発明では、 媒体を急冷構造とすることが好 ましく、 そのためには、 誘電体層、 特に第 2誘電体層 3 2を、 熱伝導 率の高い誘電体から構成することが好ましい。 熱伝導率の高い誘電体 としては、 例えば硫化亜鉛と酸化ケィ素との混合物 (Z n S—S i O 2)、 窒化アルミニウム、 酸化アルミニウム、 窒化ケィ素、 酸化タンタ ルなどが好ましく、 特に、 A 1の酸化物および Zまたは窒化物、 S i の酸化物および または窒化物が好ましい。 Z n S— S i 〇2と して は、 S i 02を 3 0〜6 0モル0 /0含有するものが好ましい。 S i 02含 有量が少なすぎると、 熱伝導率が低くなりすぎる。 一方、 S i o2含 有量が多すぎると、 他の層との密着性が不十分となるため、 長期間保 存する際に層間の剥離が生じやすい。
第 2誘電体層の熱伝導率は、 好ましくは 1 W/mK以上、 より好まし くは 1. 5 W/mK以上である。 第 2誘電体層の熱伝導率の上限は特に ないが、 誘電体層と して使用可能な材料は、 通常、 熱伝導率が 2 0 W/mK程度以下である。 本明細書における第 2誘電体層の熱伝導率は、 薄膜状態での測定値ではなく、 バルク材料での値である。
第 1誘電体層および第 2誘電体層の厚さは、 保護効果や変調度向上 効果が十分に得られるように適宜決定すればよいが、 通常、 第 1誘電 体層 3 1の厚さは好ましくは 3 0〜 3 00nm、より好ましくは 5 0〜 2 5 Onm であり、 第 2誘電体層 3 2の厚さは好ましくは 1 0〜 5 0 nm であるが、 急冷構造とするためには、 第 2誘電体層の厚さを好ま しくは 3 Onm以下、 より好ましくは 2 5nm以下とする。
各誘電体層は、 スパッタ法により形成することが好ましい。
記録層 4
記録層の組成は特に限定されず、 各種相変化材料から適宜選択すれ ばよいが、 少なく とも S bおよび T eを含有するものが好ましい。 S bおよび T eだけからなる記録層は、 結晶化温度が 1 3 0°C程度と低 く、 保存信頼性が不十分なので、 結晶化温度を向上させるために他の 元素を添加することが好ましい。 この場合の添加元素としては、 I n、 A g、 Au、 B i、 S e、 A l、 P、 G e、 H、 S i、 C、 V、 W、 T a、 Z n、 T i、 S n、 P b、 P dおよび希土類元素 ( S c、 Yお よびランタノイ ド) から選択される少なくとも 1種が好ましい。 これ らのうちでは、保存信頼性向上効果が特に高いことから、希土類元素、 A g、 I nおよび G eから選択される少なく とも 1種が好ましい。
S bおよび T eを含有する組成としては、 以下のものが好ましい。 S bと T e とを除く元素を Mで表し、 記録層構成元素の原子比を
式 I (S b XT e x_x) x_yMy
で表したとき、
0. 2≤ x≤ 0. 9、
0≤ y≤ 0. 4
であり、 好ましくは
0. 5≤ X ≤ 0. 7 s
0. 0 1≤ y≤ 0. 2
である。 S bの含有量を表す Xが小さすぎると、 結晶化速度が遅くな りすぎるため、 記録層の初期化が困難となる。 また、 記録層の結晶質 領域での反射率が低くなるため、 再生出力が低くなる。 また、 Xが著 しく小さいと、 記録も困難となる。 一方、 Xが大きすぎると、 結晶化 速度が速くなりすぎるため、 追記型媒体の記録層としては不適当とな る。 また、 Xが大きすぎると、 結晶状態と非晶質状態との間での反射 率差が小さくなるため、 再生出力が低くなつてしまう。 したがって、 Xを上記範囲内とすることにより、 追記型媒体の記録層として適切な 結晶化速度が得られ、かつ、再生出力を十分に高くすることができる。 なお、 Xの具体的な値は、 記録線速度に応じて決定すればよい。
元素 Mは特に限定されないが、 保存信頼性向上効果を示す上記元素 のなかから少なく とも 1種を選択することが好ましい。 元素 Mの含有 量を表す yが大きすぎると、 結晶化速度が速くなりすぎたり、 再生出 力が低くなったりする。
記録層の厚さは、好ましくは 4nm超 5 Onm以下、 より好ましくは 5〜 3 Onmである。記録層が薄すぎると結晶相の成長が困難となり、 結晶化が困難となる。 一方、 記録層が厚すぎると、 記録層の熱容量が 大きくなるため記録が困難となるほか、 再生出力の低下も生じる。 記録層の形成は、 スパッタ法により行うことが好ましい。
なお、 本発明において記録層の構造は特に限定されない。 例えば、 特開平 8 - 2 2 1 8 1 4号公報ゃ特開平 1 0— 2 2 6 1 7 3号公報に 記載された多層構造の記録層を有する媒体にも本発明は適用可能であ る。
反射層 5
本発明において反射層構成材料は特に限定されず、 通常、 A l、 A u、 A g s P t、 C u、 N i、 C r、 T i、 S i等の金属または半金 属の単体あるいはこれらの 1種以上を含む合金などから構成すればよ レ、。 前述したように本発明では媒体を急冷構造とすることが好ましい ため、 熱伝導率の高い材料から反射層を構成することが好ましい。 熱 伝導率の高い材料としては、 A gまたは A 1が好ましい。 しかし、 A gまたは A 1の単体では十分な耐食性が得られないため、 耐食性向上 のための元素を添加することが好ましい。
ただし、 他の元素を添加すると熱伝導率が低下するため、 その場合 には熱伝導率のより高い A gを主成分元素として用いることが好まし い。 A gに添加することが好ましい副成分元素としては、 例えば、 M g、 P d、 C e、 C u、 G e、 L aへ S、 S b、 S i、 T eおよび Z rから選択される少なく とも 1種が挙げられる。これら副成分元素は、 少なく とも 1種、 好ましくは 2種以上用いることが望ましい。 反射層 中における副成分元素の含有量は、 各金属について好ましくは 0. 0 5〜 2. ◦原子%、 より好ましくは 0. 2〜: L . 0原子%であり、 副 成分全体として好ましくは 0. 2〜 5原子°/0、 より好ましくは 0. 5 〜 3原子%である。 副成分元素の含有量が少なすぎると、 これらを含 有することによる効果が不十分となる。 一方、 副成分元素の含有量が 多すぎると、 熱伝導率が小さくなつてしまう。
反射層の熱伝導率は、 好ましくは 1 0 OW/mK以上、 より好ましく は 1 5 O W/mK以上である。 熱伝導率は、 例えば、 4探針法を用いて 求めた反射層の電気抵抗値から、 Widemann-Franzの法則により算出 することができる。 反射層の熱伝導率の上限は特にない。 すなわち、 反射層構成材料として使用可能なもののうち最も高い熱伝導率を有す る純銀 (熱伝導率 2 5 O W/mK) も使用可能である。
反射層の厚さは、 通常、 1 0〜 3 0 0 nm とすることが好ましい。 厚さが前記範囲未満であると十分な反射率を得にく くなる。 また、 前 記範囲を超えても反射率の向上は小さく、 コス ト的に不利になる。 反 射層は、 スパッタ法ゃ蒸着法等の気相成長法により形成することが好 ましい。
保護層 6
保護層 6は、 耐擦傷性や耐食性の向上のために設けられる。 この保 護層は種々の有機系の物質から構成されることが好ましいが、 特に、 放射線硬化型化合物やその組成物を、 電子線、 紫外線等の放射線によ り硬化させた物質から構成されることが好ましい。 保護層の厚さは、 通常、 0 . 1〜 1 0 0 /z m程度であり、 スピンコート、 グラビア塗布、 スプレーコート、ディッビング等、通常の方法により形成すればよい。 図 6に示す構造
本発明の光記録媒体の他の構成例を、 図 6に示す。 この光記録媒体 は、 支持基体 2 0上に、 金属または半金属から構成される反射層 5、 第 2誘電体層 3 2、 記録層 4、 第 1誘電体層 3 1および透光性基体 2 を、 この順で積層して形成したものである。 記録または再生のための レーザー光は、.透光性基体 2を通して入射する。 なお、 支持基体 2 0 と反射層 5 との間に、 誘電体材料からなる中間層を設けてもよい。 この構成例における透光性基体 2には、 図 5における透光性基体 2 と同程度の厚さの樹脂板やガラス板を用いてもよい。 ただし、 記録再 生光学系の高 N A化によって高記録密度を達成するためには、 透光性 基体 2を薄型化することが好ましい。その場合の透光性基体の厚さは、 3 0〜 3 0 0 mの範囲から選択することが好ましい。 透光性基体が 薄すぎると、 透光性基体表面に付着した塵埃による光学的な影響が大 きくなる。 一方、 透光性基体が厚すぎると、 高 N A化による高記録密 度達成が難しくなる。
透光性基体 2を薄型化するに際しては、 例えば、 透光性樹脂からな る光透過性シートを各種接着剤や粘着剤により第 1誘電体層 3 1に貼 り付けて透光性基体としたり、 塗布法を利用して透光性樹脂層を第 1 誘電体層 3 1上に直接形成して透光性基体としたりすればよい。
支持基体 2 0は、 媒体の剛性を維持するために設けられる。 支持基 体 2 0の厚さおよび構成材料は、 図 5に示す構成例における透光性基 体 2と同様とすればよく、 透明であっても不透明であってもよい。 グ ループ 2 1は、 図示するように、 支持基体 2 0に設けた溝を、 その上 に形成される各層に転写することにより、 形成できる。
図 6に示す構造の媒体では、 反射層 5形成時の結晶成長により、 レ 一ザ一光入射側における反射層の表面粗さが大きくなりやすい。 この 表面粗さが大きくなると、 再生ノイズが増大する。 そのため、 反射層 の結晶粒径を小さく したり、 反射層を非晶質層として形成したりする ことが好ましい。 そのためには、 A gまたは A 1を主成分とし、 かつ、 前記した添加元素を含有する反射層が好ましい。
なお、 反射層の熱伝導率は、 結晶粒径が小さいほど低くなるため、 反射層が非晶質であると、 記録時に十分な冷却速度が得られにくレ、。 そのため、 反射層をまず非晶質層として形成した後、 熱処理を施して 結晶化させることが好ましい。 いったん非晶質層として形成した後に 結晶化すると、 非晶質のときの表面粗さをほぼ維持でき、 しかも、 結 晶化による熱伝導率向上は実現する。
このほかの各層は、 図 5に示す構成例と同様である。 実施例
実施例 1
射出成形によりグループ (幅 0 . 2 // 111、 深さ 2 0 11111、 ピッチ 0 . 7 4 μ τα) を同時形成した直径 1 2 O mm, 厚さ 6 mm のデイス ク状ポリカーボネート板を透光性基体 2として用い、 その表面に、 第 1誘電体層 3 1、 記録層 4、 第 2誘電体層 3 2、 反射層 5および保護 層 6を以下に示す手順で形成し、 図 5に示す構成を有する光記録ディ スクサンプル No.1 と した。
第 1誘電体層 3 1は、 ターゲットとして Z n S (8 0モル0 /0) ― S i O 2 ( 2 0モル0 /0) を用い、 A r雰囲気中においてスパッタ法によ り形成した。 第 1誘電体層 3 1の厚ざは 9 Onmとした。
記録層 4は、 A r雰囲気中においてスパッタ法により形成した。 記 録層 4の組成 (原子比) は
、 b 0. 6 7 f e 0. 3 3 ) 0. 9 A n 0. 04 A g o. 06
とした。 記録層 4の厚さは 2 Onmとした。
第 2誘電体層 3 2は、 ターゲッ トとして Z n S ( 5 0モル0 /0) — S i O 2 ( 5 0モル0 /0) を用い、 A r雰囲気中においてスパッタ法によ り形成した。 第 2誘電体層 3 2の厚さは 2 Onm とした。 ターゲッ ト に用いた Z n S ( 5 0モル%) - S i O 2 ( 5 0モル0/。) の熱伝導率 は 1. 0 W/mKであった。
反射層 5は、 ターゲッ トとして A 1 - 1. 7モル%C r合金を用い、 A r雰囲気中においてスパッタ法により形成した。 反射層 5の厚さは 1 O.Onmとした。 この反射層の熱伝導率は 40 W/mKであった。 保護層 6は、 紫外線硬化型樹脂をスピンコート法により塗布後、 紫 外線照射により硬化して形成した。硬化後の保護層厚さは 5 であ つた。
このようにして作製したサンプル No.lを初期化した。 初期化は、 バルタィ レーザーを用いて線速度 2 m/sで行った。
このサンプル No.1について、 光記録媒体評価装置 (パルステック 社製0017— 1 0 0 0) を用い、
レーザー波長 λ : 6 3 5nm、
開口数 N A :. 0. 6、
記録信号: E FMプラス (8— 1 6) 変調の単一信号 (最短信号 である 3 T信号) およびランダム信号、
線速度: 3. 5m/s (最短信号長 : 0. 3 8 λ/ΝΑ;)、 の条件で、 最短信号おょぴランダム信号をそれぞれ 1回記録した後、 再生パワー 0. 9 mWで記録情報を再生した。
ここで、記録時のレーザー光の強度変調パターンについて説明する。 一般に、 相変化型光記録媒体に記録する際には、 記録マークの長さに 対応して記録光を直流的に照射するのではなく、 例えば特開 2 0 0 0 - 1 5 5 94 5号公報に記載されているように、 マルチパルス記録を 行うのが一般的である。 マルチパルス記録における記録波形の例を、 図 7に示す。 なお、 本明細書において記録波形とは、 記録光を強度変 調するための駆動信号パターンを意味する。 図 7には、 NR Z I信号 の 5 T信号と、 この 5 T信号に対応する記録波形とを示してある。 図 7において、 Pwは記録パワー、 P bはバイアスパワーである。 P b は、 オーバーライ ト可能な記録システムでは、 通常、 消去パワーと呼 ばれる。 この記録波形は、 記録マークを形成するための記録パルス部 と、記録パルス部同士を連結する直流部とを有する。記録パルス部は、 上向きパルス (強度 Pw) とこれに続く下向きパルス (強度 P b) と の組み合わせが繰り返される構造であり、 全体としては P bから立ち 上がり、 P bに戻るものとなっている。 図 7において、 Ttop は先頭 の上向きパノレスの幅であり、 Tmp は他の上向きノヽ。ノレス (マノレチパノレ スともいう) の幅である。 これらのパノレス幅は、 基準クロック幅 (1 T) で規格化した値で表される。
本実施例では、 このような記録波形を用い、
記録パワー Pw : 9mW、
バイアスパワー P b : 0. 5mW、
T top: 0. 6 T、
Tmp: 0. 3 5 T
の条件で記録を行った。 なお、 最短信号 (3 T信号) において、 記録 パルス部の上向きパルスは 1つとし、 その幅は上記 Ttop とした。 こ の記録条件は、 ク口ックジッタが最小となる最適記録条件である。 記録後、 最短信号についてスペク トラムアナライザ (ア ドバンテス ト社製) により CNRを測定したところ、 4 9. l d Bであった。 ま た、 ランダム信号についてク口ックジッタおよび再生出力を測定した ところ、 それぞれ 8. 5 %ぉょび1. 0 4Vであった。 クロックジッ タが 9 %以下であれば、 実用上問題のない信号再生が可能であるが、 クロックジッタが 1 3 %を超えると、 特に 1 5 %を超えるとエラーが 多発するため、 再生信号としては使用できなくなる。 なお、 クロック ジッタは、 再生信号をタイムインターバルアナライザ (横河電機株式 会社製) により測定して 「信号の揺らぎ (び)」 を求め、
σ /Tw (%)
により求めた。 Twは検出窓幅である。 また、 再生出力は、 アナログ オシロスコープにより測定した。
次に、 信号を記録したトラックに、 線速度 3. 5m/s で出力 2〜 7 mWの直流レーザー光を照射して、 記録マークの消去を試みた。 照射 後に C NR ^r測定したところ、 最短信号では最大 1 6. 5 d Bの信号 減衰が観測された。 一方、 ランダム信号を記録したトラックでは、 直 流レーザー光照射前の再生出力に対する照射後の再生出力の比が 0. 2 9であった。
次に、 上記直流レーザー光を照射したトラックに対し、 線速度 3. 5m/sでランダム信号を記録してそのク口ックジッタを測定したとこ ろ、 最小でも 1 6. 8 °/0であり、 再生信号としての使用が不可能であ ることがわかった。
このサンプルでは、 消去光に相当する直流レーザー光の照射による 消去率が低いため、 照射後にランダム信号を記録したときのクロック ジッタが極端に大きくなつている。 したがって、 このサンプルでは情 報の書き換えが不可能である。
なお、 直流レーザー光のパワーを 7mWより高く していく と、 記録 層が溶融してしまい、 レーザー光照射後に非晶質となった。すなわち、 レーザーパワーを高く しても、 記録層の再結晶化は不可能であった。 また、 初期化後、 上記条件でランダム信号を記録した領域に、 同じ 条件でランダム信号を重ね書きした後、 ク口ックジッタを測定したと ころ、 クロックジッタは測定不可能 (2 0 %超) であり、 信号再生が 不可能であった。
上記条件で記録を行った後、 サンプル No.1の記録層を透過型電子 顕微鏡により観察したところ、 図 8に示されるように最短記録マーク はほぼ円形であった。
比較例 1
第 1誘電体層の厚さを 1 2 Onm と し、 第 2誘電体層 32の厚さを 5 Onm としたほかは実施例 1と同様にして、 サンプル No.2を作製 した。
サンプル No.2に対し、 記録パワー P wを 8mW としたほかは実施 例 1と同様にして最短信号およびランダム信号を記録し、 CNR、 再 生出力およびジッタを測定した。 その結果、 最短信号のCNRは49 d Bであり、 ランダム信号の再生出力は 0. 9 8V、 ジッタは 1 0 % であった。 すなわち、 実施例 1 と比べ、 CNRは同等であつたがジッ タが大きくなった。
なお、 サンプル No.2について、 実嗨例 1 と同様に直流レーザー光 の照射を行ったところ、 最短信号のキャリアの減衰量は 1 8 d B以下 であった。 また、 直流レーザー光照射後に再記録を行ったところ、 再 記録信号のクロックジッタは 1 5 %を超えていた。
サンプル No.2の記録層を透過型電子顕微鏡により観察したところ、 最短記録マークは円形ではなく、後端縁がえぐれた形状となっており、 後端縁近傍は再結晶化していた。 この再結晶化は、 このサンプルにお いて第 2誘電体層を実施例 1よりも厚くすることにより徐冷構造とし たために生じたものである。 ジッタの悪化は、 この再結晶化の程度が 記録マークごとに大きくばらついたために生じたと考えられる。
追記型媒体と書き換え型媒体との比較
記録層の組成を
V ° b 0 1 e 0. 3) 0. 9 I n 0. 0 4 -^- § 0. 0 6
としたほかは実施例 1のサンプル No.1と同様にして、 サンプル No. 3を作製した。 このサンプル No.3は、 サンプル No.1に比べ結晶化 速度のより速い記録層を有するため、 線速度 3. 5m/sでの書き換え が可能である。
サンプル No.1およびサンプル No.3に対し、 実施例 1と同様にし てランダム信号を記録した後、 前記 Rini を測定した。 次いで、 記録 時と同じ線速度で直流レーザー光を照射する消去動作を行った。 照射 した直流レーザー光のパワー (D C消去パワー) と、 照射時の線速度 Vとを図 9に示す。 次いで、 直流レーザー光照射領域において Rtop および Rbottomを測定し、 ( R top + R bottom) 2 Riniを求めた。 結果を図 9に示す。 なお、 反射レベルの測定は、 光記録媒体評価装置 (パルステック社製 DDU— 1 0 0 0) により行った。
図 9において、 サンプル No.3では、 線速度 3. 5m/s、 直流レーザ 一光のパワー 3 mW以上のとき
( R top + Rbottom) / 2 Rini≥ 1
となっているが、 サンプル No.lでは 3. 5 m/s 以上のすべての線速 度において、 直流レーザー光のパワーによらず
( R top + Rbottom) / 2 Rini< 1
となっている。 これら各場合について、 直流レーザー光照射後に、 最 初の記録と同条件で再びランダム信号を記録し、 ク口ックジッタを測 定したところ、サンプル No.3では、直流レーザー光のパワーが 3mW 以上のとき 8〜 9 %であり、 サンプル No.1では 1 6. 8〜 2 0 %で あった。 すなわち、 サンプル No.3は線速度 3. 5 m/s において書き 換えが可能であり、 サンプル No.1は線速度 3. 5〜 1 4m/s の範囲 において書き換えが不可能である。
本発明によれば、 追記型の相変化型媒体であって、 高密度記録を行 つたときにジッタが小さく、 かつ再生出力が十分に高い媒体が実現す る。
また、 本発明によれば、 追記型として使用できる相変化型媒体を正 確に判定できる。

Claims

請求の範囲
1 . 相変化型の記録層を有する光記録媒体に対し最短信号の C N Rが 4 5 d B以上となるように最短信号を記録し、 この最短信号の記録領 域に、 記録層を溶融させないパワーレベルの直流レーザー光を前記最 短信号記録時と同じ線速度で照射した後、 前記最短信号のキヤリァの 低下を測定し、 このキヤリァの低下が 2 0 d B以下である光記録媒体 を追記型媒体と判定する光記録媒体の検査方法。
2 . C N Rが 4 8 d B以上となるように前記最短信号を記録すること を特徴とする請求項 1に記載の光記録媒体の検査方法。
3 . 前記キヤリァの低下が 1 8 d B以下である光記録媒体を追記型媒 体と判定することを特徴とする請求項 1または 2に記載の光記録媒体 の検査方法。
4 . 前記キヤリァの低下が 5 d B以上である光記録媒体を追記型媒体 と判定することを特徴とする請求項 3に記載の光記録媒体の検査方法 c
5 . 前記キャリアの低下が 1 0 d B以上である光記録媒体を追記型媒 体と判定することを特徴とする請求項 4に記載の光記録媒体の検査方 法。
6 . 相変化型の記録層を有する光記録媒体に対しランダム信号を記録 し、 このランダム信号の記録領域において再生動作を行ったときに得 られる最も高い反射レベルを R ini とし、 前記ランダム信号の記録領 域に、 前記ランダム信号記録時と同じ線速度で直流レーザー光を照射 した後、 その照射領域において再生動作を行ったときに得られる最も 高い反射レベルを R top、最も低い反射レベルを R Tbottomとしたとき、 前記直流レーザー光のパヮ一レベルが前記記録層を溶融させないもの であっても溶融させるものであっても
(Rtop+ R bottom) / 2 Rini< 1
を満足する光記録媒体を追記型媒体と判定する光記録媒体の検査方法 c 7. (Rtop+ R bottom) / 2 Rini< 0. 9 5
を満足する光記録媒体を追記型媒体と判定することを特徴とする請求 項 6に記載の光記録媒体の検査方法。
8. 相変化型の記録層を有する光記録媒体に対しランダム信号を記録 し、 前記ランダム信号に重ねて、 前記ランダム信号記録時と同じ線速 度で再びランダム信号を記録した後、 再生動作を行ったときに、 信号 再生が不可能である光記録媒体を追記型媒体と判定する光記録媒体の 検査方法。 9. 信号再生が不可能であるとは、 再生信号に誤り訂正ができない程 度のエラーが含まれる状態をいうことを特徴とする請求項 8に記載の 光記録媒体の検査方法。
1 0. 信号再生が不可能であるとは、 クロックジッタが 1 3 %を越え ている状態をいうことを特徴とする請求項 9に記載の光記録媒体の検 査方法。
1 1. 信号再生が不可能であるとは、 クロックジッタが 1 5 %を越え ている状態をいうことを特徴とする請求項 1 0に記載の光記録媒体の 検査方法。
1 2. 相変化型の記録層を有する光記録媒体に対し、 ランダム信号を 記録し、 前記ランダム信号の記録領域に前記ランダム信号記録時と同 じ線速度で直流レーザー光を照射し、 その照射領域に再ぴランダム信 号を記録した後、 再生動作を行ったときに、 信号再生が不可能である 光記録媒体を追記型媒体と判定する光記録媒体の検査方法。
1 3 . 信号再生が不可能であるとは、 再生信号に誤り訂正ができない 程度のエラーが含まれる状態をいうことを特徴とする請求項 1 2に記 載の光記録媒体の検査方法。
1 4 . 信号再生が不可能であるとは、 クロックジッタが 1 3 %を越え ている状態をいうことを特徴とする請求項 1 3に記載の光記録媒体の 検査方法。
1 5 . 信号再生が不可能であるとは、 クロックジッタが 1 5 °/0を越え ている状態をいうことを特徴とする請求項 1 4に記載の光記録媒体の 検査方法。
1 6 . 相変化型の記録層を少なく とも形成する成膜工程と、 前記記録 層のうち少なく とも記録対象領域を結晶化する初期化工程と、 前記初 期化工程が完了した光記録媒体が追記型媒体であるのか書き換え型媒 体であるのかを判断する検査工程とを備える光記録媒体の製造方法で あって、 前記検査工程が、 最短信号の C N Rが 4 5 d B以上となるよ うに最短信号を記録するステップと、 前記最短信号が記録された領域 に対し、 記録層を溶融させないパワーレベルの直流レーザー光を前記 最短信号記録時と同じ線速度で照射するステツプと、 前記最短信号の キヤリァの低下を測定するステップと、 前記キヤリァの低下が 2 0 d B以下である光記録媒体を追記型媒体と判定するステップとを備える ことを特徴とする光記録媒体の製造方法。
1 7 . 相変化型の記録層を少なく とも形成する成膜工程と、 前記記録 層のうち少なく とも記録対象領域を結晶化する初期化工程と、 前記初 期化工程が完了した光記録媒体が追記型媒体であるのか書き換え型媒 体であるのかを判断する検查工程とを備える光記録媒体の製造方法で あって、 前記検査工程が、 前記記録層にランダム信号を記録するステ ップと、 前記ランダム信号が記録された領域に対し、 再生動作を行つ たときに得られる最も高い反射レベル R ini を測定するステップと、 前記ランダム信号が記録された領域に対し、 前記ランダム信号記録時 と同じ線速度で直流レーザー光を照射するステツプと、 前記直流レー ザ一光が照射された領域に対して再生動作を行ったときに得られる最 も高い反射レベル R top及び最も低い反射レベル R bottomを測定する ステップと、 前記反射レベル R ini、 R top及び R bottomが、
( R top + R bottom) / 2 R iniく 1
を満足する光記録媒体を追記型媒体と判定するステップとを備えるこ とを特徴とする光記録媒体の製造方法。
1 8 . 相変化型の記録層を少なく とも形成する成膜工程と、 前記記録 層のうち少なく とも記録対象領域を結晶化する初期化工程と、 前記初 期化工程が完了した光記録媒体が追記型媒体であるのか書き換え型媒 体であるのかを判断する検査工程とを備える光記録媒体の製造方法で あって、 前記検査工程が、 前記記録層にランダム信号を記録するステ ップと、 前記ランダム信号に重ねて、 前記ランダム信号記録時と同じ 線速度で再ぴランダム信号を記録するステップと、 前記重ねて記録し たランダム信号に対して再生動作を行った場合、 信号再生が不可能で ある光記録媒体を追記型媒体と判定するステップとを備えることを特 徴とする光記録媒体の製造方法。
1 9 . 相変化型の記録層を少なく とも形成する成膜工程と、 前記記録 層のうち少なく とも記録対象領域を結晶化する初期化工程と、 前記初 期化工程が完了した光記録媒体が追記型媒体であるのか書き換え型媒 体であるのかを判断する検査工程とを備える光記録媒体の製造方法で あって、 前記検査工程が、 前記記録層にランダム信号を記録するステ ップと、 前記ランダム信号が記録された領域に対して前記ランダム信 号記録時と同じ線速度で直流レーザー光を照射するステップと、 前記 直流レーザー光を照射した領域に再びランダム信号を記録するステツ プと、前記再び記録したランダム信号に対して再生動作を行った場合、 信号再生が不可能である光記録媒体を追記型媒体と判定するステップ とを備えることを特徴とする光記録媒体の製造方法。
PCT/JP2001/010319 2000-11-27 2001-11-27 Procede d'inspection et procede de production d un moyen d'enregistrement optique WO2002043058A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002544715A JPWO2002043058A1 (ja) 2000-11-27 2001-11-27 光記録媒体の検査方法及び光記録媒体の製造方法
US10/432,859 US20040052165A1 (en) 2000-11-27 2001-11-27 Optical recording medium inspecting method and optical recording medium manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-359252 2000-11-27
JP2000359252 2000-11-27

Publications (1)

Publication Number Publication Date
WO2002043058A1 true WO2002043058A1 (fr) 2002-05-30

Family

ID=18831037

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2001/010314 WO2002043060A1 (fr) 2000-11-27 2001-11-27 Moyen d'enregistrement optique
PCT/JP2001/010319 WO2002043058A1 (fr) 2000-11-27 2001-11-27 Procede d'inspection et procede de production d un moyen d'enregistrement optique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010314 WO2002043060A1 (fr) 2000-11-27 2001-11-27 Moyen d'enregistrement optique

Country Status (6)

Country Link
US (2) US20040052165A1 (ja)
EP (1) EP1349158A4 (ja)
JP (1) JPWO2002043058A1 (ja)
CN (1) CN1483191A (ja)
TW (2) TW564409B (ja)
WO (2) WO2002043060A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474366B1 (ko) * 2002-06-07 2005-03-10 엘지.필립스 디스플레이 주식회사 도밍 개선을 위한 음극선관 섀도우마스크
AU2003289078A1 (en) * 2002-12-13 2004-07-09 Mitsubishi Chemical Corporation Optical recording method
WO2005038788A1 (ja) 2003-10-17 2005-04-28 Mitsubishi Kagaku Media Co., Ltd. 光記録方法
US7907492B1 (en) * 2004-03-17 2011-03-15 Doug Carson & Associates, Inc. Data storage medium with improved multi-session recording format
US7876666B2 (en) 2004-04-02 2011-01-25 Kabushiki Kaisha Toshiba Write-once information recording medium and coloring matter material therefor
JP4069928B2 (ja) * 2005-01-19 2008-04-02 ソニー株式会社 相変化型光記録媒体の検査方法、相変化型光記録媒体装置
JP5009639B2 (ja) * 2007-02-09 2012-08-22 株式会社リコー レーザ書換システム
JP2009123322A (ja) * 2007-10-24 2009-06-04 Panasonic Corp 光ディスク装置
JP5639434B2 (ja) * 2010-10-08 2014-12-10 ソニー株式会社 原盤検査方法、及び、原盤検査装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735158A2 (en) * 1995-03-31 1996-10-02 Ricoh Company, Ltd Sputtering target and its use in the production of an optical recording medium
JPH09286175A (ja) * 1996-04-23 1997-11-04 Mitsubishi Chem Corp 光記録媒体
JPH10226173A (ja) * 1996-08-09 1998-08-25 Tdk Corp 光記録媒体およびその製造方法
EP0898272A2 (en) * 1997-08-15 1999-02-24 Ricoh Company, Ltd. Optical recording medium and recording and reproducing method using the same
EP1011099A1 (en) * 1998-12-09 2000-06-21 TDK Corporation Optical recording method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153455A (ja) * 1986-12-18 1988-06-25 Yokogawa Electric Corp 光デイスクテストシステム
JP3076083B2 (ja) 1991-03-05 2000-08-14 日本電気株式会社 光ディスク初期化方法及び光ディスク記録方法
JPH04366424A (ja) 1991-06-14 1992-12-18 Nec Corp 光ディスク初期化方法
JP3171103B2 (ja) 1995-03-31 2001-05-28 三菱化学株式会社 光記録方法および光記録媒体
US6242157B1 (en) * 1996-08-09 2001-06-05 Tdk Corporation Optical recording medium and method for making
JP2000229479A (ja) * 1998-12-09 2000-08-22 Tdk Corp 光記録媒体
JP2000229478A (ja) * 1998-12-09 2000-08-22 Tdk Corp 光記録媒体
JP4287580B2 (ja) * 1999-11-30 2009-07-01 Tdk株式会社 光情報媒体の再生方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735158A2 (en) * 1995-03-31 1996-10-02 Ricoh Company, Ltd Sputtering target and its use in the production of an optical recording medium
JPH09286175A (ja) * 1996-04-23 1997-11-04 Mitsubishi Chem Corp 光記録媒体
JPH10226173A (ja) * 1996-08-09 1998-08-25 Tdk Corp 光記録媒体およびその製造方法
EP0898272A2 (en) * 1997-08-15 1999-02-24 Ricoh Company, Ltd. Optical recording medium and recording and reproducing method using the same
EP1011099A1 (en) * 1998-12-09 2000-06-21 TDK Corporation Optical recording method

Also Published As

Publication number Publication date
US20040052165A1 (en) 2004-03-18
TW589627B (en) 2004-06-01
WO2002043060A1 (fr) 2002-05-30
TW564409B (en) 2003-12-01
US20030210642A1 (en) 2003-11-13
US6898174B2 (en) 2005-05-24
JPWO2002043058A1 (ja) 2004-04-02
CN1483191A (zh) 2004-03-17
EP1349158A1 (en) 2003-10-01
EP1349158A4 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
KR100551917B1 (ko) 광기록 방법, 광기록장치 및 광기록매체
US6333913B1 (en) Optical recording medium and optical recording method
JP2002117576A (ja) 光記録媒体および光学的情報記録方法
US20070147210A1 (en) Recording method for a phase-change optical recording medium
US5876822A (en) Reversible optical information medium
JP3790673B2 (ja) 光記録方法、光記録装置および光記録媒体
JP2004199784A (ja) 光記録方法
WO2002043058A1 (fr) Procede d&#39;inspection et procede de production d un moyen d&#39;enregistrement optique
KR100458299B1 (ko) 광기록방법 및 광기록매체
JP2004220699A (ja) 光記録媒体
US20050088942A1 (en) Method for recording information on optical recording medium, information recorder and optical recording medium
JPH11110822A (ja) 光記録媒体およびその記録再生方法
JP4227957B2 (ja) 光記録媒体
JP2002190139A (ja) 光記録媒体
US6403193B1 (en) Optical recording medium
JPH11167722A (ja) 光記録媒体、その記録方法およびその記録装置
US20030112731A1 (en) Phase-change recording medium, recording method and recorder therefor
JP2003211849A (ja) 光記録媒体
JPH10198959A (ja) 相変化光ディスクの初期化方法及び相変化光ディスク
JP2002222541A (ja) 光記録媒体
JP4607062B2 (ja) 光記録媒体
JP2002203317A (ja) 光記録方法、光記録装置および光記録媒体
JP2004227720A (ja) 光記録媒体
JP2000200441A (ja) 光記録媒体
JP2000331346A (ja) 光情報記録媒体の初期化方法及び初期化済み光情報記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002544715

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10432859

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018214568

Country of ref document: CN

122 Ep: pct application non-entry in european phase