JP4359423B2 - 脚式移動ロボット及び脚式移動ロボットの足部機構 - Google Patents

脚式移動ロボット及び脚式移動ロボットの足部機構 Download PDF

Info

Publication number
JP4359423B2
JP4359423B2 JP2002339777A JP2002339777A JP4359423B2 JP 4359423 B2 JP4359423 B2 JP 4359423B2 JP 2002339777 A JP2002339777 A JP 2002339777A JP 2002339777 A JP2002339777 A JP 2002339777A JP 4359423 B2 JP4359423 B2 JP 4359423B2
Authority
JP
Japan
Prior art keywords
mobile robot
legged mobile
moving surface
foot
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002339777A
Other languages
English (en)
Other versions
JP2004167663A (ja
Inventor
恵輔 加藤
健 五十嵐
雅邦 永野
憲一郎 長阪
浩昭 森川
仁一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002339777A priority Critical patent/JP4359423B2/ja
Publication of JP2004167663A publication Critical patent/JP2004167663A/ja
Application granted granted Critical
Publication of JP4359423B2 publication Critical patent/JP4359423B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Toys (AREA)
  • Manipulator (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、少なくとも複数本の可動脚にて歩行する脚式移動ロボットに関し、特に、様々な路面(移動面)上を可動脚によって移動する脚式移動ロボットに関する。また、少なくとも複数本の可動脚にて様々な移動面を歩行する脚式移動ロボットの足部機構に関する。
【0002】
【従来の技術】
電気的若しくは磁気的な作用を用いて人間の動作に似せた運動を行う機械装置のことを「ロボット」という。ロボットの語源は、スラブ語の"ROBOTA(奴隷機械)"に由来すると言われている。わが国では、ロボットが普及し始めたのは1960年代末からであるが、その多くは、工場における生産作業の自動化・無人化などを目的としたマニピュレータや搬送ロボットなどの産業用ロボット(industrial robot)であった。
【0003】
アーム式ロボットのように、ある特定の場所に植設して用いるような据置きタイプのロボットは、部品の組立・選別作業など固定的・局所的な作業空間でのみ活動する。これに対し、移動式のロボットは、作業空間は非限定的であり、所定の経路上または無経路上を自在に移動して、所定の若しくは任意の人的作業を代行したり、ヒトやイヌあるいはその他の生命体に置き換わる種々のサービスを提供することができる。なかでも脚式移動ロボットは、クローラ式ロボットやタイヤ式のロボットに比し不安定で姿勢制御や歩行制御が難しくなるが、階段や梯子の昇降や障害物の乗り越え、整地・不整地の区別を問わない柔軟な歩行・走行動作を実現できるという点で優れている。
【0004】
最近では、イヌやネコ、クマのように4足歩行の動物の身体メカニズムやその動作を模したペット型ロボット、あるいは、ヒトのような2足直立歩行を行う動物の身体メカニズムや動作を模した「人間形」若しくは「人間型」のロボット(humanoid robot)など、脚式移動ロボットの構造やその安定歩行制御に関する研究開発が進展し、実用化への期待も高まってきている。
【0005】
人間の作業空間や居住空間のほとんどは、2足による直立歩行という人間が持つ身体メカニズムや行動様式に合わせて形成されている。言い換えれば、人間の住空間は、車輪その他の駆動装置を移動手段とした現状の機械システムが移動するにはあまりに多くの障壁が存在する。機械システムすなわちロボットが様々な人的作業を支援又は代行し、さらに人間の住空間に深く浸透していくためには、ロボットの移動可能範囲が人間のそれとほぼ同じであることが好ましい。これが、脚式移動ロボットの実用化が大いに期待されている所以でもある。人間型の形態を有していることは、ロボットが人間の住環境との親和性を高める上で必須であると言える。
【0006】
2足歩行による脚式移動を行うタイプのロボットについての姿勢制御や安定歩行に関する技術は既に数多く提案されている。ここで言う安定な「歩行」とは、「転倒することなく、脚を使って移動すること」と定義することができる。ロボットの姿勢安定制御は、ロボットの転倒を回避する上で非常に重要である。何故ならば、転倒は、ロボットが実行中の作業を中断することを意味し、且つ、転倒状態から起き上がって作業を再開するために相当の労力や時間が払われるからである。また、何よりも、転倒によって、ロボット本体自体、あるいは転倒するロボットと衝突する相手側の物体にも、致命的な損傷を与えてしまう危険があるからである。したがって、脚式移動ロボットの設計・開発において、歩行やその他の脚式作業時における姿勢安定制御や歩行時の転倒防止は最も重要な技術的課題の1つである
【0007】
歩行時には、重力と歩行運動に伴って生じる加速度によって、歩行系から路面には重力と慣性力、並びにこれらのモーメントが作用する。いわゆる「ダランベールの原理」によると、それらは路面から歩行系への反作用としての床反力、床反力モーメントとバランスする。力学的推論の帰結として、足底接地点と路面の形成する支持多角形の辺上あるいはその内側にピッチ及びロール軸モーメントがゼロとなる点、すなわち「ZMP(Zero Moment Point)」が存在する。
【0008】
ここでいうピッチ及びロール軸、さらには後述するヨー軸を図34に示しておく。すなわち、図34に示すO−XYZ座標系は絶対座標におけるロール、ピッチ、ヨー各軸を示している。特に、ヨー軸は、移動面に垂直に立ったロボットの身体まわり発生する左右回転の軸である。
【0009】
脚式移動ロボットの姿勢安定制御や歩行時の転倒防止に関する提案の多くは、このZMPを歩行の安定度判別の規範として用いたものである(例えば、特開2001−157973号公報)。ZMP規範に基づく2足歩行パターン生成は、足底着地点をあらかじめ設定することができ、路面形状に応じた足先の運動学的拘束条件を考慮し易いなどの利点がある。また、ZMPを安定度判別規範とすることは、力ではなく軌道を運動制御上の目標値として扱うことを意味するので、技術的に実現可能性が高まる。なお、ZMPの概念並びにZMPを歩行ロボットの安定度判別規範に適用する点については、Miomir Vukobratovic著“LEGGED LOCOMOTION ROBOTS”(加藤一郎外著『歩行ロボットと人工の足』(日刊工業新聞社))に記載されている。
【0010】
また、脚式移動ロボットにおける脚式作業時の安定性・制御性は、下肢の動作パターンだけでなく、歩行など脚式作業を行う地面,床面,路面などの移動面の状況の影響を受けている。何故ならば、足部が移動面に接地している限り、移動面から常に反力を受けているからである。このため、移動面と接地する足部の構造は、脚式移動ロボットにおける脚式作業時の安定性・制御性に極めて重要である。
【0011】
これまでに、足部機構の構造に関する数多くの提案がなされてきたが、遊脚の着地時に移動面から受ける衝撃を緩和するためのものや、移動面に対してのすべりを抑えようとするものがほとんどであった。
【0012】
【特許文献1】
特開2001−157973号公報
【0013】
【発明が解決しようとする課題】
しかしながら、例えば脚式移動ロボットの歩行において、図35に示すように、足部401上にZMPが来たとき、このZMPに脚式移動ロボットの荷重が掛かり、足部401は路面(移動面)400と反対方向の矢印方向Uに撓み、形状の変化が生じることがある。このとき、足部401と路面400との接触面積は減少し、ロボットの身体回りの左右回転の軸であるヨー軸回りのモーメントに対する抗力が弱くなる。また、形状の変化により、足部401の足底と移動面400との接触面の形状も変化し、この変化に伴い脚式移動ロボットの動特性に変化が生じ、ロボットの姿勢を不安定にする原因となり得る。
【0014】
ここで、本願明細書において「抗力発生実効面」と名付ける概念を導入し、上記事柄についてさらに説明する。抗力発生実効面とは、例えば、足部401と移動面400との接地面が一つの面であるときはその面を意味する。また、図36に示すように、足部401と移動面400が、足部401に設けた複数(図36では4個)の路面接地部402にて点接地するときは、隣り合う路面接地部402の2点間を結んだ辺で囲まれる平面403を意味する。また、図37に示すように、足部401の接地部分がフレーム形状の路面接地フレーム404であるときは、この路面接地フレーム404の辺で囲まれた面が効力発生実行面405を意味する。すなわち、「抗力発生実効面」とは、脚式移動ロボットに発生するヨー軸回りのモーメントに対して路面からの抗力を受ける点を結んだ領域を意味する。
【0015】
脚式移動ロボットの歩行におけるZMPの移動によって、足部が変形し、抗力発生実効面の面積が減少すると、脚式移動ロボットの動作によって発生するヨー軸回りのモーメントに対して弱くなり、脚式移動ロボットの姿勢を不安定にし、スピン運動をもたらす原因となる。また、抗力発生実効面の変形は、脚式移動ロボットの挙動の予期せぬ変化をもたらし、脚式移動ロボットの姿勢を不安定にする原因となる。
【0016】
従って、脚式移動ロボットの足部の底面において重要なことは、後にも示すように、接地面における面圧を静的もしくは動的に調整することの他、単なる圧力値のみならず、その変化や分布を調整することであり、さらに、摩擦も同様に、静的もしくは動的に調整することである。
【0017】
しかしながら、上記に挙げたことは、主に平坦な移動面、もしくは緩やかな連続面に限定される問題であるが、実移動面を考慮すると、うねりのような連続面のほか、凹凸、段差など、不連続な面が考えられることも注目しておく必要がある。図38に示すように、例えば移動面406に段差がある場合(上移動面406U、下移動面406D)、段差を形成している崖部406Cの角上に足部401が接地してしまうと、足部401はその接地部を支点として不安定な状態となる。反力がなく、下段側に衝撃が働き、それに耐えようとつま先に力を入れるように制御しようとすると、そのときには既に上段側に衝撃が働いてしまう。これを繰り返すと発振状態となる。そして、接地部における支持モーメントを発生することが不可能になり、その挙動はまさに非線系で制御が極めて困難な状況に陥る。
【0018】
また、体重を軽くして速い動きを行うことを目的としたロボットにおいて、体重が軽いことにより、図39に示すように毛足の長い絨毯407を足部401で完全に押しつぶすことができないときには、充分な支持モーメントを確保することができなくなる。絨毯の長い毛足407をつぶすことができないため、その上を滑ってしまったり、足部401の位置が水平を保てなくなったり、摩擦特性が変わってしまうことによる。つまり、体重の軽いロボットに対して、支持モーメントを確保できないほどの、毛足の長い絨毯407のような、脆弱で滑りやすい面においては、足部401の接地面が必要以上にすべる可能性があり、脚式移動体自体の移動安定性を著しく損ねる可能性がある。また移動軌跡も乱れがちで、そのため修正制御、移動計画の再設定が必要となる。もちろん、移動面の材質そのものが、摩擦力が著しく低く、ロボットの体重に無関係にすべりやすいときにも、支持モーメントを確保できなくなり、同様のことが起こる。
【0019】
また、図40に示すように、摩擦の大きな移動面408、もしくは軟らかいため表面に引っ掛かりが生じるような移動面においては、足部401の足底接地面の形状の効果による面圧、あるいは特に面方向における摩擦が極端に上昇すると、慣性力等により転倒モーメントが発生するため、やはり、接地部の摩擦特性を調整する必要がある。
【0020】
ところで、図41に示すように、移動面406上に段差(上移動面406Uと下移動面406Dとの間だの崖406C)のあるところにおいては、図38に示したような支持モーメント以外にも深刻な問題がある。段差部(崖部406C)もしくは凹凸部付近の形状の条件が悪い場合や、著しく摩擦が少ない場合、足部401の矢印409方向への滑落という問題も無視できない。制御周期等に比して、極めてその挙動が速いため、充分に対処できない危険性が考えられる。
【0021】
この滑落とは別に、図42に示すように、障害物411を移動面410上で踏みつけてしまったときも、同様の問題が発生する。現在のところ、障害物と判断した対象物に対して予め回避行動を採るようにプログラムされていない限り、ロボットは対象物に対して接触してみないと、危険であるか否かの認知ができない。したがって、図42に示すように、断面が円形の円柱状、または円筒状であり、転がるような障害物411に対しては、足部401により踏みつけてみないと危険であるか否かが認知できない場合がある。足部401の中央部であるいわゆる土踏まずが障害物411に接触すると、土踏まずの回りの部分が適切に移動面410に接地せず、足部401は移動面410に対して力を加えられない状態になる。これにより、支持モーメントのみならず、極端に摩擦が減り、しかも、障害物411が矢印412方向に回転し、動き出すと刻一刻と状態が変わり、制御が著しく困難になる。そして、転倒に至る可能性がある。これについても対策の必要性は高いといえる。
【0022】
さて、足の裏を設計する際、移動面の保護、摩擦力確保等を考えると、靴などのイメージから、ゴムなどの材質を選択するのが通常と考えられる。研究領域のロボットでもゴムを選択した例は多い。ゴムの特性に期待すると、軟らかさを追及するというのも充分考えうる手法である。
【0023】
しかしながら、図43に示すように、底が厚く、軟らかい例えばゴム素材414を選択し、基体413に固着した場合、前述した数々の問題を解決できるとも考えられるが、新たな問題が発生する。移動面415方向の力(慣性力等)は、ごく通常の歩行でも起こりうる上、何らかの障害物に差し掛かった場合、対象とする脚以外から力を受けて同様のことが起こり得る。
【0024】
すなわち、外縁部周辺の摩擦力が極端に高い、もしくは上昇し、しかも、材質自体がそれを支えきれないと、図43に示すような変形が起こる。これは、ゴム素材と、移動面との間の絶対的な摩擦力の他、ゴム素材の弾性などにより時系列での摩擦力も発生するからである。ゴムの変形の仕方を適切に制御でき、摩擦力を急激に変化しないように調整できればよいが、調整、制御ができないと、摩擦力が急激に変化し、ゴム素材の移動面接触部414aはスティックスリップのようなビビリ振動を起こす。また、更なる摩擦力上昇により転倒モーメントが発生したり、いわゆる引っ掛かりが起きたりと、安定を損ねる方向にモーメントが作用する。このため、この部位の構造、手法、材質選択等、その設計は容易ではなく、充分な検討が必要であることを考慮すべきである。
【0025】
これまで説明してきたように、連続面、非連続面、剛体面、粘弾性面など、広範な種類の移動面に適応でき得る足底面を実現するためには、
1)接地部周辺の形状
2)接地部周辺の形状変化
3)接地部周辺の摩擦とその分布
4)接地部周辺の摩擦とその分布、それぞれの変化
等を適切に設定・調整する必要がある。これにより、移動機械としての性能を飛躍的に向上させることが可能だと考えられる。
【0026】
全ての平面において網羅的に最適な特性を得られるとはいえないが、こうした特性を適宜選択することで、移動可能な地形の範囲が拡大できることは確かである。
【0027】
本発明の目的は、以上のような問題点を解決するためのものであり、より詳しくは、脚式移動ロボットのZMP移動による足部形状の変化に伴う抗力発生実効面の変化を抑制することができる脚式移動ロボット、及び脚式移動ロボットの足部機構を提供することである。
【0028】
【課題を解決するための手段】
本発明に係る脚式移動ロボットは、前記課題を解決するために、胴体部に連結した複数本の可動脚に足部機構を設けてなり、前記複数本の可動脚と足部機構からなる下肢を用いて移動面上を移動する脚式移動ロボットであって、前記足部機構を、前記胴体部、下肢及び移動面から加わる力に対抗して変形しない硬さの基体部と、前記基体部の形状に基づいて特性が変化する柔軟部とによって形成し、前記足部機構の基体部の移動面に対する面の中央部とその周囲部とについて、前記柔軟部は前記基体部の中央部に接する部分ほど周囲部に接する部分に比べて加わる力に対する変位量が大きい。
【0030】
本発明に係る脚式移動ロボットは、前記課題を解決するために、胴体部に連結した複数本の可動脚に足部機構を設けてなり、前記複数本の可動脚と足部機構からなる下肢を用いて移動面上を移動する脚式移動ロボットであって、前記足部機構を、特性の相互に異なる複数の材料を前記移動面に対し水平方向又は垂直方向に積層して形成する。この足部機構によれば、中央部、周囲部、さらに最外周部で、硬さが異なるので、効力発生実行面の面積の縮小を抑えられる。
【0031】
本発明に係る脚式移動ロボットは、前記課題を解決するために、胴体部に連結した複数本の可動脚に足部機構を設けてなり、前記複数本の可動脚と足部機構からなる下肢を用いて移動面上を移動する脚式移動ロボットであって、前記足部機構の前記移動面と接地する面の摩擦分布特性を、前記接地する面の中央部、前記中央部の周囲の周囲部、さらに前記周囲部の外周の最外周部とで、異ならせる。この足部機構によれば、中央部、周囲部、さらに最外周部で、摩擦分布特性が異なり、その大きさは前記周囲部、前記中央部、前記最外周部の順番で大、中、小となるので、最外周部で移動面に引っかかることなく、周囲部、中央部にてしっかりと移動面を捉える。
【0032】
本発明に係る脚式移動ロボットの足部機構は、前記課題を解決するために、脚式移動ロボットの胴体部に連結した複数本の可動脚の移動面と接地する側に設けられる脚式移動ロボットの足部機構であって、前記可動脚に接続され、前記胴体部、下肢及び移動面から加わる力に対抗して変形しない硬さの基体部と、前記基体部の形状に基づいて特性が変化する柔軟部とによって形成され、前記基体部の移動面に対する面の中央部とその周囲部とについて、前記柔軟部は前記基体部の中央部に接する部分ほど周囲部に接する部分に比べて加わる力に対する変位量が大きい。
【0034】
本発明に係る脚式移動ロボットの足部機構は、前記課題を解決するために、脚式移動ロボットの胴体部に連結した複数本の可動脚の移動面と接地する側に設けられる脚式移動ロボットの足部機構であって、特性の相互に異なる複数の材料を前記移動面に対し垂直方向又は水平方向に積層して形成する。この足部機構によれば、中央部、周囲部、さらに最外周部で、硬さが異なるので、効力発生実行面の面積の縮小を抑えられる。
【0035】
本発明に係る脚式移動ロボットの足部機構は、前記課題を解決するために、脚式移動ロボットの胴体部に連結した複数本の可動脚の移動面と接地する側に設けられる脚式移動ロボットの足部機構であって、前記移動面と接地する面の摩擦分布特性を、前記接地する面の中央部、前記中央部の周囲の周囲部、さらに前記周囲部の外周の最外周部とで、異ならせる。この足部機構によれば、中央部、周囲部、さらに最外周部で、摩擦分布特性が異なり、その大きさは前記周囲部、前記中央部、前記最外周部の順番で大、中、小となるので、最外周部で移動面に引っかかることなく、周囲部、中央部にてしっかりと移動面を捉える。
【0036】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。先ず、図1には、本発明の実施に供される「人間型」又は「人間型」の脚式移動ロボット1が直立している様子を斜め前方から眺望した外観を示している。図示の通り、脚式移動ロボット1は、体幹部(胴体部)ユニット2の所定の位置に頭部ユニット3が連結されると共に、左右2つの上肢ユニット4R/4Lと、左右2つの下肢ユニット5R/5Lが連結されて構成されている(但し、R及びLの各々は、右及び左の各々を示す接尾辞である。以下において同じ。)。
【0037】
頭部ユニット3は、首関節6によって体幹部ユニット2の略最上端中央に連結されている。また、左右各々の上肢ユニット4R/4Lは、上腕4R/4L、肘関節4R/4L、前腕4R/4Lとで構成され、肩関節7R/7Lによって体幹部ユニット2上方の左右各側縁にて連結されている。
【0038】
左右各々の下肢ユニット5R/5Lは、大腿部5R/5L、膝関節5R/5L、脛部5R/5L、足首5R/5Lと、足部5R/5Lとで構成され、股関節8R/8Lによって体幹部ユニット2の略最下端にて連結されている。大腿部5R/5Lと膝関節5R/5Lと脛部5R/5Lは、可動脚を構成してなり、この可動脚に足首5R/5Lを介して足部5R/5Lが所定の自由度を有して接続されている。
【0039】
この脚式移動ロボット1が具備する関節自由度構成を図2に模式的に示す。頭部ユニット3を支持する首関節6は、首関節ヨー軸101と、首関節ピッチ軸102と、首関節ロール軸103という3自由度を有している。
【0040】
また、上肢ユニット4R/4Lは、肩関節ピッチ軸107と、肩関節ロール軸108と、上腕ヨー軸109と、肘関節ピッチ軸110と、前腕ヨー軸111と、手首関節ピッチ軸112と、手首関節ロール輪113と、手部114とで構成される。手部114は、実際には、複数本の指を含む多関節・多自由度構造体である。ただし、手部114の動作は、ロボット装置1の姿勢制御や歩行制御に対する寄与や影響が少ないので、本明細書ではゼロ自由度と仮定する。したがって、各腕部は7自由度を有するとする。
【0041】
また、体幹部ユニット2は、体幹ピッチ軸104と、体幹ロール軸105と、体幹ヨー軸106という3自由度を有する。
【0042】
また、下肢ユニット5R/5Lは、股関節ヨー軸115と、股関節ピッチ軸116と、股関節ロール軸117と、膝関節ピッチ軸118と、足首関節ピッチ軸119と、足首関節ロール軸120と、足部121(図1の足部5R/5Lと同一である。)とで構成される。本明細書中では、股関節ピッチ軸116と股関節ロール軸117の交点は、ロボット装置1の股関節位置を定義する。人体の足部は、実際には多関節・多自由度の足底を含んだ構造体であるが、ロボット装置1の足底は、ゼロ自由度とする。したがって、各下肢ユニットは、6自由度で構成される。
【0043】
以上を総括すれば、ロボット装置1全体としては、合計で3+7×2+3+6×2=32自由度を有することになる。ただし、この脚式移動ロボット1が必ずしも32自由度に限定されるわけではない。設計・制作上の制約条件や要求仕様等に応じて、自由度すなわち関節数を適宜増減することができることはいうまでもない。
【0044】
上述したような脚式移動ロボット1がもつ各自由度は、実際にはアクチュエータを用いて実装される。つまり、各関節には、アクチュエータが配設されている。該アクチュエータの駆動によってロボットの動作は実現される。装置の外観上で余分な膨らみを拝してヒトの自然形状に近似させることや、2足歩行という不安定構造体に対して姿勢制御を行うなどの種々の要請から、関節アクチュエータは小型且つ軽量であることが好ましい。
【0045】
本実施例では、ギア直結型で且つサーボ制御系をワンチップ化してモータ・ユニットに内蔵したタイプの小型ACサーボ・アクチュエータを搭載することとした。なお、脚式移動ロボットに適用可能な小型ACサーボ・アクチュエータに関しては、例えば本出願人に既に譲渡されている特開2000−299970号公報に開示されている。
【0046】
図3には、脚式移動ロボット1の制御システムとアクチュエータ構成を模式的に示している。同図に示すように、脚式移動ロボット1は、ヒトの四肢を表現した体幹部ユニット2,頭部ユニット3,上肢ユニット4R/4L,下肢ユニット5R/5Lと、各ユニット間の協調動作を実現するための適応制御を行う制御ユニット10とで構成される。
【0047】
脚式移動ロボット1全体の動作は、制御ユニット10によって統括的に制御される。制御ユニット10は、後述するCPU(Central Processing Unit)や、RAM、フラッシュROM等の主要回路コンポーネントで構成される主制御部11と、電源回路やロボットの各構成要素とのデータやコマンドの授受を行うインターフェイスなどを含んだ周辺回路12とで構成される。
【0048】
図4は、脚式移動ロボット1の制御システム構成の概略を示している。主制御部11は、CPU13と、RAM14と、動作パターンなどが格納されているROM15と、脚式移動ロボットに搭載される各種センサ30,31出力をデジタル信号に変換するA/D変換機17とがバス16によって接続されて構成されている。
【0049】
CPU13は、ROM15に蓄えられている情報や各種センサの出力に基づいて脚式移動ロボット1の下肢による移動運動、ZMP軌道、体幹運動、上肢運動、腰部高さなどを設定するとともに、これらの設定内容に従った各関節への指令値を決定する。ここで言うZMP軌道とは、例えばロボットの歩行運動期間中などにZMPが動く軌跡を意味する。
【0050】
また、各関節に配備されたACサーボ・アクチュエータAiは、バス16を介して主制御部11に接続され、CPU13で算出された各関節指令値を受け取ることが可能となっている。ACサーボ・アクチュエータAiは、この指令値に従って駆動し、脚式移動ロボット1の動作が実現される。
【0051】
制御ユニット10の設置場所は、特に限定されない。図3では体幹部ユニット2に搭載されているが、頭部ユニット3に搭載してもよい。あるいは、ロボット外に制御ユニット10を配備して、脚式移動ロボット1の機体とは有線又は無線で交信するようにしてもよい。
【0052】
図2に示した脚式移動ロボット1内の各関節自由度は、それぞれに対応するACサーボ・アクチュエータAiによって実現される。すなわち、頭部ユニット3には、首関節ヨー軸101、首関節ピッチ軸102、首関節ロール軸103の各々を表現する首関節ヨー軸アクチュエータA2、首関節ピッチ軸アクチュエータA3、首関節ロール軸アクチュエータA4が配設されている。
【0053】
また、頭部ユニット3には、外部の状況を撮像するためのCCD(Charge Coupled Device)カメラが設けられているほか、前方に位置する物体までの距離を測定するための距離センサ、外部音を集音するためのマイク、音声を出力するためのスピーカ、使用者からの「撫でる」や「叩く」といった物理的な働きかけにより受けた圧力を検出するためのタッチセンサ等が配設されている。
【0054】
また、体幹部ユニット2には、体幹ピッチ軸104、体幹ロール軸105、体幹ヨー軸106の各々を表現する体幹ピッチ軸アクチュエータA5、体幹ロール軸アクチュエータA6、体幹ヨー軸アクチュエータA7が配設されている。また、体幹部ユニット2には、このロボット1の起動電源となるバッテリを備えている。このバッテリは、充放電可能な電池によって構成されている。
【0055】
また、上肢ユニット4R/4Lは、上腕4R/4Lと、肘関節4R/4Lと、前腕4R/4Lに細分化されるが、肩関節ピッチ軸107、肩関節ロール軸108、上腕ヨー軸109、肘関節ピッチ軸110、前腕ヨー軸111、手首関節ピッチ軸112、手首関節ロール軸113の各々表現する肩関節ピッチ軸アクチュエータA8、肩関節ロール軸アクチュエータA9、上腕ヨー軸アクチュエータA10、肘関節ピッチ軸アクチュエータA11、肘関節ロール軸アクチュエータA12、手首関節ピッチ軸アクチュエータA13、手首関節ロール軸アクチュエータA14が配備されている。
【0056】
また、下肢ユニット5R/5Lは、大腿部5R/5Lと、膝関節5R/5Lと、脛部5R/5L、足首5R/5L、足部5R/5Lに細分化されるが、股関節ヨー軸115、股関節ピッチ軸116、股関節ロール軸117、膝関節ピッチ軸118、足首関節ピッチ軸119、足首関節ロール軸120の各々を表現する股関節ヨー軸アクチュエータA16、股関節ピッチ軸アクチュエータA17、股関節ロール軸アクチュエータA18、膝関節ピッチ軸アクチュエータA19、足首関節ピッチ軸アクチュエータA20、足首関節ロール軸アクチュエータA21が配備されている。
【0057】
各関節に用いられるアクチュエータA2,A3・・・は、上述したように、ギア直結型で旦つサーボ制御系をワンチップ化してモータ・ユニット内に搭載したタイプの小型ACサーボ・アクチュエータで構成することができる。
【0058】
体幹部ユニット2、頭部ユニット3、各上肢ユニット4R/4L、各下肢ユニット5R/5Lなどの各機構ユニット毎に、アクチュエータ駆動制御部の副制御部20,21,22R/22L,23R/23Lが配備されている。さらに、各下肢ユニット5R/5Lの足部121の足底が着床したか否かを検出する接地確認センサ30R/30Lを装着するとともに、体幹部ユニット2内には、姿勢を計測する姿勢センサ31を装備している。
【0059】
接地確認センサ30R/30Lは、例えば足底に設置された近接センサ又はマイクロ・スイッチなどで構成される。また、姿勢センサ31は、例えば、加速度センサとジャイロ・センサの組み合わせによって構成される。
【0060】
接地確認センサ30R/30Lの出力によって、歩行・走行などの動作期間中において、左右の各脚部が現在立脚又は遊脚何れの状態であるかを判別することができる。また、姿勢センサ31の出力により、体幹部分の傾きや姿勢を検出することができる。
【0061】
主制御部11は、各センサ30R/30L,31の出力に応答して制御目標をダイナミックに補正することができる。より具体的には、副制御部20,21,22R/22L,23R/23Lの各々に対して適応的な制御を行い、副制御部は上記主制御部11からの各関節指令値をACサーボ・アクチュエータAiに送る。ACサーボ・アクチュエータAiは、主制御部11からの各関節指令値に従って駆動し、脚式移動ロボットの動作が実現される。
【0062】
足部5R/5L(121)は、二本の下肢ユニット5R/5Lにあって、大腿部5R/5Lと膝関節5R/5Lと脛部5R/5Lが構成する脚部に足首5R/5Lを介して自由度2にて取りつけられている。これは、足首関節ピッチ軸119と足首関節ロール軸120とにより得られる自由度である。
【0063】
この足部5R/5L(121)は、胴体部(体幹部ユニット)、下肢ユニット自身及び移動面19からの力に対抗する硬さの図5に示す基体部21と、基体部21の形状に基づいて特性が変化する柔軟部22とを配置してなる。この図5に示す足部5R/5L(121)は、図6及び図7に示すモデル化足部40の足部上面部42と、底部柔軟部43と、移動面接触部44を具現化した構成である。
【0064】
先ず、図6及び図7に示すモデル化足部40について説明する。図6はモデル化足部40を斜視図的に記したものであり、図7は断面を模式的に示したものである。なお、これらの図では、本来連続的でありうる底部柔軟物と移動面接触部を模式的に示すため、離散的な表現をしている。機械的特性から本発明の概念を説明するための表現である。
【0065】
足部上面部42上に固着されている足首接続部41には、図5の足首部5R/5Lが前述の足首関節ピッチ軸119と、足首関節ロール軸120とを確保しながら接続している。足首接続部41が固着された足部上面部42は、図5の基体部21に相当するものであり、足の甲にあたる部分である。これらの部位は、下肢の発生するトルク、移動面からの反力、モーメント等を伝える場所であり、それらを支持できうる性質を持っていなければならない。極度に変形しやすい材料などは、不適格である。よって、超合金、軽金属、強化プラスチック等が適する。
【0066】
この足部上面部42の形状は、後述するように、底部柔軟部43と関連するものであり、足部上面部42の形状を適宜設計することで、底部柔軟部43の特性を調整し、よって足部の特性を調整することが可能となる。
【0067】
例えば、足部上面部42の形状により、底部柔軟部43の厚さに分布を持たせることができ、移動性能を決定するための要素として有効に機能させることが可能となる。
【0068】
スプリングにてモデル化した底部柔軟部43は、足部上面部42と共に、足部40の特徴となる部位である。この足部柔軟部43は、弾性要素、粘性要素のほか、それらの要素を組み合わせて考慮される必要がある。また、それらの要素にしても、段特性にしたり、ヒステリシスを設けたり、不感帯的な特性にするなど、線系、非線系、もしくは、連続、不連続は問わないものとすることができる。この足部柔軟部43の断面方向での厚さの寸法や、形状についても、同一である必要はなく、後述するように、様々な形状が考えられる。本発明では,接触状態とその変化を適切に調整するために、この部位の特性を選択することができる。
【0069】
移動面接触部44は、移動面との接触部である。この部位も、運動性能に大きく関与している部分である。この移動面接触部44は、底部柔軟部43によって決定された特性を移動面に作用させる部位であり、摩擦や耐久性等を決定する部位である。
【0070】
但し、底部柔軟部43と、移動面接触部44は、同一材料、同一構造で構成することも可能である。すなわち、材質の選定により、いくつかの移動のための機能(性能)を決定できる。
【0071】
以下に、前記モデル化足部40の具現例である、前記図5に示した足部121の詳細について、断面図(図8)を用いて説明する。前記自由度2の足首部が接続される足首接続部41が固着された基体部21には、例えば接着により底部柔軟部22が貼り合わされている。基体部21は、下肢の発生するトルク、移動面からの反力に対して変形せず、かつ支持モーメントを確保する硬さである。柔軟部22は、図6及び図7に示した底部柔軟部43と移動面接触部44の機能を併せ持ったものである。基体部21の形状を適宜選択することで、移動面19に対する接地圧分布を調整することができる。また、足部柔軟部22の移動面に接触する外縁部にはRを設け、移動面に対しての不要な引っ掛かりを防止している。
【0072】
特に、図8の具体例にあっては、基体部21の中央部をその周囲部と区別したとき、基体部21の厚みを中央部が最も薄く、断面長手方向の両端部が厚くなるように移動面に向かって凹状に薄くしている。つまり、基体部21の中央部を、移動面と離反する凹面に形成している。すると、基体部21に貼り合わされた柔軟部22は、基体部21の形状により、中央部を厚くし、断面長手方向の両端(前端、後端)を薄くして、厚さに分布を持たせることができる。これにより、凹状に薄くされた基体部21に貼り合わされた前記柔軟部22は中央部ほど柔らかくなる。
【0073】
このため、ZMPが前記中央部にきても、中央部は柔らかく、両端部はそれよりも柔らかくないので、移動面に接する足部の接触面は例えば移動面と反対方向に撓むことなく、移動面との接触面積が減少することはない。すなわち、抗力発生実効面の面積は減少することなく、脚式移動ロボット1の動作によって発生するヨー軸回りのモーメントに対して強くなり、脚式移動ロボット1の姿勢を安定に保つことができる。
【0074】
以上に説明したように、図5,図8に示した構造の足部を用いた脚式移動ロボット1は、基体部21に移動面と離反する凹面を形成することによって、ZMPの移動により足部の形状が変化しても、前記ヨー軸回りのモーメントに対して抗力を発生する抗力発生実効面の形状の変形、面積の減少を抑制することができ、姿勢を安定に保つことが可能となる。また、足部の中心から離れた位置で、移動面への接地圧力を高くすることができ、脚式移動ロボット1に発生するヨー軸回りのモーメントに対して強くすることができる。さらには、路面に対して発生する摩擦力の極端な上昇を防ぐことができ、ロボットの躓きを抑制することができる。また、足部の周縁部には、外周方向に凸となる曲面が形成されている。これにより躓きを防止することができ、脚式移動ロボット1が転倒するような場合でも安全な転倒動作へスムーズに移行することができるようになる。
【0075】
以下には、足部の他の具体例について説明する。先ず、第2の具体例となる足部122は、図9に断面を示すような構成である。前記図8に断面を示した足部121とは異なり、前記図6及び図7に示した底部柔軟部43と移動面接触部44とを、材料的,構造的に分けている。すなわち、底部柔軟部22と区別して、移動面接触部23を設けた構成である。移動面接触部23は、底部柔軟部22に例えば接着されて貼り合わされている。移動面接触部23は、移動面と接触するので、摩擦特性等を決定しているが、柔軟部22が破損しやすい材料の場合、これを保護する機能を有する。図8に断面を示した足部121と同様に、基体部21の形状を適宜選択することで、接地圧分布を調整することができる。また、移動面との接触部の外縁部にはRを設け、不要な引っ掛かりを防止している。
【0076】
このため、ZMPが前記中央部にきても、中央部は柔らかく、両端部はそれよりも柔らかくないので、移動面に接する足部の接触面は例えば移動面と反対方向に撓むことなく、移動面との接触面積が減少することはない。すなわち、抗力発生実効面の面積は減少することなく、脚式移動ロボットの動作によって発生するヨー軸回りのモーメントに対して強くなり、脚式移動ロボットの姿勢を安定に保つことができる。
【0077】
以上に説明したように、図9に断面を示した構造の足部122を用いた脚式移動ロボットは、基体部21に移動面と離反する凹面を形成することによって、ZMPの移動により足部の形状が変化しても、前記ヨー軸回りのモーメントに対して抗力を発生する抗力発生実効面の形状の変形、面積の減少を抑制することができ、姿勢を安定に保つことが可能となる。また、足部の中心から離れた位置で、移動面への接地圧力を高くすることができ、脚式移動ロボットに発生するヨー軸回りのモーメントに対して強くすることができる。さらには、路面に対して発生する摩擦力の極端な上昇を防ぐことができ、ロボットの躓きを抑制することができる。また、足部の周縁部には、外周方向に凸となる曲面が形成されている。これにより躓きを防止することができ、脚式移動ロボットが転倒するような場合でも安全な転倒動作へスムーズに移行することができるようになる。さらに、柔軟部22が破損しやすい材料の場合、接触部23によりこれを保護することができる。
【0078】
次に、第3の具体例となる足部123は、図10に断面を示すように、基体部24に特徴的な形状を付与するのではなく、底部柔軟部25の形状に特徴を持たせている。つまり、基体部24は、断面が長手方向に直線である平板状であり、これまでに挙げた基体部21のように移動面と離反する凹面ではない。この基体部24に例えば接着され貼り合わされる柔軟部25の中央部を移動面と離反する凹面としている。そして、柔軟部25には、これを保護する機能を有する移動面接触部26が例えば接着され貼り合わされている。
【0079】
このような構造の足部123は、ZMPが前記中央部にきても、ロボットの荷重により、中央部が移動面に近づくが、両端部は中央部よりも厚くなっており、移動面にそれほど近づかない。これにより、移動面に接する足部の接触面は例えば移動面と反対方向に撓むことなく、移動面との接触面積が減少することはない。すなわち、抗力発生実効面の面積は減少することなく、脚式移動ロボットの動作によって発生するヨー軸回りのモーメントに対して強くなり、脚式移動ロボットの姿勢を安定に保つことができる。
【0080】
以上に説明したように、図10に断面を示した構造の足部123を用いた脚式移動ロボットは、基体部24に貼り合わせる柔軟部25の中央部に移動面と離反する凹面を形成することによって、ZMPの移動により足部の形状が変化しても、前記ヨー軸回りのモーメントに対して抗力を発生する抗力発生実効面の形状の変形、面積の減少を抑制することができ、姿勢を安定に保つことが可能となる。また、足部の中心から離れた位置で、移動面への接地圧力を高くすることができ、脚式移動ロボットに発生するヨー軸回りのモーメントに対して強くすることができる。さらには、路面に対して発生する摩擦力の極端な上昇を防ぐことができ、ロボットの躓きを抑制することができる。また、足部の周縁部には、外周方向に凸となる曲面が形成されている。これにより躓きを防止することができ、脚式移動ロボットが転倒するような場合でも安全な転倒動作へスムーズに移行することができるようになる。さらに、柔軟部25が破損しやすい材料の場合、接触部26によりこれを保護することができる。
【0081】
次に、第4の具体例となる足部124は、図11に断面を示すように、足首接続部51を固着した平板状の足部上面部52とこの足部上面部52の下に形成した芯部53とで基体部を構成し、芯部53の形状に応じて特性を異ならせる底部柔軟部54を芯部53に固定してなる。つまり、この足部124の基体部は、可動脚と足首部を介して接続される上面部52と、上面部53と柔軟部54との間に位置する芯部53とからなり、芯部53の形状を変化させて、その効果を柔軟部に与え、接地圧を調整しようというものである。もちろん、基体部の上面部52及び芯部53は、下肢の発生するトルク、移動面からの反力に対して変形せず、かつ支持モーメントを確保する硬さである。
【0082】
特に、図11の具体例にあっては、芯部53の中央部をその周囲部と区別したとき、芯部53の厚みを中央部53Cが最も薄く、断面長手方向の両端部53E,53Eが厚くなるように移動面に向かって凹状に薄くしている。つまり、芯部53の中央部53Cを、移動面と離反する凹面に形成している。すると、芯部53に固定された柔軟部54は、芯部の形状により、中央部54Cを厚くし、断面長手方向の両端54E、54Eを薄くして、厚さに分布を持たせることができる。これにより、凹状に薄くされた芯部53に固定された柔軟部54は中央部54Cほど柔らかくなる。
【0083】
このため、ZMPが前記中央部にきても、中央部は柔らかく、両端部はそれよりも柔らかくないので、移動面に接する足部の接触面は例えば移動面と反対方向に撓むことなく、移動面との接触面積が減少することはない。すなわち、抗力発生実効面の面積は減少することなく、脚式移動ロボット1の動作によって発生するヨー軸回りのモーメントに対して強くなり、脚式移動ロボット1の姿勢を安定に保つことができる。
【0084】
また、移動面との接地部は、外周部に近い方が支持モーメントを高く保つことができるので、この具体例でも、上記形状としている。また、柔軟部の厚みが薄い方が、水平面方向への剪断変形を抑える効果があり、その結果,思いもよらぬ接地部のスティックスリップ振動などを防止することが可能である。また,前述したように,躓きなどを防止するため、柔軟部54の角にはRを設けているといった調整も行っている。
【0085】
ところで、柔軟部54と芯部53との固定方法は、現実問題上、接合或いは接着が困難な材質も存在している。そのような場合、柔軟物がモールドとして鋳造可能であれば、図11に示すように、先端を球状に膨らませた固定部54Sを形成する。その固定部54Sを芯部53に形成した先端が広がった穴53Aにはめ込むことで、柔軟部54を芯部53に固定できる。また、柔軟部54が前記上面部52と接する外縁部付近では、ちょうど芯部53を包み込むように、固定部位56Gを設けている。芯部53を、柔軟部54が上面部52との間で挟み込むように固定することで、さらに確実な固定が可能となる。
【0086】
図12は、前記図11に示した第4の具体例とは、芯部55の形状が異なる第5の具体例(足部125)の断面概念図である。前記図11の具体例では芯部の接地部外周部にRを設けていたが、加工上の問題、もしくは柔軟部56の特性が充分に変形に耐えるなどの優れた特性を持っている場合には、芯部55の両端55E、55Eの角のRを省略し、柔軟部56の両端56E、56Eに僅かなRもしくは面取り等の形状を設ける。
【0087】
この図12の具体例でも、柔軟部に先端を球状に膨らませた固定部56Sを形成する。その固定部56Sを芯部55に形成した先端が広がった穴55Aにはめ込むことで、柔軟部56を芯部55に固定できる。また、柔軟部56が上面部52と接する外縁部付近では、ちょうど芯部55を包み込むように、固定部位56Gを設けている。芯部55を、柔軟部56が上面部52との間で挟み込むように固定することで、さらに確実な固定が可能となっている。
【0088】
図13は、図11、図12に示した具体例の内、柔軟部56の上面部52側の固定法が異なる第6の具体例(足部126)の断面図である。固定をさらに確実にするため、上面部52側の柔軟部56の端部56G(固定部位)を膨らませ、芯部55及び上面部52に形成した凹部にはめ込んで固定する。そして、図中では、上面部52と芯部55とが分かれているが、これらが1体で構成され、柔軟部は鋳造により整形することも考えられる。
【0089】
図14は、前記図9に示した第2の具体的の設計例である(これを第7の具体例の足部127とする)。芯部55と柔軟部56は、前記図12に示した構成と同等である。特徴的なのは、柔軟部56を包むように、耐久性のある接触部57が設けられていることである。柔軟部を分けて構成することにより、材質の選択の幅が広がり、面圧調整,摩擦特性,強度,耐久性などの要素をさらに優れた特性として、足部機構を構成することが可能となる。
【0090】
図15は、図12に示した第5の具体例の柔軟部の外縁部付近に補強材を設けた構造が特徴的な第8の具体例(足部128)である。底部柔軟部56が移動面接触面と機能を兼ねる場合、材料によっては耐久性に問題があったり、移動面の接地部付近の面圧等について調整が必要になったりする虞がある。柔軟部56を例えばモールドとして型によって鋳造する場合などに、補強材58を導入すれば、前記材料の耐久性や、面圧などの調整には充分な対策が採られることになる。つまり、柔軟部56に補強材58を入れることにより、強度,耐久性の確保や、移動性能の向上を図ることが可能となる。
【0091】
これまでの各具体例で用いた柔軟部には、粘性があり、かつ弾性のある、例えばゴム,αゲル(商品名)、シリコン、メモリーフォーム(商品名)、樹脂等を使うことができる。
【0092】
また、それだけではなく、弾性,粘性,摩擦等を持った機械要素でも実現可能な可能性が考えられる。図16にその例(第9の具体例となる足部130機構の断面図、図17に下面から見た図を示す。この第9の具体例は、足部上面部61の下に複数のばね要素62が設けられ、さらにその下に移動面接触部63が設けられる構造となる。つまり、複数のばね要素62が足部上面部61と移動面接触部63に挟まれている構造である。一つのばね要素62iは、長さの異なる例えば三枚の金属性の板バネ621,622,623を、一方の端部620を揃えて後述の上面部接続部64側にて固定し、一番長い板バネ621の他方の端部621bを後述の接触部接続部65に固定した構成とする。
【0093】
例えば、8個のばね要素62〜62は、それぞれの一端部を上面部接続部64とし、足部上面部61に接続し、それぞれの他端部を接触部接続部65とし、移動面接触部63に接続している。特に、この例では、図17に示すように、8個のばね要素62〜62は、上面部接続部64と接触部接続部65の中心を結ぶ直線の中央部側への延長線の交点を中心とした同芯円状に配置されている。
【0094】
ばね要素62iは図18に示すような非線形な特性を持つ。図18では、特に横軸に示した変形の大きさに対する、縦軸に示した硬さの特性が、多段の特性となっている。変形の大きさが0からD1までは傾きがI1となり、D1からD2まではI2となり、D2からD3まではI3となっている。
【0095】
また、この第9の具体例においては、移動面接触部63の材質、形状を適宜選択すること、また、ばね要素62i、接触部接続部65、上面部接続部64の配置を変えることにより、足部機構としての性能を調整することが可能である。
【0096】
以上に、複数の具体例を挙げてきたが、いずれの例も、接地力、圧力とその変化による摩擦力の調整ができ、ロボットの運動性能を確保することができる。また、接地力、圧力とその変化による支持モーメントの調整ができ、運動性能を確保することができる。また、強度の確保、さらに耐久性の向上も達成できる。
【0097】
以下には、これまでに挙げた各具体例に共通の構造、すなわち底面部に、中央部付近ほど柔らかくなるような凹部を設けた構造が、どのように機能して、前述したような効果を得ることができるのかを説明する。
【0098】
先ず、図19を用いて加重時の足部131の断面状態変化を説明する。底面に凹部133を設け、その中央部に柔軟部132を設け、中央付近ほどやわらかくなるような分布とした場合である。これにより、無加重時では、図19の(A)のように、外周部134付近以外,移動面(地面)135から離反,もしくは,過大な接地圧が発生しないようにしている。荷重がかかった場合においても,図19の(B)のように、足底131機構が変形しても、床反力136が加わる主だった荷重部分134等は常に外側に保たれており、支持モーメントの低下を抑制することが可能となっている。
【0099】
したがって、足部131の底面に中央部付近ほど柔らかくなるような凹部133を設けた構造を持つことにより、脚式移動ロボットは、ZMPの移動により足部の形状が変化しても、脚式移動ロボットの動作により発生するヨー軸回りのモーメントに対して抗力を発生する抗力発生実効面の形状の変形、面積の減少を抑制することができ、その姿勢を安定に保つことが可能となる。また、足部の中心から離れた位置で、路面への接地圧力を高くすることができ、脚式移動ロボットに発生するヨー軸周りのモーメントに対してロバストにすることができる。さらには、路面に対して発生する摩擦力の極端な上昇を防ぐことができ、ロボットの躓きを抑制することができる。
【0100】
また、図20に示すように、段差を踏んだときでも、足底の土踏まず付近にあたる柔軟部132においては。足底機構本体に対する段差による干渉は発生せず、接地圧も不必要な上昇が起きないよう抑制されている。従って、移動面凹凸や段差に対して、移動性能が向上し、しかもロバストな特性となりうる。
【0101】
また、図21に示すように、毛足の長い絨毯に対しても、凹状にした足底周縁部を滑らかな形状にして引っ掛かりを防ぎ、しかも絨毯の毛足が中央部の柔軟部132に食い込んで、摩擦力を確保するとともに、ヨー方向のモーメントを発生して調整することが可能となる。絨毯の特性は、滑りやすく、しかも軟らかい。脚式移動機械の視点から考えると、ヨー方向のモーメントが確保しにくく、支持モーメントも高めにくい。しかも、足底の形状によっては、引っ掛かって転倒モーメントを発生する危険性もあったが、本発明によりそれらの危険性は回避されることとなった。
【0102】
また、図22に示すように、本発明の各具体例は、周辺部134の形状にRを持たせたので、この部位が地面(移動面)に対して引っ掛かることがなくなった。これにより、従来のように、過剰に摩擦力上昇を引き起こし、転倒モーメントの発生につながることがない。また、この部位に適宜、丸みを与えることにより、摩擦等が上昇した場合には、足底面全体がすべることにより、転倒モーメントの発生を抑制する効果が期待できる。
【0103】
また、図23に示すように、凸部もしくは段差にて、土踏まず部にあたる柔軟部132で地面を支持した場合、もしくは,段差上段からの滑落を踏みとどめている状態では、柔軟構造物は、摩擦を確保するのみならず、その形状変化を適切に調整して、地面状態になじむ効果も併せ持つ。
【0104】
また、図24、図25は、足底部柔軟面の変形の例である。図24がいわば標準的な変形の様子を示している。これでも、支持モーメントを発生することはある程度可能であるといえるが限界はある。これを拡大するため、材質を柔軟にするのみならず、柔軟部139に、変形をある程度保持できる、すなわちヒステリシス的な特性を与えることにより、図25のような変形をさせ、接触部における支持モーメントを増大するとともに、段差等で滑落の危険がある際もより安全に脚式移動体を支持できる。
【0105】
なお、これまでは、足部の底面に中央部付近ほど柔らかくなるような凹部を設けた構造を持つ具体例の動作を説明したが、図26、図27に示すように、板状の基体部141に、断面が長方形となる柔軟部142を配設してもよい。このような構成の足部140により、地面(移動面)に対して転がり運動可能な障害物143、144を踏んだ場合でも、従来のように歩行制御が不安定になることがない。従来の足部機構ではいわゆる,亀の子状態となり、これを支点にシーソーのようになり、支持モーメントを発生できず、非線系特性になるため、制御的に不安定になっていた。この具体例では、柔軟部142を基体部141の下に設けることで、その障害物が図26に示すように小さい場合(障害物143)には、包み込むような形で、なじむことになり、足底の支持点は確保される。また、図27に示すように、それより大きい場合(障害物144)でも、足底が地面から離れる高さhが少なくて済み、不安定要素が少なくて済むという利点を有する。
【0106】
ところで、本発明はこれまで説明したように、上面部となる固い面(立体)に柔軟物を取り付けている点が大変特徴的である。これまでにいくつか示した例より、前記図18や、図28のような様々な特性I1,I2,I3を与えることができるため、材料・構造物の種類だけでは解決し切れなかった各種物理特性を幅広く調整可能となる。
【0107】
脚式移動機構は、車輪,無限軌道型移動機構と異なり、足先の不連続、離散的接地によって移動を実現するものであるため、接地部周辺の時系列特性が重要である。具体的には、接地圧力の時間変化、接地摩擦力の時間変化をも管理、調整することができる。図29にその特性の例を示す。歩行しているとき、足を繰り出していき、接地(荷重を加える)、支持、除荷、離反(遊脚)を繰り返しているが、接地の瞬間は躓き等を避けるため、地面への荷重は小さい方が好ましい。そして、接地が完了したら、高い支持モーメントを発生するために、適切な変化で支持力を上げていく。上昇が遅ければ、支持モーメントが上がらず安定性が確保できないが、急激な上昇でもかえって転倒モーメントとして作用してしまう可能性もあるので、充分に調整できる手段が必要である。
【0108】
従って、先に示したように、接地状態を適性に調整、特に動的変化に関して効果をなす構造とし、しかも、柔軟構造物を具備することで、さらに条件の悪い凸部移動その他の条件下で、本発明の技術は、脚式移動体の安定性と運動性の向上を期待できる。
【0109】
なお、ここまでは、足部の底部付近の特性を分布的にするため、形状足部の基体や、柔軟部の形状を変えてきたが、さらに、本発明では、足部の移動面と接地する面の摩擦分布特性を、図30に示すように、移動面と接地する面の中央部151、前記中央部の周囲の周囲部152、さらに前記周囲部の外周の最外周部153とで、異ならせる構成としてもよい。ここで、摩擦力分布特性は、周囲部152、中央部151、最外周部153の順番で大、中、小となる。
【0110】
また、図31、図32に示すように、足部を、特性の相互に異なる複数の材料を移動面に対し水平方向に積層して形成してもよい。したがって、図31、図32は、柔軟部を上方から視た様子を示すものである。また、柔軟部を移動面に対して水平方向で切断した断面を示しているともいえる。
【0111】
特に、図31は、特性の相互に異なる複数の材料である、底面柔軟部(1)161から底面柔軟部(7)167までを、底面柔軟部(1)161中に中心をおいて同心円状に積層した配置である。内側の底面柔軟部(1)161を最も柔らかくし、底面柔軟部(2)162,(3)163,・・(7)167にいくほど硬くしていく。つまり、内側を最も柔らかく、外側を最も硬くする。また、底部柔軟部(1)161、底部柔軟部(2)162からなる中央部Cと、底部柔軟部(3)163、(4)164,(5)165からなる周囲部Aと、底部柔軟部(6)166、(7)167からなる最外周部Oとに分けたとき、摩擦力分布特性についても異ならせる構成としてもよい。この摩擦力分布特性も、周囲部A、中央部C、最外周部Oの順番で大、中、小とする。
【0112】
また、図32は、特性の相互に異なる複数の材料である、底面柔軟部(1)171から底面柔軟部(7)177までを、同じように底面柔軟部(1)171を内側にして楕円状に積層した配置である。内側の底面柔軟部(1)171を最も柔らかくし、底面柔軟部(2)172,(3)173,・・(7)177にいくほど硬くしていく。つまり、内側を最も柔らかく、外側を最も硬くする。また、底部柔軟部(1)171、底部柔軟部(2)172からなる中央部Cと、底部柔軟部(3)173、(4)174,(5)175からなる周囲部Aと、底部柔軟部(6)176、(7)177からなる最外周部Oとに分けたとき、摩擦力分布特性についても異ならせる構成としてもよい。この摩擦力分布特性も、周囲部A、中央部C、最外周部Oの順番で大、中、小とする。
【0113】
また、図33に示すように、特性の相互に異なる複数の材料を移動面に対し垂直方向に積層して足部を形成してもよい。つまり、特性の相互に異なる柔軟部(1)181〜(6)186を、高さ方向に積層して配置したものである。重ねてもよく、あるいは、外側の材料が内側の材料を包含していくようにしてもよい。また、移動面接触部外縁部には、Rを設け、不要な引っ掛かりを防止している。
【0114】
【発明の効果】
以上説明したように、本発明に係る脚式移動ロボットは、 足部機構を、胴体部、下肢及び移動面からの力に対抗する硬さの基体部と、この基体部の形状に基づいて特性が変化する柔軟部とによって形成するので、ZMP移動による足部形状の変化に伴う抗力発生実効面の変化を抑制することができる。
【0115】
また、本発明に係る脚式移動ロボットは、足部機構を、胴体部、下肢及び移動面からの力に対抗する硬さの基体部と、基体部に固着され、かつ中央位置を中央部としてその周囲部と区別したとき、中央部の厚みを移動面に向かって凹状に薄くする柔軟部とによって形成するので、ZMP移動による足部形状の変化に伴う抗力発生実効面の変化を抑制することができる。
【0116】
また、本発明に係る脚式移動ロボットは、足部機構を、特性の相互に異なる複数の材料を移動面に対し水平方向又は垂直方向に積層して形成するので、ZMP移動による足部形状の変化に伴う抗力発生実効面の変化を抑制することができる。
【0117】
また、本発明に係る脚式移動ロボットは、足部機構の移動面と接地する面の摩擦分布特性を、接地する面の中央部、中央部の周囲の周囲部、さらに周囲部の外周の最外周部とで、異ならせるので、適切な摩擦力を確保し、移動面にひっかかったり、滑ったりすることがない。
【0118】
また、本発明に係る脚式移動ロボットの足部機構は、胴体部、下肢及び移動面からの力に対抗する硬さの基体部と、この基体部の形状に基づいて特性が変化する柔軟部とによって形成されるので、ZMP移動による足部形状の変化に伴う抗力発生実効面の変化を抑制することができる。
【0119】
また、本発明に係る脚式移動ロボットの足部機構は、胴体部、下肢及び移動面からの力に対抗する硬さの基体部と、基体部に固着され、かつ中央位置を中央部としてその周囲部と区別したとき、中央部の厚みを移動面に向かって凹状に薄くする柔軟部とによって形成されるので、ZMP移動による足部形状の変化に伴う抗力発生実効面の変化を抑制することができる。
【0120】
また、本発明に係る脚式移動ロボットの足部機構は、特性の相互に異なる複数の材料を移動面に対し水平方向又は垂直方向に積層して形成されるので、ZMP移動による足部形状の変化に伴う抗力発生実効面の変化を抑制することができる。
【0121】
また、本発明に係る脚式移動ロボットの足部は、移動面と接地する面の摩擦分布特性を、接地する面の中央部、中央部の周囲の周囲部、さらに周囲部の外周の最外周部とで、異ならせるので、適切な摩擦力を確保することができ、移動面にひっかかったり、滑ったりすることがない。
【図面の簡単な説明】
【図1】脚式移動ロボットの外観斜視図である。
【図2】脚式移動ロボットの関節自由度構成を模式的に示す図である。
【図3】脚式移動ロボットの制御システムとアクチュエータ構成図である。
【図4】脚式移動ロボットの制御システムとアクチュエータ構成のブロック図である。
【図5】脚式移動ロボットの足部機構の拡大図である。
【図6】モデル化足部の斜視図である。
【図7】モデル化足部の断面図である。
【図8】モデル化足部の具現例(第1の具体例)の断面図である。
【図9】第2の具体例の断面図である。
【図10】第3の具体例の断面図である。
【図11】第4の具体例の断面図である。
【図12】第5の具体例の断面図である。
【図13】第6の具体例の断面図である。
【図14】第7の具体例の断面図である。
【図15】第8の具体例の断面図である。
【図16】第9の具体例の断面図である。
【図17】第9の具体例の平面図である。
【図18】第9の具体例の持つ、変形−硬さ特性の多段特性図である。
【図19】各具体例に共通の構造がどのように機能するかを示す第1の機能説明図である。
【図20】各具体例に共通の構造がどのように機能するかを示す第2の機能説明図である。
【図21】各具体例に共通の構造がどのように機能するかを示す第3の機能説明図である。
【図22】各具体例に共通の構造がどのように機能するかを示す第4の機能説明図である。
【図23】各具体例に共通の構造がどのように機能するかを示す第5の機能説明図である。
【図24】各具体例に共通の構造がどのように機能するかを示す第6の機能説明図である。
【図25】各具体例に共通の構造がどのように機能するかを示す第7の機能説明図である。
【図26】各具体例に共通の構造がどのように機能するかを示す第8の機能説明図である。
【図27】各具体例に共通の構造がどのように機能するかを示す第9の機能説明図である。
【図28】各具体例の変形量に対する硬さ、摩擦などの特性を示す特性図である。
【図29】各具体例の時間に対する硬さ、摩擦などの特性を示す特性図である。
【図30】足部の移動面と接地する面の摩擦分布特性図である。
【図31】特性の相互に異なる複数の材料を移動面に対し水平方向に同心円上に積層して形成した足部を示す図である。
【図32】特性の相互に異なる複数の材料を移動面に対し水平方向に楕円上に積層して形成した足部を示す図である。
【図33】特性の相互に異なる複数の材料を移動面に対し垂直方向に積層して形成した足部を示す図である。
【図34】ロール軸、ピッチ軸、ヨー軸を示す座標系の図である。
【図35】従来の脚式移動ロボットの足部に生じる撓みを示す図である。
【図36】足部が移動面と路面接地部にて点接地するときの効力発生実効面を説明するための図である。
【図37】足部が移動面と路面接地フレームにて接地するときの効力発生実効面を説明するための図である。
【図38】移動面に段差があるときの足部の不安定状態を示す図である。
【図39】毛足の長い絨毯上における足部の不安定状態を示す図である。
【図40】摩擦の大きな移動面に対する足部の不安定状態を示す図である。
【図41】移動面に段差があるときの足部の不安定状態(滑落)を示す図である。
【図42】障害物を移動面上で踏みつけてしまったときの足部の不安定状態を示す図である。
【図43】足部にゴム素材を用いたときの不安定状態を示す図である。
【符号の説明】
1 脚式移動ロボット、5R/5L 下肢、5R/5L すね部、5R/5L 足首部、5R/5L 足部、19 移動面、21 基体部、22柔軟部

Claims (17)

  1. 胴体部に連結した複数本の可動脚に足部機構を設けてなり、前記複数本の可動脚と足部機構からなる下肢を用いて移動面上を移動する脚式移動ロボットであって、
    前記足部機構を、
    前記胴体部、下肢及び移動面から加わる力に対抗して変形しない硬さの基体部と、
    前記基体部の形状に基づいて特性が変化する柔軟部と
    によって形成し、
    前記足部機構の基体部の移動面に対する面の中央部とその周囲部とについて、前記柔軟部は前記基体部の中央部に接する部分ほど周囲部に接する部分に比べて加わる力に対する変位量が大きい
    脚式移動ロボット。
  2. 前記足部機構の基体部は、前記胴体部,下肢の発生するトルク、移動面からの反力に対して変形しない硬さである請求項1記載の脚式移動ロボット。
  3. 前記足部機構の基体部は、前記中央部の厚みを前記周辺部の厚みよりも薄くする請求項1記載の脚式移動ロボット。
  4. 前記柔軟部は、前記基体部の形状に対応して前記中央部の厚みを前記周辺部の厚みより厚くする請求項3記載の脚式移動ロボット。
  5. 前記柔軟部の移動面側外縁部を外側に向かって凸となる曲面とする請求項1記載の脚式移動ロボット。
  6. さらに、前記柔軟部を保護して移動面に接触する接触部を配置する請求項1記載の脚式移動ロボット。
  7. 前記足部機構の基体部は、前記胴体部,下肢の発生するトルク、移動面からの反力に対して変形しない硬さである請求項6記載の脚式移動ロボット。
  8. 前記足部機構の基体部は、前記中央部の厚みを前記周辺部の厚みよりも薄くする請求項6記載の脚式移動ロボット。
  9. 前記柔軟部は、前記基体部の形状に対応して前記中央部の厚みを前記周辺部の厚みより厚くする請求項8記載の脚式移動ロボット。
  10. 前記柔軟部の移動面側外縁部を外側に向かって凸となる曲面とする請求項9記載の脚式移動ロボット。
  11. 前記足部機構の基体部は、前記可動脚に足首部を介して接続される上面部と、前記上面部と前記柔軟部との間に位置する芯部とからなる請求項1記載の脚式移動ロボット。
  12. 前記基体部の前記上面部及び前記芯部は、前記下肢の発生するトルク、移動面からの反力に対して変形しない硬さである請求項11記載の脚式移動ロボット。
  13. 前記基体部の前記芯部は、前記中央部の前記柔軟部側の厚みを前記周辺部の厚みよりも薄くする請求項11記載の脚式移動ロボット。
  14. 前記柔軟部は、前記基体部の芯部の形状に対応して前記中央部の厚みを前記周辺部の厚みより厚くする請求項13記載の脚式移動ロボット。
  15. さらに、前記柔軟部を保護して移動面に接触する接触部を配置する請求項11記載の脚式移動ロボット。
  16. 脚式移動ロボットの胴体部に連結した複数本の可動脚の移動面と接地する側に設けられる脚式移動ロボットの足部機構であって、
    前記可動脚に接続され、前記胴体部、下肢及び移動面から加わる力に対抗して変形しない硬さの基体部と、
    前記基体部の形状に基づいて特性が変化する柔軟部と
    によって形成され、
    前記基体部の移動面に対する面の中央部とその周囲部とについて、前記柔軟部は前記基体部の中央部に接する部分ほど周囲部に接する部分に比べて加わる力に対する変位量が大きい
    脚式移動ロボットの足部機構。
  17. さらに、前記柔軟部を保護して移動面に接触する接触部を配置する請求項16記載の脚式移動ロボットの足部。
JP2002339777A 2002-11-22 2002-11-22 脚式移動ロボット及び脚式移動ロボットの足部機構 Expired - Lifetime JP4359423B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339777A JP4359423B2 (ja) 2002-11-22 2002-11-22 脚式移動ロボット及び脚式移動ロボットの足部機構

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339777A JP4359423B2 (ja) 2002-11-22 2002-11-22 脚式移動ロボット及び脚式移動ロボットの足部機構

Publications (2)

Publication Number Publication Date
JP2004167663A JP2004167663A (ja) 2004-06-17
JP4359423B2 true JP4359423B2 (ja) 2009-11-04

Family

ID=32702650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339777A Expired - Lifetime JP4359423B2 (ja) 2002-11-22 2002-11-22 脚式移動ロボット及び脚式移動ロボットの足部機構

Country Status (1)

Country Link
JP (1) JP4359423B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649913B2 (ja) * 2003-09-19 2011-03-16 ソニー株式会社 ロボット装置及びロボット装置の移動制御方法
JP4495549B2 (ja) * 2004-08-30 2010-07-07 本田技研工業株式会社 脚式移動ロボット
JP4384021B2 (ja) * 2004-12-14 2009-12-16 本田技研工業株式会社 脚式ロボットの制御装置
JP4519166B2 (ja) * 2007-12-21 2010-08-04 株式会社バンダイ 人形体
US20220314467A1 (en) * 2019-10-25 2022-10-06 Sony Interactive Entertainment Inc. Foot structure of legged mobile robot, and legged mobile robot
CN112373596B (zh) * 2020-11-12 2024-04-19 腾讯科技(深圳)有限公司 一种仿生机械足部装置及仿生机械

Also Published As

Publication number Publication date
JP2004167663A (ja) 2004-06-17

Similar Documents

Publication Publication Date Title
KR100843863B1 (ko) 보행식 이동 로봇 및 그 제어 방법, 보행식 이동 로봇을위한 다리부 구조, 및 보행식 이동 로봇을 위한 가동 다리유닛
JP3824608B2 (ja) 脚式移動ロボット及びその動作制御方法
CN100364728C (zh) 有腿移动式机器人的动作控制装置和动作控制方法以及机器人装置
CN100376364C (zh) 人形机器人的脚部结构及具有该脚部结构的机器人
US6992455B2 (en) Leg device for leg type movable robot, and method of controlling leg type movable robot
JP4126063B2 (ja) 移動体の制御装置
EP1103450B1 (en) Legged mobile robots and methods of controlling operation of the same
JP2005153038A (ja) 脚式移動ロボット、並びに脚式移動ロボットのための足部構造
JP3528171B2 (ja) 移動ロボット装置及び移動ロボット装置の転倒制御方法
JP4359423B2 (ja) 脚式移動ロボット及び脚式移動ロボットの足部機構
JP4295947B2 (ja) 脚式移動ロボット及びその移動制御方法
WO2018051365A1 (en) A robotic foot having a toe actuation mechanism for a humanoid robot and method for constructing thereof
JP2001138273A (ja) 脚式移動ロボット及びその制御方法
JP4289447B2 (ja) ロボット装置及び関節軸駆動装置
JP2005177918A (ja) ロボット装置並びにロボット装置のためのコンプライアンス装置
JP2002210681A (ja) 脚式移動ロボットのための動作制御装置及び動作制御方法、並びにロボット装置
JP2001157972A (ja) 脚式移動ロボット
JP4120370B2 (ja) 脚式移動ロボット用の歩行器の設計方法
JP3555946B2 (ja) 移動ロボット装置及び移動ロボット装置の制御方法
JP4518615B2 (ja) 脚式移動ロボットの動作制御システム及び動作制御方法
JP3555947B2 (ja) 移動ロボット装置、移動ロボット装置の制御方法、移動ロボット装置の運動パターン生成方法、並びに移動ロボット装置の運動制御プログラム
JP3522741B2 (ja) 脚式移動ロボットの動作制御装置及び動作制御方法、並びにロボット装置
JP3443116B2 (ja) 移動ロボット及び移動ロボットの制御方法
JP2005177960A (ja) ロボット装置及びロボット装置のための足部装置
JP3555948B2 (ja) 移動ロボット装置、移動ロボット装置の動作制御装置及び動作制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4359423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term