WO2002035648A1 - Récepteur à antenne en réseau et procédé d'étalonnage - Google Patents

Récepteur à antenne en réseau et procédé d'étalonnage Download PDF

Info

Publication number
WO2002035648A1
WO2002035648A1 PCT/JP2001/009450 JP0109450W WO0235648A1 WO 2002035648 A1 WO2002035648 A1 WO 2002035648A1 JP 0109450 W JP0109450 W JP 0109450W WO 0235648 A1 WO0235648 A1 WO 0235648A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration signal
unit
calibration
reception
array antenna
Prior art date
Application number
PCT/JP2001/009450
Other languages
English (en)
French (fr)
Inventor
Tomohiro Azuma
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to EP01978929A priority Critical patent/EP1335450B1/en
Priority to KR1020037005895A priority patent/KR100562445B1/ko
Priority to US10/415,375 priority patent/US20040070533A1/en
Publication of WO2002035648A1 publication Critical patent/WO2002035648A1/ja
Priority to HK04103288A priority patent/HK1060444A1/xx

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices

Definitions

  • the present invention relates to a calibration (calibration) method for correcting phase and amplitude fluctuations between radio receivers of an array antenna and an array antenna receiving apparatus using the method.
  • the present invention relates to a calibration method capable of performing normal calibration even when a radio receiving unit fails, and an array antenna receiving device using the method.
  • an array antenna receiving device that forms a desired reception directivity pattern using a plurality of highly correlated antenna elements has been used. That is, using such a receiving apparatus, a receiving method for increasing the receiving gain in the direction of arrival of a desired signal and reducing the receiving gain for interference from other users or interference by delayed waves has been studied. I have. According to this method, it is possible to increase the speed and quality of transmission / reception signals and to increase the subscriber capacity.
  • the amplitude and the phase in each wireless receiving section independently change every moment. Therefore, in order to correctly form the desired reception directivity pattern, it is necessary to compensate for phase and amplitude fluctuations. This compensation operation is called calibration.
  • FIG. 1 is a block diagram showing a configuration example of a conventional array antenna receiving device.
  • the illustrated array antenna receiving apparatus includes an array antenna 01, a multiplexing circuit 0 0 3-1 to 0 0 3-N, radio receiver 0 0 4 _ 1 to 0 0 4-N, signal processor 0 0 5-1 to 0 0 5-M, calibration signal generator 0 6, calibration It is composed of a wireless transmission unit for use 07, a variable electric circuit circuit 08, a calibration signal processing unit 009, and a calibration signal extraction unit 010.
  • the array antenna 0 1 is composed of N antenna elements 0 2—1 to 0 2—N and is capable of demodulating a signal of “M” users. is there.
  • Antenna elements 0 2 — 1 to 0 2 — N are arranged close together so that the received signals of each antenna element have a correlation with each other, and are signals in which a desired signal and a plurality of interference signals are multiplexed. Respectively.
  • the number of antenna elements "N" is set to "3 or more" to distinguish it from the normal diversity configuration.
  • Multiplexing circuits 0 0 3—1 to 0 3—N are each antenna elements 0 0 2— :! 00 2 _N are provided corresponding to the output signals of the power level variable circuit 0 8 and the corresponding antenna elements 0 2 —;! ⁇ 02-N received signals and multiplex in the radio band.
  • the multiplexed signal is output to the radio receivers 04-4-1-1 to 04-N.
  • the multiplexing method is not particularly limited, and a typical example of code division multiplexing is shown, but time division multiplexing or frequency division multiplexing may be used.
  • Radio receiver 0 0 4-1 to 0 0 4-N Each multiplexing circuit 0 3-1 to 0 0
  • the radio receivers 0 4—1 to 0 0—N receive radio waves via the corresponding antenna elements 0 0 1—1 to 0 1—N, convert them to digital signals, and output them. I do.
  • the radio receivers 0 4—1 to 0 4—N have the same configuration as the radio receivers 0 4—i, and the corresponding multiplexing circuits 0 3— :! ⁇ 0 3 — The signal received from N is input.
  • the calibration signal extraction unit 0 10 receives from each of the radio reception units 0 0 4-:! To 0 4-N
  • the N calibration signals multiplexed with the input signal to be extracted are extracted and sent to the calibration signal processing unit 09.
  • the calibration signal extracting unit 010 extracts a calibration signal multiplexed on the input signal by a method corresponding to the multiplexing method used in the multiplexing circuits 03_01 to 03_N.
  • the calibration signal processing unit 0 9 generates phase Z amplitude correction information S 0 1 _ 1 to S 0 1 -N from the extracted N calibration signals, and all the generated information is processed by the signal processing unit 0 0. 5—:! ⁇ 0 0 5— Output to each of M.
  • FIG. 2 is a diagram showing the symbol points obtained by demodulating the calibration signal
  • FIG. 3 is a diagram showing the symbol points obtained by normalizing the symbol points of FIG.
  • the symbol point refers to a point on the I_Q coordinate.
  • the phase / amplitude correction information is information for correcting a phase and amplitude deviation in another wireless receiving unit with respect to one of the wireless receiving units 0 4—1 to 0 4—N with respect to this reference. It is.
  • Each wireless receiving unit is called a branch, and a wireless receiving unit serving as a reference is called a reference branch.
  • the wireless reception unit 044-1 is a reference branch, and that the number “NJ” is “3”.
  • the symbol point obtained by demodulating the calibration signal extracted from the output signal of the wireless reception unit 044-1 is defined as the reference symbol point S1 in FIG.
  • the symbol point obtained by demodulating the calibration signal extracted from the output of the radio reception unit 04-2 is S2
  • the calibration signal extracted from the output of the radio reception unit 04-3 is demodulated.
  • the symbol point obtained as a result is defined as S 3.
  • Information S 0 1—3 In the phase / amplitude correction information S 01-1 for the reference branch, the phase difference 01 is “0” and the amplitude ratio r 1 is “1”.
  • the calibration signal processing unit 0 09 converts the phase / amplitude correction information S 0 1 1 1 to S 0 1 — N obtained by the above-described generation method into all signal processing units 0 0 5 — 1 to 0 for each calibration cycle. 0 5—Output to each of M.
  • Signal processing unit 0 0 5—:! 005-M each assigns a predetermined weight to each output signal of the radio reception units 004-1-N. Therefore, for example, the signal processing unit 05-i increases the reception gain of the user corresponding to the user in the direction of arrival of the user signal, and decreases the reception gain with respect to interference from other users or interference due to delayed waves. Form a directional pattern.
  • the signal processing unit 05-i synthesizes the outputs of the wireless reception units 04-1-1 to 04-N based on the reception directivity pattern to obtain a desired demodulated signal S00-i.
  • the signal processing unit 0 05-i uses the phase / amplitude correction information S 0 1 1 1 to S 0 1 -N output from the calibration signal processing unit 0 9 at this time, The phase and amplitude of the output signal from each of 0 4-1 to 04-N are corrected.
  • the calibration signal generator 06 generates a calibration signal of a predetermined pattern in the baseband, and sends it to the calibration wireless transmission unit 07.
  • the calibration wireless transmission unit 07 performs digital Z-analog conversion, frequency conversion from the base band to the wireless band, etc. on the baseband calibration signal received from the calibration signal generator 06, and varies the power level. Output to circuit 08.
  • the power level variable circuit 08 sends the calibration signal of the wireless band received from the calibration wireless transmission section 07 to each of the multiplexing circuits 03-1-003 at an arbitrary power level.
  • Each signal received by the N antenna elements 0 2 2-1 to 02 2 -N contains a desired signal component, an interference signal component, and thermal noise.
  • the desired signal component and the interference signal component each have a multipath component. Normally, these signal components come from different directions.
  • the conventional array antenna receiver shown in FIG. 1 uses the phase / amplitude information of each signal received by each of the N antenna elements 0 2 1 1 to 0 2 —N to obtain different directions of arrival. Each signal component is identified to form a reception directivity pattern. With no correction at the time of pattern formation, each of the wireless receivers 0 4 1-0 to 4 0 -N has an independent phase inside the wireless receivers 0 4-1 to 0 4-N by the configuration device of the wireless receivers 0 4-1 to 04-N. / If the amplitude fluctuates, the signal processing unit 0 05—1 to 0 05—M has an antenna element 0 02— :! A signal obtained by adding an extra phase amplitude fluctuation to each signal received by ⁇ 02-N is input. Therefore, it becomes impossible to accurately identify each signal component and form an ideal reception directivity pattern.
  • a calibration signal in the same frequency band as the reception signal by the antenna elements 0 2—1 to 0 2—N is multiplexed into the reception signal, and the radio reception unit 0
  • 0 4 1 to 0 0 4—Detects fluctuations in the phase Z amplitude from the calibration signal extracted from each output signal of N and generates phase / amplitude correction information S 0 1 — 1 to S 0 1—N, and outputs the signal.
  • the processing unit 05-5-1 to 05-M corrects the reception directivity pattern.
  • the calibration signal is multiplexed with the signal received by each of the antenna elements 0 2-1 to 0 2 -N, so that calibration can be performed during operation.
  • the conventional array antenna receiving apparatus using the above-described calibration method performs signal processing even when a fluctuation of the phase Z amplitude occurs inside the wireless receiving unit 04_1 to 04_N during operation. It is possible to correct the phase / amplitude information given to the units 005_1 to 005-M. Therefore, the conventional array antenna receiving apparatus shown in FIG. 1 has a demodulation result of the calibration signal multiplexed on each signal received by each of the N antenna elements 0 2 — 1 to 0 2 — N. Phase Z amplitude correction information generated from S 0 1— 1 to S
  • FIG. 4 is a diagram showing a state of a symbol point S n (In, Qn) (l ⁇ n ⁇ N) obtained by demodulating an arbitrary calibration signal.
  • FIG. 5 is an enlarged view near the symbol point Sn.
  • the symbol point S n is an ideal symbol point when the calibration signal has an infinite signal-to-interference ratio (SIR) value of infinite, and its amplitude is Rn.
  • SIR signal-to-interference ratio
  • FIG. 6 is a diagram showing the relative positions of other symbol points when the phase error at the reference symbol point S1 is “-0” at maximum and the amplitude error is zero.
  • FIG. 7 is a diagram showing the relative amplitude of the other symbol points when the amplitude error at the reference symbol point S1 is "1 d2" at the maximum in FIG. In FIGS. 6 and 7, it is assumed that the SIR values of symbol points S2 and S3 with respect to the SIR value of reference symbol point S1 are sufficiently large.
  • the reference symbol point obtained by demodulating the calibration signal extracted from the output of the reference branch is obtained. If the SIR value is small, the phase difference from the symbol point obtained by demodulating the calibration signal extracted from the output of the other branch and An error occurs in the amplitude ratio. As a result, there is a problem that the accuracy of the calibration is reduced.
  • the present invention relates to an array antenna receiving apparatus including: an array antenna including a plurality of antenna elements for forming a reception directivity pattern; and a wireless reception unit provided for each of the antenna elements.
  • This is a calibration method having That is, a step of supplying a calibration signal of a predetermined symbol pattern to the wireless receiving unit; a step of extracting the calibration signal that has passed through the wireless receiving unit from an output of the wireless receiving unit; From the calibration signal that has passed through, the radio reception unit having the best reception quality is determined, and the radio reception unit is selected as a reference branch.
  • a step of correcting the reception directivity pattern by at least one of a phase difference and an amplitude ratio between the calibration signal and the calibration signal passed through the reference branch.
  • the phase difference and the amplitude ratio of the other radio receivers are obtained based on the radio reception unit having the best reception quality, so that the error of the reference branch is minimized and the remaining radio receivers are calibrated. be able to.
  • the radio reception unit having the best reception quality is selected as a reference, a radio reception unit having a failure in the reference branch is not selected.
  • the step of supplying a calibration signal of a predetermined symbol pattern to the radio receiving unit is to multiplex the input signal.
  • the reference branch is The step of selecting a wireless receiving unit includes: finding the wireless receiving unit having the best reception quality based on an SIR value estimated from the calibration signals passed through the plurality of wireless receiving units; or It is another object of the present invention to find the wireless receiving unit having the best reception quality based on the error rate of the calibration signal that has passed.
  • the present invention relates to an array antenna receiving apparatus having an array antenna composed of a plurality of antenna elements for forming a reception directivity pattern, and a radio receiving unit provided corresponding to each of the antenna elements. is there.
  • the array antenna receiving apparatus further includes a calibration signal supply unit that supplies a calibration signal having a predetermined symbol pattern to the wireless reception unit, and extracts the calibration signal that has passed through the wireless reception unit from an output of the wireless reception unit.
  • a calibration signal extracting unit, and a reception quality detecting unit that determines the wireless receiving unit having the best reception quality from the calibration signal that has passed through the wireless receiving unit, and selects the wireless receiving unit as a reference branch.
  • a calibration signal processing unit that generates correction information for correcting the reception directivity pattern by at least one of a phase difference and an amplitude ratio of the calibration signal that has passed through the wireless reception unit and the calibration signal that has passed through the reference branch.
  • a feature of the present invention is that it includes the above reception quality detection unit.
  • the calibration signal supply unit multiplexes the calibration signal on an input of the radio reception unit.
  • the reception quality detection unit is configured to perform the radio reception with the best reception quality based on an SIR value estimated from the calibration signal passing through the radio reception unit. Or the radio reception unit having the best reception quality based on the error rate of the calibration signal passed through the radio reception unit.
  • FIG. 1 is a diagram showing an example of a block configuration in a conventional array antenna receiving apparatus
  • FIG. 2 is a diagram showing symbol points obtained by demodulating the calibration signal
  • FIG. 3 is a diagram showing the symbol points obtained by normalizing the symbol points of FIG. 2
  • FIG. 4 is a diagram showing the state of the symbol points S n (I n, Q n) obtained by demodulating an arbitrary calibration signal.
  • FIG. 5 is an enlarged view showing the vicinity of the symbol point S n in FIG. 4, and FIG. 6 is another symbol point when the phase error of the reference symbol point S 1 is maximum and the amplitude error is zero.
  • FIG. 6 is another symbol point when the phase error of the reference symbol point S 1 is maximum and the amplitude error is zero.
  • FIG. 7 is a diagram showing the relative amplitude of the other symbol points when the amplitude error of the reference symbol point S1 is the maximum in FIG.
  • FIG. 8 is a diagram showing an embodiment of a block configuration in the array antenna receiver of the present invention.
  • FIG. 9 is a diagram showing how the SIR estimated value in each branch and the SIR estimated value in the reference branch change when the number of branches is “3”, and
  • FIG. 10 is a diagram showing an embodiment of a block configuration in an array antenna receiving device different from that shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 8 is a diagram showing one embodiment of a block configuration in the array antenna receiving apparatus of the present invention.
  • the illustrated array antenna receiving device includes an array antenna 101, a multiplexing circuit 103-1-1 to 103-N, a radio receiving unit 104-1-1 to 104-N, and a signal processing unit 105.
  • — 1 to 105 _ M Calibration signal generator 106, Calibration wireless transmitter 107, Electric level variable circuit 108, Calibration signal processing unit 109, Calibration signal extraction unit 1 10 and the SIR detector 1 11.
  • the array antenna 101 has N antenna elements 102— :! ⁇ 102-N, and can demodulate a signal with "M" users.
  • the difference from the conventional one is that, from the calibration signal that has passed through multiple wireless receivers, one wireless receiver with the best reception quality is found, and the SIR detector 111 that selects this wireless receiver as the reference branch is received.
  • the point is that it is additionally provided as a quality detection unit.
  • the antenna elements 102-1 to 102 -N are arranged close to each other so that the correlation between the received signals is high.
  • the multiplex circuits 1 0 3 — 1 to 10 3 — N are the antenna elements 1 0 2
  • the calibration signals supplied from the power level variable circuit 108 and the output signals of the corresponding antenna elements 102-1-1 to 102-N, which are connected to the channels 1-1 to 102-N, respectively. Are multiplexed in the radio band and transmitted to the radio receiving units 104-1 to 104 -N, respectively.
  • An example of code division multiplexing is shown as a typical example, but time division multiplexing or frequency division multiplexing may be used.
  • Radio receivers 104-1-1 to 104-N are low-noise amplifiers, band-limited filters, mixers, local oscillators, total received power detectors, AGC (Auto Gain Controller), quadrature detectors, respectively. , Low-pass filters, analog-to-digital converters, etc., and are connected to the corresponding multiplexing circuits 103-1-1 to 103-N. Then, it receives the radio wave via the corresponding antenna element 102-1-1-1-02-N, converts it into a digital signal, and outputs it.
  • the radio receiver 104-i corresponding to the antenna element 102-i receives the output signal of the multiplexing circuit 103-i as an input signal, amplifies the input signal, and converts the frequency from the radio band to the baseband. , Quadrature detection, analog Z-to-digital conversion, etc., and output them to the calibration signal extractor 110 and signal processor 105-1-1 to 105-M.
  • the wireless receivers 104-1-1 to 104_N have the same configuration as the wireless receiver 104-i, and each of the corresponding multiplexed circuits 103-1-1 to 103-N The output signal is an input signal.
  • the calibration signal extractor 110 receives the output signals of all the wireless receivers 104_1-1 to 104-N as input signals, and outputs the signals of each wireless receiver 104-1-1 to 104-N.
  • the calibration signal multiplexed with the output signal is extracted and sent to the SIR detection unit 111 and the calibration signal processing unit 109 together with branch information for identifying which antenna wireless reception unit is the calibration signal output. I do.
  • the constituent signal extraction unit 110 performs despreading to extract the calibration signal.
  • the SIR detection unit 111 calculates the SIR (Signal to Interference Ratio) of each branch from the branch information received from the calibration signal extraction unit 110 and each symbol point obtained by demodulating the calibration signal. Power ratio) value.
  • the SIR detection unit 111 selects a branch having the largest SIR value among the estimated SIR values of all branches as a reference branch, and selects the reference branch by a reference branch selection signal S10. Notify 1 0 9 That is, the SIR detector 111 determines one of the reference branches having the best reception quality based on the SIR estimation value as one reference branch.
  • the wireless receiving unit is selected.
  • the calibration signal processing unit 109 receives the output signal of the calibration signal extraction unit 110 and the reference branch selection signal S10 from the SIR detection unit 111, and the SIR detection unit 111 determines A symbol point obtained by demodulating the calibration signal extracted from the output signal of the reference branch is obtained as a reference symbol point. Next, based on the reference symbol points, the calibration signal processing section 109 corrects the phase-amplitude correction information S 1 at each symbol point obtained by demodulating the calibration signals extracted from the output signals of all branches. 1—1 to S 11 1—N are obtained and output to the signal processing unit 105—1 to: L05—M.
  • Each of the signal processing units 105-1-1 to 105-M converts the output signals of all the wireless reception units 104-1-1 to 104-N into a phase that is the output of the calibration signal processing unit 109. While using the Z-amplitude correction information S11-1 to S11_N, the reception gain is increased for each user in the direction of arrival of the user signal, and interference from other users and delay waves For interference, a reception directivity pattern that reduces the reception gain (hereinafter referred to as the optimal reception directivity pattern) is formed.
  • Each of the signal processing sections 105-1-1 to 105-M combines the output signals of the wireless reception sections 104-1-1 to 104_N according to the reception directivity pattern to obtain a desired signal. The demodulated signal has been obtained.
  • the calibration signal generator 106 generates the calibration signal S13 in the base band, and outputs it to the calibration wireless transmission unit 107.
  • the calibration signal generator 106 can generate an arbitrary symbol pattern as the calibration signal S13 according to the value set to be changeable.
  • the calibration wireless transmission unit 107 performs digital / analog conversion, frequency conversion from the baseband to the wireless band, etc., on the baseband calibration signal S13 received from the calibration signal generator 106, and performs wireless communication.
  • the signal is sent to the power level variable circuit 108 as the band calibration signal S14.
  • the power level variable circuit 108 receives the calibration signal S14 in the same frequency band as the received signal in the antenna elements 102-1 to 102-2-N output from the calibration wireless transmission section 107, and is arbitrary. , And sends it as a calibration signal S 15 to each of the multiplexing circuits 103-1 to: L 03 -N.
  • the calibration signal generator 106 the calibration signal wireless transmitter 107, the power level variable circuit 108, and the multiplexing circuit 103-3-101 to 103-N enable the wireless receiver 104: ! Calibration signal is supplied to each of ⁇ 104-N.
  • Each of the antenna elements 102-1 to 102 -N receives a signal in which a desired signal and a plurality of interference signals are multiplexed.
  • the correlation between antenna elements that are far apart, that is, at non-adjacent positions, decreases, and the multiplexing received by each antenna element 102-1-1 to 102-N
  • the power of the signal will have large variations. That is, different power is input to each of the antenna elements 102-1 to 102-2-N of the array antenna receiver.
  • the baseband calibration signal S13 generated by the calibration signal generator 106 is frequency-converted and amplified by the calibration radio transmitter 107 to become the calibration signal S14, and the power level is further variable.
  • the circuit 108 outputs a known calibration signal S15 having an arbitrary power level to each of all the multiplexing circuits 103-3-N.
  • Multiplexing circuits 1 0 3— 1 to 1 0 3—N each convert the calibration signal S 15 output from the power level variable circuit 1 08 into the received signal of each antenna element 1 0 2 _ 1 to 1 0 2—N And multiplexed to each of the radio receivers 104-1-1 to 104-N.
  • the signals output from the multiplexing circuits 103-1-1 to 103-N are signals in which the calibration signal S15, a desired (user) signal, an interference (other user) signal, and thermal noise are multiplexed. .
  • the power levels of the calibration signal and the thermal noise can be considered to be the same in each multiplexing circuit 103-1-1 to 103-N. Therefore, the difference between the received powers of the respective radio receivers 104-1 to 104-N is the same as the desired signal and interference signal input from each antenna element 102-1 to 102-N. Is the power difference that occurs with respect to the sum of If attention is paid to the calibration signal, other signals become interference waves with respect to the calibration signal. Therefore, this power difference can be regarded as the power difference of the interference wave with respect to the calibration signal.
  • Radio receivers 1 1 1 to 10 4 -N are used to amplify signals received from the corresponding multiplexing circuits 10 3-1 to 10 3 -N, and to convert the frequency from the radio band to the base band. , Quadrature detection, analog-to-digital conversion, etc., and sends the results to the calibration signal extraction unit 110 and all the signal processing units 105-1-1 to 105-M.
  • the calibration signal extraction unit 110 extracts the calibration signal from the signals received from all the radio reception units 104-1-1 to 104-N, and together with the branch information, the SIR detection unit 111 and the calibration signal processing Send to section 109.
  • SIR detector 1 1 1 receives from all radio receivers 10 4-1 to 10 4-N The SIR value is estimated from each of the symbol points S 1 to SN obtained by demodulating the calibration signal extracted from each signal, and the SIR estimated value of each branch is obtained. Then, the SIR detection unit 111 compares the SIR estimation values of the respective branches, and notifies the calibration signal processing unit 109 via the reference branch selection signal S10 with the branch having the largest SIR value as the reference branch. I do.
  • FIG. 9 is a diagram showing the SIR estimated value of each of the branches B1, B2, and B3 and how the reference branch changes when the number of branches is “3”.
  • the SIR estimated value of the symbol point output from each branch is calculated each time the time slot changes, and the branch with the largest SIR value is selected as the reference branch in each time slot.
  • each of the branches B 1 to B 3 is, for example, a radio receiving unit 104-1 to 104-3.
  • the radio of the branch B 1 is set.
  • the receiving unit 104_1 is selected as a reference branch
  • the radio receiving unit 1044-2 of the branch B2 is selected as a reference branch in the time slot TS4, and the branch B3 in the time slot TS5. Is selected as the reference branch.
  • the reference branch selection signal S10 is output to the calibration signal processing unit 109.
  • the calibration signal processing section 109 sets the symbol / point obtained by demodulating the calibration signal extracted from the output of the radio reception section selected as the reference branch as the reference symbol point, and uses the phase / amplitude correction information S 11 — Generates 1 to S 1 1—N. As a result, the phase offset for the symbol points output from all branches is minimized, and the error in the amplitude ratio between the reference symbol point and the other symbol points is minimized. Then, the calibration signal processing unit 109 outputs the phase / amplitude correction information S11-1 to S11-N to all the signal processing units 105 to 1 to L05-M.
  • Each of the signal processing units 105-1 to 105-M forms an optimal reception directivity pattern while correcting using the phase Z amplitude correction information S 11-1 to S 11-1 N.
  • the output signals of the radio receivers 104-1 to 104 -N are synthesized according to the signal directivity pattern to obtain the desired demodulated signals S 12-1 to S 12 -M.
  • the radio reception unit having the largest SIR estimation value is selected as the reference branch for each time slot, and the phase difference and amplitude between the resulting reference symbol point and other symbol points are selected. Since the ratio is calculated, it is always Errors can be minimized and highly accurate calibration can be performed. In addition, since the wireless receiving unit having a small SIR estimate is not selected as the reference branch, the failed wireless receiving unit is not selected as the reference branch. Therefore, it is possible to provide a redundant configuration for the failure of the reference branch, thereby improving the reliability of the device.
  • FIG. 10 is a diagram showing an embodiment of a block configuration in the array antenna receiving apparatus according to the present invention, which is different from FIG.
  • the antenna receiver of Fig. 8 selects the radio receiver with the best reception quality based on the SIR value, but the array antenna receiver of Fig. 10 has the highest reception quality due to the bit error rate. A good radio receiver is selected.
  • the array antenna receiving apparatus shown in FIG. 10 includes an array antenna 201, a multiplexing circuit 203-1—203—N, a radio receiving section 204— ;! To 204—N, signal processing unit 205-1 to 205—M, calibration signal generator 206, calibration wireless transmission unit 207, electric level variable circuit 208, calibration signal processing unit 209, calibration signal extraction unit 210, And an error rate detection unit 211.
  • the circuit 208, the calibration signal processing unit 209, and the calibration signal extraction unit 210 are each composed of the array antenna 101, the multiplexing circuit 103-1 to L03-N, the radio reception units 104-1 to 104-N, and the signal shown in FIG.
  • the processing unit 105 is the same as each of the 11 to 105_M, the calibration wireless transmission unit 107, the power level variable circuit 108, the calibration signal processing unit 109, and the calibration signal extraction unit 110.
  • the calibration signal generator 206 generates an arbitrary symbol pattern in the same manner as the calibration signal generator 106 in FIG. 8, but also notifies the error rate detection unit 211 of the generated symbol pattern and its transmission timing. I do.
  • the error rate detector 211 receives the calibration signal of each branch extracted by the calibration signal extractor and the symbol pattern notified from the calibration signal generator 206 from the calibration signal generator 206 as well. Based on the transmission timing obtained, the bit error rate (BER) is determined for each branch. Then, the error rate detection unit 211 selects the branch with the smallest bit error rate as the reference branch, The signal is output to the calibration signal processing unit 209 as a branch selection signal.
  • BER bit error rate
  • the array antenna receiving apparatus shown in FIG. 10 can obtain the same effects as those of the array antenna receiving apparatus shown in FIG. 10
  • the phase difference and the amplitude ratio of the other radio reception units are obtained based on the radio reception unit having the best reception quality. Section can be calibrated and highly accurate calibration can always be performed.
  • the radio reception unit having the best reception quality is selected as a reference, a radio reception unit having a failure in the reference branch is not selected, and a redundant configuration for failure of the reference branch can be provided. The reliability of the device is improved.
  • calibration can be performed while performing wireless communication.
  • the array antenna receiving apparatus when determining a reference branch that serves as a reference for correcting fluctuations in phase and amplitude between radio receiving sections of an array antenna, It is suitable for an array antenna receiving device that can select a good wireless receiving unit. With the method and apparatus described above, the accuracy of the calibration is high, and the calibration can be performed normally even when a specific radio receiving unit fails.

Description

明 細 書 アレーアンテナ受信装置およびその校正方法 技術分野
この発明は、 アレーアンテナの無線受信部相互間における位相および振幅の変 動を補正する校正 (キャリブレーション) 方法およびその方法を用いたァレーア ンテナ受信装置に関し、 特に、 その校正の精度が高く、 特定の無線受信部の故障 時にも正常に校正することができる校正方法およびその方法を用いたアレーアン テナ受信装置に関する。 背景技術
従来から、 セルラ移動通信システムなどにおいて、 相関の高い複数のアンテナ 素子で希望する受信指向性パターンを形成するアレーアンテナ受信装置が用いら れている。 すなわち、 このような受信装置を用いて、 希望信号の到来方向に対す る受信利得を大きくし、 他ュ一ザからの干渉または遅延波による干渉に対する受 信利得を小さくする受信方式が検討されている。 この方式によれば、 送受信信号 を高速化および高品質化し、 加入者容量を増大させることが可能となる。
各アンテナ素子に対応する複数の無線受信部を備えたアレーアンテナ受信装置 では、 一般に各無線受信部における振幅および位相はそれぞれ独立して刻々と変 動する。 したがって、 希望する受信指向性パターンを正しく形成するためには、 位相および振幅の変動を補償する必要がある。 この補償の操作を校正と呼んでい る。
従来、 この種のアレーアンテナ受信装置の校正方法として、 例えば、 特開平 1 1 - 4 6 1 8 0号公報( J P - A) に記載されているものがある。 この方法では、 複数のアンテナ素子それぞれに接続された各無線受信部に既知の校正信号を入力 し、 各無線受信部の出力から抽出した校正信号を復調し、 その結果を用いて、 独 立して刻々と変動する各無線受信部の位相および振幅の変動を補正している。 第 1図は、従来のアレーアンテナ受信装置の一構成例を示すブロック図である。 図示されるアレーアンテナ受信装置は、 アレーアンテナ 0 0 1、 多重回路 0 0 3— 1〜0 0 3— N、 無線受信部 0 0 4 _ 1〜0 0 4— N、 信号処理部 0 0 5— 1〜0 0 5— M、 校正用信号発生器 0 0 6、 校正用無線送信部 0 0 7、 電カレべ ル可変回路 0 0 8、 校正信号処理部 0 0 9および校正信号抽出部 0 1 0で構成さ れる。 本ァレ一アンテナ受信装置は、 アレーアンテナ 0 0 1が N個のアンテナ素 子 0 0 2— 1〜0 0 2— Nで構成されており、 またユーザ数 「M」 の信号を復調 可能である。
アンテナ素子 0 0 2— 1〜0 0 2— Nは、 各々のアンテナ素子の受信信号が互 いに相関を有するように近接して配置され、 希望信号および複数の干渉信号が多 重された信号をそれぞれ受信する。 通常のダイバーシチ構成と区別するため、 ァ ンテナ素子数 「N」 は 「3以上」 としている。
多重回路 0 0 3— 1〜0 0 3—Nそれぞれは、 各アンテナ素子 0 0 2—:!〜 0 0 2 _ Nに対応して設けられ、 電力レベル可変回路 0 0 8の出力信号と、 それぞ れが対応するアンテナ素子 0 0 2— ;!〜 0 0 2— Nの受信信号とを入力して無線 帯域で多重する。 多重された信号は、 無線受信部 0 0 4— 1〜0 0 4— Nへ出力 される。 多重方法に特に制限はなく、 代表的なものとして符号分割多重の例を示 すが時分割多重または周波数分割多重を用いてもよい。
無線受信部 0 0 4— 1〜0 0 4— Nそれぞれは、 各多重回路 0 0 3— 1〜 0 0
3 _ Nに対応して設けられており、 それぞれが口一ノイズアンプ、 帯域制限フィ ルタ、 ミキサ、 局部発信器、 A G C (Auto Gain Control ler) , 直交検波器、 低域 通過フィルタ、 アナログノディジタル変換器 (AD C) などのデバイスにより構 成されている。 無線受信部 0 0 4— 1〜0 0 4— Nは、 それぞれに対応するアン テナ素子 0 0 1— 1〜0 0 1— Nを介して無線電波を受信し、 ディジタル信号に 変換して出力する。 例えば、 アンテナ素子 0 0 2— iに対応する無線受信部 0 0
4一 iは、 多重回路 0 0 3— iから受ける入力信号に、 増幅、 無線帯域から基底 帯域への周波数変換、 直交検波、 アナログ/ディジタル変換などを実行し、 校正 信号抽出部 0 1 0および全ての信号処理部 0 0 5— 1〜0 0 5— Mそれぞれへ出 力する。 無線受信部 0 0 4— 1〜0 0 4— Nは、 無線受信部 0 0 4— iと同一の 構成であり、 それぞれ対応する多重回路 0 0 3— :!〜 0 0 3— Nから受ける信号 を入力としている。
校正信号抽出部 0 1 0は、 無線受信部 0 0 4—:!〜 0 0 4— Nそれぞれから受 ける入力信号に多重された N個の校正信号を抽出して校正信号処理部 0 0 9へ送 る。 このとき、 校正信号抽出部 0 1 0は、 多重回路 0 0 3 _ 1〜0 0 3— Nで用 いた多重方法に対応した方法で、 入力信号に多重された校正信号を抽出する。 校 正信号処理部 0 0 9は、 抽出された N個の校正信号から位相 Z振幅補正情報 S 0 1 _ 1〜S 0 1— Nを生成し、 生成された情報全てを信号処理部 0 0 5— :!〜 0 0 5— Mそれぞれへ出力する。
ここで、 第 2図および第 3図に第 1図を併せ参照して校正信号処理部 0 0 9に おける位相ノ振幅補正情報の生成方法について説明する。
第 2図は校正信号を復調して得られたシンポル点を示す図であり、 第 3図は第 2図のシンポル点を正規化したシンポル点を示す図である。 なお、 ここでいぅシ ンポル点とは I _ Q座標上の点を指す。
位相/振幅補正情報は、 無線受信部 0 0 4— 1〜0 0 4— Nの中の 1つを基準 として、 この基準に対する他の無線受信部における位相および振幅のずれを補正 するための情報である。 なお、 各無線受信部をブランチと称し、 基準となる無線 受信部を基準ブランチと称する。
ここでは、 一例として無線受信部 0 0 4— 1が基準ブランチになり、 また、 数 「NJ は 「3」 であると仮定する。 無線受信部 0 0 4— 1の出力信号から抽出さ れた校正信号を復調して得られたシンボル点を第 2図の基準シンポル点 S 1とす る。 同様に、 無線受信部 0 0 4— 2の出力から抽出された校正信号を復調して得 られたシンボル点を S 2、 無線受信部 0 0 4— 3の出力から抽出された校正信号 を復調して得られたシンポル点を S 3とする。 基準シンボル点 S 1とシンポル点 S 2との位相差 0 2および振幅比 r 2 (= B /A) が無線受信部 0 0 4— 2のブ ランチに対応する位相 Z振幅補正情報 S 0 1— 2であり、 基準シンポル点 S 1と シンポル点 S 3との位相差 0 3および振幅比 r 3 (= C/A) が無線受信部 0 0 4一 3のブランチに対応する位相 Z振幅補正情報 S 0 1— 3である。 なお、 基準 ブランチに対する位相/振幅補正情報 S 0 1— 1では、 位相差 0 1が 「0」 であ り、 振幅比 r 1が 「1」 である。
校正信号処理部 0 0 9は、 第 2図の各シンポル点 S 1、 S 2、 および S 3をシ ンポル点 S 1に対して正規化すると第 3図のシンボル点 S l NO R、 S 2 N0R、 お よび S 3 NORが得られる。 振幅比 r 2および r 3の値は変化しないので、 振幅比 r 2は 「B /A= B NO R」 として、 また振幅比 r 3は 「C /A= C NO RJ として 得ることができる。
校正信号処理部 0 0 9は、 上述した生成方法で得た位相/振幅補正情報 S 0 1 一 1〜S 0 1— Nそれぞれを校正周期毎にすべての信号処理部 0 0 5— 1〜0 0 5—Mそれぞれへ出力する。
信号処理部 0 0 5— :!〜 0 0 5—Mそれぞれは、 無線受信部 0 0 4— 1〜 0 0 4—Nそれぞれの出力信号それぞれに所定の重み付けを行う。 従って、 例えば信 号処理部 0 0 5— iが、 自己に対応するユーザのユーザ信号到来方向に対する受 信利得を大きくし、 他ユーザからの干渉または遅延波による干渉に対する受信利 得を小さくする受信指向性パターンを形成する。 信号処理部 0 0 5— iは、 この 受信指向性パターンによって無線受信部 0 0 4— 1〜0 0 4— Nの出力を合成し て希望の復調信号 S 0 0 - iを得る。 また、 信号処理部 0 0 5— iは、 このとき 校正信号処理部 0 0 9の出力である位相/振幅補正情報 S 0 1一 1〜S 0 1 - N それぞれを用いて、 無線受信部 0 0 4— 1〜0 0 4— Nそれぞれからの出力信号 における位相および振幅を補正している。
校正用信号発生器 0 0 6は所定パターンの校正信号を基底帯域で生成して校正 用無線送信部 0 0 7へ送出する。
校正用無線送信部 0 0 7は、 校正用信号発生器 0 0 6から受ける基底帯域の校 正信号に、 ディジタル Zアナログ変換、 基底帯域から無線帯域への周波数変換な どを行い、 電力レベル可変回路 0 0 8へ出力する。
電力レベル可変回路 0 0 8は、 校正用無線送信部 0 0 7から受ける無線帯域の 校正信号を、 任意の電力レベルにより多重回路 0 0 3— 1〜0 0 3— Nそれぞれ へ送出する。
N個のアンテナ素子 0 0 2— 1〜0 0 2—Nによって受信された各信号には、 希望信号成分、 干渉信号成分、 および熱雑音が含まれている。 また、 希望信号成 分および干渉信号成分には、 それぞれマルチパス成分が存在する。 通常、 それら の信号成分はそれぞれ異なった方向から到来する。
第 1図に示した従来のアレーアンテナ受信装置は、 N個のアンテナ素子 0 0 2 一 1〜0 0 2— Nそれぞれによって受信された各信号の位相/振幅情報を用いて、 到来方向の異なる各信号成分を識別し、 受信指向性パターンを形成する。 パターン形成の際の補正なしで、 無線受信部 0 0 4— 1〜 0 0 4—Nの構成デ パイスによって各無線受信部 0 0 4— 1〜0 0 4— N内部にそれぞれ独立した位 相/振幅の変動が発生した場合には、 信号処理部 0 0 5— 1〜0 0 5—Mにはァ ンテナ素子 0 0 2— :!〜 0 0 2—Nによって受信された各信号に対して余分な位 相 振幅の変動が加わった信号が入力する。従って、各信号成分を正確に識別し、 理想的な受信指向性パターンを形成することが不可能となる。
そこで、 アンテナ素子 0 0 2— 1〜0 0 2— Nによる受信信号と同一周波数帯 域の校正信号を受信信号に多重し、 校正信号処理部 0 0 9において無線受信部 0
0 4— 1〜0 0 4— Nの各出力信号から抽出した校正信号から位相 Z振幅の変動 を検出して位相/振幅補正情報 S 0 1 — 1〜S 0 1— Nを生成し、 信号処理部 0 0 5— 1〜0 0 5—Mで受信指向性パターンに補正を加えている。
この校正方法によれば、 校正信号をアンテナ素子 0 0 2— 1〜0 0 2— Nそれ ぞれで受信した信号に多重しているので運用中にも校正が可能である。
上述したような校正方法を用いた従来のァレーアンテナ受信装置は、 運用中に 無線受信部 0 0 4 _ 1〜0 0 4— Nの内部で位相 Z振幅の変動が発生しても、 信 号処理部 0 0 5 _ 1〜0 0 5—Mに与えられる位相/振幅情報を補正することが 可能である。 したがって、 第 1図に示した従来のァレ一アンテナ受信装置は、 N 個のアンテナ素子 0 0 2 — 1〜0 0 2— Nそれぞれによって受信された各信号に 多重された校正信号の復調結果から生成した位相 Z振幅補正情報 S 0 1— 1〜S
0 1— Nで常時補正しながら、 到来方向の異なる各信号成分を識別し、 理想的な 受信指向性パターンを形成することが可能である。
上述した従来のアレーアンテナ受信装置にはこのようなメリッ卜があるものの、 下記の点で好ましくない。
まず、 第 4図および第 5図を参照して問題点について説明する。
第 4図は、 任意の校正信号を復調したシンボル点 S n ( I n, Qn) ( l≤n≤N) の様子を示す図である。 第 5図はシンポル点 S n付近の拡大図である。 シンボル 点 S n は校正信号の S I R (Signal to Interference Rat io:信号電力対干渉電 力比) 値が無限大の理想的な場合のシンポル点であり、 その振幅を Rnとする。 現実には校正信号以外に干渉成分があり S I R値は無限大にならないので、 実 際に復調されるシンポル点は、 所定範囲内のいずれかの位置にある。 その所定の 範囲は、 干渉成分が小さく S I R値が大きい場合に半径 d 1の円 C 1内となる。 他方、 干渉成分が大きく S I R値が小さい場合には半径 d 2の円 C 2内となる。 半径 d 1は半径 d 2より小さい。 したがって、 S I R値が小さい程、 実際に復調 されるシンボル点の誤差が大きくなる。
復調によって得られるシンボル点の範囲が半径 d 2の場合、 その位相誤差の大 きさは第 4図に示すように最大 「0」 である。 したがって、 復調によって得られ るシンボル点の位相として、 最大値 0n#max (= Θ ΪΙ- Θ ) および最小値 0 ntain
(= θη- θ ) が得られる。 また、 振幅誤差は最大 「d 2」 である。 したがって、 復調によって得られるシンポル点の振幅として最大値 Rn#max (=Rn + d 2)お よび最小値 Rn#min (=Rn-d 2) が得られる。
ここで、 第 6図および第 7図を参照して、 説明を簡単にするために、 シンポル 点 S 1が常に基準シンポル点である場合について考察する。
第 6図は、 基準シンボル点 S 1の位相誤差が最大 「― 0」 で振幅誤差がゼロの 場合における他シンポル点の相対位置を示す図である。 第 7図は、 第 6図におい て、 基準シンボル点 S 1の振幅誤差が最大 「一 d 2」 のときにおける他シンボル 点の相対的な振幅の大きさを示す図である。 第 6図および第 7図において、 基準 シンボル点 S 1の S I R値に対するシンボル点 S 2、 S 3の S I R値は十分に大 きいものとする。
第 6図を参照すると、 基準シンポル点 S 1に位相誤差 「一 0」 があると、 基準 シンポル点 S 1に対して正規化した各シンポル点 S 1NN、 S 2NN、 および S 3N Nに位相オフセットが生じることが分かる。 第 7図を参照すると、 基準シンポル 点 S 1の振幅誤差があると、 基準シンボル点 S1 に対して正規化した各シンボル 点 S 1N 、 S 2N蘭、 および S 3NNNの振幅に誤差が生じることが分かる。 上述したように、 基準シンポル点が誤差を含む場合、 他の全てのブランチの出 力から抽出された校正信号が復調されて得られたシンポル点に対して大きな誤差 を与えてしまう。
すなわち、 従来のアレーアンテナ受信装置では、 基準ブランチとして特定の一 つの無線受信部を固定的に選択するため、 基準ブランチの出力から抽出された校 正信号を復調して得られた基準シンポル点の S I R値が小さい場合、 他ブランチ の出力から抽出された校正信号を復調して得られたシンポル点との位相差および 振幅比に誤差を生じてしまう。 この結果、 校正の精度が低下するという問題点が ある。
また、 基準ブランチとして固定的に設定された特定の無線受信部が故障等の不 具合が生じた場合、 アレーアンテナ受信装置の校正の精度が極端に悪化してしま うという問題点がある。
従って、 本発明は、 校正の精度が高く、 特定の無線受信部の故障時にも正常に 校正することができる校正方法およびァレ一アンテナ受信装置を提供することを 目的としている。 発明の開示
本発明は、 受信指向性パターンを形成するための複数のアンテナ素子からなる ァレーアンテナと、 前記ァンテナ素子それぞれに対応して設けられた無線受信部 とを有するアレーアンテナ受信装置にあって、 次のステップを有する校正方法で ある。 すなわち、 所定のシンボルパターンの校正信号を前記無線受信部に供給す るステップと、 前記無線受信部の出力から、 該無線受信部を通過した前記校正信 号を抽出するステップと、 前記無線受信部を通過した前記校正信号から、 受信品 質が最も良好な前記無線受信部を求め、 該無線受信部を基準ブランチとして選択 する、 本発明において特徴となるステップと、 他の前記無線受信部を通過した前 記校正信号と前記基準ブランチを通過した校正信号との位相差および振幅比の少 なくとも一方によつて前記受信指向性パターンを補正するステツプとを有してい る。
このことによって、 受信品質の最も良好な無線受信部を基準として、 他の無線 受信部の位相差および振幅比を求めるので、 基準ブランチの誤差を最小に抑えて 残る他の無線受信部を校正することができる。 また、 受信品質の最も良好な無線 受信部を基準として選択するので、 基準ブランチに不具合のある無線受信部が選 択されることがなくなる。
本発明の方法における一つの実施態様によれば、 所定のシンポルパターンの校 正信号を前記無線受信部に供給する前記ステツプは、 入力信号に多重することで ある。 このことによって、 無線通信をおこないながら校正を行うことができる。 また、 本発明の方法における別の実施態様によれば、 基準ブランチとして前記 無線受信部を選択する前記ステップは、 複数の前記無線受信部を通過した前記校 正信号から推定される S I R値によって前記受信品質が最も良好な前記無線受信 部を求めること、 または前記無線受信部を通過した前記校正信号の誤り率によつ て前記受信品質が最も良好な前記無線受信部をを求めることである。
また、 本発明は、 受信指向性パターンを形成するための複数のアンテナ素子か らなるアレーアンテナと前記アンテナ素子それぞれに対応して設けられた無線受 信部とを有するアレーアンテナ受信装置に関するものである。 このアレーアンテ ナ受信装置は更に、 所定のシンポルパターンの校正信号を前記無線受信部に供給 する校正信号供給部と、 前記無線受信部の出力から、 該無線受信部を通過した前 記校正信号を抽出する校正信号抽出部と、 前記無線受信部を通過した前記校正信 号から、 受信品質が最も良好な前記無線受信部を求め、 該無線受信部を基準ブラ ンチとして選択する受信品質検出部と、 前記無線受信部を通過した前記校正信号 の、 前記基準ブランチを通過した校正信号との位相差および振幅比の少なくとも 一方によって前記受信指向性パターンを補正するための補正情報を生成する校正 信号処理部とを有している。 本発明の特徴は、 上記受信品質検出部を備えている ことである。
本発明の装置における一つの実施態様によれば、 前記校正信号供給部は前記無 線受信部の入力に前記校正信号を多重する。
また、 本発明の装置における別の実施態様によれば、 前記受信品質検出部は、 前記無線受信部を通過した前記校正信号から推定される S I R値によって前記受 信品質が最も良好な前記無線受信部を求め、 または、 前記無線受信部を通過した 前記校正信号の誤り率によって前記受信品質が最も良好な前記無線受信部を求め る。 図面の簡単な説明
第 1図は、 従来のアレーアンテナ受信装置におけるブロック構成の一例を示す 図であり、
第 2図は、 校正信号を復調したシンポル点を示す図であり、
第 3図は、 第 2図のシンポル点を正規化したシンポル点を示す図であり、 第 4図は、 任意の校正信号を復調したシンポル点 S n ( I n , Q n ) の様子を 示す図であり、
第 5図は、 第 4図におけるシンポル点 S n付近を拡大して示す図であり、 第 6図は、 基準シンポル点 S 1の位相誤差が最大で振幅誤差がゼロの場合での 他シンポル点の相対位置を示す図であり、
第 7図は、 第 6図において、 基準シンボル点 S 1の振幅誤差が最大のときにお ける他シンポル点の相対的な振幅の大きさを示す図であり、
第 8図は、 本発明のアレーアンテナ受信装置におけるプロック構成の一実施形 態を示す図であり、
第 9図は、 ブランチ数が 「3」 の場合の各ブランチにおける S I R推定値と基 準ブランチにおける S I R推定値との変化の様子を示す図であり、 かつ
第 1 0図は、 第 8図に示すものとは別のアレーアンテナ受信装置におけるプロ ック構成の一実施形態を示す図である。 発明を実施するための最良の形態
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 第 8図は本発明のァレーアンテナ受信装置におけるプロック構成の一実施形態 を示す図である。
図示されるアレーアンテナ受信装置は、 アレーアンテナ 1 0 1、 多重回路 1 0 3— 1〜 1 0 3— N、 無線受信部 1 0 4— 1〜 1 0 4— N、 信号処理部 1 0 5— 1〜1 0 5 _ M、 校正用信号発生器 1 0 6、 校正用無線送信部 1 0 7、 電カレべ ル可変回路 1 0 8、 校正信号処理部 1 0 9、 校正信号抽出部 1 1 0、 および S I R検出部 1 1 1で構成されている。 本アレーアンテナ受信装置は、 アレーアンテ ナ 1 0 1が N個のアンテナ素子 1 0 2—:!〜 1 0 2— Nで構成されており、 また ユーザ数 「M」 の信号を復調可能である。
従来との相違は、 複数の無線受信部を通過した校正信号から、 受信品質が最も 良好な一つの無線受信部を求め、 この無線受信部を基準ブランチとして選択する S I R検出部 1 1 1を受信品質検出部として付加して備えている点である。 アンテナ素子 1 0 2 — 1〜 1 0 2—Nそれぞれは互いに受信信号の相関性が高 くなるように近接して配置されている。
多重回路 1 0 3— 1〜1 0 3— Nは、 それぞれが対応するアンテナ素子 1 0 2 一 1〜1 0 2— Nに接続されており、 電力レベル可変回路 1 0 8から供給される 校正信号と、 それぞれが対応するアンテナ素子 1 0 2— 1〜1 0 2— Nの出力信 号とを無線帯域で多重して無線受信部 1 0 4— 1〜 1 0 4— Nへそれぞれ送出す る。 多重方法に特に制限はなく、 代表的なものとして符号分割多重の例を示すが 時分割多重または周波数分割多重を用いてもよい。
無線受信部 1 0 4— 1〜1 0 4 - Nは、 それぞれがローノイズアンプ、 帯域制 限フィル夕、 ミキサ、 局部発信器、 総受信電力検出部、 A G C (Auto Gain Control ler) ,直交検波器、低域通過フィルタ、 アナログ ディジタル変換器など から構成されており、 それぞれに対応する多重回路 1 0 3— 1〜1 0 3— Nに接 続されている。 そして、 それぞれ対応するアンテナ素子 1 0 2— 1〜1 0 2—N を介して無線電波を受信し、 ディジタル信号に変換して出力する。 例えばアンテ ナ素子 1 0 2— iに対応する無線受信部 1 0 4— iは多重回路 1 0 3— iの出力 信号を入力信号とし、 入力信号の増幅、 無線帯域から基底帯域への周波数変換、 直交検波、 アナログ Zディジタル変換などを行い、 校正信号抽出部 1 1 0および 信号処理部 1 0 5— 1〜1 0 5— Mへ出力する。 無線受信部 1 0 4— 1〜1 0 4 _ Nは、 無線受信部 1 0 4— iと同一の構成であり、 それぞれに対応する多重回 路 1 0 3— 1〜 1 0 3— Nの出力信号を入力信号としている。
校正信号抽出部 1 1 0は、 全ての無線受信部 1 0 4 _ 1〜1 0 4— Nの出力信 号を入力信号とし、 各無線受信部 1 0 4— 1〜1 0 4— Nの出力信号に多重され た校正信号を抽出し、 どのアンテナ無線受信部から出力された校正信号であるか を識別するためのブランチ情報と共に S I R検出部 1 1 1および校正信号処理部 1 0 9へ送出する。 校正信号を符号分割多重する例では、 構成信号抽出部 1 1 0 は校正信号を抽出するために逆拡散を行う。
S I R検出部 1 1 1は、 校正信号抽出部 1 1 0から受けたブランチ情報および 校正信号が復調されて得られた各シンポル点から、 各ブランチの S I R (Signal to Interference Rat io:信号電力対干渉電力比) 値を推定する。 ここで、 S I R 検出部 1 1 1は、 全ブランチの S I R推定値の中で最も S I R値が大きいブラン チを基準ブランチとして選択し、 その基準ブランチを基準ブランチ選択信号 S 1 0によって校正信号処理部 1 0 9に通知する。 すなわち、 S I R検出部 1 1 1に より、 S I R推定値に基づいて受信品質が最も良好な基準ブランチとして一つの 無線受信部が選択される。
校正用信号処理部 1 0 9は、 校正信号抽出部 1 1 0の出力信号と S I R検出部 1 1 1からの基準ブランチ選択信号 S 1 0とを入力し、 S I R検出部 1 1 1が判 定した基準ブランチの出力信号から抽出された校正信号が復調されて得られたシ ンポル点を基準シンポル点として求める。 ついで、 校正用信号処理部 1 0 9は、 この基準シンポル点に基づいて、 全ブランチの出力信号それぞれから抽出された 校正信号が復調されて得られた各シンボル点の位相ノ振幅補正情報 S 1 1— 1〜 S 1 1— Nを求め、 信号処理部 1 0 5— 1〜: L 0 5— Mへ出力する。
信号処理部 1 0 5— 1〜 1 0 5 _Mそれぞれは、 全ての無線受信部 1 0 4— 1 〜1 0 4— Nの出力信号を、 校正用信号処理部 1 0 9の出力である位相 Z振幅補 正情報 S 1 1— 1〜S 1 1 _ Nを用いて補正しながら、 各ユーザ毎にユーザ信号 到来方向に対しては受信利得を大きくし、 他ユーザからの干渉や遅延波による干 渉に対しては受信利得を小さくする受信指向性パターン (以下、 最適受信指向性 パターンと称す) を形成する。 そして、 信号処理部 1 0 5— 1〜 1 0 5—Mそれ ぞれは、 その受信指向性パターンによって無線受信部 1 0 4— 1〜1 0 4 _ Nの 出力信号を合成して希望の復調信号を得ている。
校正用信号発生器 1 0 6は、 基底帯域で校正信号 S 1 3を生成し、 校正用無線 送信部 1 0 7へ出力する。 校正用信号発生器 1 0 6は、 変更可能に設定された値 により任意のシンポルパターンを校正信号 S 1 3として発生させることができる。 校正用無線送信部 1 0 7は、 校正用信号発生器 1 0 6から受ける基底帯域の校 正信号 S 1 3に、 ディジタル/アナログ変換、 基底帯域から無線帯域への周波数 変換などを行い、 無線帯域の校正信号 S 1 4として電力レベル可変回路 1 0 8へ 送出する。
電力レベル可変回路 1 0 8は、 校正用無線送信部 1 0 7から出力されアンテナ 素子 1 0 2— 1〜1 0 2—Nにおける受信信号と同一周波数帯域の校正信号 S 1 4を受けて任意の電力レベルにレベル変換し、 校正信号 S 1 5として多重回路 1 0 3— 1〜: L 0 3— Nそれぞれへ送出する。
したがって、 校正信号発生部 1 0 6、 校正信号無線送出部 1 0 7、 電力レベル 可変回路 1 0 8、 および多重回路 1 0 3— 1〜1 0 3— Nによって無線受信回路 1 0 4—:!〜 1 0 4— Nそれぞれに校正信号が供給されている。 次に, 第 8図を参照して本実施形態の動作について説明する。
アンテナ素子 1 0 2— 1〜 1 0 2—Nそれぞれは希望信号と複数の干渉信号と が多重された信号を受信している。 しかし、 アンテナ素子数が多くなると距離の 離れた、すなわち隣り合つていない位置にあるアンテナ素子間の相関が低くなり、 各アンテナ素子 1 0 2— 1〜1 0 2—Nで受信される多重信号の電力は大きなば らっきを持つことになる。 すなわち、 アレーアンテナ受信装置の各アンテナ素子 1 0 2— 1〜 1 0 2— Nそれぞれには異なる電力が入力されている。
校正用信号発生器 1 0 6で生成された基底帯域の校正信号 S 1 3は、 校正用無 線送信部 1 0 7により周波数変換および増幅されて校正信号 S 1 4となり、 さら に電力レベル可変回路 1 0 8により任意の電力レベルを有する既知の校正信号 S 1 5として全ての多重回路 1 0 3— 1〜 1 0 3—Nそれぞれに出力される。 多重 回路 1 0 3— 1〜1 0 3— Nそれぞれは、 電力レベル可変回路 1 0 8から出力さ れる校正信号 S 1 5を各アンテナ素子 1 0 2 _ 1〜1 0 2— Nの受信信号へ多重 して無線受信部 1 0 4— 1〜1 0 4— Nそれぞれへ出力する。 多重回路 1 0 3— 1〜1 0 3— Nから出力される信号は、 校正信号 S 1 5、 希望 (ユーザ) 信号、 干渉 (他ユーザ) 信号、 および熱雑音が多重された信号である。 .
校正信号および熱雑音の電力レベルは各多重回路 1 0 3— 1〜1 0 3— Nで同 一と考えることができる。 したがって、 各無線受信部 1 0 4— 1〜1 0 4— N相 互間の受信電力の差はそのまま各アンテナ素子 1 0 2— 1〜1 0 2— Nから入力 される希望信号および干渉信号の和に対して生じる電力差である。 校正信号に着 目すれば、 他の信号は校正信号に対する干渉波となるので、 この電力差を校正信 号に対する干渉波の電力差とみなすことが出来る。
無線受信部 1ひ 4一 1〜 1 0 4— Nは、 それぞれに対応する多重回路 1 0 3— 1〜1 0 3— Nから受ける信号に対して増幅、 無線帯域から基底帯域への周波数 変換、 直交検波、 アナログノディジタル変換などを行い、 その結果を校正信号抽 出部 1 1 0および全ての信号処理部 1 0 5— 1〜1 0 5—Mそれぞれへ送出する。 校正信号抽出部 1 1 0は、 全ての無線受信部 1 0 4— 1〜 1 0 4— Nそれぞれか ら受ける信号から校正信号を抽出し、 ブランチ情報とともに S I R検出部 1 1 1 および校正信号処理部 1 0 9へ送出する。
S I R検出部 1 1 1は、 全ての無線受信部 1 0 4— 1〜 1 0 4— Nから受ける 信号それぞれから抽出された校正信号が復調されて得られた各シンボル点 S 1〜 S Nにより S I R値を推定し、 各ブランチの S I R推定値を求める。 そして、 S I R検出部 1 1 1は、 各ブランチの S I R推定値を比較して、 S I R値が最も大 きいブランチを基準ブランチとして基準ブランチ選択信号 S 1 0によって校正信 号処理部 1 0 9に通知する。
第 9図はブランチ数 「3」 の場合における各ブランチ B 1、 B 2、 B 3の S I R推定値と基準ブランチの変化の様子を示す図である。 各ブランチから出力され るシンポル点の S I R推定値はタイムスロットが変わる毎に算出され、 各タイム スロットでは S I R値が最大のブランチが基準ブランチとして選択される。 第 9 図の例では、 各ブランチ B 1〜B 3が例えば無線受信部 1 0 4— 1〜 1 0 4— 3 であるとした塲合、 タイムスロット T S 1〜T S 3ではブランチ B 1の無線受信 部 1 0 4 _ 1が基準ブランチとして選択され、 タイムスロット T S 4ではブラン チ B 2の無線受信部 1 0 4— 2が基準ブランチとして選択され、 またタイムス口 ット T S 5ではブランチ B 3の無線受信部 1 0 4— 3が基準ブランチとして選択 される。
基準ブランチ選択信号 S 1 0は校正信号処理部 1 0 9に出力される。 校正信号 処理部 1 0 9は、 基準ブランチとして選択された無線受信部の出力から抽出され た校正信号が復調されて得られたシンポル点を基準シンボル点として、 位相/振 幅補正情報 S 1 1— 1〜S 1 1— Nを生成する。 これにより、 全てのブランチか ら出力されたシンポル点に対する位相オフセットが最小となり、 基準シンボル点 とその他のシンポル点との振幅比の誤差が最小となる。 そして、 校正信号処理部 1 0 9は位相/振幅補正情報 S 1 1— 1〜S 1 1—Nを全ての信号処理部 1 0 5 一 1〜: L 0 5—Mそれぞれへ出力する。
信号処理部 1 0 5— 1〜 1 0 5— Mそれぞれは、 位相 Z振幅補正情報 S 1 1 - 1〜S 1 1一 Nを用いて補正しながら最適受信指向性パターンを形成し、 その受 信指向性パターンによって無線受信部 1 0 4— 1〜1 0 4— Nの出力信号を合成 して希望の復調信号 S 1 2— 1〜S 1 2—Mそれぞれを得る。
したがって、 本実施形態によれば、 タイムスロット毎に最も S I R推定値の大 きい無線受信部を基準ブランチとして選択し、 この結果として得られる基準シン ポル点とその他のシンポル点との位相差および振幅比を計算しているので、 常に 誤差を最小に抑え、 精度の高い校正を行うことができる。 また、 S I R推定値が 小さい無線受信部を基準ブランチとして選択しないので、 故障した無線受信部を 基準ブランチとして選択してしまうことがない。 従って、 基準ブランチの故障に 対する冗長構成を提供することができ、 装置の信頼性が向上する。
次に、 第 10図を参照して、 本発明の他の実施形態について説明する。
第 10図は、 第 8図とは別の本発明によるアレーアンテナ受信装置におけるブ 口ック構成の一実施形態を示す図である。 第 8図のァレ一ァンテナ受信装置は S I R値により受信品質が最も良好な無線受信部を選択するものであつたが、 第 1 0図のアレーアンテナ受信装置はビット誤り率によって受信品質が最も良好な無 線受信部を選択するものである。
第 10図のァレ一アンテナ受信装置は、 アレーアンテナ 201、 多重回路 20 3— 1〜203— N、 無線受信部 204— ;!〜 204— N、 信号処理部 205 - 1〜205— M、 校正用信号発生器 206、 校正用無線送信部 207、 電カレべ ル可変回路 208、 校正信号処理部 209、 校正信号抽出部 210、 および誤り 率検出部 211で構成されている。
第 10図におけるアレーアンテナ 201、 多重回路 203— 1〜203— N、 無線受信部 204— 1〜204— N、 信号処理部 205— 1〜205— M、 校正 用無線送信部 207、 電力レベル可変回路 208、 校正信号処理部 209および 校正信号抽出部 210それぞれは、 第 8図のアレーアンテナ 101、 多重回路 1 03— 1〜; L 03— N、 無線受信部 104— 1〜104— N、 信号処理部 105 一 1〜105_M、 校正用無線送信部 107、 電力レベル可変回路 108、 校正 信号処理部 109、 および校正信号抽出部 110それぞれと同じものである。 校正用信号発生器 206は、 第 8図の校正用信号発生器 106と同様に任意の シンボルパターンを発生させるが、 それとともに、 発生させるシンポルパターン とその送出タイミングを誤り率検出部 21 1へ通知する。
誤り率検出部 21 1は、 校正信号抽出部で抽出された各ブランチの校正信号と 校正用信号発生器 206から通知されたシンボルパ夕一ンとを、 同じく校正用信 号発生器 206から通知された送出タイミングに基づいて比較し、 各ブランチ毎 にビット誤り率 (BER: Bit Error Rate) を求める。 そして、 誤り率検出部 2 11は、 最もビット誤り率の小さいブランチを基準ブランチとして選択し、 基準 ブランチ選択信号として校正信号処理部 2 0 9へ出力する。
したがって、 第 1 0図のアレーアンテナ受信装置によって、 第 8図のァレーア ンテナ受信装置と同様の効果を得ることができる。
すなわち、 本発明によれば、 受信品質の最も良好な無線受信部を基準として、 他の無線受信部の位相差および振幅比を求めるので、 基準ブランチの誤差を最小 に抑えて残る他の無線受信部を校正することができ、 常に精度の高い校正を行う ことができる。
また、 受信品質の最も良好な無線受信部を基準として選択するので、 基準ブラ ンチに不具合のある無線受信部が選択されることがなく、 基準ブランチの故障に 対する冗長構成を提供することができ、 装置の信頼性が向上する。
また、 無線通信をおこないながら校正を行うことができる。 産業上の利用の可能性
以上説明したように、 本発明に係るアレーアンテナ受信装置は、 ァレ一アンテ ナの無線受信部相互間における位相および振幅の変動を補正する基準となる基準 ブランチを決定する際、 受信品質の最も良好な無線受信部を選択することができ るアレーアンテナ受信装置に適している。 上述した方法及び装置によりその校正 の精度が高く、 特定の無線受信部の故障時にも正常に校正することができる。

Claims

請 求 の 範 囲
1 . 受信指向性パターンを形成するための複数のアンテナ素子 (1 0 2 ) から なるアレーアンテナ (1 0 1 ) と、 前記アンテナ素子それぞれに対応して設けら れた無線受信部 (1 0 4 ) とを有し、
所定のシンポルパターンの校正信号を前記無線受信部に供給するステップと、 前記無線受信部の出力から、 該無線受信部を通過した前記校正信号を抽出するス テツプと、 前記無線受信部の所定の一つを基準ブランチとして選択するステップ と、 他の前記無線受信部を通過した前記校正信号と前記基準ブランチを通過した 校正信号との位相差および振幅比の少なくとも一方によって前記受信指向性バタ ーンを補正するステップとを有するアレーアンテナ受信装置における校正方法で あって、
基準ブランチとして選択する前記ステップが、 前記無線受信部を通過した前記 校正信号から、 受信品質が最も良好な前記無線受信部を求めることを特徴とする アレーアンテナ受信装置における校正方法。
2 . 所定のシンポルパターンの校正信号を前記無線受信部に供給する前記ステ ップは、 入力信号に多重することで前記校正信号を前記無線受信部に供給するこ とであることを特徴とする請求項 1に記載のアレーアンテナ受信装置における校 正方法。
3 . 基準ブランチとして前記無線受信部を選択する前記ステップは、 複数の前 記無線受信部を通過した前記校正信号から推定される S I R値によって前記受信 品質が最も良好な前記無線受信部を求めることことであることを特徴とする請求 項 1および請求項 2のいずれか一つに記載のアレーアンテナ受信装置における校 正方法。
4 . 基準ブランチとして前記無線受信部を選択する前記ステップは、 前記無線 受信部を通過した前記校正信号の誤り率によって前記受信品質が最も良好な前記 無線受信部をを求めることことであることを特徴とする請求項 1および請求項 2 のいずれか一つに記載のアレーアンテナ受信装置における校正方法。
5 . 受信指向性パターンを形成するための複数のアンテナ素子 (1 0 2 ) から なるアレーアンテナ (1 0 1 ) と、 前記アンテナ素子それぞれに対応して設けら れた無線受信部 (1 0 4 ) と、 所定のシンボルパターンの校正信号を前記無線受 信部に供給する校正信号供給部 (1 0 3、 1 0 6 - 1 0 8 ) と、 前記無線受信部 の出力から、該無線受信部を通過した前記校正信号を抽出する校正信号抽出部(1
1 0 ) と、 前記無線受信部の所定の一つを基準ブランチとして選択し、 前記無線 受信部を通過した前記校正信号の、 前記基準ブランチを通過した校正信号との位 相差および振幅比の少なくとも一方によって前記受信指向性パターンを補正する ための補正情報を生成する校正信号処理部 (1 0 9 ) とを有するものであって、 前記無線受信部を通過した前記校正信号から、 受信品質が最も良好な前記無線 受信部を求め、 該無線受信部を基準ブランチとして選択する受信品質検出部 (1
1 1 ) を更に備え、 かつ前記校正信号処理部が、 前記受信品質検出部から基準ブ ランチとなる無線受信部の情報を受け、 該基準ブランチとなる無線受信部を通過 した校正信号と他の前記無線受信部を通過した前記校正信号との位相差および振 幅比の少なくとも一方によって前記受信指向性パターンを補正するための補正情 報を生成することを特徴とするするアレーアンテナ受信装置。
6 . 前記校正信号供給部は前記無線受信部の入力に前記校正信号を多重するこ とを特徴とする請求項 5に記載のアレーアンテナ受信装置。
7 . 前記受信品質検出部は、 前記無線受信部を通過した前記校正信号から推定 される S I R値によって前記受信品質が最も良好な前記無線受信部を求めること を特徴とする請求項 5および請求項 6のいずれか一つに記載のアレーアンテナ受
8 . 前記受信品質検出部は、 前記無線受信部を通過した前記校正信号の誤り率 によって前記受信品質が最も良好な前記無線受信部を求める、 請求項 5および請 求項 6のいずれか一つに記載のァレ一アンテナ受信装置。
PCT/JP2001/009450 2000-10-27 2001-10-26 Récepteur à antenne en réseau et procédé d'étalonnage WO2002035648A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01978929A EP1335450B1 (en) 2000-10-27 2001-10-26 Array antenna receiving apparatus and method for calibrating the same
KR1020037005895A KR100562445B1 (ko) 2000-10-27 2001-10-26 어레이 안테나 수신 장치 및 그 교정 방법
US10/415,375 US20040070533A1 (en) 2000-10-27 2001-10-26 Array antenna receiving apparatus and method for calibrating the same
HK04103288A HK1060444A1 (en) 2000-10-27 2004-05-11 Array antenna receiving apparatus and method for calibrating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-328846 2000-10-27
JP2000328846A JP3360731B2 (ja) 2000-10-27 2000-10-27 アレーアンテナ校正方法およびアレーアンテナ受信装置

Publications (1)

Publication Number Publication Date
WO2002035648A1 true WO2002035648A1 (fr) 2002-05-02

Family

ID=18805638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009450 WO2002035648A1 (fr) 2000-10-27 2001-10-26 Récepteur à antenne en réseau et procédé d'étalonnage

Country Status (7)

Country Link
US (1) US20040070533A1 (ja)
EP (1) EP1335450B1 (ja)
JP (1) JP3360731B2 (ja)
KR (1) KR100562445B1 (ja)
CN (1) CN1244992C (ja)
HK (1) HK1060444A1 (ja)
WO (1) WO2002035648A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1515455A1 (en) * 2002-06-20 2005-03-16 NEC Corporation Array antenna receiver device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2828286B1 (fr) * 2001-08-02 2003-11-21 Siemens Automotive Sa Dispositif de diagnostic pour une antenne
JP2006526916A (ja) * 2003-05-09 2006-11-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 移動体通信装置の送信電力を設定するための方法および装置
KR100608553B1 (ko) * 2003-12-27 2006-08-03 한국전자통신연구원 실시간 오차 보정 기능을 가진 적응 배열 안테나시스템에서의 송수신 장치 및 그 방법
JP4209355B2 (ja) * 2004-03-30 2009-01-14 富士通株式会社 位相キャリブレーション方法及び位相キャリブレーション装置
JP2006005525A (ja) 2004-06-16 2006-01-05 Nec Corp 送信装置
JP4405331B2 (ja) * 2004-07-06 2010-01-27 富士通株式会社 無線受信装置、無線送信装置及びキャリブレーション方法
JP2006101237A (ja) * 2004-09-29 2006-04-13 Matsushita Electric Ind Co Ltd 受信装置、送信装置、基地局装置及びキャリブレーション方法
JP4528208B2 (ja) * 2005-06-10 2010-08-18 富士通株式会社 アレイアンテナの校正装置及び校正方法
US7853216B1 (en) * 2005-12-22 2010-12-14 Atheros Communications, Inc. Multi-channel RX/TX calibration and local oscillator mismatch mitigation
JP4355325B2 (ja) * 2006-04-25 2009-10-28 京セラ株式会社 通信装置及び送信キャリブレーションウエイト算出方法
JP4852052B2 (ja) * 2008-01-22 2012-01-11 株式会社東芝 Dbf受信器
JP5097175B2 (ja) * 2009-06-29 2012-12-12 株式会社日立製作所 無線受信装置及びその試験方法
US8285221B2 (en) 2009-08-31 2012-10-09 Motorola Mobility Llc Scalable self-calibrating and configuring radio frequency head for a wireless communication system
WO2011081537A1 (en) * 2009-12-29 2011-07-07 Motorola Solutions, Inc. Method for selecting a best quality signal among multiple signals received by data processors in a communication system
KR101723113B1 (ko) * 2011-01-11 2017-04-06 에스케이텔레콤 주식회사 방사패턴 복원을 위한 능동 배열 안테나 시스템 및 그 방법
CN102324944B (zh) * 2011-06-15 2014-06-04 大唐移动通信设备有限公司 一种天线校准方法及装置
US9189347B2 (en) 2011-07-29 2015-11-17 Motorola Solutions, Inc. High reliability redundant voting system for a signal received by voting processors in a communication system
US9124361B2 (en) * 2011-10-06 2015-09-01 Raytheon Company Scalable, analog monopulse network
JP5809598B2 (ja) * 2012-05-15 2015-11-11 株式会社アドバンテスト 信号測定装置、信号測定方法、プログラム、記録媒体
JP6732685B2 (ja) * 2017-03-21 2020-07-29 株式会社東芝 試験装置、および信号処理装置
US11431423B2 (en) * 2017-09-25 2022-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and receiving terminal for real-time adaptive antenna calibration with training signal cancellation
EP3776929A1 (en) * 2018-04-05 2021-02-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and active antenna system in telecommunication networks
CN111385009B (zh) * 2018-12-29 2022-04-19 中兴通讯股份有限公司 功率调节方法及装置、阵列天线、存储介质
CN110350990B (zh) * 2019-05-21 2022-02-18 辰芯科技有限公司 一种相控阵网络校准方法、装置、设备及存储介质
WO2020244783A1 (en) * 2019-06-07 2020-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Calibration for antenna elements of a multi-antenna structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1146180A (ja) * 1997-03-18 1999-02-16 Matsushita Electric Ind Co Ltd アレーアンテナ無線受信装置のキャリブレーション装置
GB2342505A (en) * 1998-10-06 2000-04-12 Telecom Modus Limited Antenna array calibration
JP2000216618A (ja) * 1998-11-19 2000-08-04 Nippon Telegr & Teleph Corp <Ntt> 適応アレ―アンテナ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2753547A (en) * 1954-03-02 1956-07-03 Applied Science Corp Of Prince Compensated data transmission
US4210871A (en) * 1978-09-01 1980-07-01 The United States Of America As Represented By The Secretary Of The Navy Optimum diversity combining circuit for a plurality of channels
US6157343A (en) * 1996-09-09 2000-12-05 Telefonaktiebolaget Lm Ericsson Antenna array calibration
WO1998021382A2 (de) * 1996-11-13 1998-05-22 Ewald Dörken Ag Verfahren zum aufbringen einer anorganischen beschichtung auf einen elektrisch leitfähigen körper
CN1108037C (zh) * 1997-03-18 2003-05-07 松下电器产业株式会社 阵列天线无线电接收装置的校准装置和校准方法
KR100376298B1 (ko) * 1999-09-13 2003-03-17 가부시끼가이샤 도시바 무선통신시스템
JP3567976B2 (ja) * 2000-03-07 2004-09-22 日本電気株式会社 アレーアンテナ受信装置
US6848065B1 (en) * 2000-06-21 2005-01-25 Telefonaktiebolaget Lm Ericsson (Publ) Bit error rate estimation
EP1178562A1 (en) * 2000-08-03 2002-02-06 Telefonaktiebolaget L M Ericsson (Publ) Antenna array calibration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1146180A (ja) * 1997-03-18 1999-02-16 Matsushita Electric Ind Co Ltd アレーアンテナ無線受信装置のキャリブレーション装置
GB2342505A (en) * 1998-10-06 2000-04-12 Telecom Modus Limited Antenna array calibration
JP2000216618A (ja) * 1998-11-19 2000-08-04 Nippon Telegr & Teleph Corp <Ntt> 適応アレ―アンテナ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1335450A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1515455A1 (en) * 2002-06-20 2005-03-16 NEC Corporation Array antenna receiver device
US7295157B2 (en) * 2002-06-20 2007-11-13 Nec Corporation Array antenna receiver device
EP1515455A4 (en) * 2002-06-20 2010-05-19 Nec Corp GROUP ANTENNA RECEIVER DEVICE

Also Published As

Publication number Publication date
US20040070533A1 (en) 2004-04-15
JP3360731B2 (ja) 2002-12-24
KR20030040562A (ko) 2003-05-22
HK1060444A1 (en) 2004-08-06
EP1335450A4 (en) 2005-01-26
JP2002135034A (ja) 2002-05-10
KR100562445B1 (ko) 2006-03-20
EP1335450B1 (en) 2007-07-11
CN1471747A (zh) 2004-01-28
EP1335450A1 (en) 2003-08-13
CN1244992C (zh) 2006-03-08

Similar Documents

Publication Publication Date Title
WO2002035648A1 (fr) Récepteur à antenne en réseau et procédé d&#39;étalonnage
JP3444270B2 (ja) アレーアンテナ受信装置の校正システム
US8019285B2 (en) Wireless communication device
US6738020B1 (en) Estimation of downlink transmission parameters in a radio communications system with an adaptive antenna array
US6512917B1 (en) Radio communication device and transmitting power control method
CN1864382B (zh) 在多天线接收机中组合高数据率宽带分组信号的装置和方法
US7106785B2 (en) Adaptive antenna reception apparatus with weight updated adaptively
JP3567976B2 (ja) アレーアンテナ受信装置
JP2002353865A (ja) アレーアンテナ送受信装置及びそのキャリブレーション方法
JP2001345747A (ja) マルチビーム受信装置
JP4010225B2 (ja) アレーアンテナ送受信装置
JP4003229B2 (ja) アレーアンテナ受信装置
US20050070333A1 (en) Calibration method and radio apparatus
JP3673732B2 (ja) アレーアンテナ送信パターン校正方法
JP4803390B2 (ja) 周波数補正回路及び周波数補正方法
WO2003098855A1 (fr) Dispositif et procede de recherche de trajets, dispositif de reception sous forme d&#39;antenne reseau mettant en application ce procede
AU745469B2 (en) Reception method and apparatus in CDMA system
WO2000060698A1 (fr) Radioemetteur et procede de reglage de la directivite d&#39;emission
WO2005015773A1 (ja) アレイアンテナ受信装置及び受信信号の校正方法
JP4447337B2 (ja) 無線通信装置
CN101312370A (zh) 通信设备、通信方法、通信系统和程序
JP3670250B2 (ja) Cdma移動通信基地局装置
JP2006174333A (ja) アレーアンテナ送信装置
JP4030538B2 (ja) 無線通信装置
JP2005039479A (ja) ダイバーシチ受信装置および電子装置

Legal Events

Date Code Title Description
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037005895

Country of ref document: KR

Ref document number: 018180876

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001978929

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037005895

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001978929

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10415375

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020037005895

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001978929

Country of ref document: EP