WO2002040223A1 - Robot mobile a deux jambes et son procede de commande, sa structure jambes, et unite jambe mobile destinee a ce robot - Google Patents

Robot mobile a deux jambes et son procede de commande, sa structure jambes, et unite jambe mobile destinee a ce robot Download PDF

Info

Publication number
WO2002040223A1
WO2002040223A1 PCT/JP2001/010025 JP0110025W WO0240223A1 WO 2002040223 A1 WO2002040223 A1 WO 2002040223A1 JP 0110025 W JP0110025 W JP 0110025W WO 0240223 A1 WO0240223 A1 WO 0240223A1
Authority
WO
WIPO (PCT)
Prior art keywords
zmp
center
deformation
momentum
robot
Prior art date
Application number
PCT/JP2001/010025
Other languages
English (en)
French (fr)
Inventor
Naoto Mori
Yuichi Hattori
Jinichi Yamaguchi
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/181,282 priority Critical patent/US6901313B2/en
Priority to EP01982818.5A priority patent/EP1378325B1/en
Publication of WO2002040223A1 publication Critical patent/WO2002040223A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/008Artificial life, i.e. computing arrangements simulating life based on physical entities controlled by simulated intelligence so as to replicate intelligent life forms, e.g. based on robots replicating pets or humans in their appearance or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • Legged mobile robot and control method thereof foot structure for legged mobile robot, and movable leg unit for legged mobile robot
  • the present invention relates to a legged mobile robot having at least a plurality of movable legs, and more particularly to a legged mobile robot that performs walking and other legged work with movable legs.
  • the present invention relates to a legged mobile robot that performs attitude stabilization control of a body during legged work while using a so-called ZMP (Zero Moment Point) as a stability determination criterion.
  • ZMP Zero Moment Point
  • the present invention relates to a legged mobile robot that performs attitude stabilization control of an airframe while using a ZMP stability discrimination criterion.
  • Robots that perform movements that resemble human movements using electric or magnetic action are called “robots”. It is said that the robot's etymology comes from the Slavic word "ROBOTA”. In Japan, robots began to spread
  • a legged mobile robot that reproduces the biological mechanism and movement of a human It is called “intermediate” or “humanoid” robot.
  • the humanoid robot can provide, for example, living support, that is, support for human activities in various situations in a living environment and other daily lives.
  • Stable “walking” here can be defined as “moving using the legs without falling over”.
  • Robot posture stabilization control is very important for avoiding robot overturn. This is because falling means that the robot interrupts the work being performed, and that considerable effort and time is spent in getting up from the falling state and resuming the work. Above all, there is the danger that the fall will cause fatal damage to the robot itself or the object on the other side that collides with the fallen robot. Therefore, in the design and development of a legged mobile robot, posture stability control and fall prevention during walking are among the most important issues.
  • ZMP Zero Moment Point
  • the stability discrimination criterion by ZMP is based on the ⁇ Dalambert principle '' that gravity and inertia force from the walking system to the road surface and these moments balance with the floor reaction force and the floor reaction force moment as a reaction from the road surface to the walking system. based on.
  • Z MP Zero Moment Point
  • the ZMP norm states that "at every moment of walking, the ZMP is inside the supporting polygon formed by the foot and the road surface, and the force in the direction that the robot pushes the road surface acts. For example, the robot can walk stably without falling (the body rotates).
  • the point of landing on the sole can be set in advance, and there are advantages such as easy consideration of the kinematic constraint condition of the toe according to the road surface shape.
  • Z MP as a stability discrimination criterion means that a trajectory, not a force, is treated as a target value for motion control, which increases the technical feasibility.
  • the legged mobile robot described in Japanese Patent Application Laid-Open No. 5-305579 is designed to perform stable walking by matching a point on the floor where ZMP becomes zero to a target value. ing.
  • the ZMP may be used to determine whether the ZMP is inside the supporting polygon (polygon) or at the end of the supporting polygon when landing or leaving the floor. From at least a predetermined margin. In this case, there is a ZMP allowance for a predetermined distance even when subjected to disturbances, etc., and the stability of the aircraft during walking improves.
  • Japanese Patent Application Laid-Open No. 5-305583 discloses that the walking speed of a legged mobile robot is controlled by a ZMP target position. That is, using the previously set walking pattern data, the ZMP is adjusted to match the target position. In addition to driving the leg joints, it detects the inclination of the upper body and changes the walking pattern data discharge speed set according to the detected value. When the robot leans forward, for example, by stepping on unknown irregularities, the posture can be recovered by increasing the discharge speed. In addition, since the ZMP is controlled to the target position, there is no problem even if the discharge speed is changed during the two-leg support period.
  • Japanese Patent Publication No. Hei 5-3055885 discloses that the landing position of the legged mobile robot is controlled by the ZMP target position. That is, the legged mobile robot described in this publication detects a deviation between the ZMP target position and the actual measurement position, and drives one or both of the legs so as to eliminate the deviation, or the ZMP target position. Stable walking is realized by detecting the moment around and driving the legs so that it becomes zero.
  • Japanese Patent Application Laid-Open No. 5-305586 discloses that the tilt posture of a legged mobile robot is controlled by a ZMP target position. In other words, the moment around the ZMP target position is detected, and when a moment is generated, the leg is driven so that the moment becomes zero to perform stable walking.
  • the robot posture stability control described above searches for a point where the pitch and roll axis moment are zero on or inside the supporting polygon formed by the sole and the ground surface, that is, the ZMP stable area. This is the basic operation. Further, when the ZMP position deviates from the ZMP stable region, the correction control is performed so as to return to the stable region again.
  • the ZMP norm assumes that the robot's fuselage and road surface can be assumed to be as close as possible to a rigid body (ie, it will not deform or move under any force or moment). It is just a norm that can be applied as. In other words, if it is not possible to assume that the robot or the road surface is as close as possible to a rigid body, for example, the robot moves at high speed, and the (translational) force acting on the ZMP and the impact force when switching the standing position increase. If the robot itself deforms or moves, the space where the ZMP exists becomes unstable if the amount of deformation of the robot with respect to the applied force is not properly managed.
  • the posture of the robot satisfies the ZMP standard (the ZMP exists inside the support polygon and the robot
  • the robot posture becomes unstable to stabilize the unstable ZMP.
  • the lower the center of gravity of the robot the higher the rotational speed of the airframe is generated, and the more difficult it is to achieve stable walking.
  • Figures 1 and 2 show the ZMP position and the amount of deformation (or momentum) of the robot when the robot model is an ideal model whose road surface is as close as possible to a rigid body, and when the robot is not actually a rigid body. (Ie, the ZMP behavior space of the robot).
  • the robot deforms at any ZMP position within the calculated ZMP stable region. No amount (or momentum) is generated. In other words, the robot does not lose its attitude stability at any ZMP position.
  • the robot and the road surface are not rigid, and even within the calculated ZMP stable area, the amount of deformation (or momentum) occurs at the mouth bot depending on the ZMP position.
  • the robot does not generate deformation (or momentum) near the approximate center of the ZMP stable region, so the robot does not lose its attitude stability as it is.
  • the robot's deformation (or momentum) increases in the negative direction.
  • the ZMP behavior space as shown in Figs. 1 and 2 is defined by the ZMP position and the floor reaction force that the aircraft receives from the floor.
  • Positive or negative of the deformation (or momentum) of the robot in this ZMP behavior space is the direction in which negative causes spatial distortion to move the ZMP to the edge of the stable region, and positive sets the ZMP in the stable region. This is the direction that causes spatial distortion to move to the center. Therefore, as shown in Fig. 2, it is within the ZMP stable region that the robot deformation (or movement) increases in the negative direction as the ZMP position moves away from the center of the ZMP stable region. However, the robot deforms toward the edge of the ZMP stable area, and eventually the aircraft falls.
  • Aircraft attitude control must always be executed to return to the center of the ZMP stable area.
  • a typical example of such a control method that constantly returns the ZMP position to the center is an “inverted pendulum”.
  • high-speed control that is, a sampling cycle is extremely short
  • the computer load for attitude control increases.
  • the ZMP stability discrimination criterion is merely a stability discrimination criterion aimed at realizing walking in an ideal environment including prerequisites that are difficult to satisfy in reality, such as a rigid robot or road surface. Absent. Therefore, in order to autonomously maintain stable dynamic walking in the human living environment, it is important to devise a robot system configuration method that takes into account the stability of the space where ZMP exists.
  • the stability and controllability of the legged mobile robot during legged work is affected not only by the gait, that is, the movement pattern of the limbs, but also by the ground and road conditions where the legged work such as walking is performed. .
  • This is because as long as the legs are in contact with the road surface, they are constantly receiving reaction from the road surface.
  • the reaction force from the road surface becomes a large impact force, especially when the free leg lands during legged work such as walking, and in some cases, it becomes a disturbance and makes the robot's posture unstable. .
  • a legged mobile robot such as a bipedal walker to perform a legged work such as walking without losing its posture
  • it must be familiar with the road surface with a stable posture when landing and receive from the road surface when touching down
  • the structure of the sole of the foot that touches the road surface is extremely important in establishing a good relationship between the robot and its ground contact surface.
  • the search for ZMP in short, means that in a bipedal vehicle, the ZMP trajectory passes between the left and right legs (that is, the inside of each leg). Furthermore, if the ZMP trajectory moves to the outside of one foot as a result of the aircraft's forward movement, the posture stability will not be achieved unless the other foot is depressed further outside of one foot. It cannot be maintained. This is a movement of the leg that crosses the other foot with one foot, and it is extremely difficult to physically and mechanically realize that the left and right legs interfere with each other.
  • a two-legged mobile robot is generally designed based on a forward movement based on a biological mechanism such as a human monkey.
  • a biological mechanism such as a human monkey.
  • mouth bust against lateral disturbance is relatively low.
  • An object of the present invention is to provide an excellent leg capable of appropriately controlling the attitude stabilization of an airframe during legged work while using a so-called Z MP (Zero Moment Point) as a stability discrimination criterion.
  • An object of the present invention is to provide a mobile robot and a control method thereof.
  • a further object of the present invention is to provide an excellent leg-type transfer capable of suitably performing the attitude stabilization control of the airframe while using the ZMP stability discrimination standard at a relatively slow sampling period.
  • An object of the present invention is to provide a mobile robot and a control method thereof.
  • a further object of the present invention is to provide a movable leg unit of a legged mobile robot, which can reduce the impact force received from the road surface at the time of touching the ground, and can recover or facilitate the posture stability of the lost body.
  • the purpose of the present invention is to provide a foot structure of the foot in the above.
  • the present invention has been made in consideration of the above three problems, and a first aspect thereof is a legged mobile robot having two or more movable legs or a control method thereof,
  • the ZMP behavior space control means or step gives a predetermined distortion or a predetermined characteristic to the ZMP behavior space in advance.
  • a legged mobile robot or a method of controlling the same is a legged mobile robot or a method of controlling the same.
  • the ZMP stability discrimination criterion is a criterion that can be applied only when it can be assumed that the robot's body and road surface are as close as possible to a rigid body.
  • the space itself where the ZMP exists Becomes unstable, and even if the robot posture satisfies the ZMP stability discrimination criteria, the robot posture becomes unstable to stabilize the unstable ZMP.
  • ZMP Zero Moment Point
  • the ZMP behavior space control means or step is configured such that as the ZMP position deviates from the center of the ZMP stable region formed by the support polygon formed by the sole of the movable leg and the road surface, the ZMP position deviates. Distortion is given to the ZMP behavior space in advance so that an amount of deformation or momentum of the airframe attempting to move the position to the center of the ZMP stable region occurs. This makes the structure easy to maintain the attitude stability of the aircraft.
  • the ZMP behavior space control means or step may provide a predetermined characteristic such that the magnitude or direction of the deformation amount or the momentum of the mouth boat changes according to the floor reaction force.
  • the post-correction control is not started until the amount of movement of the ZMP position exceeds a predetermined area, and the robot is controlled in advance. Because of the spatial distortion and the prescribed characteristics that stabilize the posture, even if the control mechanism of the aircraft does not have a sufficient response speed, it is possible to obtain high mouth bust against disturbances etc. .
  • the ZMP behavior space control means or step may set a minimum point of the deformation amount or the momentum of the airframe substantially at the center of the ZMP stable region.
  • the deformation amount and the momentum of the body are always generated in the direction in which the posture is stabilized, so that it is easy to maintain the posture stability. Also, sufficient attitude stabilization control can be performed even with a relatively low sampling period.
  • the ZMP behavior space control means or step sets a minimum point of the deformation amount or the momentum of the aircraft substantially at the center of the ZMP stable region, and sets the deformation amount or the deformation amount of the aircraft near the boundary of the ZMP stable region.
  • the maximum point of the momentum may be set. In such a case, in the area sandwiched by the local maximum points, the deformation or momentum of the robot body occurs so that the ZMP position always goes to the center of the ZMP stable area, so it is easy to maintain the posture stability. In addition, sufficient attitude stabilization control can be performed even with a relatively low sampling period.
  • the ZMP behavior space control means or step includes a first coordinate axis whose positive direction is the direction in which the ZMP position goes to the outside of the fuselage and a robot in which the ZMP position is directed to the center of the ZMP stable area.
  • the robot's deformation or momentum has a maximum value in the negative region with respect to the standing leg in the later stage of supporting a single leg, and As the force is increased, a spatial distortion may be applied so as to move the ZMP position having the maximum value of the deformation or the momentum in the positive direction.
  • the amount of bending decreases almost linearly with the amount of movement of the ZMP position in the Y direction in the standing stage in the later stage of supporting a single leg.
  • the floor reaction force is said to be “large” when the floor reaction force is 100 or more, and when the floor reaction force is approximately 20 to 100
  • the floor reaction force is said to be “medium”, and when the floor reaction force is less than 20, the floor reaction force is said to be “small” (the same applies hereinafter).
  • the floor reaction force when qualitatively expressing that "the floor reaction force is small" it means the floor reaction force that is applied to the other foot when one foot supports the whole body during both feet support period .
  • the ZMP behavior space control means or step includes a first coordinate axis having a forward direction of the ZMP position toward the front of the aircraft and a robot deformation amount such that the ZMP position is directed to the center of the ZMP stable area.
  • the robot's deformation or momentum is negative in the negative region and the pole is almost
  • a space distortion may be provided that has a large value and that the change in the amount of deformation or the amount of momentum decreases as the floor reaction force increases. In such a case, the bending amount decreases almost linearly with the movement amount of the ZMP position in the X direction in the standing stage in the later stage of supporting the single leg.
  • the standing leg bends forward, and when the ZMP position moves rearward of the aircraft, the standing leg bends backward. As the force increases, the stance is less likely to bend whether the ZMP position moves forward or backward.
  • the ZMP behavior space control means or step when the floor reaction force is small in the direction orthogonal to the traveling direction with respect to the standing leg in the latter half of the single leg support, as the ZMP position deviates from the center of the ZMP stable region, the ZMP The amount of deformation or momentum of the robot is such that the position moves away from the center of the ZMP stable area, but as the floor reaction force increases, the ZMP position moves away from the center of the ZMP stable area as the ZMP position moves away from the center of the ZMP stable area. Spatial distortion may be applied such that the amount of deformation or momentum of the mouth boat is directed toward the center of the ZMP stable region.
  • the deformation or momentum of the robot is generated such that the ZMP position moves away from the center of the ZMP stable region as the ZMP position moves away from the center of the ZMP stable region.
  • the spatial distortion that generates the deformation or momentum of the mouth bot such that the ZMP position moves toward the center of the ZMP stable region May be given.
  • the standing leg in the later stage of supporting the single leg turns inward, and when the ZMP position moves to the outside of the The stance bends outward, but as the floor reaction force increases, conversely, when the ZMP position moves inward, the stance bends outward and the ZMP position moves outward.
  • the legs are configured to bend inward.
  • the floor reaction force is small, when the ZMP position moves to the front of the fuselage, the standing leg bends forward, and when the ZMP position moves to the rear of the fuselage, the standing leg bends rearward.
  • the reaction force increases, when the ZMP position moves to the front of the aircraft, the leg turns backward and when the ZMP position moves to the rear of the aircraft, The leg is configured to bend forward.
  • the ZMP behavior space control means or step when the floor reaction force is small in the direction orthogonal to the traveling direction with respect to the trunk in the latter half of the single leg support, as the ZMP position deviates from the center of the ZMP stable region.
  • Robot deformation or momentum occurs such that the ZMP position moves away from the center of the ZMP stable area, but as the floor reaction force increases, the ZMP position moves away from the center of the ZMP stable area.
  • Spatial distortion may be applied to the robot such that the ZMP position is directed toward the center of the ZMP stable region, or the deformation or momentum of the robot is generated.
  • the amount of deformation of the mouth bot such that the ZMP position moves away from the center of the ZMP stable region as the ZMP position moves away from the center of the ZMP stable region.
  • a momentum is generated, but as the floor reaction force increases, the robot's deformation or momentum is generated such that the ZMP position moves toward the center of the ZMP stable region as the ZMP position moves away from the center of the ZMP stable region. You may make it give distortion.
  • the floor reaction force when the floor reaction force is small, when the ZMP position moves to the inside of the fuselage, the # ⁇ part turns inward, and when the ZMP position moves to the outside of the fuselage, the part moves outward.
  • the trunk when the floor reaction force increases, conversely, when the ZMP position moves to the inside of the fuselage, the part bends outward and when the ZMP position moves to the outside of the fuselage, the trunk It is configured to bend inward.
  • the trunk when the floor reaction force is small, the trunk turns forward when the ZMP position moves forward of the fuselage, and the part turns backward when the ZMP position moves behind the fuselage.
  • the part bends backward when the ZMP position moves to the front of the fuselage, and the part turns forward when the ZMP position moves to the rear of the fuselage. It is configured to bend toward.
  • the ZMP behavior space control means or step includes a first coordinate axis having a positive direction in which the ZMP position is directed to the outside of the body and a robot in which the ZMP position is directed to the center of the ZMP stable area.
  • the robot In the ZMP behavior space consisting of the second coordinate axis with the deformation or momentum in the positive direction, the robot's Even if the shape or momentum has a local maximum value near the center of the ZMP stable region in the negative region, and a spatial distortion is applied such that the change in the deformation or momentum decreases as the floor reaction force increases. Good.
  • the amount of bending of the stance decreases almost linearly with the amount of movement of the ZMP position to the outside of the aircraft.
  • the standing leg bends inward, and when the ZMP position moves to the outside of the fuselage, the standing leg bends outward.
  • the standing leg is configured to be difficult to bend whether the ZMP position moves inward or outward.
  • the amount of bending of the leg is smaller than that in the single-leg supporting period in which the leg is supported by two legs.
  • the ZMP behavior space control means or step includes a first coordinate axis having a forward direction of the ZMP position toward the front of the fuselage and a robot in which the ZMP position is directed to the center of the ZMP stable area.
  • the robot's deformation or momentum is near the center of the ZMP stable region in the negative region when the robot's deformation or momentum is in the negative region with respect to the standing position during the double-leg support May have a maximum value, and may give a spatial distortion such that the change in the amount of deformation or momentum decreases with an increase in the floor reaction force.
  • the amount of bending of the stance decreases almost linearly with the amount of forward movement of the ZMP position.
  • the standing leg bends forward, and when the ZMP position moves to the rear of the fuselage, the standing leg bends rearward.
  • the standing leg is configured to be difficult to bend whether the ZMP position moves forward or backward.
  • the amount of bending of the leg is smaller than that in the single-leg supporting period in which the leg is supported by two legs.
  • the ZMP behavior space control means or step is set such that the ZMP position deviates from the center of the ZMP stable region.
  • the deformation or momentum of the robot occurs such that the MP position moves away from the center of the ZMP stable area, but as the floor reaction force increases, the ZMP position moves away from the center of the ZMP stable area.
  • a spatial distortion may be applied such that a deformation amount or a momentum of the robot is generated such that the ZMP position is directed to the center of the ZMP stable region.
  • the amount of deformation or deformation of the mouth bot such that the ZMP position moves away from the center of the ZMP stable region as the ZMP position moves away from the center of the ZMP stable region.
  • momentum is generated, as the floor reaction force increases, the spatial distortion that generates the robot's deformation or momentum such that the ZMP position moves toward the center of the ZMP stable region as the ZMP position moves away from the center of the ZMP stable region May be given.
  • the ZMP behavior space control means or step when the floor reaction force is small in a direction orthogonal to the traveling direction with respect to the trunk in the two-leg supporting period, the ZMP position is out of the center of the ZMP stable region.
  • the ZMP position moves away from the center of the ZMP stable area as the ZMP position moves away from the center of the ZMP stable area.
  • a spatial distortion may be imparted such that a robot deformation amount or a momentum is generated such that the ZMP position is directed to the center of the ZMP stable region.
  • a deformation or momentum of the robot is generated such that the ZMP position moves away from the center of the ZMP stable region as the ZMP position moves away from the center of the ZMP stable region.
  • Z Spatial distortion may be applied such that a deformation or a momentum of the robot occurs such that the ZMP position moves toward the center of the ZMP stable area as the MP position deviates from the center of the ZMP stable area.
  • the trunk is configured to bend inward.
  • the trunk turns forward when the ZMP position moves forward of the fuselage, and the part turns backward when the ZMP position moves behind the fuselage.
  • the part bends backward when the ZMP position moves to the front of the fuselage, and the part * moves forward when the ZMP position moves to the rear of the fuselage. It is configured to bend.
  • the ZMP behavior space control means or step is a robot in which the ZMP position is directed to the center of the ZMP stable area and the first coordinate axis whose negative direction is the direction in which the ZMP position is directed to the outside of the body.
  • the robot's deformation or momentum has a local maximum value in the negative region with respect to the standing leg of the single leg supporting period, and the floor
  • a spatial distortion may be applied such that the ZMP position having the maximum value of the deformation or the momentum is moved in the positive direction.
  • the amount of bending decreases almost linearly with the amount of movement of the ZMP position in the Y direction in the standing phase in the first half of the single leg support.
  • the ZMP behavior space control means or step includes a first coordinate axis having a forward direction of the ZMP position toward the front of the fuselage and a ZMP position at the center of the ZMP stable area.
  • the robot's deformation or momentum in the negative region is A spatial distortion that has a maximum value near the center of the MP stable region and that reduces the deformation or the momentum with the increase in the floor reaction force may be applied.
  • the amount of bending decreases almost linearly with the amount of movement of the ZMP position in the X direction in the standing phase in the first half of the single leg support.
  • the ZMP behavior space control means or step when the floor reaction force is small in a direction perpendicular to the traveling direction with respect to the standing leg of the single leg supporting first half, the ZMP position deviates from the center of the ZMP stable region. As the floor reaction force increases, the ZMP position deviates from the center of the ZMP stable area, but the ZMP position moves away from the center of the ZMP stable area. However, it may be possible to apply a spatial distortion such that a deformation amount or a momentum of the robot is generated toward the center of the ZMP stable region.
  • the robot deformation amount or the robot's deformation amount such that the ZMP position moves away from the center of the ZMP stable region as the ZMP position moves away from the center of the ZMP stable region.
  • Momentum is generated, but as the floor reaction force increases, the space in which the ZMP position moves toward the center of the ZMP stable area as the ZMP position moves away from the center of the ZMP stable area, where the deformation or momentum of the robot occurs. You may make it give distortion.
  • the ZMP behavior space control means or step when the floor reaction force is small in the direction perpendicular to the traveling direction with respect to the trunk in the single leg supporting period, as the ZMP position deviates from the center of the ZMP stable region.
  • Deformation or momentum of the robot occurs such that the ZMP position moves away from the center of the ZMP stable area, but as the floor reaction force increases, the ZMP position moves away from the center of the ZMP stable area.
  • Spatial distortion may be applied to the robot such that the ZMP position is directed toward the center of the ZMP stable region, or the deformation or momentum of the robot is generated.
  • the # ⁇ part turns outward and when the ZMP position moves to the inside of the fuselage!
  • the part bends inward, but as the floor reaction force increases, conversely, when the ZMP position moves out of the aircraft, the part bends inward and the ZMP position moves inward of the aircraft At that time, the torso is configured to bend outward.
  • the trunk turns forward when the ZMP position moves forward of the aircraft, and the trunk turns backward when the ZMP position moves behind the aircraft.
  • the trunk turns backward when the ZMP position moves to the front of the fuselage, and the ⁇ part moves forward when the ZMP position moves to the rear of the fuselage. It is configured to bend towards you.
  • the ZMP behavior space control means includes a substantially flat foot frame, a region having a relatively large initial deformation amount disposed on the bottom surface of the foot frame, and a region having a relatively small deformation amount thereafter.
  • the sole buffer begins to deform when it first comes into contact with the road surface, so that a sufficient cushioning effect can be expected.
  • the amount of deformation per applied load decreases this time due to the nonlinear characteristics, so that the sole does not become unstable due to excessive deformation.
  • the ZMP behavior space control means is constituted by a foot structure, a spatial distortion that causes a robot's deformation or momentum such that the ZMP position is directed toward the inside of the ZMP stable region. A ZMP behavior space can be given.
  • the ZMP behavior space control means includes at least one joint actuating unit for realizing the degree of freedom of the joint in the movable leg, and supporting the joint actuating unit from the inside of the body of the leg-type moving port bot.
  • An inner support having a first stiffness
  • an outer support having a second stiffness relatively greater than the first stiffness for supporting the joint actuator from outside the fuselage of the legged robot. It may be a leg structure of each movable leg composed of a body.
  • the overall legged mobile robot has enhanced robustness against lateral disturbance, so that the attitude stabilization control of the aircraft is significantly facilitated.
  • the disturbance induces the ZMP to move inside the fuselage, that is, toward the arch. That is, a spatial distortion that causes a robot deformation or momentum such that the ZMP position is directed toward the inside of the ZMP stable region can be given to the ZMP behavior space.
  • a legged mobile robot is If the ZMP moves between both feet, the stable area can be doubled by landing the swing leg at high speed, and the fall can be easily prevented.
  • a second aspect of the present invention is a foot structure for a leg-type moving port boat having at least a plurality of movable legs,
  • a sole buffer having a non-linear elastic characteristic which is arranged on a bottom surface of the foot frame and includes a region having a relatively large initial deformation amount and a region having a relatively small deformation amount thereafter; and
  • An ankle connecting portion which is disposed substantially at the center of the upper surface of the leg, for connecting to the operating leg of the legged mobile robot,
  • a foot structure for a legged mobile robot comprising:
  • the sole buffer is constituted, for example, by arranging two or more cushion members having different heights at predetermined positions on the bottom surface of the foot frame. By combining buffer members having different heights, the non-linear deformation characteristics of the sole buffer can be realized relatively easily.
  • the sole buffer begins to deform when it first comes into contact with the road surface, so that a sufficient cushioning effect can be expected.
  • the amount of deformation per applied load decreases this time due to the nonlinear characteristics, so that the sole does not become unstable due to excessive deformation.
  • the deformation and the momentum of the robot such that the ZMP position is directed toward the inside of the ZMP stable region are determined. It is possible to provide a ZMP behavior space with spatial distortion that causes it.
  • the sole buffer may be provided inside and outside the bottom surface of the foot frame, respectively.
  • the elastic modulus of the sole buffer may be set higher inside and outside the bottom surface of the foot frame and outside the inner side.
  • the leg unit mounted on this foot frame is positioned inside or in the center of the robot's fuselage. It tilts toward the side (arch side), and moves the robot in the direction that doubles the stable area by landing the swing leg while directing the ZMP of the robot toward the inside of the fuselage. Can be derived.
  • the foot frame may have a greater rigidity around a roll axis than around a bitch axis of the legged mobile robot. For example, by forming a concave portion at a predetermined portion on the upper surface and / or the bottom surface of the foot frame, the rigidity around the mouth axis can be strengthened rather than around the pitch axis of the legged mobile robot.
  • a two-legged upright type legged mobile robot has a narrower range of ZMP in the lateral direction (direction around the roll axis) than in the walking direction, that is, in the front-back direction (direction around the pitch axis).
  • the robustness against disturbance around the roll axis is low, very high control accuracy is required in the lateral direction, ie, around the roll axis.
  • ADVANTAGE OF THE INVENTION According to the foot part structure which concerns on this invention, the rigidity about a mouth-axis axis
  • a third aspect of the present invention is a legged moving robot of a type that performs a legged work with at least one pair of left and right movable leg units, wherein the movable leg unit has a joint-free position in the movable leg.
  • At least one joint actuating unit for realizing the degree, and a first rigid inner support for supporting the joint actuating unit from the inside of the body of the legged mobile robot;
  • An outer support having a second rigidity relatively larger than the first rigidity, for supporting the joint actuator from outside the body of the legged mobile robot;
  • the left and right movable leg units have different rigidities between the outer support and the inner support, that is, as compared to the inner support.
  • the disturbance induces the ZMP to move to the inside of the fuselage, that is, to the arch side. That is, it is possible to apply a spatial distortion to the ZMP behavior space that causes a deformation or a momentum of the robot such that the ZMP position moves toward the inside of the ZMP stable region.
  • the legged mobile robot can double the stable area by landing the swing leg at high speed. Can be easily prevented from falling.
  • the second stiffness is preferably a bending stiffness that is at least 1.2 times the first stiffness. More preferably, the second rigidity is more preferably about 1.5 to 2.0 times the first rigidity.
  • Such a difference between the first rigidity and the second rigidity is realized by a difference in thickness between the inner support and the outer support.
  • the difference between the first rigidity and the second rigidity is realized by a difference in shape between the inner support and the outer support.
  • the difference between the first rigidity and the second rigidity is also realized by configuring the inner support and the outer support using materials having different strengths.
  • the degree of freedom of the movable leg may include at least each degree of freedom around the thigh roll axis and the knee joint axis. Further, it may have a degree of freedom of an ankle joint for connection with the foot.
  • a fourth aspect of the present invention is a movable leg unit used in a left-right combination for a legged mobile robot performing legged work
  • One or more joint actuators for realizing the degree of freedom of the movable leg, and a first rigid inner support for supporting the joint actuator from the inside of the body of the legged mobile robot.
  • Robots have a structure in which the rigidity of the outer support and the inner support of the left and right movable leg units differ, that is, a structure in which the rigidity (particularly, bending rigidity) of the outer support is stronger than that of the inner support. Becomes Therefore, even when an unexpected disturbance occurs in the robot body, it is possible to prevent the ZMP from moving to the outside of the body, that is, to the opposite side of the arch. As a result, the robustness of the entire legged mobile robot against lateral disturbance is enhanced, so that the attitude stabilization control of the aircraft is significantly facilitated.
  • the disturbance induces the ZMP to move to the inside of the fuselage, that is, to the arch side. That is, a spatial distortion that causes a robot's deformation or momentum such that the ZMP position moves toward the inside of the ZMP stable region can be applied to the ZMP behavior space.
  • a legged mobile robot equipped with the movable leg unit should land the free leg at high speed if the ZMP moves toward the arch side, that is, between the left and right legs due to an unexpected disturbance.
  • the stable area can be doubled, and the fall can be easily prevented.
  • the second stiffness is preferably a bending stiffness that is at least 1.2 times the first stiffness. More preferably, the second rigidity is more preferably about 1.5 to 2.0 times the first rigidity.
  • Such a difference between the first rigidity and the second rigidity is realized by a difference in thickness between the inner support and the outer support.
  • the difference between the first rigidity and the second rigidity is realized by a difference in shape between the inner support and the outer support.
  • the difference between the first rigidity and the second rigidity is also realized by configuring the inner support and the outer support using materials having different strengths.
  • the degree of freedom of the movable leg may include at least the degree of freedom about the thigh roll axis and the knee joint axis.
  • the ankle joint may be provided with a degree of freedom for connection with the foot.
  • a fifth aspect of the present invention is a method for controlling a legged mobile robot having two or more movable legs
  • a method for controlling a legged mobile robot comprising:
  • the ZMP is adopted as a criterion for determining the stability of the posture, but the stability is considered in consideration of the deformation amount and the momentum of the robot body.
  • Control of the aircraft movement with the existing ZMP existence space That is, as the ZMP position deviates from the center of the ZMP stable region formed by the support polygon formed by the ground contact point of the movable leg and the road surface, the ZMP position is moved to the center of the ZMP stable region. Spatial distortion can be given to the ZMP behavior space in advance so that the deformation or momentum of the airframe occurs. As a result, even when the control mechanism of the aircraft does not have a sufficient response speed, high robustness against disturbances or the like can be obtained.
  • the method of controlling a legged mobile robot according to a fifth aspect of the present invention further includes a step of changing a definition of a ZMP behavior space according to a contact state between the legged mobile robot and a road surface. Is also good.
  • a maximum point and a Z or a minimum point in the ZMP behavior space may be arbitrarily specified. Further, a maximum point and / or a minimum point in the ZMP behavior space may be arbitrarily specified at an arbitrary time. Further, the maximum point and / or the minimum point in the ZMP behavior space may be arbitrarily determined according to the support state of the legs, such as the single-leg support period, the double-leg support period, and the single-leg support period. In such a case, when the robot performs legged work, it is possible to dynamically generate a ZMP behavior space with spatial distortion that facilitates stable posture control according to the gait that changes every moment. Further objects, features, and advantages of the present invention will become apparent from more detailed description based on embodiments of the present invention described below and the accompanying drawings.
  • Fig. 1 shows the case where the robot ⁇
  • FIG. 6 is a diagram showing a relationship between a ZMP position and a robot deformation (or momentum) (that is, a ZMP behavior space of the robot).
  • Figure 2 shows the relationship between the ZMP position and the amount of robot deformation (or momentum) when the object is not actually rigid (that is, the ZMP behavior space of the robot).
  • FIG. 3 is a diagram showing a state in which the “humanoid” or “humanoid” legged mobile robot 100 used in the embodiment of the present invention stands upright from the front.
  • FIG. 4 is a view showing a state in which the “humanoid” or “humanoid” legged mobile robot 100 used in the embodiment of the present invention stands upright, as viewed from the rear.
  • FIG. 5 is a diagram schematically illustrating a configuration of the degree of freedom of a joint included in the legged mobile robot 100.
  • FIG. 6 is a diagram schematically showing a control system configuration of the legged mobile robot 100 according to one embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a configuration example of a ZMP motion space representing a relationship between a deformation amount or a momentum of the robot and a ZMP position.
  • FIG. 8 is a diagram showing another example of the configuration of the ZMP motion space showing the relationship between the amount of deformation or the amount of motion of the robot and the ZMP position.
  • FIG. 9 is a diagram showing still another configuration example of the ZMP motion space representing the relationship between the amount of deformation or the amount of motion of the robot and the ZMP position.
  • FIG. 10 is a diagram showing yet another configuration example of the ZMP behavior space representing the relationship between the robot's deformation or momentum and the ZMP position.
  • FIG. 11 is a diagram showing yet another configuration example of the ZMP behavior space representing the relationship between the amount of deformation or momentum of the robot and the ZMP position.
  • Fig. 12 is a diagram showing an example of the configuration of the ZMP behavior space in the Y direction (the direction orthogonal to the traveling direction) of the left standing leg in the latter half of the single leg support period.
  • Fig. 13 is a diagram showing an example of the configuration of the ZMP behavior space in the X direction (moving direction) of the left standing leg in the latter half of the single leg support period.
  • Fig. 14 is a diagram showing an example of an ideal configuration of the ZMP behavior space in the Y direction (direction perpendicular to the traveling direction) of the left standing leg in the latter half of the single leg support period.
  • Figure 15 is a diagram showing an example of the ideal configuration of the ZMP behavior space in the X direction (moving direction) of the left standing leg in the latter half of the single leg support period.
  • Figure 16 is a diagram showing an example of an ideal configuration of the ZMP behavior space in the Y direction (the direction perpendicular to the direction of travel) in the trunk at the end of the single-leg support period.
  • Fig. 17 is a diagram showing an example of an ideal configuration of the ZMP behavior space in the X direction (moving direction) of the trunk at the end of the single-leg support period.
  • Fig. 18 is a diagram showing an example of the configuration of the ZMP behavior space in the Y direction (the direction perpendicular to the traveling direction) in the left standing leg during the two-leg support period.
  • Figure 19 is a diagram showing an example of the configuration of the ZMP behavior space in the X direction (moving direction) of the left standing leg during the two-leg support period.
  • Fig. 20 is a diagram showing a configuration example of an ideal ZMP behavior space in the Y direction (the direction orthogonal to the traveling direction) in the left standing leg during the two-leg support period.
  • Fig. 21 is a diagram showing an example of the configuration of an ideal ZMP behavior space in the Y direction (the direction perpendicular to the traveling direction) in the left standing leg during the two-leg support period.
  • Figure 22 is a diagram showing an example of the configuration of an ideal ZMP behavior space in the Y direction (direction perpendicular to the direction of travel) in the trunk during the support phase of both legs.
  • Figure 23 is a diagram showing an example of the configuration of an ideal ZMP behavior space in the X direction (moving direction) of the trunk during the support phase of both legs.
  • FIG. 3 is a diagram illustrating a configuration example of a ZMP behavior space.
  • Figure 25 is a diagram showing an example of the configuration of the ZMP behavior space in the X direction (moving direction) of the right standing leg in the early single leg support period.
  • Figure 26 is a diagram showing an example of the ideal ZMP behavior space in the Y direction (direction perpendicular to the direction of travel) in the right standing leg in the early single leg support period.
  • Fig. 27 is a diagram showing an example of the configuration of an ideal ZMP behavior space in the X direction (moving direction) of the right standing leg in the early single leg support period.
  • Figure 28 is a diagram showing an example of the ideal ZMP behavior space in the Y direction (the direction perpendicular to the direction of travel) in the torso in the early single leg support period.
  • Figure 29 is a diagram showing an example of the ideal ZMP behavior space in the X direction (moving direction) of the trunk in the early single leg support period.
  • FIG. 30 is a perspective view showing the appearance of the front side of the left foot part applicable to the legged mobile robot 100 according to one embodiment of the present invention.
  • FIG. 31 is a perspective view showing the appearance of the back side of the left foot portion applicable to the legged mobile robot 100 according to one embodiment of the present invention.
  • FIG. 32 is a side view of the outside of the left foot.
  • FIG. 33 is a bottom view of the left foot.
  • FIG. 34 is a front view of the left foot.
  • Figure 35 is a top view of the left foot.
  • FIG. 36 is a cross-sectional view taken along line AA shown in FIG.
  • Fig. 37 is a diagram comparing the elastic moduli of the sole cushioning material (inner) 405 and the sole cushioning material (outer) 404.
  • FIG. 38 compares the amounts of deformation of the sole cushioning material (inner) 405 and the sole cushioning material (outer) 404.
  • FIG. 39 is a diagram showing a perspective view of the upper surface of the foot frame 403.
  • FIG. 40 is a diagram showing a perspective view of the bottom surface of the foot frame 403.
  • FIG. 41 is a sectional view of the foot frame 403 divided in the roll axis direction.
  • FIG. 42 is a diagram showing a state in which the rigidity of the foot frame 403 around the mouth axis is strengthened as compared to around the bitch axis.
  • FIG. 43 is a perspective view showing the appearance of the front side of the left foot part according to one embodiment of the present invention.
  • FIG. 44 is a perspective view showing the appearance of the back side of the left foot portion according to one embodiment of the present invention.
  • FIG. 45 is a side view of the left foot portion according to one embodiment of the present invention.
  • FIG. 46 is a bottom view of the left foot portion according to one embodiment of the present invention.
  • FIG. 47 is a diagram schematically illustrating the configuration of each of the left and right legs 104 of the legged mobile robot 100 according to one embodiment of the present invention.
  • FIG. 48 is a side view (outside the arch) of the leg unit of the legged mobile robot 100 shown in FIG. 47.
  • FIG. 49 is a front view of the leg unit of the legged mobile robot 1 ⁇ 0 shown in FIG.
  • FIG. 50 is a side view (inside of the arch) of the leg unit of the legged mobile robot 100 shown in FIG.
  • FIG. 51 is a diagram schematically showing a functional configuration of a control system 500 of the ZMP behavior space.
  • FIGS. 3 and 4 show a state in which the “humanoid” or “humanoid” legged mobile robot 100 used in the practice of the present invention stands upright, as viewed from the front and the rear, respectively. Is shown.
  • the legged mobile robot 100 is composed of a trunk 101, a head 102, left and right upper limbs 103, and left and right two legs that perform legged movements.
  • a control unit 105 that controls the operation of the aircraft in a comprehensive manner.
  • the left and right lower limbs 104 are composed of a thigh, a knee, a shin, an ankle, and a foot, and are connected at the lowermost end of the trunk by the hip. Also, each of the left and right The upper limb is composed of an upper arm, an elbow joint, and a forearm, and is connected by a shoulder joint at each of left and right side edges above the trunk. The head is connected to the center of the uppermost part of the trunk by a neck joint.
  • the control unit 105 includes a controller (main control unit) that processes external input from each sensor (to be described later) and the like, which controls the operation of each joint unit constituting the legged moving robot 100, and a power supply circuit. It is a housing on which other peripheral devices are mounted. In addition, the control unit may include a communication interface communication device for remote operation. Further, in the examples shown in FIGS. 3 and 4, the legged mobile robot 100 is dressed as if the control unit is carried on the back, but the installation location of the control unit is not particularly limited.
  • the legged mobile robot 100 configured as described above can realize bipedal walking by controlling the whole body in cooperation with the control unit 105.
  • Such bipedal walking is generally performed by repeating a walking cycle divided into each of the following operation periods. That is,
  • Walking control in the legged mobile robot 100 is realized by planning the target trajectory of the lower limb in advance and correcting the planned trajectory in each of the above periods.
  • the correction of the lower limb trajectory is stopped, and the waist height is corrected to a constant value using the total correction amount for the planned trajectory.
  • a corrected trajectory is generated so that the relative positional relationship between the corrected ankle and waist of the leg is returned to the planned trajectory.
  • the specific correction is performed by interpolation using a fifth-order polynomial so that the position, velocity, and acceleration for reducing the deviation from ZMP are continuous.
  • FIG. 5 schematically shows the configuration of the degrees of freedom of the joints included in the legged mobile robot 100.
  • the legged mobile robot 100 is composed of an upper limb including two arms and a head 1, a lower limb including two legs for realizing a moving operation, and an upper limb and a lower limb.
  • This is a structure having a plurality of limbs, which is composed of a connecting part.
  • the neck joint that supports the head 1 is a uniaxial joint 2 of the neck joint, a pitch axis 3 of the neck joint, and a neck joint It has three degrees of freedom, the roll axis 4.
  • Each arm has a shoulder joint pitch axis 8, a shoulder joint roll axis 9, a humeral joint uniaxial axis 10, an elbow joint pitch axis 11, a forearm joint axis 1 2, and a wrist joint pitch axis 13. It is composed of a wrist joint roll axis 14 and a hand part 15.
  • the hand part 15 is actually a multi-joint multi-degree-of-freedom structure including a plurality of fingers. However, since the movement of the hand portion 15 has little contribution or influence on the posture control and the walking control of the robot 100, it is assumed in this specification that the degree of freedom is zero. Therefore, each arm has seven degrees of freedom.
  • the torso has three degrees of freedom: a body pitch axis 5, a # ⁇ roll axis 6, and a male single axis 7.
  • each leg constituting the lower limb has a hip joint axis 16, a hip joint pitch axis 17, a hip joint roll axis 18, a knee joint pitch axis 19, an ankle joint pitch axis 20, and an ankle It is composed of a joint roll shaft 21 and a foot 22.
  • the foot 22 of the human body is actually a structure including a sole with multiple joints and multiple degrees of freedom, but the sole of the leg-type moving port bot 100 according to the present embodiment has zero degrees of freedom. . Therefore, each leg has 6 degrees of freedom.
  • the legged mobile robot 100 for the Entrance is not necessarily limited to 32 degrees of freedom. It goes without saying that the degree of freedom, that is, the number of joints, can be appropriately increased or decreased according to design constraints and manufacturing constraints and required specifications.
  • Each degree of freedom of the legged mobile robot 100 as described above is actually implemented using an actuator. Due to demands such as eliminating extra bulges in appearance and approximating the shape of a human body, and controlling the posture of an unstable structure such as bipedal walking, Actu Yue must be small and lightweight. Is preferred.
  • a small AC servo actuator which is directly connected to a gear and integrated into a motor unit with a single-unit servo control system, is mounted.
  • This type of AC servo actuator is disclosed, for example, in Japanese Patent Application Laid-Open No. 2000-29997, which has already been assigned to the present applicant (Japanese Patent Application No. 11-3333). 86 No. 6).
  • control system includes a thinking control module 200 that dynamically determines emotions and expresses emotions in response to user input and the like, and a robotic whole body coordination such as driving a joint actuary. It is composed of the motion control @ joule 300 that controls the motion.
  • the thought control module 200 is a CPU (Central Processing Unit) 211 that executes arithmetic processing related to emotion judgment and emotional expression, a RAM (Random Access Memory 212), a ROM (Read Only Memory) 211, It is an independent drive type information processing device composed of an external storage device (hard disk drive, etc.) 214 and capable of performing self-contained processing in a module.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the thought control module 200 is a CPU (Central Processing Unit) 211 that executes arithmetic processing related to emotion judgment and emotional expression, and a RAM (Random Access Memory)
  • the legged mobile robot responds to external stimuli, such as visual data input from the image input device 251, and auditory data input from the voice input device 255. Determine the current emotions and intentions of 100. Further, it issues a command to the motion control module 300 to execute an action or action sequence (behavior) based on the decision, that is, the movement of the limb.
  • external stimuli such as visual data input from the image input device 251, and auditory data input from the voice input device 255.
  • the motion control module 300 issues a command to the motion control module 300 to execute an action or action sequence (behavior) based on the decision, that is, the movement of the limb.
  • One of the motion control modules 300 is a CPU (Central Processing Unit) c5 11 that controls the whole body cooperative motion of the robot 100, and a RAM (R back om Access Memory)
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM (Read Only Memory) 3 1 3 and external storage device (hard disk drive, etc.) 3 14 can perform self-contained processing in the module. It is an independently driven information processing device. In the external storage device 3 14, for example, a walking pattern, a ZMP target trajectory, and other action plans calculated offline can be stored.
  • the motion control module 300 has a robot 100 One joint workout to realize the degree of freedom of the joints (see Fig. 5), a posture sensor that measures the posture and inclination of the trunk, 351, a grounding confirmation sensor that detects when the left and right soles have left or landed on the floor Various devices such as a power control device that manages power such as a battery and a battery are connected via a bus interface 301.
  • the thought control module 200 and the motion control module 300 are built on a common platform, and are interconnected via bus-in interfaces 201 and 301.
  • the motion control module 300 controls the whole body cooperative motion by each joint actuator to embody the behavior specified by the thought control module 200. That is, the CPU 310 retrieves an operation pattern corresponding to the behavior instructed from the thought control module 200 from the external storage device 314 or internally generates a motion pattern. Then, the CPU 311 sets foot movement, ZMP trajectory, # ⁇ movement, upper limb movement, waist horizontal position and height, etc., according to the specified movement pattern, and according to these settings. The command value for instructing the operation is transferred to each joint factory.
  • the CPU 311 detects the posture and inclination of the robot 100 by the output signal of the posture sensor 351, and each movable by the output signals of the grounding confirmation sensors 352 and 353. By detecting whether the leg is in the free leg state or the standing state, the whole body cooperative movement of the legged mobile robot 100 can be adaptively controlled.
  • the CPU 311 controls the attitude and movement of the aircraft so that the ZMP position always faces the center of the ZMP stable region.
  • the motion control module 300 returns to the thought control module 200 the extent to which the action determined in the thought control module 200 has been performed as intended, that is, the processing status. I'm sorry
  • Z MP Zero Moment Point
  • the robot's posture stability control using ZMP as a stability discrimination criterion is to search for a point where the beach and mouth axis moments become zero inside the supporting polygon formed by the ground contact point and the road surface. Based on doing. According to the generation of bipedal walking patterns based on the Z MP stability discrimination criteria, the landing point of the sole can be set in advance, and it is easy to consider the kinematic constraint condition of the toe according to the road surface shape There are advantages such as. In addition, using Z MP as a stability discrimination criterion means that a trajectory, not a force, is treated as a target value for motion control, which increases the technical feasibility.
  • the ZMP norm is only a norm that can be applied only when it can be assumed that the body and road surface of the mouth bot are as close as possible to a rigid body. That is, if it is not possible to assume that the robot or the road surface is as close as possible to a rigid body, for example, when the robot moves at high speed, the force acting on the ZMP (translation) and the impact force at the time of switching the standing position increase. If deformation or movement occurs in the robot itself, the space itself in which the ZMP exists becomes unstable unless the amount of deformation of the robot with respect to the applied force is properly managed. Even if the robot posture satisfies the ZMP stability discrimination criteria, the robot posture becomes unstable due to the unstable ZMP position.
  • a robot's system configuration having a stable ZMP behavior space in consideration of the deformation amount and the momentum of the robot body is adopted.
  • the ZMP behavior space is defined by the ZMP position and the floor reaction force received by the aircraft from the floor, but in this embodiment, the ZMP behavior space is specified in the ZMP behavior space so that the amount of deformation and momentum to stabilize the aircraft is generated. Distortion Or predetermined characteristics are given in advance.
  • the positive or negative of the deformation (or momentum) of the robot is the direction in which negative causes spatial distortion that attempts to move the ZMP to the edge of the stable area, and positive is the ZMP in the center of the stable area. Note that this is the direction in which the spatial distortion that is to be moved is caused.
  • Fig. 7 shows a configuration example of the ZMP behavior space that represents the relationship between the amount of deformation or the amount of movement of the robot and the ZMP position.
  • the ZMP behavior space is constituted by a non-linear curve represented by a parabola or an arc. Although not shown, it may include discontinuities and inflection points.
  • the deformation (or momentum) of the robot increases in the positive direction.
  • the effect of generating a spatial distortion to move the ZMP to the center of the stable region works, so that it is also easy to maintain the attitude stability of the aircraft.
  • FIG. 8 shows another example of the configuration of the ZMP behavior space representing the relationship between the amount of deformation or the amount of motion of the robot and the ZMP position.
  • the ZMP behavior space consists of a linear straight line near the center of the ZMP stable region, and nonlinear curves connected at the left and right ends, with a discontinuity between the straight line and the curve. Contains dots. Although not shown, an inflection point may be included.
  • the robot When the ZMP position is near the center of the ZMP stable region, the robot does not lose its attitude stability as it is flat, ie, there is no large deformation (or momentum) in the robot.
  • FIG. 9 shows still another configuration example of the ZMP behavior space representing the relationship between the amount of deformation or momentum of the robot and the ZMP position.
  • the ZMP behavior space is configured by connecting a plurality of linear straight lines, and includes a plurality of discontinuous points.
  • the ZMP behavior space is a straight line with a relatively gentle slope. Is formed. Also, when the distance from the ZMP center position reaches a predetermined value, the relative inclination in which the deformation (or the amount of movement) of the robot rapidly increases in the positive direction according to the distance from the ZMP center position is increased. A steep straight line forms the ZMP behavior space.
  • FIG. 10 shows still another configuration example of the ZMP behavior space representing the relationship between the amount of deformation or momentum of the robot and the ZMP position.
  • the ZMP behavior space is composed of a non-linear curve, has a local minimum at approximately the center of the ZMP stable area, and has a local maximum near the boundary of the ZMP stable area. ing.
  • FIG. 11 shows yet another configuration example of the ZMP behavior space representing the relationship between the deformation amount or the momentum of the robot and the ZMP position.
  • the ZMP behavior space is formed by a relatively gentle straight line whose deformation (or momentum) gradually increases in the negative direction according to the distance from the ZMP center position. Is done. When the distance from the ZMP center position reaches a predetermined value, the surface becomes flat.
  • the ZMP behavior space in this case is such that the deformation (or momentum) of the mouth bot acts only in the negative direction at any position in the ZMP stable region, and when the ZMP position is more than a certain distance from its center position, However, the spatial distortion that attempts to move the ZMP out of the stable region is constant. Therefore, it can be said that the ZMP behavior space is unstable but relatively easy to control.
  • the ZMP behavior space takes as an example a case where a two-legged robot 100 as shown in FIGS. 3 to 5 performs a walking motion.
  • the ZMP behavior space is given a spatial distortion such that the ZMP position is directed substantially to the center of the ZMP stable region, and the floor reaction force is applied so that the ZMP position naturally moves in a direction in which the aircraft stabilizes.
  • the amount of deformation or the amount of momentum of the body according to is generated.
  • Figures 12 and 13 show examples of the configuration of the ZMP behavior space in the Y direction (the direction perpendicular to the traveling direction) and the X direction (the traveling direction) of the left standing leg in the latter half of the single leg support period.
  • the ZMP behavior space in the Y direction of the left standing leg in the latter half of the monopod support period is negative as the ZMP position deviates from the center of the ZMP stable region when the floor reaction force is small. That is, the robot's deformation or momentum is generated such that the ZMP position moves away from the center of the ZMP stable area, but as the floor reaction force increases, the ZMP position moves toward the outside of the fuselage. When this happens, a spatial distortion is applied so that the robot's deformation or momentum no longer occurs. As a result, in the case of the left standing leg as a support leg, the curve moves almost linearly with the movement amount of the MP position in the Y direction. Amount is reduced.
  • the left stance bends inward when the ZMP position moves inside the aircraft, and the left stance bends outward when the ZMP position moves outside the aircraft.
  • the left standing leg is configured to be harder to turn outward even if the ZMP position moves to the outside of the aircraft.
  • the floor reaction force is said to be “large” when the floor reaction force is 100 or more, and when the floor reaction force is approximately 20 to 100
  • the floor reaction force is called “medium”, and when the floor reaction force is less than 20, the floor reaction force is called “small” (the same applies hereinafter).
  • the floor reaction force is small it means the floor reaction force that is applied to the other foot when one foot supports the whole body during both feet support period .
  • the ZMP behavior space in the X direction of the left stance in the later stage of the single leg support period becomes negative as the ZMP position deviates from the center of the ZMP stable region, that is, the ZMP position.
  • the space where the amount of deformation or momentum generated in the fuselage gradually decreases as the floor reaction force increases Distortion is applied.
  • the amount of bending decreases almost linearly with the amount of movement of the ZMP position in the X direction.
  • the left stance bends forward when the ZMP position moves to the front of the aircraft, and the left stance bends backward when the ZMP position moves to the rear of the aircraft.
  • the left stance is configured to be less likely to bend as the force increases, regardless of whether the ZMP position moves forward or backward.
  • Figures 14 and 15 show examples of the ideal ZMP behavior space in the Y direction (direction perpendicular to the direction of travel) and the X direction (direction of travel) of the left standing leg in the late single leg support period. ing.
  • the ideal ZMP behavior space in the Y direction for the left standing leg in the later stage of the single leg support period is such that when the floor reaction force is small, the ZMP position becomes more negative as the ZMP position deviates from the center of the ZMP stable region, Those whose position deviates from the center of the Z MP stable area
  • the ZMP position shifts away from the center of the ZMP stable area, that is, the ZMP position moves in the positive direction, that is, the ZMP position moves in the ZMP stable area.
  • a spatial distortion is applied so that the robot's deformation or momentum toward the center is generated.
  • the left stance turns inward when the ZMP position moves to the inside of the aircraft, and the left stance moves outward when the ZMP position moves to the outside of the aircraft.
  • the floor reaction force increases, conversely, when the ZMP position moves to the inside of the aircraft, the left stance turns outward and when the ZMP position moves to the outside of the aircraft, the left stance moves inward. It is configured to bend toward. Also, as shown in Fig.
  • the ideal ZMP behavior space in the X direction for the left standing leg in the latter half of the single leg support period is such that when the floor reaction force is small, the ZMP position deviates from the center of the ZMP stable region
  • the robot's deformation or momentum moves in the negative direction, that is, the ZMP position moves away from the center of the ZMP stable area.
  • a spatial distortion is applied such that the robot's deformation or momentum is generated such that the ZMP position moves toward the center of the ZMP stable region in the positive direction as it deviates from the center of the region.
  • the left stance bends forward when the ZMP position moves to the front of the fuselage, and the left stance moves rearward when the ZMP position moves to the rear of the fuselage.
  • the left stance turns backward and when the ZMP position moves to the rear of the aircraft, the left stance moves forward. It is configured to bend toward.
  • Figures 16 and 17 show examples of the ideal ZMP behavior space in the Y direction (direction perpendicular to the direction of travel) and the X direction (direction of travel) of the trunk in the latter half of the monopod support period, respectively. Is shown.
  • the ideal ZMP behavior space in the Y direction in the trunk at the end of the single-leg support period is as follows: when the floor reaction force is small, the ZMP position becomes more negative as the ZMP position deviates from the center of the ZMP stable region, that is, ZMP.
  • the robot's deformation or momentum is generated such that the position moves away from the center of the ZMP stable area, but the floor reaction force is large.
  • spatial distortion that causes a robot deformation or momentum such that the ZMP position moves toward the center of the ZMP stable region as the ZMP position moves away from the center of the ZMP stable region. has been given.
  • the part bends inward when the ZMP position moves inside the aircraft, and the part bends outward when the ZMP position moves outside the aircraft.
  • the trunk turns inward It is configured as follows. Also, as shown in Fig. 17, the ideal ZMP behavior space in the X direction at the trunk in the late single leg support period is such that when the floor reaction force is small, the ZMP position deviates from the center of the ZMP stable region.
  • the robot's deformation or momentum moves in the negative direction, that is, the ZMP position moves away from the center of the ZMP stable area. Spatial distortion is generated such that the robot's deformation or momentum is generated such that the ZMP position moves toward the center of the ZMP stable region in the positive direction as it deviates from the center of the region.
  • the trunk turns forward when the ZMP position moves forward of the fuselage, and the remote ⁇ section moves backward when the ZMP position moves backward.
  • the trunk turns backward and when the ZMP position moves to the rear of the fuselage, the ⁇ part moves forward. It is configured to bend toward.
  • Figures 18 and 19 show examples of the configuration of the ZMP behavior space in the Y direction (the direction perpendicular to the traveling direction) and the X direction (the traveling direction) of the left standing leg during the two-leg support period.
  • the ZMP behavior space in the Y direction of the left standing leg during the two-leg support period is such that as the ZMP position deviates from the center of the ZMP stable region,
  • the robot generates deformation or momentum in a direction away from the robot, but as the floor reaction force increases, spatial distortion occurs such that the deformation or momentum generated in the fuselage gradually decreases.
  • Both legs In the support period the rigidity of the ZMP behavior space is higher and the spatial distortion is smaller than in the single-leg support period, in which the legs are supported by two legs.
  • the bending amount of the left stance decreases almost linearly with the movement amount of the ZMP position in the Y direction.
  • the left stance bends inward when the ZMP position moves inside the aircraft, and the left stance bends outward when the ZMP position moves outside the aircraft.
  • the left standing leg is configured to be difficult to bend whether the ZMP position moves inward or outward.
  • the ZMP behavior space in the X direction of the left standing leg during the two-leg support period is such that, as the ZMP position deviates from the center of the ZMP stable region, the negative direction, that is, the ZMP position becomes the center of the ZMP stable region.
  • the robot deforms or moves in a direction away from the robot, but the space distortion is applied so that the deformation or momentum generated in the fuselage gradually decreases as the floor reaction force increases. .
  • the rigidity of the ZMP behavior space is higher and the spatial distortion is smaller than in the single-leg supporting period in which one leg supports the two legs because it is supported by two legs.
  • the amount of bending of the left stance decreases almost linearly with the amount of movement of the ZMP position in the X direction.
  • the left standing leg is configured to be difficult to bend whether the ZMP position moves forward or backward.
  • the amount of bending of the legs is smaller than that in the single-leg support period, in which the legs are supported by two legs.
  • Figures 20 and 21 show examples of ideal ZMP behavior space configurations in the Y direction (direction perpendicular to the direction of travel) and the X direction (direction of travel) of the left standing leg during the two-leg support period. .
  • the ideal ZMP movement space in the Y direction on the left standing leg during the two-leg support period becomes negative as the ZMP position moves away from the center of the ZMP stable region.
  • the robot's deformation or momentum is generated such that the direction, that is, the ZMP position moves away from the center of the ZMP stable area, but the floor reaction force is large.
  • spatial distortion is generated such that the robot's deformation or momentum occurs in the positive direction, that is, the ZMP position moves toward the center of the ZMP stable region.
  • the rigidity of the ZMP behavior space becomes higher and the spatial distortion is smaller than in the single-leg support period supported by one leg.
  • the left stance bends inward when the ZMP position moves inside the aircraft, and the left stance bends outward when the ZMP position moves outside the aircraft.
  • the left stance turns outward when the ZMP position moves inside the aircraft, and the left stance turns inward when the ZMP position moves outside the aircraft. It is configured to bend. Since the legs are supported by two legs during the double-leg support period, the amount of bending of the legs is smaller than that of the single-leg support period in which one leg supports.
  • the ideal ZMP behavior space in the X direction for the left standing leg during the two-leg support period is negative when the floor reaction force is small, as the ZMP position moves away from the center of the ZMP stable region.
  • the robot's deformation or momentum is generated such that the direction, that is, the ZMP position moves away from the center of the ZMP stable area, but as the floor reaction force increases, the ZMP position changes to the ZMP stable area.
  • a spatial distortion is generated such that a robot deformation or momentum occurs such that the ZMP position moves toward the center of the ZMP stable region.
  • the rigidity of the ZMP behavior space becomes higher and the spatial distortion is smaller than in the single-leg support period in which one leg supports.
  • the left stance turns forward when the ZMP position moves forward of the aircraft, and the left stance faces rearward when the ZMP position moves behind the aircraft.
  • the left stance turns backward and when the ZMP position moves to the rear of the aircraft, the left stance Is configured to bend forward. Since the legs are supported by two legs in the double-leg support period, the amount of leg bending is small compared to the single-leg support period in which one leg is supported.
  • Figures 22 and 23 show the Y-direction (perpendicular to the direction of travel) Examples of the ideal ZMP behavior space in the X-direction (traveling direction) and the X-direction (traveling direction) are shown.
  • the ideal ZMP movement space in the Y direction at the trunk during the two-leg support period is negative when the floor reaction force is small, as the ZMP position moves away from the center of the ZMP stable region.
  • the robot's deformation or momentum is generated such that the direction, that is, the ZMP position moves away from the center of the ZMP stable area, but as the floor reaction force increases, the ZMP position changes to the ZMP stable area.
  • a spatial distortion is applied so that the robot's deformation or momentum is generated in such a way that the ZMP position moves toward the center of the ZMP stable region in the positive direction as it moves away from the center.
  • the rigidity of the ZMP behavior space becomes higher and the spatial distortion is smaller than in the single-leg support period supported by one leg.
  • the ideal ZMP behavior space in the X direction at the trunk during the two-leg support period is negative as the floor reaction force is small, as the ZMP position deviates from the center of the ZMP stable region.
  • Direction that is, the ZMP position moves away from the center of the ZMP stable area, but the robot's deformation or momentum occurs, but as the floor reaction force increases, conversely, the ZMP position moves to the ZMP stable area.
  • Spatial distortion is generated such that the robot's deformation or momentum is generated such that the ZMP position moves toward the center of the ZMP stable region as it moves away from the center.
  • the rigidity of the ZMP behavior space is higher and the spatial distortion is smaller than in the single-leg support period in which one leg supports.
  • the ⁇ part bends forward when the ZMP position moves forward of the fuselage, and the part bends backward when the ZMP position moves behind the fuselage.
  • the floor reaction force increased, on the contrary, when the ZMP position moved to the front of the aircraft, the! ⁇ Section turned backward and the ZMP position moved to the rear of the aircraft.
  • the part is configured to bend forward.
  • Figures 24 and 25 show examples of the configuration of the ZMP behavior space in the Y direction (direction perpendicular to the direction of travel) and the X direction (direction of travel) of the left standing leg in the early single leg support period.
  • the ZMP behavior space in the Y direction of the right standing leg in the first half of the single leg support period is negative when the floor reaction force is small as the ZMP position deviates from the center of the ZMP stable region. That is, the amount of deformation or momentum of the robot occurs such that the ZMP position moves away from the center of the ZMP stable area, but as the floor reaction force increases, the ZMP position moves toward the outside of the fuselage. In this case, a spatial distortion is given such that no robot deformation or momentum is generated. As a result, in the right standing leg as a supporting leg, the amount of bending decreases almost linearly with the amount of movement of the ZMP position in the Y direction.
  • the right stance bends inward when the ZMP position moves inside the aircraft, and the right stance bends outward when the ZMP position moves outside the aircraft.
  • the right stance is configured to be harder to turn outward even if the ZMP position moves to the outside of the fuselage.
  • the ZMP behavior space in the X direction of the right stance in the early stage of the single leg support period the more the ZMP position deviates from the center of the ZMP stable region, Although the robot's deformation or momentum moves in the direction away from the center of the ZMP stable region, spatial distortion such that the deformation or momentum generated in the aircraft gradually decreases as the floor reaction force increases.
  • the amount of bending decreases almost linearly with the amount of movement of the ZMP position in the X direction.
  • the right stance bends forward when the ZMP position moves forward of the aircraft, and the right stance bends backward when the ZMP position moves behind the aircraft.
  • the right stance is configured to be difficult to bend as the force increases, regardless of whether the ZMP position moves forward or backward.
  • Figures 26 and 27 show examples of ideal ZMP behavior space in the Y direction (direction perpendicular to the direction of travel) and the X direction (direction of travel) of the right standing leg in the early stage of monopod support. It shows.
  • the ideal ZMP behavior space in the Y direction for the right standing leg in the early stage of the single leg support period is as follows:
  • the ZMP position deviates from the center of the ZMP stable region in the negative direction, that is, ZMP.
  • the amount of deformation or momentum of the robot is such that the position moves away from the center of the ZMP stable area, but as the floor reaction force increases, the more the ZMP position moves away from the center of the ZMP stable area,
  • the direction, that is, the spatial distortion that gives rise to the deformation or the momentum of the mouthboat such that the ZMP position is directed to the center of the ZMP stable region is given.
  • the right stance turns outward when the ZMP position moves to the outside of the aircraft, and the right stance turns inward when the ZMP position moves to the inside of the aircraft.
  • the floor reaction force increases, conversely, when the ZMP position moves to the outside of the fuselage, the right stance turns inward, and when the ZMP position moves to the inside of the fuselage, the right stance changes to the outside. It is configured to bend toward.
  • the ideal ZMP behavior space in the X direction for the right standing leg in the early single leg support period is such that when the floor reaction force is small, the ZMP position deviates from the center of the ZMP stable region.
  • the robot's deformation or momentum moves in the negative direction, that is, the ZMP position moves away from the center of the ZMP stable area.
  • Spatial distortion is generated such that the robot's deformation or momentum is generated such that the positive direction, that is, the ZMP position moves toward the center of the ZMP stable region, as it deviates from the center of the region.
  • the right stance bends forward when the ZMP position moves forward of the aircraft, and the right stance bends backward when the ZMP position moves behind the aircraft.
  • the floor reaction force increases, conversely, when the ZMP position moves to the front of the aircraft, the right stance turns backward, and when the ZMP position moves to the rear of the aircraft, the right stance moves forward. It is configured to bend.
  • Figures 28 and 29 show examples of the ideal ZMP behavior space in the Y direction (the direction perpendicular to the direction of travel) and the X direction (the direction of travel) of the torso in the early single leg support period. Is shown.
  • the ideal ZMP behavior space in the Y direction in the torso in the early stage of the single-leg support period is such that when the floor reaction force is small, the ZMP position becomes more negative as the ZMP position deviates from the center of the ZMP stable region, that is, ZMP.
  • the robot's deformation or momentum is generated such that the position moves away from the center of the ZMP stable region, but as the floor reaction force increases, the ZMP position moves away from the center of the ZMP stable region.
  • the spatial distortion is given so that the robot's deformation or momentum occurs in the positive direction, that is, the ZMP position goes to the center of the ZMP stable region.
  • the part bends outward and when the ZMP position moves to the inside of the fuselage, the part bends inward.
  • the floor reaction force increases, conversely, when the ZMP position moves to the outside of the fuselage, the ⁇ part bends inward, and when the ZMP position moves to the inside of the fuselage, the trunk changes to the outside. It is configured to bend. Also, as shown in Fig.
  • the trunk turns forward when the ZMP position moves to the front of the fuselage, and the trunk moves rearward when the ZMP position moves to the rear of the fuselage.
  • the trunk turns backward and when the ZMP position moves backward of the fuselage, the It is configured to bend toward.
  • Section B defines the ZMP position and floor reaction force, not only relying on the ZMP stability discrimination criteria, but also considering that it is not possible to assume that the robot or road surface is as close as possible to a rigid body.
  • This section describes an example of the configuration of a legged mobile robot equipped with a hardware-like ZMP behavior space in which spatial distortion is given so as to guide the aircraft stably.
  • FIG. 30 shows the appearance of the front side of the left foot portion applicable to the legged mobile robot 100 according to one embodiment of the present invention.
  • Fig. 31 shows the appearance of the back side of the left foot part.
  • Figures 32 to 35 show a side view (external side), bottom view, front view, and top view of the left foot.
  • FIG. 36 shows a cross-sectional view taken along line AA shown in FIG.
  • the “back side” of the foot refers to the bottom surface, that is, the surface in contact with the road surface
  • the “front side” of the foot refers to the upper surface on the opposite side.
  • the “inside” of the foot refers to the part inside the fuselage (for example, the right side, ie, the arch side for the left foot)
  • the “outside” of the foot refers to the part inside the fuselage (for example, the left foot). If there is, it should point to the left side, that is, the side opposite the arch.
  • the foot is composed of a foot frame 403 and a cover 402 covering the upper surface thereof.
  • the cover 402 is formed of a hollow structure for weight reduction and the like.
  • an ankle connecting portion 401 connected by a corresponding movable leg unit and an ankle joint is provided.
  • Structures such as the foot frame 403, the cover 402, and the ankle connecting portion 401 are manufactured using a lightweight and highly rigid material such as ultra-duralumin, for example.
  • the sole cushioning material (outer) and the sole cushioning material (inner) are located along the front, rear, left and right side edges of the bottom surface of the sole frame. 5, and sole cushioning material (Front) 406 and sole cushioning material (Rear) 407 are provided.
  • These buffer materials 404 to 407 can be formed using an elastic body having a predetermined elastic coefficient, such as urethane rubber.
  • the sole cushioning material (outside) 404 is roughly composed of raised portions 404-a at both ends and recessed portions 404-b between them. It is a concave structure.
  • the sole cushioning material (inner) 405 is also formed of a substantially concave structure with both ends raised, and the bottom of the foot is provided with four corners. A convex part is formed.
  • the depth of the concave shape of each sole buffer material (outside / inside) 404 and 405 may be, for example, about 0.5 mm.
  • the sole When the sole is grounded to the road surface and a reaction force is applied from the road surface, it is initially supported only on the raised portion 4 0 4-a, so the elastic coefficient decreases (that is, the amount of deformation with respect to external force) Is bigger).
  • the shrinkage of the part 404-a progresses and reaches the same height as the concave part 404-b, it will be supported by the entire bottom surface of the cushioning material 404.
  • the elastic modulus increases (that is, the amount of deformation with respect to external force decreases).
  • the deformation characteristics of the cushioning members against a load such as a floor reaction force can be made non-linear.
  • the floor reaction force is small, such as when walking normally, the foot frame is supported only by the protrusions formed at the four corners of the sole.
  • the cushioning material 404 to 407 provided on the sole will be supported on the entire surface, and the ground contact surface will be received. The characteristics of the impact force change, and it is possible to appropriately cope with the impact force.
  • the sole buffer begins to deform when it first comes into contact with the road surface, so that a sufficient cushioning effect can be expected.
  • the amount of deformation per applied load decreases this time due to the nonlinear characteristics, so that the sole does not become unstable due to excessive deformation.
  • the sole cushioning material (outer) 404 and the sole cushioning material (inner) 405 have different elastic characteristics. More specifically, as shown in Fig. 37, the elastic modulus of the sole cushioning material (outer) is set to be larger than that of the sole cushioning material (inner). I have. As a result, the deformation of the sole cushioning material (outside) 404 and the sole cushioning material (inner) 405 becomes non-linear between normal walking and when an impact force is applied. As shown, the amount of deformation in the non-linear region is larger for the sole cushioning material (inner) 405 than for the sole cushioning material (outer) 404.
  • the sole cushioning material (inner) 405 Due to the difference in the deformation characteristics between the sole cushioning material (inner) 405 and the sole cushioning material (outer) 404, when a high impact force is applied, the sole cushioning material (inner) 400 5 will sink deeper. As a result, the leg unit (not shown) mounted on the foot frame 403 tilts toward the inside of the fuselage, that is, toward the center side (the arch side), and the ZMP position of the robot is shifted to the fuselage. Landing the inner side, ie, the free leg, has the effect of moving the ZMP stable area in the direction of doubling.
  • the ZMP position is the center of the ZMP stable region.
  • the amount of deformation or momentum of the robot is generated such that the ZMP position moves away from the center of the ZMP stable area, but as the floor reaction force increases, the ZMP position becomes the center of the ZMP stable area.
  • spatial distortion is generated such that the deformation or momentum of the robot is generated such that the ZMP position is directed toward the center of the ZMP stable region. Therefore, as already described with reference to FIGS.
  • the floor reaction force in each phase of the later stage of supporting a single leg, the stage of supporting both legs, and the earlier stage of supporting a single leg is reduced.
  • the stance bends inward when the ZMP position moves to the inside, and when the ZMP position moves to the outside of the fuselage, the stance leg turns outward, but as the floor reaction force increases, Conversely, when the ZMP position moves inside the fuselage, the standing leg bends outward, and when the ZMP position moves outside the fuselage, the standing leg bends inward.
  • the non-linear deformation characteristics of the cushioning material can be obtained by laminating elastic bodies having different elastic coefficients besides providing the above-described uneven shape on the cross section of the cushioning material.
  • materials such as the shape and area of the bottom surface of the cushioning material used and the elastic modulus By varying the quality, the deformation characteristics can be easily differentiated between the inside (arch side) and the outside (opposite the arch).
  • FIG. 39 shows a perspective view of the upper surface of the foot frame 403.
  • FIG. 40 shows a perspective view of the bottom surface of the foot frame 403.
  • the foot frame 403 is a flat plate structure made of a lightweight and highly rigid material such as ultra duralumin.
  • a concave portion (a) 403—a and a concave portion (b) 403_b are respectively provided one at each of the front and rear. I have.
  • an arrangement position 403-f of the ankle connecting component is set.
  • a concave portion (c) 403-c is formed substantially at the center of the bottom surface of the foot frame 403, and a convex portion (e) 4 0 3—e is formed.
  • FIG. 41 is a cross-sectional view of the foot frame 403 divided along the roll axis direction (that is, the front and rear direction of the fuselage).
  • each of the recesses 40 3-a, 40 3-b, and 40 3-c has the rigidity of the entire foot by reducing the thickness of the flat plate frame 400. This has the effect of adjusting the balance.
  • the legged robot 100 on a two-legged upright evening is compared to the walking direction, that is, the front-back direction (the direction around the pitch axis).
  • the range of ZMP in the lateral direction is narrow.
  • the rigidity around the roll axis can be enhanced by adopting the structure of the foot frame 403 as shown in FIGS. 39 to 41, and the mouth bust against lateral disturbance can be enhanced. Can be derived.
  • the ZMP position is located outside the fuselage in each phase of the single-leg support phase, the double-leg support phase, and the single-leg support phase. When moved, the stance is configured to bend inward.
  • FIG. 43 shows the appearance of the front side of the left foot according to another embodiment of the present invention.
  • FIG. 44 shows the appearance of the back side of the same left foot part.
  • FIG. 45 and FIG. 46 respectively show a side view (however, an outer side surface) and a bottom view of the same left foot part.
  • the foot is composed of a foot frame 503 and a cover 502 covering the upper surface thereof.
  • the cover 502 is formed of a hollow structure for weight reduction and the like.
  • an ankle connecting portion 501 connected to the corresponding movable leg unit by an ankle joint.
  • the foot frame 503 is formed of a flat plate structure in which at least one concave portion is formed substantially at the center of the upper surface and the lower surface, similarly to the above-described embodiment shown in FIGS.
  • the rigidity balance around the pitch axis and the roll axis is adjusted. In other words, the stiffness around the mouth axis is enhanced compared to the pitch axis (see Fig. 43), and the effect of significantly improving mouth bust against lateral disturbance is derived. ing.
  • the structures such as the foot frame 503, the cover 502, and the ankle connecting part 501 are manufactured using a lightweight and highly rigid material such as ultra-duralumin, for example. Id.).
  • the front and rear of the foot frame At the four corners on the left and right, the sole cushioning material (outside one) 504, the sole cushioning material (outside-front) 505, and the sole cushioning material (inner one rear) 506, Sole cushioning material (outside and outside) 507 is provided.
  • one sole cushion (508 in the middle) is arranged along the inner (arch side) side edge, and two sole cushions along the outer side edge of the sole. (Outside-medium) 509-a and 509_b are provided.
  • These cushioning members 504 to 509 can be formed using an elastic body having an elastic coefficient set to a predetermined value, such as urethane rubber.
  • the sole cushioning material (inside-medium) 508 disposed at approximately the center of the sole and the sole cushioning material disposed substantially at the center of the outside of the sole 509-a and 509-b are configured to be shorter than the other sole cushions 504 to 507 arranged at the four corners of the sole.
  • the height difference t may be, for example, about 0.5 mm.
  • the difference in height between the cushioning materials can give a non-linear component to the elastic properties of the sole as a whole (see Figs. 37 to 38).
  • the elastic modulus decreases because the sole is initially supported only by the four tall sole cushions 504 to 507. That is, the amount of deformation with respect to external force is large).
  • the sole cushioning material 504 to 507 at the four corners contracts, and the sole cushioning material (inside-medium) 508, the sole cushioning material (outside-medium) 509- After reaching the same level as that of a and 509_b, all the cushioning materials will be supported by 504 to 509, and the elastic modulus will be large (that is, the amount of deformation with respect to external force is Smaller).
  • the floor reaction force It is possible to make the deformation characteristics of the cushioning material non-linear with respect to loads such as.
  • the floor reaction force is small, such as when walking normally, the foot frame is supported only by the protrusions formed at the four corners of the sole.
  • the floor reaction force exceeds a predetermined value due to an impact at the time of landing, etc., all the cushioning materials 504 to 509 arranged on the soles will be supported on the entire surface, so the ground contact surface The receptive properties change, so that the impact force can be suitably dealt with.
  • the sole cushioning material With the non-linear deformation characteristics for the sole of the foot, the sole cushion starts to deform when it first comes into contact with the road surface, so it is sufficiently loose. An impact can be expected. Further, as the deformation further progresses, the amount of deformation per applied load decreases due to the non-linear characteristic, so that the sole does not become unstable due to excessive deformation.
  • the elastic coefficient is set to be larger by increasing the number of cushioning materials on the outside compared to the inside of the sole.
  • the deformation of the sole cushion material (outside) 509 and the sole cushion material (inner) 508 are non-linear during normal walking and when impact force is applied.
  • the amount of deformation in the non-linear region is larger in the sole cushioning material (inner) 508 than in the sole cushioning material (outer) 509.
  • the sole cushioning material (inside) 508 and the sole cushioning material (outer) 509 Due to the difference in the deformation characteristics between the sole cushioning material (inside) 508 and the sole cushioning material (outer) 509, when a high impact force is applied, the sole cushioning material (inner) 50 8 will sink deeper. As a result, the leg unit (not shown) mounted on the foot frame 503 is inclined toward the inside of the fuselage, that is, toward the center, and the ZMP position of the robot is landed on the inside of the fuselage, that is, the free leg. This has the effect of moving the stable region in the direction of doubling.
  • the ZMP position is the center of the ZMP stable region.
  • the amount of deformation or momentum of the robot occurs such that the ZMP position moves away from the center of the ZMP stable region.
  • a spatial distortion is generated such that the robot's deformation or momentum is generated such that the ZMP position is directed toward the center of the ZMP stable region. Therefore, as already described with reference to FIGS.
  • the floor reaction force in each phase of the later stage of supporting a single leg, the stage of supporting both legs, and the earlier stage of supporting a single leg is reduced.
  • the ZMP position moves to the inside of the fuselage
  • the stance legs bend inward
  • the ZMP position moves to the outside of the aircraft
  • the stance legs bend outward, but as the floor reaction force increases,
  • the Z MP position moves inside the aircraft
  • the stance leg is configured to bend inward when the stance is moved.
  • the non-linear deformation characteristics of the cushioning material can be obtained by laminating elastic bodies having different elastic coefficients besides providing the above-described uneven shape on the cross section of the cushioning material. Also, by changing the material such as the shape, area and elastic modulus of the bottom surface of the cushioning material used, the deformation characteristics between the inside of the foot (on the arch side) and the outside (on the opposite side of the arch) can be easily changed. Can be done.
  • the ZMP can be performed at a relatively slow sampling period. It should be well understood that the attitude stabilization control of the aircraft can be performed using the stability discrimination criterion.
  • the left and right leg units have a structure in which the rigidity is different between the outside and the inside, that is, a structure in which the rigidity (particularly, bending rigidity) of the outer frame is enhanced as compared with the inner frame of the leg. Is adopted.
  • leg unit With such a configuration of the leg unit, a spatial distortion such that the ZMP position is directed to the center of the ZMP stable region is formed in the ZMP behavior space, thereby improving posture stability and controllability (or This facilitates the attitude stabilization control).
  • the ZMP position of the robot is hard to move to the outside of the airframe, that is, the side opposite to the arch, so that the robot can easily fall (ie, using a mechanical structure). And naturally) can be avoided.
  • FIG. 47 shows left and right legs 60 of the legged mobile robot 100 according to the present embodiment.
  • the configuration of 4 is drawn even larger.
  • the leg portion 604 is composed of a thigh unit 611, a shin unit 612, and a foot unit 613.
  • a hip roll axis actuator for giving the joint freedom around the pitch axis and the roll axis with the upper part 61. 6 2 1 and 6 2 2 are provided.
  • a knee joint shaft actuating mechanism for giving a degree of freedom of freedom about the pitch axis between the thigh unit 611 and the lower shin unit 612 is provided. Two and three are arranged.
  • the inner side of the thigh unit 611 that is, the arch side is supported by a thigh inner side plate 631.
  • the outer side that is, the side opposite to the arch is supported by a thigh outer side plate 632.
  • the front of the thigh unit 611 is covered with a thigh front plate 635.
  • the thigh inner side plate 631 and the thigh outer side plate 632 are made of a material such as ultra-duralumin that can realize rigidity even with relatively light weight.
  • the lower end of the shin unit 612 is provided with an ankle joint pitch axis actuator in order to provide a degree of freedom of freedom about the pitch axis with the foot 613 below the shin unit.
  • an ankle joint pitch axis actuator in order to provide a degree of freedom of freedom about the pitch axis with the foot 613 below the shin unit.
  • the inside of the shin unit 6 12, that is, the arch side is supported by a shin inner side plate 6 33.
  • the outside, that is, the side opposite to the arch is supported by a shin outer side plate 634.
  • the front of the shin unit 612 is covered with a thigh front plate 636.
  • the shin inner side plate 633 and the shin outer side plate 634 are made of a material such as super duralumin which can realize rigidity even with relatively light weight.
  • Figures 48 to 50 show three views of the legs of the legged mobile robot 100, ie, the outside (opposite to the arch) side view, front view, and the inside (arch side) side view. are doing.
  • the thigh outer side plate 632 is configured to be thicker than the thigh inner side plate 631 (ie, , tl> t 2) o As a result, the thigh outer side plate 632 has higher rigidity (particularly, bending rigidity).
  • the shin outer side plate 634 is configured to be thicker than the shin inner side plate 633. As a result, the shin outer side plate 634 has higher rigidity (particularly bending rigidity).
  • the ZMP position in the ZMP behavior space of the robot leg is As the distance from the center deviates, a spatial distortion is generated such that a deformation amount or a momentum of the robot is generated such that the ZMP position is directed toward the center of the ZMP stable region. Therefore, as described above with reference to Figs. 14, 20 and 26, the ZMP position is set to the airframe in each phase of the single-leg support phase, the double-leg support phase, and the single-leg support phase.
  • the stance is configured to bend inward when moved outside.
  • the effect of improving the stability and controllability of the posture can be derived.
  • it is possible to derive the effect of facilitating the attitude stabilization control such as maintaining the attitude stability of the airframe with a relatively slow sampling period.
  • the rigidity of the outer frame By setting the rigidity of the outer frame larger than that of the inner frame of the legs 604, it is possible to reduce the amount of ZMP movement due to an unexpected disturbance on the outside of the fuselage, that is, on the opposite side of the arch.
  • the ZMP movement direction due to the disturbance can be guided to the inside of the fuselage, that is, the arch side, which can be easily handled by the operation of the legs 604.
  • the robustness of the entire robot 600 against disturbances can be improved in a leap period.
  • the leg stiffness on the arch side relatively low, even in a low-cost factory system having only a function of position control, it is possible to realize a standing-switching operation with small shock and vibration.
  • This is an image during dynamic walking It also facilitates processing, and as a result, makes it possible to construct a bipedal walking robot system or anthropomorphic robot system with autonomous functions at a very low cost. That is, in order to obtain the effect of making it difficult to move to the opposite side of the arch, it is preferable to set the rigidity of the outside of the leg portion 604 to be at least 1.2 times that of the inside. More preferably, the rigidity on the outer side of the leg portion 604 is set to be 1.5 to 2 times that of the inner side.
  • the difference in thickness was used, the gist of the present invention is not necessarily limited to this.
  • differences in shape (surface shape and cross-sectional shape) and differences in constituent materials (such as using materials with different ⁇ coefficient) ) May be used.
  • a stable unit space is formed by the configuration of the leg unit unique to the present invention, so that the ⁇ ⁇ ⁇ stability discrimination criterion can be performed at a relatively slow sampling period. It should be fully understood that the attitude stabilization control of the aircraft can be performed while using.
  • the control of the attitude and motion of the aircraft is performed by using the ZMP as a criterion for determining the attitude stability.
  • the ZMP behavior space of the aircraft is defined, and a ZMP stable position is obtained based on the definition of the ZMP behavior space, and the attitude of the aircraft is set so that the ZMP position always faces the center of the ZMP stable area. And control the behavior.
  • the ZMP position by sequentially redefining the ZMP behavior space according to the contact state with the road surface, the ZMP position always attempts to move to the center of the ZMP stable area. Is given to the ZMP behavior space, the attitude stabilization control of the aircraft can be maintained in an easy state.
  • FIG 51 schematically shows the functional configuration of the ZMP behavior space control system 500. ing.
  • This control system 500 is actually realized in a form in which the CPU 311 in the exercise control module 300 executes a predetermined control program.
  • the ZMP behavior space control system 500 is composed of a ZMP behavior space definition unit 501 and a stable point calculation unit 502.
  • the ZMP behavior space definition unit 501 defines a ZMP behavior space by inputting target values related to the attitude of the aircraft and state values of the actual aircraft.
  • a spatial distortion such that a deformation amount or a momentum of the airframe which causes the ZMP position to move to the center of the ZMP stable region is generated.
  • the target value is, for example, the rotation angle, angular velocity, angular acceleration, etc. of each joint actuate calculated from the planned trajectory.
  • the actual machine status values include joint rotation angles, angular velocities, and angular accelerations output from encoders arranged in each joint factory, other sensor inputs on the machine, and ZMP actual measurement values.
  • the ZMP behavior space is defined, for example, by the following equation.
  • the vector T is a target value obtained from the planned trajectory and the like.
  • the rows ⁇ , C, and D are matrices for spatial transformation.
  • the definition formula of the ZMP behavior space described above describes the concept of the ZMP behavior space as described below in section B in the simplest way, and the gist of the present invention is not limited to this. is not. Further, the above equation is configured by linearly adding the terms, but it is preferable to calculate in consideration of the interference term.
  • the ZMP behavior space definition unit 501 dynamically switches the definition of the ZMP behavior space according to the state of contact with the road surface. For example, in the process of a legged mobile robot, during a legged work, the left leg supports a single leg, the left leg touches both legs, the right leg supports a single leg, and the right leg touches both legs.
  • the phases are repeated in order, but the state of contact with the road surface changes dramatically for each operation phase. Therefore, by sequentially switching the definition of the ZMP behavior space, Even in the phase, the ZMP position should always generate spatial distortion that causes the amount of deformation or momentum of the airframe to move to the center of the ZMP stable region.
  • the stable point calculation unit 502 obtains the stable point by second-order differentiation of the above-described definition expression of the ZMP behavior space.
  • a command value for each joint function is generated based on the calculated stable point, and the aircraft operation can be servo-controlled.
  • spatial distortion such that the ZMP position moves to the center of the ZMP stable region is realized.
  • the ZMP behavior space of the robot can be arbitrarily defined by the description of the control program executed by the CPU 311 in the motion control module 300.
  • the maximum point and / or the minimum point in the ZMP behavior space may be arbitrarily specified.
  • the maximum point and / or the minimum point in the ZMP behavior space may be arbitrarily specified at an arbitrary time.
  • the maximum point and the Z or minimum point in the ZMP behavior space may be arbitrarily designated according to the support state of the legs such as the later stage of supporting a single leg, the period of supporting both legs, the earlier period of supporting a single leg.
  • the ZMP behavior space is defined by the ZMP position and the floor reaction force, but in addition to the ZMP position and the floor reaction force, a component of the external force propulsion direction with respect to the fuselage and its magnitude Can be added to define the ZMP behavior space.
  • the gist of the present invention is not necessarily limited to products called “robots”. That is, if it is a mechanical device that performs a motion that resembles human motion by using electric or magnetic action, it is a product belonging to another industrial field such as a toy.
  • the present invention can be applied to the same manner.
  • a ZMP behavior space in which a spatial distortion is given in consideration of the stability of the ZMP position is configured.
  • An excellent legged mobile robot and its control method can be provided.
  • the ZMP behavior space defined by the ZMP position and the floor reaction force received by the aircraft from the floor is defined, and the ZMP stable position is determined based on the definition of the ZMP behavior space.
  • the spatial distortion applied to the ZMP behavior space is dynamically controlled according to the contact condition with the road surface, and the deformation or momentum of the airframe that always attempts to move the ZMP position to the center of the ZMP stable area
  • the attitude stabilization control of the aircraft can be easily performed.
  • the movable leg of the legged mobile robot can reduce the impact force received from the road surface when touching the ground, and can recover or facilitate the posture stability of the lost body. It is possible to provide a foot structure of a foot in a unit.
  • an excellent legged mobile robot configured so that posture stability can be easily maintained without relying only on the operation control of the robot body. Can be provided.
  • an excellent legged mobile robot configured so that posture stability can be easily maintained by enhancing robustness against lateral disturbance. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Transportation (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Manipulator (AREA)

Description

脚式移動ロボット及びその制御方法、 脚式移動ロボットのための足部構造、 並び に脚式移動ロボヅトのための可動脚ュニヅト
[技術分野]
本発明は、少なくとも複数本の可動脚細を備えた脚式移動ロボットに係り、特に、 可動脚によって歩行やその他の脚式作業を行う脚式移動ロボットに関する。
さらに詳しくは、 本発明は、 いわゆる Z M P (Zero Moment Point) を安定度判 別規範として用いながら脚式作業時における機体の姿勢安定制御を行なう脚式移 動ロボットに係り、 特に 比較的遅いサンプリング周期で Z MP安定度判別規範 を用いながら機体の姿勢安定制御を行なう脚式移動ロボットに関する。
[背景技術] 電気的若しくは磁気的な作用を用いて人間の動作に似せた運動を行う機械装置 のことを 「ロボット」 という。 ロボットの語源は、 スラブ語の" R O B O T A (奴 隸機械)"に由来すると言われている。 わが国では、 ロボットが普及し始めたのは
1 9 6 0年代末からであるが、 その多くは、 工場における生産作業の自動ィ匕 '無 人化などを目的としたマニピュレータや搬送ロボットなどの産業用ロボット
(industrial robot) であった。
最近では、 ヒトゃサルなどの 2足直立歩行を行う動物の身体メカニズムや動作 を模した脚式移動ロボットに関する研究開発が進展し、 実用化への期待も高まつ てきている。 2足直立による脚式移動は、 クローラ式や、 4足又は 6足式などに 比し不安定で姿勢制御や歩行制御が難しくなるが、 不整地や障害物など作業経路 上に凹凸のある歩行面や、 階段や梯子の昇降など不連続な歩行面に対応すること ができるなど、 柔軟な移動作業を実現できるという点で優れている。
ヒ卜の生体メカニズムや動作を再現した脚式移動ロボヅトのことを、特に、「人 間形」、 若しくは「人間型」のロボヅト (humanoid robot) と呼ぶ。人間型ロボヅ トは、 例えば、 生活支援、 すなわち住環境その他の日常生活上のさまざまな場面 における人的活動の支援などを行うことができる。
人間の作業空間や居住空間のほとんどは、 2足直立歩行という人間が持つ身体 メカニズムや行動様式に合わせて形成されている。 言い換えれば、 人間の住空間 は、 車輪その他の駆動装置を移動手段とした現状の機械システムが移動するのに は多くの障壁が存在する。 したがって、 機械システムすなわちロボットがさまざ まな人的作業を代行し、 さらに人間の住空間に溁く浸透していくためには、 ロボ ットの移動可能範囲が人間のそれとほぼ同じであることが好ましい。 これが、 脚 式移動ロボットの実用化が大いに期待されている所以でもある。 2足直立歩行を 行うことは、 ロボットが人間の住環境との親和性を高める上で必須であると言え る。
2足の脚式移動ロボットに関する姿勢制御や安定歩行に関する技術は既に数多 提案されている。 ここで言う安定な「歩行」 とは、 「転倒することなく、脚を使つ て移動すること」 と定義することができる。 ロボットの姿勢安定制御は、 ロボッ トの転倒を回避する上で非常に重要である。 何故ならば、 転倒は、 ロボットが実 行中の作業を中断することを意味し、 且つ、 転倒状態から起き上がって作業を再 開するために相当の労力や時間が払われるからである。 また、 何よりも、 転倒に よって、 ロボット本体自体、 あるいは転倒するロボットと衝突する相手側の物体 にも、 致命的な損傷を与えてしまう危険があるからである。 したがって、 脚式移 動ロボットの設計 '開発において、姿勢安定制御や歩行時の転倒防止は最も重要な 課題の 1つである。
脚式移動ロボットの姿勢安定制御や歩行時の転倒防止に関する提案の多くは、 Z M P (Zero Moment Point) を歩行の安定度判別の規範として用いている。 Z M Pによる安定度判別規範は、 歩行系から路面には重力と慣性力、 並びにこれらの モーメントが路面から歩行系への反作用としての床反力並びに床反力モーメント とバランスするという 「ダランベールの原理」 に基づく。 力学的推論の帰結とし て、 足底接地点と路面の形成する支持多角形 (すなわち Z MP安定領域) の辺上 あるいはその内側にピッチ軸及びロール軸モーメントがゼロとなる点、 すなわち 「Z MP (Zero Moment Point)」 が存在する。
要約すれば、 Z MP規範とは、 「歩行のあらゆる瞬間において、 Z MPが足部と 路面とが形成する支持多角形の内側に存在し、 且つ、 ロボットが路面に押す方向 の力が作用すれば、 ロボットが転倒 (機体が回転運動) することなく安定に歩行 できる」 とするものである。
Z MP規範に基づく 2足歩行パターン生成によれば、 足底着地点をあらかじめ 設定することができ、 路面形状に応じた足先の運動学的拘束条件を考慮し易いな どの利点がある。 また、 Z MPを安定度判別規範とすることは、 力ではなく軌道 を運動制御上の目標値として扱うことを意味するので、 技術的に実現可能性が高 まる。
なお、 Z MPの概念並びに Z MPを歩行ロボットの安定度判別規範に適用する 点については、 Miomir Vukobratovic著,, LEGGED LOCOMOTION ROBOTS" (加藤一郎 外著『歩行ロボットと人工の足』 (日刊工業新聞社)) に記載されている。
従来、 Z MPを安定度判別規範とするロボットの姿勢安定制御や歩行制御は、 Z M P位置が Z M P安定領域から逸脱したら安定領域に再び戻るように補正制御 をかけるというのが一般的である。 言い換えれば、 通常の動作期間中、 Z MPは 自由に移動することができるが、 その移動量がある領域を越えたときにはじめて 脚部などの各関節駆動を制御して、 事後的に Z MP位置を制御する。
例えば、 特開平 5— 3 0 5 5 7 9号公報に記載の脚式移動ロボットは、 Z MP がゼロとなる床面上の点を目標値に一致させるようにして安定歩行を行うように なっている。
また、 特開平 5— 3 0 5 5 8 1号公報に記載の脚式移動ロボットは、 Z MPが 支持多面体 (多角形) 内部、 又は、 着地、 離床時に Z MPが支持多角形の端部か ら少なくとも所定の余裕を有する位置にあるように構成した。 この場合、 外乱な どを受けても所定距離だけ Z MPの余裕があり、 歩行時の機体の安定性が向上す る。
また、 特開平 5— 3 0 5 5 8 3号公報には、 脚式移動ロボットの歩き速度を Z MP目標位置によって制御する点について開示している。 すなわち、 あらかじめ 設定された歩行パターン ·データを用い、 Z MPを目標位置に一致させるように 脚部関節を駆動するとともに、 上体の傾斜を検出してその検出値に応じて設定さ れた歩行パターン ·データの吐き出し速度を変更する。 未知の凹凸を踏んでロボ ヅトが例えば前傾するときは、 吐き出し速度を速めることで姿勢を回復すること ができる。 また Z MPを目標位置に制御するので、 両脚支持期で吐き出し速度を 変更しても支障がない。
また、 特閧平 5— 3 0 5 5 8 5号公報には、 脚式移動ロボットの着地位置を Z MP目標位置によって制御する点について開示している。 すなわち、 同公報に記 載の脚式移動ロボットは、 Z MP目標位置と実測位置とのずれを検出し、 それを 解消するように脚部の一方又は双方を駆動するか、 又は Z MP目標位置まわりに モーメントを検出してそれが零になるように脚部を駆動することで、 安定歩行を 実現する。
また、 特開平 5— 3 0 5 5 8 6号公報には、 脚式移動ロボットの傾斜姿勢を Z MP目標位置によって制御する点について開示している。 すなわち、 Z MP目標 位置まわりのモーメントを検出し、 モーメントが生じたときは、 それが零になる ように脚部を駆動することで安定歩行を行う。
上述したロボッ卜の姿勢安定度制御は、 足底接地点と路面の形成する支持多角 形すなわち Z M P安定領域の辺上あるいはその内側にピッチ及びロール軸モ一メ ントがゼロとなる点を探索することを基本動作とする。 また、 Z MP位置が Z M P安定領域から逸脱したら安定領域に再び戻るように補正制御をかけるというも のである。
しかしながら、 Z MP規範は、 ロボットの機体及び路面が剛体に限りなく近い (すなわち、 どのような力やモ一メントが作用しても変形したり動いたりするこ とはない)と仮定できることを前提として適用することができる規範に過ぎない。 言い換えれば、 ロボットや路面が剛体に限りなく近いと仮定できない場合、 例え ば、 ロボットが高速に動くことで Z M Pに作用している (並進) 力や、 立脚切替 え時の衝撃力が大きくなり、 ロボット自身に変形や運動が発生してしまう場合に は、 印加される力に対するロボットの変形量を適切に管理しないと、 Z M Pが存 在している空間自体が不安定になってしまい、 仮にロボットの姿勢が Z M P規範 を満たしても (Z MPが支持多角形の内側に存在し、 且つ、 ロボットが路面に押 す方向の力を作用させている)、不安定な Z MPを安定させるために、ロボヅトの 姿勢が不安定になってしまう。特に、 ロボヅ トの重心が低くなるほど機体に高速 な回転運動が発生して、 安定歩行の実現が困難になる。
図 1及び図 2には、 ロボットゃ路面が限りなく剛体に近い理想的なモデルの場 合と、 現実には剛体ではない場合における Z MP位置とロボヅトの変形量 (若し くは運動量) との関係 (すなわちロボットが持つ Z MP挙動空間) をそれそれ示 している。
ロボットゃ路面が限りなく剛体に近い理想的な場合には、 その Z MP挙動空間 においては、 図 1に示すように、 算出された Z MP安定領域内のいずれの Z MP 位置においてもロボヅトに変形量 (若しくは運動量) は発生しない。 言い換えれ ば、 いずれの Z MP位置においても、 ロボットは機体の姿勢安定性を失うことは ない。
しかしながら、 実システムにおける Z MP挙動空間では、 ロボットや路面は剛 体ではなく、 算出された Z MP安定領域内であっても、 Z MP位置によっては口 ボットに変形量 (若しくは運動量) が発生してしまう。 図 2に示す例では、 Z M P安定領域内の略中央付近においては、 ロボットに変形量 (若しくは運動量) は 発生しないので、 そのままの状態ではロボットは機体の姿勢安定性を失うことは ない。 しかしながら、 Z MP位置が Z MP安定領域の中央から離れるにつれて、 ロボットの変形量 (若しくは運動量) は、 負方向に増大していく。
図 1並びに図 2に示すような Z MP挙動空間は、 Z MP位置と機体が床面から 受ける床反力で定義される。 この Z M P挙動空間におけるロボットの変形量 (若 しくは運動量) の正負は、 負が Z MPを安定領域の縁に移動させようとする空間 歪みを生じさせる方向となり、 正が Z MPを安定領域の中心に移動させようとす る空間歪みを生じさせる方向となる。 したがって、 図 2に示したように、 Z MP 位置が Z MP安定領域の中央から離れるにつれてロボットの変形量 (若しくは運 動量) が負方向に増大していくことは、 Z MP安定領域内でありながら、 ロボヅ トは Z MP安定領域の縁に向かうように変形していき、 やがては機体が転倒して しまうことになる。
このため、 計算上はロボヅトの Z M P位置は Z MP安定領域内に居ながらも、 Z M P安定領域の中心に戻すように機体の姿勢制御を常に実行していなければな らない。 このように Z MP位置を絶え間なく中心に戻すような制御方式の代表例 は 「倒立振子」 である。 しかしながら、 この場合、 高速 (すなわち、 サンプリン グ周期が極めて短い) な制御を行なわなければならず、 姿勢制御のための計算機 負荷が増大してしまう。
つまり、 Z M P安定度判別規範は、 ロボットや路面が剛体であるという、 現実 には満たすことが困難な前提条件を含む理想的な環境下での歩行の実現を目標と した安定度判別規範に過ぎない。 したがって、 人間の住環境で安定した動歩行を 自律的に継続するためには、 Z M Pの存在空間の安定性を考慮したロボット ·シ ステム構成方法を考案することが肝要である。
また、 脚式移動ロボットにおける脚式作業時の安定性 ·制御性は、 歩容すなわ ち四肢の動作パターンだけでなく、 歩行など脚式作業を行う地面、 路面の状況の 影響を受けている。 何故ならば、 脚が路面に接地している限り、 路面から常に反 力を受けているからである。 また、 路面からの反力は、 特に、 歩行などの脚式作 業中に遊脚が着地したときに大きな衝撃力となり、 場合によっては、 それが外乱 となってロボヅトの姿勢を不安定にする。
言い換えれば、 2足歩行などの脚式移動ロボットが姿勢を崩すことなく歩行な どの脚式作業を行うためには、 着地するときにも安定した姿勢のまま路面によく 馴染み、 接地時に路面から受ける反力を可能な限り低減させることが好ましい。 また、 路面と接地する足平の足底の構造は、 ロボットとその接地面との良好な関 係を成立させる上で極めて重要である。
例えば、 着地時に地面から受ける衝撃を緩和するために、 足部の足裏面に弾性 体を装着することが当業界において広く知られている。
着地時に地面から反力を受けたとき、 ロボヅトの機体には、 例えばロール軸回 り、 ピッチ軸回りなどさまざまな外乱が印加される。 前進歩行を前提として構成 される脚式ロボットの場合、 前後方向の移動自由度が豊富であり、 進行方向すな わちピッチ軸回りの外乱に対しては比較的容易に対処することができる。 他方、 機体を横方向に揺るがすように作用するロール軸回りの外乱に対しては口バスト 性が低い。 しかしながら、 路面からの衝撃力を、 足裏の弾性体によって一様に緩 和するだけでは、 各軸回りの衝撃力を単に吸収するような作用しか得られず、 路 面に接地時やその他の外乱などにより失われた機体の姿勢安定性を回復すること はできない。 すなわち、 接地時の衝撃を緩和しつつも、 結局は機体が転倒してし まうという事態を招来しかねない。 このような場合、 Z MP位置が Z MP安定領 域から逸脱してはじめて Z M Pの補正制御をかけるという事後的な制御では限界 がある。
また、 Z MPの探索とは要するに、 2足歩行の機体において、 Z MP軌道が左 右の両足の間 (すなわちそれそれの足の内側) を通過することを意味する。 さら に言えば、 機体が前進運動を行った結果、 Z MP軌道が一方の足の外側に移動し てしまうと、 他方の足を一方の足のさらに外側に向けて踏み込まなければ姿勢安 定性を維持することはできない。 これは、 他方の足を一方の足と交差するような 脚部の動作であり、 左右の脚部どうしが互いに干渉し合うという物理的 ·機構学 的に実現が極めて困難な動作である。
また、 2足の脚式移動ロボットは、 一般に、 ヒトゃサルなどの生体メカニズム に基づいて、 前進運動を基調としてデザインされていることから、 前後方向の外 乱に対する口バスト性は優れているものの、 横方向の外乱に対する口バスト性は 比較的低い。
しかしながら、 脚式作業時における姿勢安定性を、 機体の動作制御のみを以っ て実現することは、 コントローラの演算速度や制御対象の応答速度、 その他の問 題のため未だ困難である。 すなわち、 Z MP位置が Z MP安定領域から逸脱して はじめて Z M Pの補正制御をかけるという事後的な制御では限界がある。
[発明の開示] 本発明の目的は、 いわゆる Z MP (Zero Moment Point) を安定度判別規範とし て用いながら脚式作業時における機体の姿勢安定制御を好適に行なうことができ る、 優れた脚式移動ロボット及びその制御方法を提供することにある。
本発明のさらなる目的は、 比較的遅いサンプリング周期で Z M P安定度判別規 範を用いながら機体の姿勢安定制御を好適に行なうことができる、 優れた脚式移 動ロボヅト及びその制御方法を提供することにある。
本発明のさらなる目的は、 人間の住環境で安定した動歩行を自律的に継続する ような Z MP挙動空間が形成された、 優れた脚式移動ロボット及びその制御方法 を提供することにある。
本発明のさらなる目的は、接地時に路面から受ける衝撃力を緩和するとともに、 失いかけた機体の姿勢安定性を回復する、 若しくは回復を容易にすることができ る、 脚式移動ロボットの可動脚ュニヅトにおける足部の足平構造を提供すること にある。
本発明のさらなる目的は、 ロボヅトの機体の動作制御のみに頼ることなく姿勢 安定性を容易に維持することができるように構成された、 優れた脚式移動ロボッ トを提供することにある。
本発明のさらなる目的は、 横方向の外乱に対する口バスト性を強化することで 姿勢安定性を容易に維持することができるように構成された、 優れた脚式移動口 ボットを提供することにある。
本発明は、 上言 3課題を参酌してなされたものであり、 その第 1の側面は、 2以 上の可動脚を備えた脚式移動ロボット又はその制御方法であって、
機体のピヅチ軸モ一メント及び口一ル軸モーメントがゼロとなる Z M Pの位置 と機体が床面から受ける床反力で定義される Z MP挙動空間を制御する Z MP挙 動空間制御手段又はステツプを備え、
前記 Z M P挙動空間制御手段又はステツプはあらかじめ Z M P挙動空間に所定 の歪み又は所定の特性を与えている、
ことを特徴とする脚式移動ロボット又はその制御方法である。
[背景技術] の欄でも既に説明したように Z MP安定度判別規範は、 ロボット の機体及び路面が剛体に限りなく近いと仮定できる場合のみ適用することができ る規範に過ぎない。 すなわち、 ロボットや路面が剛体に限りなく近いと仮定でき ないので、 印加される力に対するロボヅトの変形量を適切に且つ比較的短いサン プリング周期で管理しないと、 Z MPが存在している空間自体が不安定になって しまい、 仮にロボットの姿勢が Z MP安定度判別規範を満たしても、 不安定な Z MPを安定させるために、 ロボットの姿勢が不安定になってしまう。 そこで、 本発明の第 1の側面に係る脚式移動ロボヅ ト又はその制御方法では、 Z M P (Zero Moment Point) を姿勢の安定度判別の規範として採用するが、 ロボ ットの機体の変形量や運動量を考慮して安定した Z M Pの存在空間を持つ口ボヅ ト ·システム構成を採用する。
すなわち、 前記 Z MP挙動空間制御手段又はステップは、 Z MP位置が前記可 動脚の足底接地点と路面とが形成する支持多角形からなる Z M P安定領域の中央 から Z MP位置が外れるにつれて Z M P位置が前記 Z M P安定領域の中央に移動 させようとする機体の変形量若しくは運動量が生じるように Z MP挙動空間にあ らかじめ歪みを与えている。 これによつて、 機体の姿勢安定性を維持し易い構造 となる。 あるいは、 前記 Z MP挙動空間制御手段又はステップは、 前記床反力に 応じて前記口ボヅトの変形量又は運動量の大きさ若しくは方向が変化するような 所定の特性を与えるようにしてもよい。
本発明の第 1の側面に係る脚式移動ロボヅト又はその制御方法では、 Z MP位 置の移動量が所定の領域を越えてはじめて事後的な補正制御を開始するのではな く、 あらかじめロボットの姿勢が安定するような空間歪みや所定の特性が与えら れているので、 機体の制御機構が充分な応答速度を持たなくても、 外乱などに対 して高い口バスト性を得ることができる。
ここで、 前記 Z MP挙動空間制御手段又はステップは、 前記 Z MP安定領域の 略中心において機体の変形量又は運動量の極小点を設定するようにしてもよい。 このような場合、常に姿勢が安定する方向に機体の変形量や運動量が生ずるので、 姿勢安定性を保つことが容易となる。 また、 比較的低いサンプリング周期であつ ても、 充分な姿勢安定制御を行うことができる。
また、 前記 Z MP挙動空間制御手段又はステップは、 前記 Z MP安定領域の略 中心において機体の変形量又は運動量の極小点を設定するとともに、 前記 Z MP 安定領域の境界近くで機体の変形量又は運動量の極大点を設定するようにしても よい。 このような場合、 極大点に挟まれた領域では、 Z MP位置が常に Z MP安 定領域の中心に向かうようにロボットの機体の変形量又は運動量が生じるので、 姿勢安定性を保つことが容易となり、 また、 比較的低いサンプリング周期であつ ても充分な姿勢安定制御を行うことができる。 これに対し、 極大点を越えた時点 からは、 Z MP位置が Z MP安定領域の外側に向かうような変形量又は運動量が 生じるので、 ロボヅトは「姿勢安定モード」 から 「転倒モード」 に転じる。 また、 前記 Z MP挙動空間制御手段又はステップは、 Z MP位置が機体の外側 に向かう方向を正方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央 に向かわせるようなロボヅトの変形量若しくは運動量を正方向とする第 2の座標 軸からなる Z M P挙動空間において、 単脚支持後期の立脚に対して、 ロボットの 変形量若しくは運動量が負領域において極大値を持ち、 且つ、 床反力の増大とと もに該変形量若しくは運動量の極大値の Z M P位置を正方向に移動させるような 空間歪みを与えるようにしてもよい。
このような場合、 単脚支持後期の立脚においては、 Z MP位置の Y方向への移 動量にほぼ線形的に曲がり量が減少する。 床反力が小さいときには、 Z MP位置 が機体の内側に移動したときには該立脚は内側に向かって曲がるとともに、 Z M P位置が機体の外側に移動したときには該立脚は外側に向かって曲がるが、 床反 力が大きくなるにつれて、 Z MP位置が機体の外側に移動しても該立脚は外側に は曲がり難くなる。
なお、 ロボットの総重量を 1 0 0としたときに、 床反力が 1 0 0以上となると きに床反力が「大きい」 と言い、 床反力が 2 0〜1 0 0程度のときには床反力が 「中」 と言い、 また、 床反力が 2 0以下となるときに床反力が 「小さい」 と言う (以下同様)。但し、 これらはだいたいの目安であって、 ロボットの機 造、重 量によって変更しても構わない。特に、 「床反力が小さい」ということを定性的に 表現すると、 両足支持期に、 一方の足でほぼ全身を支えている際の他方の足に加 わっている程度の床反力を言う。
また、 前記 Z MP挙動空間制御手段又はステップは、 Z MP位置が機体の前方 に向かう方向を正方向とする第 1の座標軸と Z M P位置が Z M P安定領域の中央 に向かわせるようなロボヅトの変形量若しくは運動量を正方向とする第 2の座標 軸からなる Z MP挙動空間において、 単脚支持後期の立脚に対して、 ロボットの 変形量若しくは運動量が負領域において Z MP安定領域の略中央付近において極 大値を持ち、 且つ、 床反力の増大とともに該変形量若しくは運動量の変化が小さ くなるような空間歪みを与えるようにしてもよい。 このような場合、 単脚支持後期の立脚においては、 Z MP位置の X方向への移 動量にほぼ線形的に曲がり量が減少する。床反力が小さいときには、 Z MP位置 が機体の前方に移動したときには該立脚は前方に向かって曲がるとともに、 Z M P位置が機体の後方に移動したときには該立脚は後方に向かって曲がるが、 床反 力が大きくなるにつれて、 Z MP位置が前方又は後方のいずれに移動しても該立 脚は曲がり難くなる。
また、 前記 Z MP挙動空間制御手段又はステップは、 単脚支持後期の立脚に対 して、 進行方向と直交方向において、 床反力が小さいときには Z MP位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外 れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力 が大きくなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心に向かうような口ボヅトの変形量若しくは運動 量が生じるような空間歪みを与えるようにしてもよい。また、進行方向において、 床反力が小さいときには、 Z M P位置が Z M P安定領域の中心から外れるにつれ て Z MP位置が Z MP安定領域の中心から外れる方向に向かうようなロボットの 変形量若しくは運動量が発生するが、 床反力が大きくなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心に 向かうような口ボットの変形量若しくは運動量が発生するような空間歪みを与え るようにしてもよい。
このような場合、 床反力が小さいときには、 Z MP位置が機体の内側に移動し たときには単脚支持後期の立脚は内側に向かって曲がるとともに Z MP位置が機 体の外側に移動したときには該立脚は外側に向かって曲がるが、 床反力が大きく なるに従い、 逆に、 Z MP位置が機体の内側に移動したときには該立脚は外側に 向かって曲がるとともに Z MP位置が機体の外側に移動したときには該立脚は内 側に向かって曲がるように構成される。 また、 床反力が小さいときには、 Z MP 位置が機体の前方に移動したときには該立脚は前方に向かって曲がるとともに Z M P位置が機体の後方に移動したときには該立脚は後方に向かって曲がるが、 床 反力が大きくなるに従い、 逆に、 Z MP位置が機体の前方に移動したときには該 立脚は後方に向かって曲がるとともに Z MP位置が機体の後方に移動したときに は該立脚は前方に向かって曲がるように構成される。
また、 前記 Z MP挙動空間制御手段又はステップは、 単脚支持後期の体幹部に 対して、 進行方向と直交する方向において、 床反力が小さいときには Z MP位置 が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心 から外れる方向に向かうようなロボヅトの変形量若しくは運動量が発生するが、 床反力が大きくなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつ れて Z M P位置が Z M P安定領域の中心に向かうようなロボットの変形量若しく は運動量が生じるような空間歪みを与えるようにしてもよい。 また、 進行方向に おいて、 床反力が小さいときには、 Z MP位置が Z MP安定領域の中心から外れ るにつれて Z M P位置が Z MP安定領域の中心から外れる方向に向かうような口 ボットの変形量若しくは運動量が発生するが、 床反力が大きくなるに従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域 の中心に向かうようなロボヅトの変形量若しくは運動量が発生するような空間歪 みを与えるようにしてもよい。
このような場合、 床反力が小さいときには、 Z MP位置が機体の内側に移動し たときには # ^部は内側に向かって曲がるとともに Z MP位置が機体の外側に移 動したときには 部は外側に向かって曲がるが、 床反力が大きくなるに従い、 逆に、 Z MP位置が機体の内側に移動したときには 部は外側に向かって曲が るとともに Z M P位置が機体の外側に移動したときには体幹部は内側に向かって 曲がるように構成される。 また、 床反力が小さいときには、 Z MP位置が機体の 前方に移動したときには体幹部は前方に向かって曲がるとともに Z MP位置が機 体の後方に移動したときには 部は後方に向かって曲がるが、 床反力が大きく なるに従い、 逆に、 Z MP位置が機体の前方に移動したときには 部は後方に 向かって曲がるとともに Z MP位置が機体の後方に移動したときにはィ *|辛部は前 方に向かって曲がるように構成される。
また、 前記 Z MP挙動空間制御手段又はステップは、 Z MP位置が機体の外側 に向かう方向を正方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央 に向かわせるようなロボットの変形量若しくは運動量を正方向とする第 2の座標 軸からなる Z M P挙動空間において、 両脚支持期の立脚に対して、 ロボットの変 形量若しくは運動量が負領域において Z MP安定領域の略中央付近において極大 値を持ち、 且つ、 床反力の増大とともに該変形量若しくは運動量の変化が小さく なるような空間歪みを与えるようにしてもよい。
このような場合、 Z MP位置の機体外側への移動量にほぼ線形的に立脚の曲が り量が減少する。床反力が小さいときには、 Z MP位置が機体の内側に移動した ときには該立脚は内側に向かって曲がるとともに、 Z MP位置が機体の外側に移 動したときには該立脚は外側に向かって曲がるが、床反力が大きくなるにつれて、 Z M P位置が内側又は外側のいずれに移動しても該立脚は曲がり難くなるように 構成されている。 両脚支持期では 2本の脚で支持するため 1本の脚で支持する単 脚支持期に対し脚の曲がり量は小さい。
また、 前記 Z MP挙動空間制御手段又はステップは、 Z MP位置が機体の前方 に向かう方向を正方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央 に向かわせるようなロボットの変形量若しくは運動量を正方向とする第 2の座標 軸からなる Z MP挙動空間において、 両脚支持期の立脚に対して、 ロボットの変 形量若しくは運動量が負領域において Z MP安定領域の略中央付近において極大 値を持ち、 且つ、 床反力の増大とともに該変形量若しくは運動量の変化が小さく なるような空間歪みを与えるようにしてもよい。
このような場合、 Z MP位置の機体前方への移動量にほぼ線形的に立脚の曲が り量が減少する。 床反力が小さいときには、 Z MP位置が機体の前方に移動した ときには該立脚は前方に向かって曲がるとともに、 Z MP位置が機体の後方に移 動したときには該立脚は後方に向かって曲がるが、床反力が大きくなるにつれて、 Z M P位置が前方又は後方のいずれに移動しても該立脚は曲がり難くなるように 構成されている。 両脚支持期では 2本の脚で支持するため 1本の脚で支持する単 脚支持期に対し脚の曲がり量は小さい。
また、 前記 Z MP挙動空間制御手段又はステップは、 両脚支持期の立脚に対し て、 進行方向と直交する方向において、 床反力が小さいときには、 Z MP位置が Z M P安定領域の中心から外れるにつれて Z MP位置が Z MP安定領域の中心か ら外れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床 反力が大きくなるに従い、 Z M P位置が Z M P安定領域の中心から外れるにつれ て Z M P位置が Z M P安定領域の中心に向かうようなロボットの変形量若しくは 運動量が発生するような空間歪みを与えるようにしてもよい。 また、 進行方向に おいて、 床反力が小さいときには、 Z MP位置が Z MP安定領域の中心から外れ るにつれて Z M P位置が Z M P安定領域の中心から外れる方向に向かうような口 ボットの変形量若しくは運動量が発生するが、 床反力が大きくなるに従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域 の中心に向かうようなロボットの変形量若しくは運動量が発生するような空間歪 みを与えるようにしてもよい。
このような場合、 床反力が小さいときには、 Z MP位置が機体の内側に移動し たときには両脚支持期の立脚は内側に向かって曲がるとともに Z MP位置が機体 の外側に移動したときには該立脚は外側に向かって曲がるが、 床反力が大きくな るに従い、 逆に、 Z MP位置が機体の内側に移動したときには該立脚は外側に向 かって曲がるとともに Z MP位置が機体の外側に移動したときには該立脚は内側 に向かって曲がるように構成される。 また、 床反力が小さいときには、 Z MP位 置が機体の前方に移動したときには該立脚は前方に向かって曲がるとともに Z M P位置が機体の後方に移動したときには該立脚は後方に向かって曲がるが、 床反 力が大きくなるに従い、 逆に、 Z MP位置が機体の前方に移動したときには該立 脚は後方に向かって曲がるとともに Z MP位置が機体の後方に移動したときには 該立脚は前方に向かって曲がるように構成される。
また、 前記 Z MP挙動空間制御手段又はステップは、 両脚支持期の体幹部に対 して、 進行方向と直交する方向において、 床反力が小さいときには、 Z MP位置 が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心 から外れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつ れて Z MP位置が Z MP安定領域の中心に向かうようなロボヅトの変形量若しく は運動量が発生するような空間歪みを与えるようにしてもよい。 また、 進行方向 において、 床反力が小さいときには、 Z MP位置が Z MP安定領域の中心から外 れるにつれて Z M P位置が Z M P安定領域の中心から外れる方向に向かうような ロボットの変形量若しくは運動量が発生するが、 床反力が大きくなるに従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領 域の中心に向かうようなロボットの変形量若しくは運動量が発生するような空間 歪みを与えるようにしてもよい。
このような場合、 床反力が小さいときには、 Z MP位置が機体の内側に移動し たときにはィ *|伞部は内側に向かって曲がるとともに Z MP位置が機体の外側に移 動したときには^部は外側に向かって曲がるが、 床反力が大きくなるに従い、 逆に、 Z MP位置が機体の内側に移動したときには 部は外側に向かって曲が るとともに Z MP位置が機体の外側に移動したときには体幹部は内側に向かって 曲がるように構成される。 また、 床反力が小さいときには、 Z MP位置が機体の 前方に移動したときには体幹部は前方に向かって曲がるとともに Z MP位置が機 体の後方に移動したときには 部は後方に向かって曲がるが、 床反力が大きく なるに従い、 逆に、 Z MP位置が機体の前方に移動したときには 部は後方に 向かって曲がるとともに Z MP位置が機体の後方に移動したときにはィ* 部は前 方に向かって曲がるように構成される。
また、 前記 Z MP挙動空間制御手段又はステヅプは、 Z MP位置が機体の外側 に向かう方向を負方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央 に向かわせるようなロボットの変形量若しくは運動量を正方向とする第 2の座標 軸からなる Z MP挙動空間において、 単脚支持前期の立脚に対して、 ロボヅトの 変形量若しくは運動量が負領域において極大値を持ち、 且つ、 床反力の増大とと もに該変形量若しくは運動量の極大値の Z M P位置を正方向に移動させるような 空間歪みを与えるようにしてもよい。
このような場合、 単脚支持前期の立脚においては、 Z MP位置の Y方向への移 動量にほぼ線形的に曲がり量が減少する。床反力が小さいときには、 Z MP位置 が機体の内側に移動したときには該立脚は内側に向かって曲がるとともに、 Z M P位置が機体の外側に移動したときには該立脚は外側に向かって曲がるが、 床反 力が大きくなるにつれて、 Z MP位置が機体の外側に移動しても該立脚は外側に は曲がり難くなる。
また、 前記 Z M P挙動空間制御手段又はステップは、 Z MP位置が機体の前方 に向かう方向を正方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央 に向かわせるようなロボットの変形量若しくは運動量を正方向とする第 2の座標 軸からなる Z MP挙動空間において、 単脚支持前期の立脚に対して、 ロボットの 変形量若しくは運動量が負領域において Z MP安定領域の略中央付近において極 大値を持ち、 且つ、 床反力の増大とともに該変形量若しくは運動量の変ィ匕が小さ くなるような空間歪みを与えるようにしてもよい。
このような場合、 単脚支持前期の立脚においては、 Z MP位置の X方向への移 動量にほぼ線形的に曲がり量が減少する。 床反力が小さいときには、 Z MP位置 が機体の前方に移動したときには該立脚は前方に向かって曲がるとともに、 Z M P位置が機体の後方に移動したときには該立脚は後方に向かって曲がるが、 床反 力が大きくなるにつれて、 Z MP位置が前方又は後方のいずれに移動しても該立 脚は曲がり難くなる。
また、 前記 Z MP挙動空間制御手段又はステップは、 単脚支持前期の立脚に対 して、 進行方向と直交する方向において、 床反力が小さいときには Z MP位置が Z MP安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心か ら外れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床 反力が大きくなるに従い、 Z M P位置が Z M P安定領域の中心から外れるにつれ て Z M P位置が Z M P安定領域の中心に向かうようなロボットの変形量若しくは 運動量が生じるような空間歪みを与えるようにしてもよい。 また、 進行方向にお いて、 床反力が小さいときには、 Z MP位置が Z MP安定領域の中心から外れる につれて Z M P位置が Z M P安定領域の中心から外れる方向に向かうようなロボ ヅトの変形量若しくは運動量が発生するが、 床反力が大きくなるに従い、 Z MP 位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の 中心に向かうようなロボットの変形量若しくは運動量が発生するような空間歪み を与えるようにしてもよい。
このような場合、 床反力が小さいときには、 Z MP位置が機体の外側に移動し たときには単脚支持前期の立脚は外側に向かって曲がるとともに Z MP位置が機 体の内側に移動したときには該立脚は内側に向かって曲がるが、 床反力が大きく なるに従い、 逆に、 Z MP位置が機体の外側に移動したときには該立脚は内側に 向かって曲がるとともに Z MP位置が機体の内側に移動したときには該立脚は外 側に向かって曲がるように構成される。 また、 床反力が小さいときには、 Z MP 位置が機体の前方に移動したときには該立脚は前方に向かって曲がるとともに Z M P位置が機体の後方に移動したときには該立脚は後方に向かって曲がるが、 床 反力が大きくなるに従い、 逆に、 Z M P位置が機体の前方に移動したときには該 立脚は後方に向かって曲がるとともに Z M P位置が機体の後方に移動したときに は該立脚は前方に向かって曲がるように構成される。
また、 前記 Z MP挙動空間制御手段又はステップは、 単脚支持前期の体幹部に 対して、 進行方向と直交する方向において、 床反力が小さいときには Z MP位置 が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心 から外れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつ れて Z M P位置が Z M P安定領域の中心に向かうようなロボットの変形量若しく は運動量が生じるような空間歪みを与えるようにしてもよい。 また、 進行方向に おいて、 床反力が小さいときには、 Z MP位置が Z MP安定領域の中心から外れ るにつれて Z M P位置が Z M P安定領域の中心から外れる方向に向かうような口 ボヅトの変形量若しくは運動量が発生するが、 床反力が大きくなるに従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域 の中心に向かうようなロボットの変形量若しくは運動量が発生するような空間歪 みを与えるようにしてもよい。
このような場合、 床反力が小さいときには、 Z MP位置が機体の外側に移動し たときには # ^部は外側に向かって曲がるとともに Z MP位置が機体の内側に移 動したときには!^部は内側に向かって曲がるが、 床反力が大きくなるに従い、 逆に、 Z MP位置が機体の外側に移動したときには 部は内側に向かって曲が るとともに Z M P位置が機体の内側に移動したときには体幹部は外側に向かって 曲がるように構成される。 また、 床反力が小さいときには、 Z MP位置が機体の 前方に移動したときには体幹部は前方に向かって曲がるとともに Z M P位置が機 体の後方に移動したときには体幹部は後方に向かって曲がるが、 床反力が大きく なるに従い、 逆に、 Z MP位置が機体の前方に移動したときには体幹部は後方に 向かって曲がるとともに Z M P位置が機体の後方に移動したときには ^部は前 方に向かって曲がるように構成される。
また、 前記 Z MP挙動空間制御手段は、 略平板状の足平フレームと、 前記足平 フレームの底面に配置された初期の比較的変形量が大きな領域とそれ以後の比較 的変形量が小さな領域からなる非線型弾性特性を持つ足底緩衝体と、 前記足平フ レームの上面の略中央に配設された、 前記脚式移動ロボヅトの稼働脚と連結する ための足首連結部とで構成される各可動脚の足部構造であってもよい。
このように非線形変形特性を持つ足底緩衝体を使用することにより、 まず路面 と接触を開始すると足底緩衝体が変形を開始することから、 充分な緩衝作用を期 待することができる。 また、 さらに変形が進行すると、 非線形特性により今度は 印加荷重当りの変形量が減少していくので、 過度の変形により足底が不安定とな ることはない。 言い換えれば、 前記 Z MP挙動空間制御手段が足部構造により構 成されることにより、 Z MP位置が Z MP安定領域の内側に向かうようなロボヅ トの変形量や運動量を生じさせるような空間歪みを持つた Z M P挙動空間を与え ることができる。
また、 前記 Z MP挙動空間制御手段は、 前記可動脚における関節自由度を実現 する 1以上の関節ァクチユエ一夕と、 前記関節ァクチユエ一夕を前記脚式移動口 ボットの機体の内側から支持するための第 1の剛性を持つ内側支持体と、 前記関 節ァクチユエ一夕を前記脚式移動ロボヅトの機体の外側から支持するための第 1 の剛性よりも比較的大きな第 2の剛性を持つ外側支持体とで構成される各可動脚 の脚部構造であってもよい。
このような脚部構造からなる Z M P挙動空間制御手段を備えることにより、 予 期しない外乱がロボヅトの機体に発生した場合であっても、 Z MPが機体の外側 すなわち土踏まずの反対側に移動しにくくなるように作用することができる。 こ の結果、 脚式移動ロボット全体としては、 横方向の外乱に対するロバスト性が強 ィ匕されるので、 機体の姿勢安定化制御が著しく容易となる。 言い換えれば、 外乱 により Z MPが機体の内側すなわち土踏まず側に移動するように誘導される。 す なわち、 Z MP位置が Z MP安定領域の内側に向かうようなロボヅトの変形量又 は運動量を生じさせるような空間歪みを Z M P挙動空間に与えることができる。 例えば、 脚式移動ロボットは、 予期しない外乱により土踏まず側すなわち左右の 両足に間に向かって Z M Pが移動した場合には、遊脚を高速に着地させることで、 安定領域を倍増させることができ、 転倒を容易に防ぐことができる。
また、 本発明の第 2の側面は、 少なくとも複数本の可動脚を備えた脚式移動口 ボヅトのための足部構造であって、
略平板状の足平フレームと、
前記足平フレームの底面に配置された、 初期の比較的変形量が大きな領域とそ れ以後の比較的変形量が小さな領域からなる非線型弾性特性を持つ足底緩衝体と、 前記足平フレームの上面の略中央に配設された、 前記脚式移動ロボットの稼働 脚と連結するための足首連結部と、
を具備することを特徴とする脚式移動ロボットのための足部構造である。
前記足底緩衝体は、 例えば、 高さが相違する 2以上の緩衝部材を前記足平フレ —ムの底面の所定部位に配設することによつて構成される。高さが相違する緩衝 部材を組み合わせることにより、 足底緩衝体の非線形な変形特性を比較的容易に 実現することができる。
このように非線形変形特性を持つ足底緩衝体を使用することにより、 まず路面 と接触を開始すると足底緩衝体が変形を開始することから、 充分な緩衝作用を期 待することができる。 また、 さらに変形が進行すると、 非線形特性により今度は 印加荷重当りの変形量が減少していくので、 過度の変形により足底が不安定とな ることはない。 言い換えれば、 本発明の第 2の側面に係る脚式移動ロボットのた めの足部構造によれば、 Z MP位置が Z MP安定領域の内側に向かうようなロボ ットの変形量や運動量を生じさせるような空間歪みを持った Z MP挙動空間を与 えることができる。
また、 前記足底緩衝体は、 前記足平フレームの底面の内側並びに外側にそれそ れ配設してもよい。 このような場合、 前記足平フレームの底面の内側並びに外側 にそれそれ配設され、 且つ、 内側よりも外側の足底緩衝体の弾性係数を高く設定 するようにしてもよい。
内側と外側の足底緩衝体の変形特性の相違により、 高い衝撃力が印加されたと きには、 内側足底緩衝体の方がより深く沈み込むことになる。 この結果、 この足 平フレーム上に搭載された脚部ュニヅトが、 ロボヅトの機体の内側すなわち中心 側 (土踏まず側) に向かって傾くことになり、 ロボットの Z MPを機体の内側に 向かわせながら遊脚を着地させることで安定領域を倍増させる方向へ移動させて、 姿勢の安定性 ·制御性を向上させるという効果を導出することができる。
また、 前記足平フレームは、 前記脚式移動ロボットのビッチ軸回りよりもロー ル軸回りの剛性を強ィ匕してもよい。例えば、 足平フレームの上面及び/又は底面 の所定部位に凹部を形設することにより、 前記脚式移動ロボヅトのピッチ軸回り よりも口一ル軸回りの剛性を強化することができる。
2足直立タイプの脚式移動ロボットは、一般に、歩行方向すなわち前後方向(ピ ツチ軸回り方向) に比し、 横方向 (ロール軸回り方向) の Z MPの存在範囲が狭 い。 言い換えれば、 ロール軸回りの外乱に対するロバスト性が低いため、 横方向 すなわちロール軸回りに対しては非常に高い制御精度が要求されている。 本発明 に係る足部構造によれば、 口一ル軸回りの剛性を強ィ匕することができ、 横方向の 外乱に対する口バスト性を著しく向上させるという効果を導出することができる。 この結果、 2足直立歩行ロボットの姿勢安定制御が容易になる。
また、 本発明の第 3の側面は、 少なくとも 1組の左右の可動脚ュニットを備え て脚式作業を行うタイプの脚式移動ロボヅトであって、 前記可動脚ュニヅトは、 前記可動脚における関節自由度を実現する 1以上の関節ァクチユエ一夕と、 前記関節ァクチユエ一夕を前記脚式移動ロボットの機体の内側から支持するた めの、 第 1の剛性を持つ内側支持体と、
前記関節ァクチユエ一夕を前記脚式移動ロボヅトの機体の外側から支持するた めの、 第 1の剛性よりも比較的大きな第 2の剛性を持つ外側支持体と、
を具備することを特徴とする脚式移動ロボットである。
本発明の第 3の側面に係る脚式移動ロボットによれば、 左右それそれの可動脚 ユニットについて、 その外側支持体と内側支持体とで剛性を異ならせる構造、 す なわち内側支持体に比し外側支持体の剛性 (特に曲げ剛性) を強ィ匕した構造を採 用する。 このような構成を採用することによって、 予期しない外乱がロボットの 機体に発生した場合であつても、 Z M Pが機体の外側すなわち土踏まずの反対側 に移動しにくくなるように作用することができる。 この結果、 脚式移動ロボット 全体としては、 横方向の外乱に対するロバスト性が強ィ匕されるので、 機体の姿勢 安定化制御が著しく容易となる。
言い換えれば、 本発明の第 3の側面によれば、 外乱により Z MPが機体の内側 すなわち土踏まず側に移動するように誘導される。 すなわち、 Z MP位置が Z M P安定領域の内側に向かうようなロボットの変形量又は運動量を生じさせるよう な空間歪みを Z MP挙動空間に与えることができる。例えば、 脚式移動ロボット は、 予期しない外乱により土踏まず側すなわち左右の両足に間に向かって Z MP が移動した場合には、 遊脚を高速に着地させることで、 安定領域を倍増させるこ とができ、 転倒を容易に防ぐことができる。
ここで、 第 2の剛性は、 第 1の剛性の 1 . 2倍以上の曲げ剛性であることが好 ましい。 更に言えば、 第 2の剛性は、 第 1の剛性の 1 . 5〜2 . 0倍程度である ことがより好ましい。
このような第 1の剛性と第 2の剛性の相違は、 前記内側支持体と前記外側支持 体の肉厚の相違により実現される。
あるいは、 第 1の剛性と第 2の剛性の相違は、 前記内側支持体と前記外側支持 体の形状の相違により実現される。
あるいは、 第 1の剛性と第 2の剛性の相違は、 前記内側支持体と前記外側支持 体を強度の異なる素材を用いて構成することによつても実現される。
また、 前記可動脚の関節自由度は、 少なくとも大腿部ロール軸並びに膝関節口 ール軸回りの各自由度を含んでいてもよい。 さらに、 足平と連結するための足首 関節の自由度を備えていてもよい。
また、 本発明の第 4の側面は、 脚式作業を行う脚式移動ロボットに対して左右 の組み合わせで用いられる可動脚ュニットであって、
前記可動脚における関節自由度を実現する 1以上の関節ァクチユエ一夕と、 前記関節ァクチユエ一夕を前記脚式移動ロボットの機体の内側から支持するた めの、 第 1の剛性を持つ内側支持体と、
前記関節ァクチユエ一夕を前記脚式移動ロボットの機体の外側から支持するた めの、 第 1の剛性よりも比較的大きな第 2の剛性を持つ外側支持体と、 を具備することを特徴とする脚式移動ロボットのための可動脚ュニヅトである。 本発明の第 4の側面に係る可動脚ュニットを左右 1組にして搭載した脚式移動 ロボットにおいては、 左右それそれの可動脚ュニットの外側支持体と内側支持体 とで剛性を異ならせる構造、 すなわち内側支持体に比し外側支持体の剛性 (特に 曲げ剛性) を強ィ匕した構造となる。 したがって、 予期しない外乱がロボットの機 体に発生した場合であっても、 Z MPが機体の外側すなわち土踏まずの反対側に 移動しにくくなるように作用することができる。 この結果、 脚式移動ロボット全 体としては、 横方向の外乱に対するロバスト性が強化されるので、 機体の姿勢安 定化制御が著しく容易となる。
言い換えれば、 本発明の第 4の側面によれば、 外乱により Z MPが機体の内側 すなわち土踏まず側に移動するように誘導される。 すなわち、 Z MP位置が Z M P安定領域の内側に向かうようなロボヅトの変形量又は運動量を生じさせるよう な空間歪みを Z MP挙動空間に与えることができる。例えば、 当該可動脚ュニヅ トを搭載した脚式移動ロボットは、 予期しない外乱により土踏まず側すなわち左 右の両足に間に向かって Z MPが移動した場合には、 遊脚を高速に着地させるこ とで、 安定領域を倍増させることができ、 転倒を容易に防ぐことができる。 ここで、 第 2の剛性は、 第 1の剛性の 1 . 2倍以上の曲げ剛性であることが好 ましい。 更に言えば、 第 2の剛性は、 第 1の剛性の 1 . 5〜2 . 0倍程度である ことがより好ましい。
このような第 1の剛性と第 2の剛性の相違は、 前記内側支持体と前記外側支持 体の肉厚の相違により実現される。
あるいは、 第 1の剛性と第 2の剛性の相違は、 前記内側支持体と前記外側支持 体の形状の相違により実現される。
あるいは、 第 1の剛性と第 2の剛性の相違は、 前記内側支持体と前記外側支持 体を強度の異なる素材を用いて構成することによつても実現される。
また、 前記可動脚の関節自由度は、 少なくとも大腿部ロール軸並びに膝関節口 —ル軸回りの自由度を含んでいてもよい。 さらに、 足平と連結するための足首関 節の自由度を備えていてもよい。
また、 本発明の第 5の側面は、 2以上の可動脚を備えた脚式移動ロボットの制 御方法であって、
機体のピッチ軸モーメント及びロール軸モーメントがゼロとなる Z MPの位置 と機体が床面から受ける床反力で定義される Z MP挙動空間を定義するステップ と、
該定義された Z MP挙動空間の定義に基づいて Z MP安定位置を求めるステヅ プと、
該求められた Z MP安定位置に基づいて機体動作を制御するステヅプと、 を具備することを特徴とする脚式移動ロボットの制御方法である。
本発明の第 5の側面に係る脚式移動ロボットの制御方法によれば、 Z MPを姿 勢の安定度判別の規範として採用するが、 ロボットの機体の変形量や運動量を考 慮して安定した Z MPの存在空間を持つ機体動作の制御を行うことができる。 すなわち、 Z MP位置が前記可動脚の足底接地点と路面とが形成する支持多角 形からなる Z M P安定領域の中央から Z M P位置が外れるにつれて Z M P位置が 前記 Z MP安定領域の中央に移動させようとする機体の変形量若しくは運動量が 生じるように Z MP挙動空間に空間歪みをあらかじめ与えることができる。 この 結果、 機体の制御機構が充分な応答速度を持たない場合であっても、 外乱などに 対して高いロバスト性を得ることができる。
また、 本発明の第 5の側面に係る脚式移動ロボットの制御方法は、 前記脚式移 動ロボットと路面との接触状況に応じて Z M P挙動空間の定義を変更するステヅ プをさらに備えていてもよい。
このような場合、 足底が着床面から受ける床反力が変ィ匕した場合など、 路面と の接触状況に応じて Z MP挙動空間に与える空間歪みを動的に制御することがで き、 いかなる状況であっても常に Z M P位置が外れるにつれて Z MP位置が前記 Z M P安定領域の中央に移動させようとする機体の変形量若しくは運動量が生じ るようにして、 機体の姿勢安定制御を容易な状態にすることができる。
また、 前記の Z MP挙動空間を定義するステップでは、 前記 Z MP挙動空間に おける極大点及び Z又は極小点を任意に指定するようにしてもよい。 また、 任意 の時刻に前記 Z MP挙動空間における極大点及び/又は極小点を任意に指定する ようにしてもよい。 また、 単脚支持後期、 両脚支持期、 単脚支持前期など脚の支 持状態に応じて前記 Z MP挙動空間における極大点及び/又は極小点を任意に 定するようにしてもよい。 このような場合、 ロボットが脚式作業を行うときに、 時々刻々と変わる歩容に 応じて姿勢の安定制御が容易な空間歪みを持つ Z MP挙動空間を動的に生成する ことができる。 本発明のさらに他の目的、 特徴や利点は、 後述する本発明の実施例や添付する 図面に基づくより詳細な説明によって明らかになるであろう。
[図面の簡単な説明] 図 1は、 ロボットゃ路面が限りなく剛体に近い理想的なモデルの場合における
Z M P位置とロボヅトの変形量 (若しくは運動量) との関係 (すなわちロボヅト が持つ Z MP挙動空間) を示した図である。
図 2は、現実には剛体ではない場合における Z MP位置とロボヅトの変形量 (若 しくは運動量) との関係 (すなわちロボットが持つ Z MP挙動空間) を示した図 である。
図 3は、 本発明の実施に供される 「人間形」又は「人間型」 の脚式移動ロボッ ト 1 0 0が直立している様子を前方から眺望した様子を示した図である。
図 4は、 本発明の実施に供される 「人間形」又は「人間型」 の脚式移動ロボヅ ト 1 0 0が直立している様子を後方から眺望した様子を示した図である。
図 5は、 脚式移動ロボット 1 0 0が具備する関節自由度構成を模式的に示した 図である。
図 6は、 本発明の一実施形態に係る脚式移動ロボヅト 1 0 0の制御システム構 成を模式的に示した図である。
図 7は、 ロボットの変形量又は運動量と Z MP位置との関係を表した Z MP挙 動空間の構成例を示した図である。
図 8は、 ロボットの変形量又は運動量と Z MP位置との関係を表した Z MP挙 動空間の他の構成例を示した図である。
図 9は、 ロボットの変形量又は運動量と Z MP位置との関係を表した Z MP挙 動空間のさらに他の構成例を示した図である。 図 1 0は、 ロボヅトの変形量又は運動量と Z MP位置との関係を表した Z MP 挙動空間のさらに他の構成例を示した図である。
図 1 1は、 ロボットの変形量又は運動量と Z MP位置との関係を表した Z MP 挙動空間のさらに他の構成例を示した図である。
図 1 2は、 単脚支持期後期の左立脚における Y方向 (進行方向と直交方向) の Z MP挙動空間の構成例を示した図である。
図 1 3は、 単脚支持期後期の左立脚における X方向 (進行方向) の Z MP挙動 空間の構成例を示した図である。
図 1 4は、 単脚支持期後期の左立脚における Y方向 (進行方向と直交方向) の Z MP挙動空間の理想的な構成例を示した図である。
図 1 5は、 単脚支持期後期の左立脚における X方向 (進行方向) の Z MP挙動 空間の理想的な構成例を示した図である。
図 1 6は、 単脚支持期後期の体幹部における Y方向 (進行方向と直交方向) の Z MP挙動空間の理想的な構成例を示した図である。
図 1 7は、 単脚支持期後期の体幹部における X方向 (進行方向) の Z MP挙動 空間の理想的な構成例を示した図である。
図 1 8は、 両脚支持期の左立脚における Y方向 (進行方向と直交方向) の Z M P挙動空間の構成例を示した図である。
図 1 9は、 両脚支持期の左立脚における X方向 (進行方向) の Z MP挙動空間 の構成例を示した図である。
図 2 0は、 両脚支持期の左立脚における Y方向 (進行方向と直交方向) の理想 的な Z M P挙動空間の構成例を示した図である。
図 2 1は、 両脚支持期の左立脚における Y方向 (進行方向と直交方向) の理想 的な Z MP挙動空間の構成例を示した図である。
図 2 2は、 両脚支持期の体幹部における Y方向 (進行方向と直交方向) の理想 的な Z M P挙動空間の構成例を示した図である。
図 2 3は、 両脚支持期の体幹部における X方向 (進行方向) の理想的な Z MP 挙動空間の構成例を示した図である。
図 2 4は、 単脚支持期前期の右立脚における Y方向 (進行方向と直交方向) の Z M P挙動空間の構成例を示した図である。
図 2 5は、 単脚支持期前期の右立脚における X方向 (進行方向) の Z MP挙動 空間の構成例を示した図である。
図 2 6は、 単脚支持期前期の右立脚における Y方向 (進行方向と直交方向) の 理想的な Z M P挙動空間の構成例を示した図である。
図 2 7は、 単脚支持期前期の右立脚における X方向 (進行方向) の理想的な Z MP挙動空間の構成例を示した図である。
図 2 8は、 単脚支持期前期の体幹部における Y方向 (進行方向と直交方向) の 理想的な Z M P挙動空間の構成例を示した図である。
図 2 9は、 単脚支持期前期の体幹部における X方向 (進行方向) の理想的な Z MP挙動空間の構成例を示した図である。
図 3 0は、 本発明の一実施形態に係る脚式移動ロボット 1 0 0に対して適用可 能な左足平部の表側の外観を示した斜視図である。
図 3 1は、 本発明の一実施形態に係る脚式移動ロボヅト 1 0 0に対して適用可 能な左足部の裏側の外観を示した斜視図である。
図 3 2は、 左足平の外側の側面図である。
図 3 3は、 左足平の底面図である。
図 3 4は、 左足平の正面図である。
図 3 5は、 左足平の上面図である。
図 3 6は、 図 3 5に示された線分 A— Aにおける断面図である。
図 3 7は、 足底緩衝材 (内) 4 0 5と足底緩衝材 (外) 4 0 4の弾性係数を比 較した図である。
図 3 8は、 足底緩衝材 (内) 4 0 5と足底緩衝材 (外) 4 0 4の変形量を比較 した図である。
図 3 9は、 足平フレーム 4 0 3の上面を斜視した様子を示した図である。 図 4 0は、 足平フレーム 4 0 3の底面を斜視した様子を示した図である。 図 4 1は、 足平フレーム 4 0 3をロール軸方向に分割した断面図である。 図 4 2は、 足平フレーム 4 0 3の口一ル軸回りの剛性がビッチ軸回りに比し強 化されている様子を示した図である。 図 4 3は、 本発明の一実施形態に係る左足平部の表側の外観を示した斜視図で ある。
図 4 4は、 本発明の一実施形態に係る左足平部の裏側の外観を示した斜視図で める。
図 4 5は、 本発明の一実施形態に係る左足平部の側面図である。
図 4 6は、 本発明の一実施形態に係る左足平部の底面図である。
図 4 7は、 本発明の一実施形態に係る脚式移動ロボット 1 0 0の左右の各脚部 1 0 4の構成を大きく描いた図である。
図 4 8は、 図 4 7に示した脚式移動ロボヅト 1 0 0の脚部ュニヅ トの外側 (土 踏まずの反対側)側面図である。
図 4 9は、 図 4 7に示した脚式移動ロボヅト 1◦ 0の脚部ュニットの正面図で ある。
図 5 0は、 図 4 7に示した脚式移動ロボット 1 0 0の脚部ュニットの内側 (土 踏まず側)側面図である。
図 5 1は、 Z MP挙動空間の制御システム 5 0 0の機能構成を模式的に示した 図である。
[発明を実施するための最良の形態] 以下、 図面を参照しながら本発明の実施例を詳解する。
A. ロボットの構成
図 3及び図 4には本発明の実施に供される 「人間形」又は「人間型」の脚式移 動ロボット 1 0 0が直立している様子を前方及び後方の各々から眺望した様子を 示している。 図示の通り、 脚式移動ロボット 1 0 0は、 体幹部 1 0 1と、 頭部 1 0 2と、 左右の上肢部 1 0 3と、 脚式移動を行う左右 2足の下肢部 1 0 4と、 機 体の動作を統括的にコントロールする制御部 1 0 5とで構成される。
左右各々の下肢 1 0 4は、 大腿部と、 膝関節と、 脛部と、 足首と、 足平とで構 成され、 股関節によって体幹部の略最下端にて連結されている。 また、 左右各々 の上肢は、 上腕と、 肘関節と、 前腕とで構成され、 肩関節によって体幹部の上方 の左右各側縁にて連結されている。 また、 頭部は、 首関節によって体幹部の略最 上端中央に連結されている。
制御部 1 0 5は、 この脚式移動ロボヅト 1 0 0を構成する各関節ァクチユエ一 夕の駆動制御ゃ各センサ(後述)などからの外部入力を処理するコントローラ(主 制御部) や、 電源回路その他の周辺機器類を搭載した筐体である。 制御部は、 そ の他、遠隔操作用の通信ィン夕一フヱ一スゃ通信装置を含んでいてもよい。また、 図 3及び図 4に示す例では、 脚式移動ロボット 1 0 0が制御部を背中に背負うよ うな格好となっているが、 制御部の設置場所は特に限定されない。
このように構成された脚式移動ロボット 1 0 0は、 制御部 1 0 5による全身協 調的な動作制御により、 2足歩行を実現することができる。 かかる 2足歩行は、 一般に、 以下に示す各動作期間に分割される歩行周期を繰り返すことによって行 われる。 すなわち、
( 1 ) 右脚を持ち上げた、 左脚による単脚支持期
( 2 ) 右脚が接地した両脚支持期
( 3 )左脚を持ち上げた、 右脚による単脚支持期
( 4 ) 左脚が接地した両脚支持期
脚式移動ロボット 1 0 0における歩行制御は、 あらかじめ下肢の目標軌道を計 画し、 上記の各期間において計画軌道の修正を行うことによって実現される。 す なわち、 両脚支持期では、 下肢軌道の修正を停止して、 計画軌道に対する総修正 量を用いて腰の高さを一定値で修正する。 また、 単脚支持期では、 修正を受けた 脚の足首と腰との相対位置関係を計画軌道に復帰させるように修正軌道を生成す る。 具体的な修正は、 Z MPに対する偏差を小さくするための位置、 速度、 及び 加速度が連続となるように、 5次多項式を用 ヽた補間計算により行う。
図 5には、 この脚式移動ロボット 1 0 0が具備する関節自由度構成を模式的に 示している。 同図に示すように、 脚式移動ロボヅト 1 0 0は、 2本の腕部と頭部 1を含む上肢と、 移動動作を実現する 2本の脚部からなる下肢と、 上肢と下肢と を連結する 部とで構成された、 複数の肢を備えた構造体である。
頭部 1を支持する首関節は、 首関節ョ一軸 2と、 首関節ピッチ軸 3と、 首関節 ロール軸 4という 3自由度を有している。
また、 各腕部は、 肩関節ピッチ軸 8と、 肩関節ロール軸 9と、 上腕ョ一軸 1 0 と、 肘関節ピッチ軸 1 1と、 前腕ョー軸 1 2と、 手首関節ピッチ軸 1 3と、 手首 関節ロール軸 1 4と、 手部 1 5とで構成される。 手部 1 5は、 実際には、 複数本 の指を含む多関節 '多自由度構造体である。 但し、 手部 1 5の動作はロボヅト 1 0 0の姿勢制御や歩行制御に対する寄与や影響が少ないので、 本明細書ではゼロ 自由度と仮定する。 したがって、 各腕部は 7自由度を有するとする。
また、 体幹部は、 體ピッチ軸 5と、 # ^ロール軸 6と、 雌ョ一軸 7という 3自由度を有する。
また、 下肢を構成する各々の脚部は、 股関節ョ一軸 1 6と、 股関節ピヅチ軸 1 7と、股関節ロール軸 1 8と、膝関節ピッチ軸 1 9と、足首関節ピッチ軸 2 0と、 足首関節ロール軸 2 1と、 足部 2 2とで構成される。 人体の足部 2 2は実際には 多関節 ·多自由度の足底を含んだ構造体であるが、 本実施形態に係る脚式移動口 ボット 1 0 0の足底はゼロ自由度とする。 したがって、 各脚部は 6自由度で構成 される。
以上を総括すれば、 本実施例に係る脚式移動ロボヅト 1 0 0全体としては、 合 計で 3 + 7 x 2 + 3 + 6 x 2 = 3 2自由度を有することになる。但し、 ェン夕一 ティンメント向けの脚式移動ロボヅト 1 0 0が必ずしも 3 2自由度に限定される 訳ではない。設計 ·製作上の制約条件や要求仕様などに応じて、 自由度すなわち 関節数を適宜増減することができることは言うまでもない。
上述したような脚式移動ロボット 1 0 0が持つ各自由度は、 実際にはァクチュ エー夕を用いて実装される。外観上で余分な膨らみを排してヒトの自然体形状に 近似させること、 2足歩行という不安定構造体に対して姿勢制御を行うことなど の要請から、 ァクチユエ一夕は小型且つ軽量であることが好ましい。 本実施例で は、 ギア直結型で且つサ一ボ制御系をワンチップ化してモー夕 .ユニットに内蔵 したタイプの小型 A Cサーボ ·ァクチユエ一夕を搭載することとした。 なお、 こ の種の A Cサーボ ·ァクチユエ一夕に関しては、 例えば本出願人に既に譲渡され ている特閧 2 0 0 0 - 2 9 9 9 7 0号公報 (特願平 1 1— 3 3 3 8 6号) に開示 されている。 図 6には、 本実施形態に係る脚式移動ロボット 1 0 0の制御システム構成を模 式的に示している。 同図に示すように、 該制御システムは、 ユーザ入力などに動 的に反応して情緒判断や感情表現を司る思考制御モジュール 2 0 0と、 関節ァク チユエ一夕の駆動などロボットの全身協調運動を制御する運動制御乇ジュール 3 0 0とで構成される。
思考制御モジュール 2 0 0は、 情緒判断や感情表現に関する演算処理を実行す る C P U (Central Processing Unit) 2 1 1や、 RAM (Random Access Memory 2 1 2、 R O M (Read Only Memory) 2 1 3、 及び、 外部記憶装置 (ハード'ディ スク ·ドライブなど) 2 1 4で構成される、モジュール内で自己完結した処理を行 うことができる、 独立駆動型の情報処理装置である。
思考制御モジュール 2 0 0は、 情緒判断や感情表現に関する演算処理を実行す る C P U (Central Processing Unit) 2 1 1や、 R AM (Random Access Memory)
2 1 2、 R O M (Read Only Memory) 2 1 3、 及び、 外部記憶装置 (ハード'ディ スク-ドライブなど) 2 1 4で構成される、モジュール内で自己完結した処理を行 うことができる独立した情報処理装置である。
思考制御モジュール 2 0 0では、 画像入力装置 2 5 1から入力される視覚デー 夕や音声入力装置 2 5 2から入力される聴覚デ一夕など、 外界からの刺激などに 従って、 脚式移動ロボット 1 0 0の現在の感情や意思を決定する。 さらに、 意思 決定に基づいた動作(アクション)又は行動シーケンス (ビヘイビア)、 すなわち 四肢の運動を実行するように 運動制御モジュール 3 0 0に対して指令を発行す る。
一方の運動制御モジュール 3 0 0は、 ロボット 1 0 0の全身協調運動を制御す る C P U (Central Processing Unit) c5 1 1や、 RAM (R裏 om Access Memory)
3 1 2、 R O M (Read Only Memory) 3 1 3、 及び、 外部記憶装置 (ハード'ディ スク ·ドライブなど) 3 1 4で構成される、モジュール内で自己完結した処理を行 うことができる、 独立駆動型の情報処理装置である。 外部記憶装置 3 1 4には、 例えば、 オフラインで算出された歩行パターンや Z MP目標軌道、 その他の行動 計画を蓄積することができる。
運動制御モジュール 3 0 0には、 ロボヅト 1 0 0の全身に分散するそれそれの 関節自由度を実現する各関節ァクチユエ一夕(図 5を参照のこと)、体幹部の姿勢 や傾斜を計測する姿勢センサ 3 5 1、 左右の足底の離床又は着床を検出する接地 確認センサ 3 5 2及び 3 5 3、 バッテリなどの電源を管理する電源制御装置など の各種の装置が、 バス'イン夕一フェース 3 0 1経由で接続されている。
思考制御モジュール 2 0 0と運動制御モジュール 3 0 0は、 共通のブラットフ オーム上で構築され、両者間はバス'イン夕一フェース 2 0 1及び 3 0 1を介して 相互接続されている。
運動制御モジュール 3 0 0では、 思考制御モジュール 2 0 0から指示された行 動を体現すべく、 各関節ァクチユエ一夕による全身協調運動を制御する。 すなわ ち、 C P U 3 1 1は、 思考制御モジュール 2 0 0から指示された行動に応じた動 作パターンを外部記憶装置 3 1 4から取り出し、 又は、 内部的に動作パターンを 生成する。 そして、 C P U 3 1 1は、 指定された動作パターンに従って、 足部運 動、 Z MP軌道、 # ^運動、 上肢運動、 腰部水平位置及び高さなどを設定すると ともに、 これらの設定内容に従った動作を指示する指令値を各関節ァクチユエ一 夕に転送する。
また、 C P U 3 1 1は、 姿勢センサ 3 5 1の出力信号によりロボヅ ト 1 0 0の 部分の姿勢や傾きを検出するとともに、 各接地確認センサ 3 5 2及び 3 5 3 の出力信号により各可動脚が遊脚又は立脚のいずれの状態であるかを検出するこ とによって、 脚式移動ロボヅト 1 0 0の全身協調運動を適応的に制御することが できる。
また、 C P U 3 1 1は、 Z MP位置が常に Z MP安定領域の中心に向かうよう に、 機体の姿勢や動作を制御する。
さらに、 運動制御モジュール 3 0 0は、 思考制御モジュール 2 0 0において決 定された意思通りの行動がどの程度発現されたか、 すなわち処理の状況を、 思考 制御モジュ一ノレ 2 0 0に返すようになつている。
B . ロボヅトの姿勢制御
脚式移動ロボットの多くは、 Z MP (Zero Moment Point) を歩行の安定度判別 の規範として採用する。 Z MPによる安定度判別規範は、 歩行系から路面には重力と慣性力、 並びにこ れらのモーメントが路面から歩行系への反作用としての床反力、 並びに床反カモ 一メントとバランスするという 「ダランベールの原理」に基づくものであり、「歩 行のあらゆる瞬間において、 Z MPが足部と路面とが形成する支持多角形の内側 に存在し、 且つ、 ロボットが路面に押す方向の力が作用すれば、 ロボットが転倒 (機体が回転運動) することなく安定に歩行できる」 とするものである。
Z MPを安定度判別規範に用いたロボヅ卜の姿勢安定度制御は、 足底接地点と 路面の形成する支持多角形の内側にビヅチ及び口一ル軸モ一メントがゼロとなる 点を探索することをベースとする。 Z MP安定度判別規範に基づく 2足歩行パ夕 —ン生成によれば、 足底着地点をあらかじめ設定することができ、 路面形状に応 じた足先の運動学的拘束条件を考慮し易いなどの利点がある。 また、 Z MPを安 定度判別規範とすることは、 力ではなく軌道を運動制御上の目標値として扱うこ とを意味するので、 技術的に実現可能性が高まる。
しかしながら、 [従来の技術の欄]でも既に説明したように、 Z MP規範は、 口 ボットの機体及び路面が剛体に限りなく近いと仮定できる場合のみ適用すること ができる規範に過ぎない。 すなわち、 ロボットや路面が剛体に限りなく近いと仮 定できない場合、例えば、ロボヅトが高速に動くことで Z MPに作用している(並 進) 力や、 立脚切替え時の衝撃力が大きくなり、 ロボット自身に変形や運動が発 生してしまう場合には、 印加される力に対するロボットの変形量を適切に管理し ないと、 Z MPが存在している空間自体が不安定になってしまい、 仮にロボット の姿勢が Z M P安定度判別規範を満たしても、不安定な Z M P位置をとるために、 ロボットの姿勢が不安定になってしまう。
また、 Z MP位置が Z MP安定領域から逸脱してはじめて補正制御をかけると いう事後的制御では、 充分な速度で応答できず、 外乱などに対するロバスト性が 高くない。
そこで、 本実施形態では、 ロボットの機体の変形量や運動量を考慮して安定し た Z MP挙動空間を持つロボヅト 'システム構成を採用する。 Z MP挙動空間は Z MP位置と機体が床面から受ける床反力で定義されるが、 本実施形態では機体 が安定するような変形量や運動量が発生するように、 Z MP挙動空間に所定の歪 み又は所定の特性があらかじめ与えられている。
したがって、 Z MP位置の移動量が所定の領域を越えてはじめて事後的な補正 制御を開始するのではなく、 あらかじめロボットの姿勢が安定するような空間歪 みが与えられているので、 機体の制御機構が充分な応答速度を持たなくても、 外 乱などに対して高い口バスト性を得ることができる。
ここで、 ロボットの変形量 (若しくは運動量) の正負は、 負が Z MPを安定領 域の縁に移動させようとする空間歪みを生じさせる方向となり、 正が Z MPを安 定領域の中心に移動させようとする空間歪みを生じさせる方向となる、 という点 に留意されたい。
図 7には、 ロボットの変形量又は運動量と Z MP位置との関係を表した Z MP 挙動空間の構成例を示している。
同図に示す例では、 Z MP挙動空間は、 放物線又は円弧で表される非線型曲線 で構成される。 また、 図示しないが、 不連続点や変曲点を含んでいてもよい。
Z MP位置が Z MP安定領域内の略中央付近においては、 ロボヅトに大きな変 形量 (若しくは運動量) は発生しないので、 そのままの状態ではロボットは機体 の姿勢安定性を失うことはない。
また、 Z MP位置が Z MP安定領域の中央から離れるにつれて、 ロボットの変 形量 (若しくは運動量) は正方向に増大していく。 これに伴って、 Z MPを安定 領域の中心に移動させようとする空間歪みを生じさせる作用が働くので、 やはり 機体の姿勢安定性を維持し易くなる。
また、 図 8には、 ロボットの変形量又は運動量と Z MP位置との関係を表した Z MP挙動空間の他の構成例を示している。
同図に示す例では、 Z MP挙動空間は、 Z MP安定領域の略中央付近の線形直 線と、 その左右両端で接続される非線型曲線とで構成され、 直線と曲線の間で不 連続点を含んでいる。 また、 図示しないが変曲点を含んでいてもよい。
Z MP位置が Z MP安定領域の略中央付近では、 平坦すなわちロボットに大き な変形量 (若しくは運動量) は発生しないので、 そのままの状態ではロボットは 機体の姿勢安定性を失うことはない。
また、 Z MP位置が平坦な領域を逸脱すると、 ロボットの変形量 (若しくは運 動量) は正方向に急激に増大していく。 これに伴って、 Z MPを安定領域の中心 に移動させようとする空間歪みを生じさせる作用が働くので、 積極的な運動制御 がなくても、 機体の姿勢安定性を維持し易くなる。
また、 図 9には、 ロボットの変形量又は運動量と Z MP位置との関係を表した Z M P挙動空間のさらに他の構成例を示している。
同図に示す例では、 Z MP挙動空間は、 複数の線形直線を連結して構成され、 複数の不連続点を含んでいる。
Z M P位置が Z M P安定領域の略中央付近では、 Z M P中央位置からの距離に 応じてロボットの変形量 (若しくは運動量) が徐々に正方向に増大する比較的傾 斜が緩やかな直線で Z MP挙動空間が形成される。 また、 Z MP中央位置からの 距離が所定値に到達した時点で、 Z MP中央位置からの距離に応じてロボットの 変形量 (若しくは運動量) が急激に正方向に増大していく比較的傾斜が急な直線 で Z M P挙動空間が形成されている。
図示の例では、 Z MP位置が Z MP安定領域の略中央付近では、 Z MPを安定 領域の中心に移動させようとする空間歪みを生じさせる比較的弱い作用が働くと ともに、 Z MP位置が Z MP中央位置からある距離から離れた時点では、 Z MP を安定領域の中心に移動させようとする空間歪みを生じさせる比較的強い作用が 働くことになる。 したがって、 積極的な運動制御がなくても、 同様に機体の姿勢 安定性を維持し易くなる。
また、 図 1 0には、 ロボットの変形量又は運動量と Z MP位置との関係を表し た Z M P挙動空間のさらに他の構成例を示している。
同図に示す例では、 Z MP挙動空間は、 非線型曲線で構成され、 Z MP安定領 域の略中央位置に極小点を持つとともに、 Z MP安定領域の境界の近くで極大点 を有している。
このような Z MP挙動空間においては、 Z MP位置が左右の極大点の内側では、 Z M P中央位置からの距離に応じてロボットの変形量 (若しくは運動量) は正方 向に増大するので、機体の姿勢安定性の維持が容易な姿勢安定モードを形成する。 他方、 Z MP位置が左右の極大点の外側では、 ロボットの変形量 (若しくは運 動量) は徐々に減少していき、 Z MPを安定領域の中心に移動させようとする空 間歪みは低下していく。 この結果、 機体は姿勢の安定性を失い易くなり、 転倒モ ードを形成する。
また、 図 1 1には、 ロボットの変形量又は運動量と Z M P位置との関係を表し た Z M P挙動空間のさらに他の構成例を示している。
同図に示す例では、 複数の線形直線を連結して構成され、 複数の不連続点を含 んでいる。 Z MP安定領域の略中央付近では、 Z MP中央位置からの距離に応じ てロボットの変形量 (若しくは運動量) が徐々に負方向に増大する比較的傾斜が 緩やかな直線で Z MP挙動空間が形成される。 また、 Z MP中央位置からの距離 が所定値に到達した時点で、 平坦となる。
この場合の Z MP挙動空間は、 Z MP安定領域内のいずれの位置においても口 ボットの変形量 (若しくは運動量) が負方向にのみ作用し、 Z MP位置がその中 央位置からある程度以上離れると、 Z M Pを安定領域外に移動させようとする空 間ひずみは一定量になる。 したがって、 不安定ではあるが制御が比較的容易な Z MP挙動空間であると言える。
次いで、 図 3〜図 5に示すような 2足の脚式移動ロボヅト 1 0 0が歩行動作を 行う場合を例にとって、 Z MP挙動空間について考察してみる。本実施形態では、 Z M P挙動空間は Z MP安定領域の略中央に Z MP位置が向かうような空間歪み が与えられており、 機体が安定する方向に Z M P位置が自ずと移動するように、 床反力に応じた機体の変形量若しくは運動量が発生するようになっている。
図 1 2及び図 1 3には、 単脚支持期後期の左立脚における Y方向 (進行方向と 直交方向) 並びに X方向 (進行方向) の Z M P挙動空間の構成例をそれそれ示し ている。
図 1 2に示すように、 単脚支持期後期の左立脚における Y方向の Z MP挙動空 間は、 床反力が小さいときには Z MP位置が Z MP安定領域の中心から外れるに つれて負方向すなわち Z MP位置が Z MP安定領域の中心から外れる方向に向か うようなロボヅトの変形量若しくは運動量が発生するが、 床反力が大きくなるに つれて Z M P位置が機体の外側に向かって移動したときにはロボットの変形量若 しくは運動量が生じなくなるような空間歪みが与えられている。 この結果、 支持 脚として左立脚においては、 ; MP位置の Y方向への移動量にほぼ線形的に曲が り量が減少する。 床反力が小さいときには、 Z MP位置が機体の内側に移動した ときには左立脚は内側に向かって曲がるとともに、 Z MP位置が機体の外側に移 動したときには左立脚は外側に向かって曲がるが、床反力が大きくなるにつれて、 Z M P位置が機体の外側に移動しても左立脚は外側には曲がり難くなるように構 成されている。
なお、 ロボットの総重量を 1 0 0としたときに、 床反力が 1 0 0以上となると きに床反力が「大きい」 と言い、 床反力が 2 0〜1 0 0程度のときには床反力が 「中」 と言い、 また、 床反力が 2 0以下となるときに床反力が「小さい」 と言う (以下同様)。但し、 これらはだいたいの目安であって、 ロボットの機体構造、重 量によって変更しても構わない。特に、 「床反力が小さい」ということを定性的に 表現すると、 両足支持期に、 一方の足でほぼ全身を支えている際の他方の足に加 わっている程度の床反力を言う。
また、 図 1 3に示すように、 単脚支持期後期の左立脚における X方向の Z MP 挙動空間は、 Z MP位置が Z MP安定領域の中心から外れるにつれて負方向すな わち Z MP位置が Z MP安定領域の中心から外れる方向に向かうようなロボヅト の変形量若しくは運動量が発生するが、 床反力が大きくなるに従い、 機体に発生 する変形量若しくは運動量が次第に小さくなっていくような空間歪みが与えられ ている。 この結果、 支持脚として左立脚においては、 Z MP位置の X方向への移 動量にほぼ線形的に曲がり量が減少する。床反力が小さいときには、 Z MP位置 が機体の前方に移動したときには左立脚は前方に向かって曲がるとともに、 Z M P位置が機体の後方に移動したときには左立脚は後方に向かって曲がるが、 床反 力が大きくなるにつれて、 Z MP位置が前方又は後方のいずれに移動しても左立 脚は曲がり難くなるように構成されている。
図 1 4及び図 1 5には、 単脚支持期後期の左立脚における Y方向 (進行方向と 直交方向) 並びに X方向 (進行方向) の理想的な Z MP挙動空間の構成例をそれ それ示している。
図 1 4に示すように、 単脚支持期後期の左立脚における Y方向の理想的な Z M P挙動空間は、 床反力が小さいときには Z M P位置が Z M P安定領域の中心から 外れるにつれて負方向すなわち Z MP位置が Z MP安定領域の中心から外れる方 向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大き くなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて正方向す なわち Z M P位置が Z M P安定領域の中心に向かうようなロボットの変形量若し くは運動量が生じるような空間歪みが与えられている。 この結果、 床反力が小さ いときには、 Z MP位置が機体の内側に移動したときには左立脚は内側に向かつ て曲がるとともに Z MP位置が機体の外側に移動したときには左立脚は外側に向 かって曲がるが、 床反力が大きくなるに従い、 逆に、 Z MP位置が機体の内側に 移動したときには左立脚は外側に向かって曲がるとともに Z MP位置が機体の外 側に移動したときには左立脚は内側に向かって曲がるように構成されている。 また、 図 1 5に示すように、 単脚支持期後期の左立脚における X方向の理想的 な Z MP挙動空間は、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて負方向すなわち Z MP位置が Z MP安定領域の中心から 外れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反 力が大きくなるに従い、 逆に、 Z MP位置が Z MP安定領域の中心から外れるに つれて正方向すなわち Z M P位置が Z M P安定領域の中心に向かうようなロボッ 卜の変形量若しくは運動量が発生するような空間歪みが与えられている。 この結 果、 床反力が小さいときには、 Z MP位置が機体の前方に移動したときには左立 脚は前方に向かって曲がるとともに Z MP位置が機体の後方に移動したときには 左立脚は後方に向かって曲がるが、 床反力が大きくなるに従い、 逆に、 Z MP位 置が機体の前方に移動したときには左立脚は後方に向かって曲がるとともに Z M P位置が機体の後方に移動したときには左立脚は前方に向かって曲がるように構 成されている。
図 1 6及び図 1 7には、 単脚支持期後期の体幹部における Y方向 (進行方向と 直交方向) 並びに X方向 (進行方向) の理想的な Z MP挙動空間の構成例をそれ ぞれ示している。
図 1 6に示すように、 単脚支持期後期の体幹部における Y方向の理想的な Z M P挙動空間は、 床反力が小さいときには Z M P位置が Z M P安定領域の中心から 外れるにつれて負方向すなわち Z MP位置が Z MP安定領域の中心から外れる方 向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大き くなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて正方向す なわち Z M P位置が Z M P安定領域の中心に向かうようなロボヅトの変形量若し くは運動量が生じるような空間歪みが与えられている。 この結果、 床反力が小さ いときには、 Z MP位置が機体の内側に移動したときには 部は内側に向かつ て曲がるとともに Z MP位置が機体の外側に移動したときには 部は外側に向 かって曲がるが、 床反力が大きくなるに従い、 逆に、 Z MP位置が機体の内側に 移動したときには 部は外側に向かって曲がるとともに Z M P位置が機体の外 側に移動したときには体幹部は内側に向かって曲がるように構成されている。 また、 図 1 7に示すように、 単脚支持期後期の体幹部における X方向の理想的 な Z MP挙動空間は、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて負方向すなわち Z MP位置が Z MP安定領域の中心から 外れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反 力が大きくなるに従い、 逆に、 Z MP位置が Z MP安定領域の中心から外れるに つれて正方向すなわち Z M P位置が Z M P安定領域の中心に向かうようなロボッ トの変形量若しくは運動量が発生するような空間歪みが与えられている。 この結 果、 床反力が小さいときには、 Z MP位置が機体の前方に移動したときには体幹 部は前方に向かって曲がるとともに Z MP位置が機体の後方に移動したときには 僻 Φ部は後方に向かって曲がるが、 床反力が大きくなるに従い、 逆に、 Z MP位 置が機体の前方に移動したときには体幹部は後方に向かって曲がるとともに Z M P位置が機体の後方に移動したときには^部は前方に向かって曲がるように構 成されている。
図 1 8及び図 1 9には、 両脚支持期の左立脚における Y方向 (進行方向と直交 方向) 並びに X方向 (進行方向) の Z MP挙動空間の構成例をそれそれ示してい る。
図 1 8に示すように、両脚支持期の左立脚における Y方向の Z MP挙動空間は、 Z MP位置が Z MP安定領域の中心から外れるにつれて負方向すなわち Z MP位 置が Z M P安定領域の中心から外れる方向に向かうようなロボヅトの変形量若し くは運動量が発生するが、 床反力が大きくなるに従い、 機体に発生する変形量若 しくは運動量が次第に小さくなっていくような空間歪みが与えられている。 両脚 支持期では 2本の脚で支持するため、 1本の脚で支持する単脚支持期より Z MP 挙動空間の剛性が高くなり、 空間歪みは小さい。 この結果、 Z MP位置の Y方向 への移動量にほぼ線形的に左立脚の曲がり量が減少する。 床反力が小さいときに は、 Z M P位置が機体の内側に移動したときには左立脚は内側に向かって曲がる とともに、 Z MP位置が機体の外側に移動したときには左立脚は外側に向かって 曲がるが、 床反力が大きくなるにつれて、 Z MP位置が内側又は外側のいずれに 移動しても左立脚は曲がり難くなるように構成されている。 両脚支持期では 2本 の脚で支持するため 1本の脚で支持する単脚支持期に対し脚の曲がり量は小さい。 また、 図 1 9に示すように、 両脚支持期の左立脚における X方向の Z MP挙動 空間は、 Z MP位置が Z MP安定領域の中心から外れるにつれて負方向すなわち Z M P位置が Z M P安定領域の中心から外れる方向に向かうようなロボットの変 形量若しくは運動量が発生するが、 床反力が大きくなるに従い、 機体に発生する 変形量若しくは運動量が次第に小さくなっていくような空間歪みが与えられてい る。 両脚支持期では 2本の脚で支持するため 1本の脚で支持する単脚支持期に対 し、 Z MP挙動空間の剛性が高くなり、 空間歪みは小さい。 この結果、 Z MP位 置の X方向への移動量にほぼ線形的に左立脚の曲がり量が減少する。 床反力が小 さいときには、 Z M P位置が機体の前方に移動したときには左立脚は前方に向か つて曲がるとともに、 Z MP位置が機体の後方に移動したときには左立脚は後方 に向かって曲がるが、 床反力が大きくなるにつれて、 Z M P位置が前方又は後方 のいずれに移動しても左立脚は曲がり難くなるように構成されている。両脚支持 期では 2本の脚で支持するため 1本の脚で支持する単脚支持期に対し脚の曲がり 量は小さい。
図 2 0及び図 2 1には、 両脚支持期の左立脚における Y方向 (進行方向と直交 方向)並びに X方向 (進行方向) の理想的な Z MP挙動空間の構成例をそれそれ 示している。
図 2 0に示すように、 両脚支持期の左立脚における Y方向の理想的な Z MP挙 動空間は、 床反力が小さいときには、 Z MP位置が Z MP安定領域の中心から外 れるにつれて負方向すなわち Z MP位置が Z MP安定領域の中心から外れる方向 に向かうようなロボヅトの変形量若しくは運動量が発生するが、 床反力が大きく なるに従い、 逆に、 Z MP位置が Z M P安定領域の中心から外れるにつれて正方 向すなわち Z MP位置が Z M P安定領域の中心に向かうようなロボットの変形量 若しくは運動量が発生するような空間歪みが与えられている。両脚支持期では 2 本の脚で支持するため、 1本の脚で支持する単脚支持期より Z MP挙動空間の剛 性が高くなり、 空間歪みは小さい。 この結果、 床反力が小さいときには、 Z MP 位置が機体の内側に移動したときには左立脚は内側に向かって曲がるとともに Z M P位置が機体の外側に移動したときには左立脚は外側に向かって曲がるが、 床 反力が大きくなるに従い、 逆に、 Z MP位置が機体の内側に移動したときには左 立脚は外側に向かって曲がるとともに Z MP位置が機体の外側に移動したときに は左立脚は内側に向かって曲がるように構成されている。 両脚支持期では 2本の 脚で支持するため、 1本の脚で支持する単脚支持期に対して脚の曲がり量は小さ い。
また、 図 2 1に示すように、 両脚支持期の左立脚における X方向の理想的な Z MP挙動空間は、 床反力が小さいときには、 Z MP位置が Z MP安定領域の中心 から外れるにつれて負方向すなわち Z MP位置が Z MP安定領域の中心から外れ る方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力が 大きくなるに従い、 逆に、 Z MP位置が Z MP安定領域の中心から外れるにつれ て正方向すなわち Z M P位置が Z M P安定領域の中心に向かうようなロボヅ トの 変形量若しくは運動量が発生するような空間歪みが与えられている。 両脚支持期 では 2本の脚で支持するため、 1本の脚で支持する単脚支持期より Z MP挙動空 間の剛性が高くなり、 空間歪みは小さい。 この結果、 床反力が小さいときには、 Z MP位置が機体の前方に移動したときには左立脚は前方に向かって曲がるとと もに Z MP位置が機体の後方に移動したときには左立脚は後方に向かって曲がる が、 床反力が大きくなるに従い、 逆に、 Z MP位置が機体の前方に移動したとき には左立脚は後方に向かって曲がるとともに Z MP位置が機体の後方に移動した ときには左立脚は前方に向かって曲がるように構成されている。 両脚支持期では 2本の脚で支持するため、 1本の脚で支持する単脚支持期の対し、 脚の曲がり量 は小さい。
図 2 2及び図 2 3には、 両脚支持期の体幹部における Y方向 (進行方向と直交 方向) 並びに X方向 (進行方向) の理想的な Z MP挙動空間の構成例をそれそれ 示している。
図 2 2に示すように、 両脚支持期の体幹部における Y方向の理想的な Z MP挙 動空間は、 床反力が小さいときには、 Z MP位置が Z MP安定領域の中心から外 れるにつれて負方向すなわち Z MP位置が Z MP安定領域の中心から外れる方向 に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きく なるに従い、 逆に、 Z MP位置が Z MP安定領域の中心から外れるにつれて正方 向すなわち Z M P位置が Z M P安定領域の中心に向かうようなロボットの変形量 若しくは運動量が発生するような空間歪みが与えられている。 両脚支持期では 2 本の脚で支持するため、 1本の脚で支持する単脚支持期より Z MP挙動空間の剛 性が高くなり、 空間歪みは小さい。 この結果、 床反力が小さいときには、 Z MP 位置が機体の内側に移動したときにはィ 部は内側に向かって曲がるとともに Z M P位置が機体の外側に移動したときには体幹部は外側に向かって曲がるが、 床 反力が大きくなるに従い、 逆に、 Z MP位置が機体の内側に移動したときには体 幹部は外側に向かって曲がるとともに Z MP位置が機体の外側に移動したときに は体幹部は内側に向かって曲がるように構成されている。
また、 図 2 3に示すように、 両脚支持期の体幹部における X方向の理想的な Z MP挙動空間は、 床反力が小さいときには、 Z MP位置が Z MP安定領域の中心 から外れるにつれて負方向すなわち Z MP位置が Z MP安定領域の中心から外れ る方向に向かうようなロボヅトの変形量若しくは運動量が発生するが、 床反力が 大きくなるに従い、 逆に、 Z MP位置が Z M P安定領域の中心から外れるにつれ て正方向すなわち Z MP位置が Z MP安定領域の中心に向かうようなロボットの 変形量若しくは運動量が発生するような空間歪みが与えられている。 両脚支持期 では 2本の脚で支持するため、 1本の脚で支持する単脚支持期よりも Z MP挙動 空間の剛性が高くなり、空間歪みは小さい。 この結果、床反力が小さいときには、 Z MP位置が機体の前方に移動したときには^部は前方に向かって曲がるとと もに Z M P位置が機体の後方に移動したときには 部は後方に向かって曲がる が、 床反力が大きくなるに従い、 逆に、 Z M P位置が機体の前方に移動したとき には!^部は後方に向かって曲がるとともに Z MP位置が機体の後方に移動した ときには 部は前方に向かって曲がるように構成されている。
図 2 4及び図 2 5には、 単脚支持期前期の左立脚における Y方向 (進行方向と 直交方向)並びに X方向 (進行方向) の Z MP挙動空間の構成例をそれそれ示し ている。
図 2 4に示すように、 単脚支持期前期の右立脚における Y方向の Z MP挙動空 間は、 床反力が小さいときには Z MP位置が Z MP安定領域の中心から外れるに つれて負方向すなわち Z MP位置が Z MP安定領域の中心から外れる方向に向か うようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなるに つれて Z M P位置が機体の外側に向かって移動したときにはロボヅトの変形量若 しくは運動量が生じなくなるような空間歪みが与えられている。 この結果、 支持 脚として右立脚においては、 Z MP位置の Y方向への移動量にほぼ線形的に曲が り量が減少する。 床反力が小さいときには、 Z MP位置が機体の内側に移動した ときには右立脚は内側に向かって曲がるとともに、 Z MP位置が機体の外側に移 動したときには右立脚は外側に向かって曲がるが、床反力が大きくなるにつれて、 Z MP位置が機体の外側に移動しても右立脚は外側には曲がり難くなるように構 成されている。
また、 図 2 5に示すように、 単脚支持期前期の右立脚における X方向の Z MP 挙動空間は、 Z MP位置が Z MP安定領域の中心から外れるにつれて負方向すな わち Z M P位置が Z M P安定領域の中心から外れる方向に向かうようなロボット の変形量若しくは運動量が発生するが、 床反力が大きくなるに従い、 機体に発生 する変形量若しくは運動量が次第に小さくなっていくような空間歪みが与えられ ている。 この結果、 支持脚として右立脚においては、 Z MP位置の X方向への移 動量にほぼ線形的に曲がり量が減少する。 床反力が小さいときには、 Z MP位置 が機体の前方に移動したときには右立脚は前方に向かって曲がるとともに、 Z M P位置が機体の後方に移動したときには右立脚は後方に向かって曲がるが、 床反 力が大きくなるにつれて、 Z MP位置が前方又は後方のいずれに移動しても右立 脚は曲がり難くなるように構成されている。
図 2 6及び図 2 7には、 単脚支持期前期の右立脚における Y方向 (進行方向と 直交方向) 並びに X方向 (進行方向) の理想的な Z MP挙動空間の構成例をそれ それ示している。
図 2 6に示すように、 単脚支持期前期の右立脚における Y方向の理想的な Z M P挙動空間は、 床反力が小さいときには Z M P位置が Z M P安定領域の中心から 外れるにつれて負方向すなわち Z MP位置が Z MP安定領域の中心から外れる方 向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大き くなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて正方向す なわち Z M P位置が Z M P安定領域の中心に向かうような口ボヅトの変形量若し くは運動量が生じるような空間歪みが与えられている。 この結果、 床反力が小さ いときには、 Z MP位置が機体の外側に移動したときには右立脚は外側に向かつ て曲がるとともに Z MP位置が機体の内側に移動したときには右立脚は内側に向 かって曲がるが、 床反力が大きくなるに従い、 逆に、 Z MP位置が機体の外側に 移動したときには右立脚は内側に向かって曲がるとともに Z MP位置が機体の内 側に移動したときには右立脚は外側に向かって曲がるように構成されている。 また、 図 2 7に示すように、 単脚支持期前期の右立脚における X方向の理想的 な Z MP挙動空間は、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて負方向すなわち Z MP位置が Z MP安定領域の中心から 外れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反 力が大きくなるに従い、 逆に、 Z MP位置が Z MP安定領域の中心から外れるに つれて正方向すなわち Z MP位置が Z M P安定領域の中心に向かうようなロボッ トの変形量若しくは運動量が発生するような空間歪みが与えられている。 この結 果、 床反力が小さいときには、 Z MP位置が機体の前方に移動したときには右立 脚は前方に向かって曲がるとともに Z M P位置が機体の後方に移動したときには 右立脚は後方に向かって曲がるが、 床反力が大きくなるに従い、 逆に、 Z MP位 置が機体の前方に移動したときには右立脚は後方に向かって曲がるとともに Z M P位置が機体の後方に移動したときには右立脚は前方に向かって曲がるように構 成されている。
図 2 8及び図 2 9には、 単脚支持期前期の体幹部における Y方向 (進行方向と 直交方向) 並びに X方向 (進行方向) の理想的な Z MP挙動空間の構成例をそれ そ'れ示している。 図 2 8に示すように、 単脚支持期前期の体幹部における Y方向の理想的な Z M P挙動空間は、 床反力が小さいときには Z M P位置が Z M P安定領域の中心から 外れるにつれて負方向すなわち Z MP位置が Z MP安定領域の中心から外れる方 向に向かうようなロボッ卜の変形量若しくは運動量が発生するが、 床反力が大き くなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて正方向す なわち Z MP位置が Z MP安定領域の中心に向かうようなロボットの変形量若し くは運動量が生じるような空間歪みが与えられている。 この結果、 床反力が小さ いときには、 Z M P位置が機体の外側に移動したときには 部は外側に向かつ て曲がるとともに Z MP位置が機体の内側に移動したときには 部は内側に向 かって曲がるが、 床反力が大きくなるに従い、 逆に、 Z MP位置が機体の外側に 移動したときには^部は内側に向かって曲がるとともに Z MP位置が機体の内 側に移動したときには体幹部は外側に向かって曲がるように構成されている。 また、 図 2 9に示すように、 単脚支持期前期の 部における X方向の理想的 な Z MP挙動空間は、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて負方向すなわち Z MP位置が Z MP安定領域の中心から 外れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反 力が大きくなるに従い、 逆に、 Z MP位置が Z MP安定領域の中心から外れるに つれて正方向すなわち Z MP位置が Z MP安定領域の中心に向かうようなロボッ トの変形量若しくは運動量が発生するような空間歪みが与えられている。 この結 果、 床反力が小さいときには、 Z MP位置が機体の前方に移動したときには体幹 部は前方に向かって曲がるとともに Z MP位置が機体の後方に移動したときには 体幹部は後方に向かって曲がるが、 床反力が大きくなるに従い、 逆に、 Z MP位 置が機体の前方に移動したときには体幹部は後方に向かって曲がるとともに Z M P位置が機体の後方に移動したときには # ^部は前方に向かって曲がるように構 成されている。
C . Z MP挙動空間の実現例
B項では、 単に Z MP安定度判別規範に頼るだけでなく、 ロボットや路面が剛 体に限りなく近いと仮定できないことを考慮して、 Z M P位置と床反力で定義さ れる Z MP挙動空間という観点から、 姿勢安定性に優れたロボヅト · システムの 構成方法について説明してきた。
本項では、 機体を安定に導くような空間歪みが与えられた Z M P挙動空間をハ —ドウヱァ的に備えた脚式移動ロボットの構成例について説明する。
C - 1 . 足平構造による安定した Z M P挙動空間の形成
この項では、 脚式移動ロボヅト 1 0◦の足部の足平構造を用いて、 機体を容易 に安定方向に向かわせるための空間歪みが与えられた Z M P挙動空間に関する実 施形態について説明する。
図 3 0には、 本発明の一実施形態に係る脚式移動ロボット 1 0 0に対して適用 可能な左足平部の表側の外観を示している。 また、 図 3 1には、 同左足平部の裏 側の外観を示している。 また、 図 3 2〜図 3 5には、 同左足平部の側面図 (但し 外側の側面)、底面図、正面図、 上面図がそれそれ示されている。 また、 図 3 6に は、 図 3 5に示された線分 A— Aにおける断面図が示されている。
但し、 以下の説明では、 足平の 「裏側」 は底面すなわち路面に接地する面を指 し、 足平の「表側」はその反対側の上面を指すものとする。 また、 足平の「内側」 は機体の内側となる部位 (例えば、 左足平であれば右側すなわち土踏まず側) を 指し、 足平の「外側」 は機体の内側となる部位 (例えば、 左足平であれば左側す なわち土踏まずの反対側) を指すものとする。
図 3 0及び図 3 1に示すように、 足平は、 足平フレーム 4 0 3と、 その上面を 被覆するカバ一 4 0 2で構成される。図 3 6からも判るように、カバ一 4 0 2は、 軽量化などのため、 中空の構造体で形成される。
足平フレーム 4 0 3の上面略中央には、 該当する可動脚ュニヅトと足首関節に より連結される足首連結部 4 0 1が配設されている。
足平フレーム 4 0 3や、 カバー 4 0 2、 足首部連結部 4 0 1などの構造体は、 例えば、 超ジユラルミンのような軽量で且つ高剛性の素材を利用して製作されて いる。
図 3 3からも判るように、 足平フレーム 4 0 3の底面の前後及び左右の各側縁 に沿って、 足底緩衝材 (外) 4 0 4と、 足底緩衝材 (内) 4 0 5と、 足底緩衝材 (前) 4 0 6と、 足底緩衝材 (後) 4 0 7がそれそれ配設されている。 これら緩 衝材 4 0 4〜4 0 7は、 例えばウレタン .ゴムのような、 所定の弾性係数を持つ 弾性体を用いて構成することができる。
図 3 2からも判るように、 足底緩衝材 (外) 4 0 4は、 両端の盛り上がった部 位 4 0 4— aと、 その間の凹んだ部位 4 0 4— bとで構成される略凹状の構造体 である。 また、 図 3 1からも判るように、 足底緩衝材 (内) 4 0 5も、 同様に、 両端が盛り上がった略凹状の構造体で構成されており、 足平の底面には 4隅に凸 部が形設されている。 各足底緩衝材 (外/内) 4 0 4 , 4 0 5の凹形状の深さは 例えば 0 . 5 mm程度でよい。
足底が路面に接地されて路面から反力などが印加されると、 初期は盛り上がつ た部位 4 0 4— aのみで支持するため、 弾性係数が小さくなる (すなわち、 外力 に対する変形量が大きい)。これに対し、部位 4 0 4— aの収縮が進行して凹んだ 部位 4 0 4— bと同じ高さに到達した以後は、 緩衝材 4 0 4の底面全面で支持す るようになるため、 弾性係数が大きくなる (すなわち、 外力に対する変形量が小 さくなる)。
緩衝材 4 0 4 , 4 0 5がこのような略凹状の構造体で構成される場合、 床反力 などの荷重に対する緩衝材の変形特性を非線形にすることができる。 通常の歩行 時のように、 床反力が小さい状態では、 足平フレームの足底の 4隅に形設された 凸部のみで支持する。 これに対し、 着地時などの衝撃により床反力が所定値を越 えると、足底に配設された緩衝材 4 0 4〜4 0 7全面で支持することになるので、 接地面を受容する特性が変化して、 衝撃力に好適に対処することができる。
このように非線形変形特性を持つ足底緩衝体を使用することにより、 まず路面 と接触を開始すると足底緩衝体が変形を開始することから、 充分な緩衝作用を期 待することができる。 また、 さらに変形が進行すると、 非線形特性により今度は 印加荷重当りの変形量が減少していくので、 過度の変形により足底が不安定とな ることはない。
本実施形態では、 さらに、 足底緩衝材 (外) 4 0 4と足底緩衝材 (内) 4 0 5 とで弾性特性を相違させている。 より具体的には、 図 3 7に示すように、 足底緩 衝材 (内) 4 0 5に比し、 足底緩衝材 (外) 4 0 4の弾性係数を大きく設定して いる。 この結果、 足底緩衝材 (外) 4 0 4と足底緩衝材 (内) 4 0 5は、 いずれ も通常歩行時と衝撃力印加時とで変形量は非線形となるが、図 3 8に示すように、 非線形領域における変形量は、 足底緩衝材 (内) 4 0 5の方が足底緩衝材 (外) 4 0 4よりも大きくなる。
このような、 足底緩衝材 (内) 4 0 5と足底緩衝材 (外) 4 0 4の変形特性の 相違により、 高い衝撃力が印加されたときには、 足底緩衝材 (内) 4 0 5の方が より深く沈み込むことになる。 この結果、 この足平フレーム 4 0 3上に搭載され た脚部ユニット (図示しない) が、 機体の内側すなわち中心側 (土踏まず側) に 向かって傾くことになり、 ロボヅトの Z MP位置を機体の内側すなわち遊脚を着 地させることで Z MP安定領域が倍増する方向へ移動させる作用が働く。
すなわち、 図 3 0〜図 3 5に示すような足底構造を採用することにより、 ロボ ッ卜の脚部の Z MP挙動空間において、 床反力が小さいときには Z M P位置が Z MP安定領域の中心から外れるにつれて負方向すなわち Z M P位置が Z MP安定 領域の中心から外れる方向に向かうようなロボットの変形量若しくは運動量が発 生するが、 床反力が大きくなるに従い、 Z M P位置が Z M P安定領域の中心から 外れるにつれて正方向すなわち Z MP位置が Z M P安定領域の中心に向かうよう なロボットの変形量若しくは運動量が生じるような空間歪みが形成される。 した がって、 図 1 4、 図 2 0、 並びに図 2 6を参照しながら既に説明したように、 単 脚支持後期、 両脚支持期、 並びに単脚支持前期の各局面において、 床反力が小さ いときには、 Z M P位置が機体の内側に移動したときには立脚は内側に向かって 曲がるとともに Z M P位置が機体の外側に移動したときには立脚は外側に向かつ て曲がるが、 床反力が大きくなるに従い、 逆に、 Z MP位置が機体の内側に移動 したときには立脚は外側に向かって曲がるとともに Z M P位置が機体の外側に移 動したときには立脚は内側に向かって曲がるように構成される。 この結果、 脚式 移動ロボットの姿勢の安定性 ·制御性を向上させる (又は、 姿勢安定制御を容易 にする) という効果を導出することができる。
なお、 緩衝材の非線形的な変形特性は、 緩衝材の断面に対して上述したような 凹凸形状を設ける以外にも、 弾性係数の異なる弾性体を積層することによつても 得ることができる。 また、 使用する緩衝材の底面の形状や面積、 弾性係数など材 質を相違させることによって、 内側 (土踏まず側) と外側 (土踏まずの反対側) とでその変形特性を容易に相違させることができる。
図 3 9には、足平フレーム 4 0 3の上面を斜視した様子を示している。同様に、 図 4 0には、 足平フレーム 4 0 3の底面を斜視した様子を示している。
各図に示すように、 足平フレーム 4 0 3は、 例えば超ジュラルミンなどの軽量 且つ高剛性素材からなる平板構造体である。
図 3 9に示すように、 足平フレーム 4 0 3の上面には、 前後に各 1箇所ずつ凹 部 (a ) 4 0 3— a並びに凹部 (b ) 4 0 3 _ bが凹設されている。 これら凹部 4 0 3— a及び 4 0 3— bの間の凸部 ( d ) 4 0 3— dには、 足首連結用部品の 配置位置 4 0 3—fが設定されている。
また、図 4 0に示すように、足平フレーム 4 0 3の底面には、略中央に凹部(c ) 4 0 3— cが凹設されており、 その周縁には凸部 (e ) 4 0 3— eが形成されて いる。
図 4 1には、 この足平フレーム 4 0 3をロール軸方向 (すなわち機体の前後方 向) に沿って分割した断面図を示している。 同図からも判るように、 各凹部 4 0 3— a , 4 0 3— b, 4 0 3— cは平板構造の足平フレーム 4 0 3の厚みを薄く することによって、 足平全体の剛性のバランスを調整する効果がある。
本実施形態では、 足平フレーム 4 0 3の上面の略中央には、 前後両側の凹部 4 0 3— a , 4 0 3— bに挟設された凸部 4 0 3— dの存在などにより、 ピッチ軸 回りに比し、 ロール軸回りの剛性が強化されている (図 4 2を参照のこと)。 図 3並びに図 4に示した機体の全体構成からも推測されるように、 2足直立夕 イブの脚式移動ロボヅト 1 0 0は、 歩行方向すなわち前後方向 (ピッチ軸回り方 向) に比し、 横方向 (ロール軸回り方向) の Z MPの存在範囲が狭い。 言い換え れば、 ロール軸回りの外乱に対するロバスト性が低いため、 横方向すなわち口一 ル軸回りに対しては厳しい制御精度が要求されている。 本実施形態では、 図 3 9 〜図 4 1に示すような足平フレーム 4 0 3の構造を採用することにより、 ロール 軸回りの剛性を強化することができ、 横方向の外乱に対する口バスト性を著しく 向上させるという効果を導出することができる。
すなわち、 図 3 9〜図 4 1に示すような足底構造を採用することにより、 ロボ ヅトの脚部の Z MP挙動空間において、 Z M P位置が Z M P安定領域の中心に向 かうようなロボットの変形量若しくは運動量が生じるような空間歪みが形成され る。 したがって、 図 1 4、 図 2 0、 並びに図 2 6を参照しながら既に説明したよ うに、 単脚支持後期、 両脚支持期、 並びに単脚支持前期の各局面において、 Z M P位置が機体の外側に移動したときには立脚は内側に向かって曲がるように構成 される。
このような機械的構成により Z M P位置が Z M P安定領域の中央に向かうよう な Z MP挙動空間の空間歪みを形成することによって、 姿勢の安定性 ·制御性を 向上させるという効果を導出することができる。 あるいは、 比較的遅いサンプリ ング周期を以つて機体の姿勢安定性を維持できるなど、 姿勢安定制御を容易にす るという効果を導出することができる。
図 4 3には、 本発明の他の実施形態に係る左足部の表側の外観を示している。 また、 図 4 4には、 同じ左足平部の裏側の外観を示している。 また、 図 4 5並び に図 4 6には、 同じ左足平部の側面図(但し、外側の側面)、底面図をそれそれ示 している。
図 4 3及び図 4 4に示すように、 足平は、 足平フレーム 5 0 3と、 その上面を 被覆するカバ一 5 0 2で構成される。 カバー 5 0 2は、 軽量化などのため、 中空 の構造体で形成される。 足平フレーム 5 0 3の上面略中央には、 該当する可動脚 ュニヅトと足首関節により連結される足首連結部 5 0 1が配設されている。
足平フレーム 5 0 3は、 図 3 9〜図 4 1に示した前述の実施形態と同様に、 上 面及び底面の略中央部に 1以上の凹部が形設された平板構造体で構成され、 ピヅ チ軸回り並びにロール軸回りの剛性のバランスが調整されている。 すなわち、 ピ ッチ軸回りに比し、口一ル軸回りの剛性が強化されており(図 4 3を参照のこと)、 横方向の外乱に対する口バスト性を著しく向上させるという効果が導出されてい る。
足平フレーム 5 0 3や、 カバ一 5 0 2、 足首部連結部 5 0 1などの構造体は、 例えば、 超ジユラルミンのような軽量で且つ高剛性の素材を利用して製作されて いる (同上)。
図 4 4並びに図 4 6からも判るように、 足平フレーム 5 0 3の底面の前後及び 左右の四隅には、 それそれ足底緩衝材(内一前) 5 0 4と、 足底緩衝材(外—前) 5 0 5と、 足底緩衝材 (内一後) 5 0 6と、 足底緩衝材 (外一後) 5 0 7が配設 されている。 また、 内側 (土踏まず側) の側縁に沿って 1個の足底緩衝材 (内一 中) 5 0 8が配設され、 足底の外側の側縁に沿って 2個の足底緩衝材 (外—中) 5 0 9— a並びに 5 0 9 _ bが配設されている。これら緩衝材 5 0 4 ~ 5 0 9は、 例えばウレタン ·ゴムのような、 弾性係数が所定値に設定された弾性体を用いて 構成することができる。
図 4 5からも判るように、足底の内側略中央に配設された足底緩衝材(内-中) 5 0 8、 並びに、 足底の外側略中央に配設された足底緩衝材 (外一中) 5 0 9— a及び 5 0 9— bは、 足底の四隅に配設されたその他の足底緩衝材 5 0 4〜5 0 7よりも背丈が低く構成されている。 この高さの差 tは例えば 0 . 5 mm程度で よい。 この緩衝材間の高低差により、 足底全体として持つ弾性特性に非線形成を 与えることができる (図 3 7〜図 3 8を参照のこと)。
足底が路面に接地されて路面から反力などが印加されると、 初期は背丈の高い 四隅の足底緩衝材 5 0 4〜 5 0 7のみで支持するため、弾性係数が小さくなる(す なわち、外力に対する変形量が大きい)。 これに対し、 四隅の足底緩衝材 5 0 4〜 5 0 7の収縮が進行して、 足底緩衝材 (内—中) 5 0 8、 足底緩衝材 (外—中) 5 0 9 - a及び 5 0 9 _ bと同じた化さに到達した以後は、 すべての緩衝材 5 0 4〜5 0 9で支持するようになるため、 弾性係数が大きくなる (すなわち、 外力 に対する変形量が小さくなる)。
要するに、 四隅の緩衝材 5 0 4〜5 0 7と内側並びに外側の略中央に配設され た緩衝材 5 0 8〜5 0 9との間で高さの差を設けた場合、 床反力などの荷重に対 する緩衝材の変形特性を非線形にすることができる。 通常の歩行時のように、 床 反力が小さい状態では、 足平フレームの足底の 4隅に形設された凸部のみで支持 する。 これに対し、 着地時などの衝撃により床反力が所定値を越えると、 足底に 配設されたすべての緩衝材 5 0 4〜5 0 9全面で支持することになるので、 接地 面を受容する特性が変化して、 衝撃力に好適に対処することができる。
このように非線形変形特性を持つ足底緩衝材を足部の足底に使用することによ り、 まず路面と接触を開始すると足底緩衝体が変形を開始することから、 充分緩 衝作用を期待することができる。 また、 さらに変形が進行すると、 非線形特性に より今度は印加される荷重当りの変形量が減少していくので、 過度の変形により 足底が不安定となることはない。
本実施形態では、 さらに、 内側略中央の足底緩衝材 5 0 8と外側略中央の足底 緩衝材 5 0 9とで、 個数の差を設けることにより足底の内側と外側とで弾性特性 を相違させている。 より具体的には、 図 3 7に示すように、 足底の内側に比し、 外側の方の緩衝材の個数をより多くすることによって、 弾性係数を大きく設定し ている。 この結果、 足底緩衝材 (外) 5 0 9と足底緩衝材 (内) 5 0 8は、 いず れも通常歩行時と衝撃力印加時とで変形量は非線形となるが、 図 3 8に示すよう に、 非線形領域における変形量は足底緩衝材(内) 5 0 8の方が足底緩衝材(外) 5 0 9よりも大きくなる。
このような、 足底緩衝材 (内) 5 0 8と足底緩衝材 (外) 5 0 9の変形特性の 相違により、 高い衝撃力が印加されたときには、 足底緩衝材 (内) 5 0 8の方が より深く沈み込むことになる。 この結果、 この足平フレーム 5 0 3上に搭載され た脚部ユニット (図示しない) が、 機体の内側すなわち中心に向かって傾くこと になり、 ロボットの Z M P位置を機体の内側すなわち遊脚を着地させることで安 定領域が倍増する方向へ移動させる作用が働く。
すなわち、 図 4 3〜図 4 6に示すような足底構造を採用することにより、 ロボ ヅトの脚部の Z MP挙動空間において、 床反力が小さいときには Z M P位置が Z MP安定領域の中心から外れるにつれて負方向すなわち Z MP位置が Z M P安定 領域の中心から外れる方向に向かうようなロボットの変形量若しくは運動量が発 生するが、 床反力が大きくなるに従い、 Z M P位置が Z MP安定領域の中心から 外れるにつれて正方向すなわち Z M P位置が Z M P安定領域の中心に向かうよう なロボッ卜の変形量若しくは運動量が生じるような空間歪みが形成される。 した がって、 図 1 4、 図 2 0、 並びに図 2 6を参照しながら既に説明したように、 単 脚支持後期、 両脚支持期、 並びに単脚支持前期の各局面において、 床反力が小さ いときには、 Z M P位置が機体の内側に移動したときには立脚は内側に向かって 曲がるとともに Z MP位置が機体の外側に移動したときには立脚は外側に向かつ て曲がるが、 床反力が大きくなるに従い、 逆に、 Z MP位置が機体の内側に移動 したときには立脚は外側に向かって曲がるとともに Z MP位置が機体の外側に移 動したときには立脚は内側に向かって曲がるように構成される。 この結果、 脚式 移動ロボットの姿勢の安定性 ·制御性を向上させる (又は、 姿勢安定制御を容易 にする) という効果を導出することができる。
なお、 緩衝材の非線形的な変形特性は、 緩衝材の断面に対して上述したような 凹凸形状を設ける以外にも、 弾性係数の異なる弾性体を積層することによつても 得ることができる。 また、 使用する緩衝材の底面の形状や面積、 弾性係数など材 質を相違させることによって、 足平の内側 (土踏まず側) と外側 (土踏まずの反 対側) とでその変形特性を容易に相違させることができる。
この項で説明した本発明の実施形態によれば、 本発明に固有の足平構造によつ て安定した空間歪みを Z M P挙動空間に形成することにより、 比較的遅 ヽサンプ リング周期で Z MP安定度判別規範を用いながら機体の姿勢安定制御を行なうこ とができる、 という点を充分理解されたい。 C - 2 . 脚部構造による安定した Z MP挙動空間の形成
この項では、脚式移動ロボット 1 0 0の脚部ュニットのフレーム構造を用いて、 機体を容易に安定方向に向かわせるための空間歪みが与えられた Z MP挙動空間 に関する実施形態について説明する。
この実施形態では、 左右それそれの脚部ユニットについて、 その外側と内側と で剛性を異ならせる構造、 すなわち、 脚部の内側フレームに比し外側フレームの 剛性 (特に、 曲げ剛性) を強化した構造を採用する。
このような脚部ュニットの構成によって、 Z MP位置が Z MP安定領域の中央 に向かうような空間歪みが Z MP挙動空間に形成されるので、 姿勢の安定性 ·制 御性を向上させる (又は、 姿勢安定制御を容易にする) という効果を導出するこ とができる。
また、 予期しない外乱が発生した場合であっても、 ロボットの Z MP位置が機 体の外側すなわち土踏まずの反対側に移動しにくくなるようにして、 転倒を容易 に (すなわち、 機械的構造を利用して自然に) 回避することができる。
図 4 7には、 本実施形態に係る脚式移動ロボット 1 0 0の、 左右の各脚部 6 0 4の構成をさらに大きく描いている。
同図に示すように、 脚部 6 0 4は、 大腿部ュニヅト 6 1 1と、 脛部ュニヅト 6 1 2と、 足平 6 1 3とで構成される。
大腿部ュニヅト 6 1 1の略上端には、 その上方の 部 6 0 1との間でピッチ 軸並びにロール軸の各軸回りの関節自由度を付与するための、 股関節ロール軸ァ クチユエ一夕 6 2 1と、股関節ピッチ軸ァクチユエ一夕 6 2 2が配設されている。 また、 大腿部ュニヅ ト 6 1 1の略下端には、 その下方の脛部ュニッ ト 6 1 2との 間でピツチ軸回りの関節自由度を付与するための膝関節ビツチ軸ァクチユエ一夕 6 2 3が配設されている。
大腿部ュニット 6 1 1の内側すなわち土踏まず側は、 大腿部内側側板 6 3 1で 支持されている。 また、 その外側すなわち土踏まずの反対側は、 大腿部外側側板 6 3 2で支持されている。 また、 大腿部ュニヅト 6 1 1の正面は大腿部正面プレ —ト 6 3 5で被覆されている。大腿部内側側板 6 3 1や大腿部外側側板 6 3 2は、 比較的軽量でも剛性を実現することができる超ジユラルミンなどの素材を利用し て構成されている。
また、 脛部ュニヅト 6 1 2の略下端には、 その下方の足平 6 1 3との間でピッ チ軸回りの関節自由度を付与するために、 足首関節ピッチ軸ァクチユエ一夕 6 2 4が配設されている。
脛部ュニット 6 1 2の内側すなわち土踏まず側は、 脛部内側側板 6 3 3で支持 されている。 また、 その外側すなわち土踏まずの反対側は、 脛部外側側板 6 3 4 で支持されている。 また、 脛部ュニヅト 6 1 2の正面は大腿部正面プレート 6 3 6で被覆されている。脛部内側側板 6 3 3や脛部外側側板 6 3 4は、 比較的軽量 でも剛性を実現することができる超ジュラルミンなどの素材を利用して構成され ている。
図 4 8〜図 5 0には、 脚式移動ロボヅト 1 0 0の脚部の 3面図、 すなわち外側 (土踏まずの反対側)側面図、 正面図、 内側 (土踏まず側)側面図をそれそれ示 している。
図 4 9からも判るように、 本実施形態では、 大腿部内側側板 6 3 1に比し、 大 腿部外側側板 6 3 2の方が肉厚が大きくなるように構成されている (すなわち、 t l > t 2 )o この結果、大腿部外側側板 6 3 2の方が剛性(特に曲げ剛性)が高 くなる。 同様に、 脛部内側側板 6 3 3に比し、 脛部外側側板 6 3 4の方が肉厚が 大きくなるように構成されている。この結果、脛部外側側板 6 3 4の方が剛性(特 に曲げ剛性) が高くなる。
図 4 7〜図 5 0に示すように脚部ュニットの内側及び外側の機械的強度をこの ように構成することによって、 ロボットの脚部の Z MP挙動空間において、 Z M P位置が Z MP安定領域の中心から外れるにつれて正方向すなわち Z MP位置が Z M P安定領域の中心に向かうようなロボットの変形量若しくは運動量が生じる ような空間歪みが形成される。 したがって、 図 1 4、 図 2 0、 並びに図 2 6を参 照しながら既に説明したように、 単脚支持後期、 両脚支持期、 並びに単脚支持前 期の各局面において、 Z MP位置が機体の外側に移動したときには立脚は内側に 向かって曲がるように構成される。 この結果、 姿勢の安定性-制御性を向上させ るという効果を導出することができる。 あるいは、 比較的遅いサンプリング周期 を以つて機体の姿勢安定性を維持できるなど、 姿勢安定制御を容易にするという 効果を導出することができる。
また、 脚部 6 0 4全体としても、 内側に比し外側の剛性 (特に曲げ剛性) を強 ィ匕した構造体を実現することができる。 これによつて、 予期しない外乱が発生し た場合であっても、 脚部 6 0 4は、 ロボヅト 1 0 0の Z MP位置が機体の外側す なわち土踏まずの反対側に移動しにくくなるように自然に(すなわち制御なしに) 作用することができる。
脚部 6 0 4の内側フレームに比しその外側フレームの剛性を大きく設定するこ とで、 機体の外側すなわち土踏まずの反対側への予期せぬ外乱による Z MP移動 量を減少させることができる。 また、 外乱による Z MP移動方向を、 脚部 6 0 4 の動作により対応が容易な機体の内側すなわち土踏まず側へと誘導することがで きる。 この結果、 ロボット 6 0 0全体としての外乱に対するロバスト性を飛躍期 に向上させることができる。
さらに、 土踏まず側の脚剛性を比較的低く設定することにより、 位置制御のみ の機能しか持たない低コストのァクチユエ一夕 ·システムにおいても、 衝撃及び 振動が小さい立脚切替え動作を実現することができる。 これは、 動歩行中の画像 処理をも容易にし、 結果として、 自律機能を有する 2足歩行ロボット ·システム 若しくは人間形ロボット ·システムを非常に低コス卜で構成することを可能にす ロボヅ ト 1 0 0の Ζ ΜΡ位置が外側すなわち土踏まずの反対側に移動しにくく なるようにするという作用効果を得るためには、 脚部 6 0 4の外側における剛性 を、 内側のそれの 1 . 2倍以上に設定することが好ましい。 より好ましくは、 脚 部 6 0 4の外側における剛性を、 内側のそれの 1 . 5〜2倍に設定すればよい。 図 4 7〜図 5 0に示した実施形態では、 脚部 6 0 4の内側と外側とで剛性 (特 に曲げ剛性) を相違させるために、 使用する側板 6 3 1〜6 3 4の肉厚の相違を 利用したが、 本発明の要旨は必ずしもこれに限定されない。 同様の作用を導き出 すために、側板 6 3 1〜6 3 4の肉厚ではなく、形状(表面形状並びに断面形状) の相違や、 構成素材の相違 (弹性係数の異なる素材を使用するなど) を利用して もよい。
この項で説明した本発明の実施形態によれば、 本発明に固有の脚部ュニヅトの 構成により安定した Ζ ΜΡ空間を形成することによって、 比較的遅いサンプリン グ周期で Ζ Μ Ρ安定度判別規範を用いながら機体の姿勢安定制御を行なうことが できる、 という点を充分理解されたい。
P . Z MP挙動空間の制御システム
本実施形態では、 運動制御モジュール 3 0 0内において Z MPを姿勢安定度の 判別規範に用いて機体の姿勢や動作の制御を演算処理する。 このとき、 機体の Z MP挙動空間を定義して、 この Z MP挙動空間の定義に基づいて Z MP安定位置 を求めて、 Z MP位置が常に Z MP安定領域の中心に向かうように機体の姿勢や 動作を制御する。 また、 路面との接触状況に応じて Z MP挙動空間を逐次再定義 することにより、 常に Z M P位置が Z MP安定領域の中央に移動させようとする 機体の変形量若しくは運動量が生じるような空間歪みを Z MP挙動空間に与える ことにより、 機体の姿勢安定制御を容易な状態に維持することができる。
この項では、 Z M P挙動空間の制御システムの構成について詳解する。
図 5 1には、 Z MP挙動空間の制御システム 5 0 0の機能構成を模式的に示し ている。 この制御システム 5 0 0は、 実際には、 運動制御モジュール 3 0 0内の C P U 3 1 1が所定の制御プログラムを実行するという形態で実現される。
同図に示すように、 Z MP挙動空間の制御システム 5 0 0は、 Z MP挙動空間 定義部 5 0 1と、 安定点計算部 5 0 2とで構成される。
Z MP挙動空間定義部 5 0 1は、 機体の姿勢に関する目標値と、 実機の状態値 を入力して、 Z MP挙動空間を定義する。 定義された Z MP挙動空間には、 Z M P位置が Z M P安定領域の中央に移動させようとする機体の変形量若しくは運動 量が生じるような空間歪みが形成されている。
目標値は、 例えば計画軌道から算出される各関節ァクチユエ一夕の回転角、 角 速度、 角加速度などである。 また、 実機の状態値は、 各関節ァクチユエ一夕に配 設されたエンコーダより出力される関節の回転角、 角速度、 角加速度や、 その他 の機体上のセンサ入力、 並びに Z M P実測値などである。
Z MP挙動空間は、 例えば、 下式のように定義される。
U
Figure imgf000058_0001
ここで、 ベクトル Tは、 計画軌道などから求められる目標値である。 また、 行 列 Β , C , Dは空間変換用の行列である。
但し、 上記の Z MP挙動空間の定義式は、 B項で説明下ような Z MP挙動空間 の概念を最も単純ィ匕して記述したものであり、 本発明の要旨はこれに限定される ものではない。また、上式は、それそれの項を線形独立に加算して構成されるが、 干渉項も考慮して計算することが好ましい。
本実施形態では、 Z MP挙動空間定義部 5 0 1は、路面との接触状況に応じて、 Z MP挙動空間の定義を動的に切り換えるようになつている。例えば、 脚式移動 ロボットは脚式作業の過程で、 左脚による単脚支持期、 左脚が接地した両脚支持 期、 右脚による単脚支持期、 右脚が接地した両脚支持期という各動作フェーズを 順に繰り返すが、 各動作フェーズ毎に路面との接触状況は劇的に変ィ匕する。 した がって、 Z MP挙動空間の定義を逐次切り替えていくことにより、 いかなる動作 フェーズにおいても、 常に ZMP位置が ZMP安定領域の中央に移動させようと する機体の変形量若しくは運動量が生じるような空間歪みを形成するようにする。 安定点計算部 502は、 上述した Z MP挙動空間の定義式を 2階微分すること によって、 その安定点を求める。算出された安定点を基に各関節ァクチユエ一夕 に対する指令値が生成され、機体動作をサ一ボ制御することができる。この結果、 ZMP位置が Z M P安定領域の中央に移動させるような空間歪みが実現される。 本実施形態によれば、 運動制御モジュール 300内の CPU31 1が実行する 制御プログラムの記述によってロボットの ZMP挙動空間を任意に定義すること ができる。
例えば、 Z M P挙動空間における極大点及び/又は極小点を任意に指定するよ うにしてもよい。 また、 任意の時刻に、 ZMP挙動空間における極大点及び/又 は極小点を任意に指定するようにしてもよい。また、単脚支持後期、両脚支持期、 単脚支持前期など脚の支持状態に応じて、 Z MP挙動空間における極大点及び Z 又は極小点を任意に指定するようにしてもよい。
このように、 Z MP安定領域内の極大点又は極小点を設定することによって、 ロボットが脚式作業を行うときに、 時々刻々と変わる歩容に応じて姿勢の安定制 御が容易な空間歪みを持つ Z MP挙動空間を動的に生成することができる。
また、 上述した本発明の各実施形態では、 ZMP位置と床反力によって ZMP 挙動空間を定義しているが、 ZMP位置と床反力の他に、 機体に対する外力推進 方向及びその大きさの成分をさらに加えて Z MP挙動空間の定義をすることもで ぎる。 追補
以上、 特定の実施例を参照しながら、 本発明について詳解してきた。 しかしな がら、 本発明の要旨を逸脱しない範囲で当業者が該実施例の修正や代用を成し得 ることは自明である。
本発明の要旨は、 必ずしも 「ロボット」 と称される製品には限定されない。 す なわち、 電気的若しくは磁気的な作用を用いて人間の動作に似せた運動を行う機 械装置であるならば、 例えば玩具等のような他の産業分野に属する製品であつて も、 同様に本発明を適用することができる。
要するに、 例示という形態で本発明を開示してきたのであり、 限定的に解釈さ れるべきではない。 本発明の要旨を判断するためには、 冒頭に記載した特許請求 の範囲の欄を参酌すぺきである。
[産業上の利用可能性] 本発明によれば、 いわゆる Z MP (Zero Moment Point) を安定度判別規範とし て用いながら脚式作業時における機体の姿勢安定制御を好適に行なうことができ る、 優れた脚式移動ロボット及びその制御方法を提供することができる。
また、 本発明によれば、 比較的遅いサンプリング周期で Z MP安定度判別規範 を用いながら機体の姿勢安定制御を好適に行なうことができる、 優れた脚式移動 ロボヅト及びその制御方法を提供することができる。
また、 本発明によれば、 人間の住環境で安定した動歩行を自律的に継続するた めに、 Z M P位置の安定性を考慮した空間歪みが与えられた Z M P挙動空間が構 成された、 優れた脚式移動ロボヅト及びその制御方法を提供することができる。 本発明によれば、 Z MPの位置と機体が床面から受ける床反力で定義される Z MP挙動空間を定義して、 この Z MP挙動空間の定義を基に Z MP安定位置を求 めて、 姿勢を安定に保つ指令値を各可動部位に発行することができる。 また、 路 面との接触状況に応じて Z M P挙動空間に与える空間歪みを動的に制御して、 常 に Z M P位置が Z M P安定領域の中央に移動させようとする機体の変形量若しく は運動量が生じるようにして、 機体の姿勢安定制御を容易な状態にすることがで きる。
また、 本発明によれば、 接地時に路面から受ける衝撃力を緩和するとともに、 失いかけた機体の姿勢安定性を回復する、 若しくは回復を容易にすることができ る、 脚式移動ロボットの可動脚ュニヅトにおける足部の足平構造を提供すること ができる。
また、 本発明によれば、 ロボットの機体の動作制御のみに頼ることなく姿勢安 定性を容易に維持することができるように構成された、 優れた脚式移動ロボット を提供することができる。
また、 本発明によれば、 横方向の外乱に対するロバスト性を強化することで姿 勢安定性を容易に維持することができるように構成された、 優れた脚式移動ロボ ヅトを提供することができる。

Claims

請求の範囲
1 . 2以上の可動脚を備えた脚式移動ロボットであって、
機体のピッチ軸モ一メント及びロール軸モーメントがゼロとなる Z M Pの位置 と機体が床面から受ける床反力で定義される Z M P挙動空間を制御する Z M P挙 動空間制御手段を備え、
前記 Z M P挙動空間制御手段はあらかじめ Z M P挙動空間に所定の歪み又は所 定の特性を与えている、
ことを特徴とする脚式移動ロボット。
2 . 前記 Z M P挙動空間制御手段は、 Z MP位置が前記可動脚の足底接地点と路 面とが形成する支持多角形からなる Z M P安定領域の中央から Z M P位置が外れ るにつれて Z M P位置が前記 Z M P安定領域の中央に移動させようとする機体の 変形量若しくは運動量が生じるように Z MP挙動空間にあらかじめ歪みを与えて いる、
ことを特徴とする請求項 1に記載の脚式移動ロボット。
3 . 前記所定の特性は、 前記床反力に応じて前記ロボットの変形量又は運動量の 大きさ若しくは方向が変化する、
ことを特徴とする請求項 1に記載の脚式移動ロボット。
4 . 前記 Z MP挙動空間制御手段は、 前記 Z MP安定領域の略中心において機体 の変形量又は運動量の極小点を設定する、
ことを特徴とする請求項 2に記載の脚式移動ロボヅト。
5 . 前記 Z MP挙動空間制御手段は、 前記 Z MP安定領域の略中心において機体 の変形量又は運動量の極小点を設定するとともに、 前記 Z MP安定領域の境界近 くで機体の変形量又は運動量の極大点を設定する、
ことを特徴とする請求項 2に記載の脚式移動ロボヅト。
6 . 前記 Z MP挙動空間制御手段は、 Z MP位置が機体の外側に向かう方向を正 方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央に向かわせるよう なロボットの変形量若しくは運動量を正方向とする第 2の座標軸からなる Z M P 挙動空間において、 単脚支持後期の立脚に対して、
ロボットの変形量若しくは運動量が負領域において極大値を持ち、 且つ、 床反 力の増大とともに該変形量若しくは運動量の極大値の Z M P位置を正方向に移動 させるような空間歪みを与える、
ことを特徴とする請求項 1に記載の脚式移動ロボット。
7 . 前記 Z MP挙動空間制御手段は、 Z MP位置が機体の前方に向かう方向を正 方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央に向かわせるよう なロボットの変形量若しくは運動量を正方向とする第 2の座標軸からなる Z M P 挙動空間において、 単脚支持後期の立脚に対して、
ロボヅ トの変形量若しくは運動量が負領域において Z M P安定領域の略中央付 近において極大値を持ち、 且つ、 床反力の増大とともに該変形量若しくは運動量 の変化が小さくなるような空間歪みを与える、
ことを特徴とする請求項 1に記載の脚式移動ロボット。
8 . 前記 Z MP挙動空間制御手段は、 単脚支持後期の立脚に対して、
進行方向と直交方向において、 床反力が小さいときには Z MP位置が Z MP安 定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外れる 方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大 きくなるに従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z M P 位置が Z M P安定領域の中心に向かうような口ボヅトの変形量若しくは運動量が 生じるような空間歪みを与えるとともに、
進行方向において、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外れる方向に向 かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなる に従い、 Z MP位置が Z M P安定領域の中心から外れるにつれて Z MP位置が Z MP安定領域の中心に向かうようなロボットの変形量若しくは運動量が発生する ような空間歪みを与える、
ことを特徴とする請求項 1に記載の脚式移動ロボヅト。 9 . 前記 Z MP挙動空間制御手段は、 単脚支持後期の体幹部に対して、
進行方向と直交する方向において、 床反力が小さいときには Z MP位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外 れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力 が大きくなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて Z MP位置が Z M P安定領域の中心に向かうようなロボットの変形量若しくは運動 量が生じるような空間歪みを与えるとともに、
進行方向において、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外れる方向に向 かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなる に従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて Z MP位置が Z MP安定領域の中心に向かうようなロボットの変形量若しくは運動量が発生する ような空間歪みを与える、
ことを特徴とする請求項 1に記載の脚式移動ロボヅト。 1 0 . 前記 Z MP挙動空間制御手段は、 Z MP位置が機体の外側に向かう方向を 正方向とする第 1の座標軸と Z M P位置が Z M P安定領域の中央に向かわせるよ うなロボットの変形量若しくは運動量を正方向とする第 2の座標軸からなる Z M P挙動空間において、 両脚支持期の立脚に対して、
ロボットの変形量若しくは運動量が負領域において Z M P安定領域の略中央付 近において極大値を持ち、 且つ、 床反力の増大とともに該変形量若しくは運動量 の変化が小さくなるような空間歪みを与える、
ことを特徴とする請求項 1に記載の脚式移動ロボヅト。
1 1 . 前記 Z M P挙動空間制御手段は、 Z MP位置が機体の前方に向かう方向を 正方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央に向かわせるよ うなロボットの変形量若しくは運動量を正方向とする第 2の座標軸からなる Z M P挙動空間において、 両脚支持期の立脚に対して、
ロボットの変形量若しくは運動量が負領域において Z M P安定領域の略中央付 近において極大値を持ち、 且つ、 床反力の増大とともに該変形量若しくは運動量 の変化が小さくなるような空間歪みを与える、
ことを特徴とする請求項 1に記載の脚式移動ロボット。
1 2 . 前記 Z MP挙動空間制御手段は、 両脚支持期の立脚に対して、
進行方向と直交する方向において、 床反力が小さいときには、 Z MP位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心から 外れる方向に向かうようなロボヅ トの変形量若しくは運動量が発生するが、 床反 力が大きくなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて Z MP位置が Z M P安定領域の中心に向かうようなロボヅ トの変形量若しくは運 動量が発生するような空間歪みを与えるとともに、
進行方向において、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外れる方向に向 かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなる に従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて Z MP位置が Z MP安定領域の中心に向かうようなロボヅトの変形量若しくは運動量が発生する ような空間歪みを与える、
ことを特徴とする請求項 1に記載の脚式移動ロボット。
1 3 . 前記 Z MP挙動空間制御手段は、 両脚支持期の体幹部に対して、
進行方向と直交する方向において、 床反力が小さいときには、 Z MP位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心から 外れる方向に向かうようなロボヅトの変形量若しくは運動量が発生するが、 床反 力が大きくなるに従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心に向かうようなロボットの変形量若しくは運 動量が発生するような空間歪みを与えるとともに、
進行方向において、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外れる方向に向 かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなる に従い、 Z MP位置が Z M P安定領域の中心から外れるにつれて Z MP位置が Z M P安定領域の中心に向かうようなロボットの変形量若しくは運動量が発生する ような空間歪みを与える、
ことを特徴とする請求項 1に記載の脚式移動ロボヅト。 1 4 . 前記 Z MP挙動空間制御手段は、 Z M P位置が機体の外側に向かう方向を 負方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央に向かわせるよ うなロボットの変形量若しくは運動量を正方向とする第 2の座標軸からなる Z M P挙動空間において、 単脚支持前期の立脚に対して、
ロボットの変形量若しくは運動量が負領域において極大値を持ち、 且つ、 床反 力の増大とともに該変形量若しくは運動量の極大値の Z MP位置を正方向に移動 させるような空間歪みを与える、
ことを特徴とする請求項 1に記載の脚式移動ロボヅト。
1 5 . 前記 Z MP挙動空間制御手段は、 Z MP位置が機体の前方に向かう方向を 正方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央に向かわせるよ うなロボヅ トの変形量若しくは運動量を正方向とする第 2の座標軸からなる Z M P挙動空間において、 単脚支持前期の立脚に対して、
ロボットの変形量若しくは運動量が負領域において Z M P安定領域の略中央付 近において極大値を持ち、 且つ、 床反力の増大とともに該変形量若しくは運動量 の変化が小さくなるような空間歪みを与える、
ことを特徴とする請求項 1に記載の脚式移動ロボット。
1 6 . 前記 Z MP挙動空間制御手段は、 単脚支持前期の立脚に対して、
進行方向と直交する方向において、 床反力が小さいときには Z MP位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外 れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力 が大きくなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心に向かうような口ボヅトの変形量若しくは運動 量が生じるような空間歪みを与えるとともに、
進行方向において、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外れる方向に向 かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなる に従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて Z MP位置が Z MP安定領域の中心に向かうようなロボットの変形量若しくは運動量が発生する ような空間歪みを与える、
ことを特徴とする請求項 1に記載の脚式移動ロボット。
1 7 . 前記 Z MP挙動空間制御手段は、 単脚支持前期の体幹部に対して、 進行方向と直交する方向において、 床反力が小さいときには Z MP位置が Z M P安定領域の中心から外れるにつれて Z MP位置が Z M P安定領域の中心から外 れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力 が大きくなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心に向かうようなロボットの変形量若しくは運動 量が生じるような空間歪みを与えるとともに、
進行方向において、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外れる方向に向 かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなる に従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z MP位置が Z MP安定領域の中心に向かうようなロボヅトの変形量若しくは運動量が発生する ような空間歪みを与える、
ことを特徴とする請求項 1に記載の脚式移動ロボット。
1 8 . 前記 Z MP挙動空間制御手段は、 略平板状の足平フレームと、
前記足平フレームの底面に配置された、 初期の比較的変形量が大きな領域とそ れ以後の比較的変形量が小さな領域からなる非線型弾性特性を持つ足底緩衝体と、 前記足平フレームの上面の略中央に配設された、 前記脚式移動ロボットの稼働 脚と連結するための足首連結部と、
で構成される各可動脚の足部構造であることを特徴とする請求項 1に記載の脚式 移動ロボット。
1 9 . 前記 Z MP挙動空間制御手段は、
前記可動脚における関節自由度を実現する 1以上の関節ァクチユエ一夕と、 前記関節ァクチユエ一夕を前記脚式移動ロボットの機体の内側から支持するた めの、 第 1の剛性を持つ内側支持体と、
前記関節ァクチユエ一夕を前記脚式移動ロボットの機体の外側から支持するた めの、 第 1の剛性より.も比較的大きな第 2の剛性を持つ外側支持体と、
で構成される各可動脚の脚部構造であることを特徴とする請求項 1に記載の脚式 移動ロボット。
2 0 . 少なくとも複数本の可動脚を備えた脚式移動ロボヅトのための足部構造で あって、
略平板状の足平フレームと、
前記足平フレームの底面に配置された、 初期の比較的変形量が大きな領域とそ れ以後の比較的変形量が小さな領域からなる非線型弾性特性を持つ足底緩衝体と、 前記足平フレームの上面の略中央に配設された、 前記脚式移動ロボットの稼働 脚と連結するための足首連結部と、
を具備することを特徴とする脚式移動ロボットのための足部構造。
2 1 . 前記足底緩衝体は高さが相違する 2以上の緩衝部材を前記足平フレームの 底面の所定部位に配設してなることを特徴とする請求項 2 0に記載の脚式移動口 ボットのための足部構造。
2 2 . 前記足底緩衝体は、 前記足平フレームの底面の内側並びに外側にそれそれ 配設されていることを特徴とする請求項 2 0に記載の脚式移動ロボヅ卜のための 足部構造。
2 3 . 前記足底緩衝体は、 前記足平フレームの底面の内側並びに外側にそれそれ 配設され、 且つ、 内側よりも外側の足底緩衝体の弾性係数を高く設定しているこ とを特徴とする請求項 2 0に記載の脚式移動ロボヅトのための足部構造。
2 4 . 前記足平フレームは、 前記脚式移動ロボットのピッチ軸回りよりもロール 軸回りの剛性を強ィ匕してなることを特徴とする請求項 2 0に記載の脚式移動ロボ ットのための足部構造。
2 5 . 前記足平フレームは、 上面及び Z又は底面の所定部位に凹部を形設するこ とにより、 前記脚式移動ロボットのピッチ軸回りよりもロール軸回りの剛性を強 化してなることを特徴とする請求項 2 0に記載の脚式移動ロボヅトのための足部
2 6 . 少なくとも 1組の左右の可動脚ュニットを備えて脚式作業を行うタイプの 脚式移動ロボットであって、 前記可動脚ユニットは、
前記可動脚における関節自由度を実現する 1以上の関節ァクチユエ一夕と、 前記関節ァクチユエ一夕を前記脚式移動ロボットの機体の内側から支持するた めの、 第 1の剛性を持つ内側支持体と、
前記関節ァクチユエ一夕を前記脚式移動口ボットの機体の外側から支持するた めの、 第 1の剛性よりも比較的大きな第 2の剛性を持つ外側支持体と、 を具備することを特徴とする脚式移動ロボット。
2 7 . 前記第 2の岡!]性は前記第 1の剛性の 1 . 2倍以上の曲げ剛性を示すことを 特徴とする請求項 2 6に記載の脚式移動ロボット。
2 8 . 前記第 1の剛性と前記第 2の剛性の相違は、 前記内側支持体と前記外側支 持体の肉厚の相違により実現されることを特徴とする請求項 2 6に記載の脚式移 動ロボヅト。
2 9 . 前記第 1の剛性と前記第 2の剛性の相違は、 前記内側支持体と前記外側支 持体の形状の相違により実現されることを特徴とする請求項 2 6に記載の脚式移 動ロボット。
3 0 . 前記第 1の剛性と前記第 2の剛性の相違は、 前記内側支持体と前記外側支 持体を強度の異なる素材を用いて構成することにより実現されることを特徴とす る請求項 2 6に記載の脚式移動ロボヅト。
3 1 . 前記可動脚の関節自由度は、 少なくとも大腿部ロール軸並びに膝関節ロー ル軸回りの各自由度を含むことを特徴とする請求項 2 6に記載の脚式移動口ボッ h o
3 2 . 脚式作業を行う脚式移動ロボットに対して左右の組み合わせで用いられる 可動脚ュニヅトであって、
前記可動脚における関節自由度を実現する 1以上の関節ァクチユエ一夕と、 前記関節ァクチユエ一夕を前記脚式移動ロボヅトの機体の内側から支持するた めの、 第 1の剛性を持つ内側支持体と、
前記関節ァクチユエ一夕を前記脚式移動口ボットの機体の外側から支持するた めの、 第 1の剛性よりも比較的大きな第 2の剛生を持つ外側支持体と、 を具備することを特徴とする脚式移動ロボットのための可動脚ュニット。
3 3 . 前記第 2の剛性は前記第 1の剛性の 1 . 2倍以上の曲げ剛性を示すことを 特徴とする請求項 3 2に記載の脚式移動ロボヅトのための可動脚ュニット。
3 4 . 前記第 1の剛性と前記第 2の剛性の相違は、 前記内側支持体と前記外側支 持体の肉厚の相違により実現されることを特徴とする請求項 3 2に記載の脚式移 動ロボットのための可動脚ュニヅト。
3 5 . 前記第 1の剛性と前記第 2の剛性の相違は、 前記内側支持体と前記外側支 持体の形状の相違により実現されることを特徴とする請求項 3 2に記載の脚式移 動ロボヅトのための可動脚ュニヅト。
3 6 . 前記第 1の剛性と前記第 2の剛性の相違は、 前記内側支持体と前記外側支 持体を強度の異なる素材を用いて構成することにより実現されることを特徴とす る請求項 3 2に記載の脚式移動ロボヅトのための可動脚ュニヅト。
3 7 . 前記可動脚の関節自由度は、 少なくとも大腿部ロール軸並びに膝関節口一 ル軸回りの各自由度を含むことを特徴とする請求項 3 2に記載の脚式移動ロボッ 卜のための可動脚ュニット。
3 8 . 2以上の可動脚を備えた脚式移動ロボヅ卜の制御方法であって、
機体のピッチ軸モ一メント及びロール軸モーメントがゼロとなる Z MPの位置 と機体が床面から受ける床反力で定義される Z MP挙動空間を制御する Z MP挙 動空間制御ステップを備え、
前記 Z M P挙動空間制御ステップではあらかじめ Z M P挙動空間に所定の歪み 又は所定の特性を与えている、
ことを特徴とする脚式移動ロボットの制御方法。
3 9 . 前記 Z M P挙動空間制御ステップでは、 Z MP位置が前記可動脚の足底接 地点と路面とが形成する支持多角形からなる Z M P安定領域の中央から Z M P位 置が外れるにつれて Z M P位置が前記 Z M P安定領域の中央に移動させようとす る機体の変形量若しくは運動量が生じるように Z M P挙動空間にあらかじめ歪み を与えている、
ことを特徴とする請求項 3 8に記載の脚式移動ロボヅトの制御方法。
4 0 . 前記所定の特性は、 前記床反力に応じてロボットの変形量又は運動量若し くは方向が変化する、
ことを特徴とする請求項 3 8に記載の脚式移動ロボヅトの制御方法。 1 . 前記 Z MP挙動空間制御ステヅプでは、 前記 Z MP安定領域の略中心にお いて機体の変形量又は運動量の極小点を設定する、
ことを特徴とする請求項 3 9に記載の脚式移動ロボヅトの制御方法。 4 2 . 前記 Z MP挙動空間制御ステップでは、 前記 Z MP安定領域の略中心にお いて機体の変形量又は運動量の極小点を設定するとともに、 前記 Z MP安定領域 の境界近くで機体の変形量又は運動量の極大点を設定する、
ことを特徴とする請求項 3 9に記載の脚式移動ロボットの制御方法。 4 3 . 前記 Z MP挙動空間制御ステップでは、 Z MP位置が機体の外側に向かう 方向を正方向とする第 1の座標軸と Z M P位置が Z M P安定領域の中央に向かわ せるようなロボットの変形量若しくは運動量を正方向とする第 2の座標軸からな る Z MP挙動空間において、 単脚支持後期の立脚に対して、
ロボットの変形量若しくは運動量が負領域において極大値を持ち、 且つ、 床反 力の増大とともに該変形量若しくは運動量の極大値の Z M P位置を正方向に移動 させるような空間歪みを与える、
ことを特徴とする請求項 3 8に記載の脚式移動ロボヅトの制御方法。
4 4 . 前記 Z MP挙動空間制御ステヅプでは、 Z MP位置が機体の前方に向かう 方向を正方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央に向かわ せるようなロボットの変形量若しくは運動量を正方向とする第 2の座標軸からな る Z MP挙動空間において、 単脚支持後期の立脚に対して、
ロボヅ トの変形量若しくは運動量が負領域において Z M P安定領域の略中央付 近において極大値を持ち、 且つ、 床反力の増大とともに該変形量若しくは運動量 の変化が小さくなるような空間歪みを与える、
ことを特徴とする請求項 3 8に記載の脚式移動ロボットの制御方法。
4 5 . 前記 Z MP挙動空間制御ステップでは、 単脚支持後期の立脚に対して、 進行方向と直交方向において、 床反力が小さいときには Z MP位置が Z MP安 定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外れる 方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大 きくなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて Z MP 位置が Z M P安定領域の中心に向かうようなロボヅ トの変形量若しくは運動量が 生じるような空間歪みを与えるとともに、
進行方向において、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて Z MP位置が Z MP安定領域の中心から外れる方向に向 かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなる に従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて Z MP位置が Z MP安定領域の中心に向かうようなロボヅトの変形量若しくは運動量が発生する ような空間歪みを与える、
ことを特徴とする請求項 3 8に記載の脚式移動ロボットの制御方法。
4 6 . 前記 Z MP挙動空間制御ステップでは、 単脚支持後期の体幹部に対して、 進行方向と直交する方向において、 床反力が小さいときには Z MP位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外 れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力 が大きくなるに従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心に向かうようなロボットの変形量若しくは運動 量が生じるような空間歪みを与えるとともに、
進行方向において、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外れる方向に向 かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなる に従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心に向かうようなロボットの変形量若しくは運動量が発生する ような空間歪みを与える、
ことを特徴とする請求項 3 8に記載の脚式移動ロボットの制御方法。 4 7 . 前記 Z MP挙動空間制御ステップでは、 Z MP位置が機体の外側に向かう 方向を正方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央に向かわ せるようなロボットの変形量若しくは運動量を正方向とする第 2の座標軸からな る Z MP挙動空間において、 両脚支持期の立脚に対して、
ロボットの変形量若しくは運動量が負領域において Z M P安定領域の略中央付 近において極大値を持ち、 且つ、 床反力の増大とともに該変形量若しくは運動量 の変化が小さくなるような空間歪みを与える、
ことを特徴とする請求項 3 8に記載の脚式移動ロボヅトの制御方法。
4 8 . 前記 Z MP挙動空間制御ステップでは、 Z MP位置が機体の前方に向かう 方向を正方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央に向かわ せるようなロボットの変形量若しくは運動量を正方向とする第 2の座標軸からな る Z MP挙動空間において、 両脚支持期の立脚に対して、
ロボヅ トの変形量若しくは運動量が負領域において Z M P安定領域の略中央付 近において極大値を持ち、 且つ、 床反力の増大とともに該変形量若しくは運動量 の変化が小さくなるような空間歪みを与える、
ことを特徴とする請求項 3 8に記載の脚式移動ロボヅトの制御方法。
4 9 . 前記 Z M P挙動空間制御ステップでは、 両脚支持期の立脚に対して、 進行方向と直交する方向において、 床反力が小さいときには、 Z MP位置が Z MP安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心から 外れる方向に向かうようなロボヅトの変形量若しくは運動量が発生するが、 床反 力が大きくなるに従い、 Z MP位置が Z MP安定領域の中心から外れるにつれて Z MP位置が Z M P安定領域の中心に向かうようなロボットの変形量若しくは運 動量が発生するような空間歪みを与えるとともに、 進行方向において、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて Z MP位置が Z MP安定領域の中心から外れる方向に向 かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなる に従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z MP安定領域の中心に向かうようなロボッ卜の変形量若しくは運動量が発生する ような空間歪みを与える、
ことを特徴とする請求項 3 8に記載の脚式移動ロボッ卜の制御方法。
5 0 . 前記 Z MP挙動空間制御ステップでは、 両脚支持期の体幹部に対して、 進行方向と直交する方向において、 床反力が小さいときには、 Z MP位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心から 外れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反 力が大きくなるに従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心に向かうようなロボットの変形量若しくは運 動量が発生するような空間歪みを与えるとともに、
進行方向において、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外れる方向に向 かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなる に従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z MP安定領域の中心に向かうような口ボヅトの変形量若しくは運動量が発生する ような空間歪みを与える、
ことを特徴とする請求項 3 8に記載の脚式移動ロボヅトの制御方法。
5 1 . 前記 Z M P挙動空間制御ステップでは、 Z MP位置が機体の外側に向かう 方向を負方向とする第 1の座標軸と Z M P位置が Z M P安定領域の中央に向かわ せるようなロボットの変形量若しくは運動量を正方向とする第 2の座標軸からな る Z MP挙動空間において、 単脚支持前期の立脚に対して、
ロボットの変形量若しくは運動量が負領域において極大値を持ち、 且つ、 床反 力の増大とともに該変形量若しくは運動量の極大値の Z MP位置を正方向に移動 させるような空間歪みを与える、
ことを特徴とする請求項 3 8に記載の脚式移動ロボヅトの制御方法。
5 2 . 前記 Z M P挙動空間制御ステップでは、 Z MP位置が機体の前方に向かう 方向を正方向とする第 1の座標軸と Z MP位置が Z MP安定領域の中央に向かわ せるようなロボットの変形量若しくは運動量を正方向とする第 2の座標軸からな る Z MP挙動空間において、 単脚支持前期の立脚に対して、
ロボットの変形量若しくは運動量が負領域において Z M P安定領域の略中央付 近において極大値を持ち、 且つ、 床反力の増大とともに該変形量若しくは運動量 の変ィ匕が小さくなるような空間歪みを与える、
ことを特徴とする請求項 3 8に記載の脚式移動ロボヅトの制御方法。
5 3 . 前記 Z M P挙動空間制御ステップでは、 単脚支持前期の立脚に対して、 進行方向と直交する方向において、 床反力が小さいときには Z M P位置が Z M P安定領域の中心から外れるにつれて Z MP位置が Z MP安定領域の中心から外 れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力 が大きくなるに従 Z MP位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心に向かうようなロボヅトの変形量若しくは運動 量が生じるような空間歪みを与えるとともに、
進行方向において、 床反力が小さいときには、 Z M P位置が Z MP安定領域の 中心から外れるにつれて Z MP位置が Z MP安定領域の中心から外れる方向に向 かうようなロボットの変形量若しくは運動量が発生するが、 床反力が大きくなる に従レ、、 Z MP位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z MP安定領域の中心に向かうようなロボヅトの変形量若しくは運動量が発生する ような空間歪みを与える、
ことを特徴とする請求項 3 8に記載の脚式移動ロボヅトの制御方法。
5 4 . 前記 Z M P挙動空間制御ステヅプでは、 単脚支持前期の 部に対して、 進行方向と直交する方向において、 床反力が小さいときには Z MP位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心から外 れる方向に向かうようなロボットの変形量若しくは運動量が発生するが、 床反力 が大きくなるに従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z M P安定領域の中心に向かうような口ボヅトの変形量若しくは運動 量が生じるような空間歪みを与えるとともに、 ' 進行方向において、 床反力が小さいときには、 Z MP位置が Z MP安定領域の 中心から外れるにつれて Z MP位置が Z MP安定領域の中心から外れる方向に向 かうようなロボヅトの変形量若しくは運動量が発生するが、 床反力が大きくなる に従い、 Z M P位置が Z M P安定領域の中心から外れるにつれて Z M P位置が Z MP安定領域の中心に向かうようなロボヅトの変形量若しくは運動量が発生する ような空間歪みを与える、
ことを特徴とする請求項 3 8に記載の脚式移動ロボットの制御方法。
5 5 . 2以上の可動脚を備えた脚式移動ロボットの制御方法であって、
機体のピッチ軸モ一メント及びロール軸モ一メントがゼロとなる Z M Pの位置 と機体が床面から受ける床反力で定義される Z M P挙動空間を定義するステップ と、
該定義された Z MP挙動空間の定義に基づいて Z MP安定位置を求めるステヅ プと、
該求められた Z M P安定位置に基づいて機体動作を制御するステップと、 を具備することを特徴とする脚式移動ロボットの制御方法。
5 6 . 前記脚式移動ロボヅ卜と路面との接触状況に応じて Z MP挙動空間の定義 を変更するステヅプをさらに備える、
ことを特徴とする請求項 5 5に記載の脚式移動ロボットの制御方法。
5 7 . 前記の Z M P挙動空間を定義するステップでは、 前記 Z MP挙動空間にお ける極大点及び/又は極小点を任意に指定することができる、
ことを特徴とする請求項 5 5に記載の脚式移動ロボッ卜の制御方法。
5 8 . 前記の Z M P挙動空間を定義するステップでは、 任意の時刻に前記 Z MP 挙動空間における極大点及び/又は極小点を任意に指定することができる、 ことを特徴とする請求項 5 5に記載の脚式移動ロボヅトの制御方法。
5 9 . 前記の Z MP挙動空間を定義するステップでは、 脚の支持状態に応じて前 記 Z MP挙動空間における極大点及び/又は極小点を任意に指定することができ る、
ことを特徴とする請求項 5 5に記載の脚式移動ロボットの制御方法。
PCT/JP2001/010025 2000-11-17 2001-11-16 Robot mobile a deux jambes et son procede de commande, sa structure jambes, et unite jambe mobile destinee a ce robot WO2002040223A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/181,282 US6901313B2 (en) 2000-11-17 2001-11-16 Legged mobile robot and control method thereof, leg structure of legged mobile robot, and mobile leg unit for legged mobile robot
EP01982818.5A EP1378325B1 (en) 2000-11-17 2001-11-16 Legged mobile robot and control method thereof, leg structure of legged mobile robot, and mobile leg unit for legged mobile robot

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000350923 2000-11-17
JP2000-350923 2000-11-17
JP2000352158 2000-11-20
JP2000-352158 2000-11-20
JP2001277084 2001-09-12
JP2001-277084 2001-09-12

Publications (1)

Publication Number Publication Date
WO2002040223A1 true WO2002040223A1 (fr) 2002-05-23

Family

ID=27345212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010025 WO2002040223A1 (fr) 2000-11-17 2001-11-16 Robot mobile a deux jambes et son procede de commande, sa structure jambes, et unite jambe mobile destinee a ce robot

Country Status (6)

Country Link
US (1) US6901313B2 (ja)
EP (1) EP1378325B1 (ja)
KR (1) KR100843863B1 (ja)
CN (1) CN100389936C (ja)
TW (1) TW499349B (ja)
WO (1) WO2002040223A1 (ja)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443077B2 (ja) * 1999-09-20 2003-09-02 ソニー株式会社 ロボットの運動パターン生成装置及び運動パターン生成方法、並びにロボット
JP3760186B2 (ja) * 2001-06-07 2006-03-29 独立行政法人科学技術振興機構 二脚歩行式移動装置及びその歩行制御装置並びに歩行制御方法
US6980919B2 (en) * 2001-10-16 2005-12-27 Honda Giken Kogyo Kabushiki Kaisha Walking condition determining device and method
WO2003068455A1 (fr) * 2002-02-15 2003-08-21 Sony Corporation Dispositif a jambes pour robot mobile de type a jambes, et procede de commande dudit robot
JP3731118B2 (ja) * 2002-02-18 2006-01-05 独立行政法人科学技術振興機構 二脚歩行式人型ロボット
DE60332227D1 (de) * 2002-04-26 2010-06-02 Honda Motor Co Ltd System zur selbst abschätzung der lage des mobilen roboters mit beinen
JP3598507B2 (ja) * 2002-06-12 2004-12-08 独立行政法人 科学技術振興機構 歩行式移動装置及びその歩行制御装置及び歩行制御方法
JP4049644B2 (ja) * 2002-09-13 2008-02-20 川田工業株式会社 歩行ロボットの衝撃吸収機構
US7664569B2 (en) * 2002-10-10 2010-02-16 Sony Corporation Robot device operation control device and operation control method
US7054718B2 (en) * 2002-10-11 2006-05-30 Sony Corporation Motion editing apparatus and method for legged mobile robot and computer program
KR100541433B1 (ko) * 2002-12-23 2006-01-11 삼성전자주식회사 2족보행로봇
CN100344416C (zh) * 2003-03-23 2007-10-24 索尼株式会社 机器人装置和控制该装置的方法
JP3972854B2 (ja) * 2003-04-10 2007-09-05 ソニー株式会社 ロボットの運動制御装置
KR100835361B1 (ko) * 2003-08-29 2008-06-04 삼성전자주식회사 간이 지면반력 센서를 이용한 보행 로봇 및 그 제어 방법
JP4592276B2 (ja) * 2003-10-24 2010-12-01 ソニー株式会社 ロボット装置のためのモーション編集装置及びモーション編集方法、並びにコンピュータ・プログラム
JP4168943B2 (ja) * 2004-01-28 2008-10-22 トヨタ自動車株式会社 脚式ロボットと脚式ロボットの歩行制御方法
JP4501601B2 (ja) * 2004-09-03 2010-07-14 トヨタ自動車株式会社 脚式ロボットとその制御方法ならびに歩容データの作成装置と作成方法
JP4559803B2 (ja) * 2004-09-14 2010-10-13 敏男 福田 関節角の受動変化を利用して歩行するロボットとその制御方法
US8000837B2 (en) 2004-10-05 2011-08-16 J&L Group International, Llc Programmable load forming system, components thereof, and methods of use
WO2006064599A1 (ja) * 2004-12-14 2006-06-22 Honda Motor Co., Ltd. 脚式移動ロボットおよびその制御プログラム
US20070105070A1 (en) * 2005-11-08 2007-05-10 Luther Trawick Electromechanical robotic soldier
JP5034235B2 (ja) * 2006-01-16 2012-09-26 ソニー株式会社 制御システム及び制御方法、並びにコンピュータ・プログラム
US8068935B2 (en) * 2006-10-18 2011-11-29 Yutaka Kanayama Human-guided mapping method for mobile robot
JP4930003B2 (ja) * 2006-11-20 2012-05-09 株式会社日立製作所 移動ロボット
KR100873107B1 (ko) * 2007-01-30 2008-12-09 한국과학기술원 이족 보행 로봇의 수정 가능한 걸음새 생성을 위한 실시간zmp 조작법
JP5104355B2 (ja) * 2008-02-01 2012-12-19 富士通株式会社 ロボット制御装置、ロボット制御方法およびロボット制御プログラム
FR2930905B1 (fr) * 2008-05-09 2010-10-01 Bia Cheville pour robot humanoide
KR20100028358A (ko) * 2008-09-04 2010-03-12 삼성전자주식회사 로봇 및 그 안전제어방법
KR101687628B1 (ko) * 2010-01-12 2016-12-21 삼성전자주식회사 로봇의 보행 제어 장치 및 그 제어 방법
KR101687629B1 (ko) * 2010-01-18 2016-12-20 삼성전자주식회사 인간형 로봇 및 그 보행 제어방법
US8712602B1 (en) 2011-05-24 2014-04-29 Timothy S. Oliver Mobile target system
KR20130073591A (ko) * 2011-12-23 2013-07-03 삼성전자주식회사 지지모듈 및 이를 포함하는 로봇
US10215587B2 (en) 2012-05-18 2019-02-26 Trx Systems, Inc. Method for step detection and gait direction estimation
US9297658B2 (en) 2012-06-12 2016-03-29 Trx Systems, Inc. Wi-Fi enhanced tracking algorithms
KR101331197B1 (ko) 2012-07-06 2013-11-26 주식회사 자연이준식품 로봇관절 길이 가변장치
CN102830717B (zh) * 2012-08-22 2015-01-14 中科宇博(北京)文化有限公司 提高仿生机械恐龙爬行稳定性的步态规划方法
CN102799184B (zh) * 2012-08-22 2015-12-16 中科宇博(北京)文化有限公司 仿生机械恐龙爬行稳定性控制方法
JP6330287B2 (ja) * 2013-10-29 2018-05-30 セイコーエプソン株式会社 ロボット、ロボット用当接部材
JP6003942B2 (ja) * 2014-04-24 2016-10-05 トヨタ自動車株式会社 動作制限装置及び動作制限方法
US9895804B1 (en) * 2014-08-26 2018-02-20 Boston Dynamics, Inc. Failure mode
US9623556B1 (en) * 2014-09-03 2017-04-18 X Development Llc Robotic sole joint
JP6356033B2 (ja) * 2014-09-29 2018-07-11 本田技研工業株式会社 移動体の制御装置
CN104407611B (zh) * 2014-09-30 2017-02-01 同济大学 一种仿人机器人稳定行走的控制方法
US9561592B1 (en) * 2015-05-15 2017-02-07 Google Inc. Ground plane compensation for legged robots
US10160505B1 (en) * 2016-04-06 2018-12-25 Schaft Inc. Variable-compliance, slip-resistant foot for legged mechanisms
TW201805598A (zh) * 2016-08-04 2018-02-16 鴻海精密工業股份有限公司 自主移動設備及建立導航路徑的方法
CN106564055B (zh) * 2016-10-31 2019-08-27 金阳娃 仿真人机器人稳定性运动规划方法及控制装置
CN106843000B (zh) * 2017-02-13 2019-03-26 华北电力大学(保定) 攀爬机器人移动控制系统恢复方法
JP6788537B2 (ja) * 2017-03-28 2020-11-25 本田技研工業株式会社 レーザ式測距装置を使用した物体エッジの検出方法
JP6927727B2 (ja) * 2017-03-29 2021-09-01 本田技研工業株式会社 ロボットの制御装置
KR102213377B1 (ko) 2019-08-14 2021-02-08 국민대학교산학협력단 고속 및 고토크 구동을 위한 로봇 다리 구조
US11292126B2 (en) * 2019-10-17 2022-04-05 Disney Enterprises, Inc. Robots with robust bipedal locomotion supported with non-conventional physics
CN114061893B (zh) * 2021-12-28 2024-10-15 中国航天空气动力技术研究院 一种风洞小幅强迫俯仰振荡机构
US11738452B1 (en) * 2022-07-29 2023-08-29 Sarcos Corp. Sole with various compliant regions for robots

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151859A (en) * 1989-06-29 1992-09-29 Honda Giken Kogyo Kabushiki Kaisha Legged walking robot and system for controlling the same
US5255753A (en) 1989-12-14 1993-10-26 Honda Giken Kogyo Kabushiki Kaisha Foot structure for legged walking robot
JPH05305579A (ja) 1992-04-30 1993-11-19 Honda Motor Co Ltd 脚式移動ロボットの歩行制御装置
JPH05305586A (ja) * 1992-04-30 1993-11-19 Honda Motor Co Ltd 脚式移動ロボットの歩行制御装置
JPH05305581A (ja) 1992-04-28 1993-11-19 Honda Motor Co Ltd リンク式移動ロボットの制御装置
EP0572285A1 (en) 1992-05-29 1993-12-01 Honda Giken Kogyo Kabushiki Kaisha Attitude stabilization control system for a mobile robot, especially a legged mobile robot
US5416393A (en) * 1992-05-20 1995-05-16 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot foot structure
US5432417A (en) * 1992-04-30 1995-07-11 Honda Giken Kogyo Kabushiki Kaisha Locomotion control system for legged mobile robot
US5445235A (en) * 1992-05-26 1995-08-29 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot equipped with impact absorber
US5455497A (en) * 1992-04-20 1995-10-03 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot and a system for controlling the same
JPH10315349A (ja) * 1997-05-20 1998-12-02 Honda Motor Co Ltd ロボット用複合材リンクの製造方法
JP2911985B2 (ja) * 1990-09-12 1999-06-28 本田技研工業株式会社 脚式移動ロボット及びその歩行制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2826858B2 (ja) 1989-12-14 1998-11-18 本田技研工業株式会社 脚式歩行ロボットの足部構造
JP3270767B2 (ja) 1992-04-28 2002-04-02 本田技研工業株式会社 衝撃吸収機構を備えた脚式歩行ロボット
JP3148828B2 (ja) 1992-04-30 2001-03-26 本田技研工業株式会社 脚式移動ロボットの歩行制御装置
JP3132156B2 (ja) * 1992-05-22 2001-02-05 本田技研工業株式会社 脚式移動ロボットの歩容生成装置
JP3293952B2 (ja) 1992-05-26 2002-06-17 本田技研工業株式会社 衝撃吸収手段を備えた脚式歩行ロボット
WO1998026905A1 (fr) * 1996-12-19 1998-06-25 Honda Giken Kogyo Kabushiki Kaisha Controleur d'attitude de robot mobile sur jambes
JP3435666B2 (ja) * 1999-09-07 2003-08-11 ソニー株式会社 ロボット
JP3443077B2 (ja) * 1999-09-20 2003-09-02 ソニー株式会社 ロボットの運動パターン生成装置及び運動パターン生成方法、並びにロボット
JP2001239479A (ja) * 1999-12-24 2001-09-04 Sony Corp 脚式移動ロボット及びロボットのための外装モジュール
JP2001260063A (ja) * 2000-03-21 2001-09-25 Sony Corp 多関節型ロボット及びその動作制御方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151859A (en) * 1989-06-29 1992-09-29 Honda Giken Kogyo Kabushiki Kaisha Legged walking robot and system for controlling the same
US5255753A (en) 1989-12-14 1993-10-26 Honda Giken Kogyo Kabushiki Kaisha Foot structure for legged walking robot
JP2911985B2 (ja) * 1990-09-12 1999-06-28 本田技研工業株式会社 脚式移動ロボット及びその歩行制御装置
US5455497A (en) * 1992-04-20 1995-10-03 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot and a system for controlling the same
JPH05305581A (ja) 1992-04-28 1993-11-19 Honda Motor Co Ltd リンク式移動ロボットの制御装置
JPH05305579A (ja) 1992-04-30 1993-11-19 Honda Motor Co Ltd 脚式移動ロボットの歩行制御装置
JPH05305586A (ja) * 1992-04-30 1993-11-19 Honda Motor Co Ltd 脚式移動ロボットの歩行制御装置
US5432417A (en) * 1992-04-30 1995-07-11 Honda Giken Kogyo Kabushiki Kaisha Locomotion control system for legged mobile robot
US5416393A (en) * 1992-05-20 1995-05-16 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot foot structure
US5445235A (en) * 1992-05-26 1995-08-29 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot equipped with impact absorber
EP0572285A1 (en) 1992-05-29 1993-12-01 Honda Giken Kogyo Kabushiki Kaisha Attitude stabilization control system for a mobile robot, especially a legged mobile robot
JPH10315349A (ja) * 1997-05-20 1998-12-02 Honda Motor Co Ltd ロボット用複合材リンクの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIOMIR VUKOBRATOVIC ET AL.: "LEGGED ROBOT AND ARTIFICIAL FOOT", NIKKAN KOGYO SHINBUN, article "LEGGED LOCOMOTION ROBOTS"
See also references of EP1378325A4

Also Published As

Publication number Publication date
US20030144763A1 (en) 2003-07-31
EP1378325A4 (en) 2006-05-03
KR100843863B1 (ko) 2008-07-03
EP1378325B1 (en) 2016-09-14
CN100389936C (zh) 2008-05-28
KR20020086464A (ko) 2002-11-18
US6901313B2 (en) 2005-05-31
EP1378325A1 (en) 2004-01-07
CN1407922A (zh) 2003-04-02
TW499349B (en) 2002-08-21

Similar Documents

Publication Publication Date Title
WO2002040223A1 (fr) Robot mobile a deux jambes et son procede de commande, sa structure jambes, et unite jambe mobile destinee a ce robot
KR100687461B1 (ko) 로보트 및 로보트용 관절 장치
CN100364728C (zh) 有腿移动式机器人的动作控制装置和动作控制方法以及机器人装置
JP3824608B2 (ja) 脚式移動ロボット及びその動作制御方法
KR100837988B1 (ko) 각식 이동 로봇을 위한 동작 제어 장치 및 동작 제어방법, 및 로봇 장치
KR101985790B1 (ko) 보행 로봇 및 그 제어 방법
JP3555107B2 (ja) 脚式移動ロボット及び脚式移動ロボットの動作制御方法
KR101687629B1 (ko) 인간형 로봇 및 그 보행 제어방법
US20050107916A1 (en) Robot device and control method of robot device
US7765030B2 (en) Gait generator for mobile robot
WO2004041484A1 (ja) ロボット装置、ロボット装置の運動制御装置及び運動制御方法
US7801643B2 (en) Legged mobile robot and control program for the robot
JP2001138271A (ja) 脚式移動ロボット及び脚式移動ロボットの転倒時動作制御方法
JP4660870B2 (ja) 脚式移動ロボット及びその制御方法
JP3674779B2 (ja) 脚式移動ロボットのための動作制御装置及び動作制御方法、並びにロボット装置
JP4770990B2 (ja) 脚式移動ロボット及びその制御方法
JP4359423B2 (ja) 脚式移動ロボット及び脚式移動ロボットの足部機構
JP3443116B2 (ja) 移動ロボット及び移動ロボットの制御方法
JP3674787B2 (ja) ロボット装置の動作制御装置及び動作制御方法、並びにコンピュータ・プログラム
JP2003159677A (ja) 脚式移動ロボット
JP3555947B2 (ja) 移動ロボット装置、移動ロボット装置の制御方法、移動ロボット装置の運動パターン生成方法、並びに移動ロボット装置の運動制御プログラム
JP3555946B2 (ja) 移動ロボット装置及び移動ロボット装置の制御方法
JP2003159676A (ja) 脚式移動ロボットの制御方法
JP2004025434A (ja) 脚式移動ロボットの動作制御装置及び動作制御方法、並びにロボット装置
JP3555948B2 (ja) 移動ロボット装置、移動ロボット装置の動作制御装置及び動作制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020027009150

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2001982818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001982818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018059473

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10181282

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027009150

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001982818

Country of ref document: EP