WO2002035621A1 - Catalyseur d"oxydation de composé gazeux - Google Patents

Catalyseur d"oxydation de composé gazeux Download PDF

Info

Publication number
WO2002035621A1
WO2002035621A1 PCT/JP2001/009454 JP0109454W WO0235621A1 WO 2002035621 A1 WO2002035621 A1 WO 2002035621A1 JP 0109454 W JP0109454 W JP 0109454W WO 0235621 A1 WO0235621 A1 WO 0235621A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide particles
oxidation catalyst
solid electrolyte
oxidation
Prior art date
Application number
PCT/JP2001/009454
Other languages
English (en)
French (fr)
Inventor
Kazunori Sato
Takashi Wakabayashi
Manabu Takezawa
Yasunobu Inoue
Shigeaki Suganuma
Original Assignee
Shinko Electric Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co., Ltd. filed Critical Shinko Electric Industries Co., Ltd.
Priority to JP2002538496A priority Critical patent/JPWO2002035621A1/ja
Priority to EP01976854A priority patent/EP1345279A4/en
Priority to US10/149,399 priority patent/US6720100B2/en
Priority to CA002395884A priority patent/CA2395884A1/en
Publication of WO2002035621A1 publication Critical patent/WO2002035621A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a gaseous compound oxidation catalyst, and more particularly, to a catalyst for promoting a gaseous compound oxidation reaction by oxygen ions supplied via a solid electrolyte in an environment free of oxygen molecules. More specifically, the present invention relates to a gaseous compound oxidation catalyst that can be suitably used for a solid oxide fuel cell.
  • the present applicant has proposed a solid electrolyte fuel cell shown in FIG. 1 in Japanese Patent Application Laid-Open No. 2000-348736.
  • a solid electrolyte element 16 A is composed of an oxygen ion conduction type solid electrolyte substrate 10, and electrodes 12, 14 a formed on both sides of the solid electrolyte substrate 10. Consists of
  • Solid electrolyte substrate 1 0, Jirukonia stabilized with 8 mol% of I Tsu Application Benefits ⁇ (Y 2 0 3) (YS ⁇ ) consists fired body.
  • the other electrode 14a is substantially composed of a porous platinum layer, and is supplied with methane gas as fuel and acts as an anode.
  • Oxygen (O 2 ) supplied to force sword 12 is It is ionized at the boundary with the degraded substrate 10 to become oxygen ions (o 2 ⁇ ), and is conducted to the anode 14 a via the solid electrolyte substrate 10.
  • the oxygen ions (O 2- ) react with the methane (CH 4 ) gas supplied to the anode 14a to produce water (H 2 O), carbon dioxide (CO 2 ), hydrogen (H 2 ) Generates carbon monoxide (CO).
  • CH 4 methane
  • CO 2 hydrogen
  • electrons are emitted from the oxygen ions at the anode 14a, so that a potential difference is generated between the force source 12 and the anode 14a.
  • Anodic 1 4 a is an oxidation catalyst formed by supporting a multi-porous platinum layer 2 2 a formed on one surface of the solid electrolyte substrate 1 0, the metal oxide particles child consisting PdCo0 2 on its outer surface Layer 2 2b.
  • the oxidation catalyst layer 22b promotes the oxidation reaction between oxygen (O 2- ) and methane in the anode 14a.
  • the solid oxide fuel cell shown in Fig. 1 uses cermet particles composed of nickel (Ni) and nickel oxide (NiO) as the oxidation catalyst by using the above oxidation catalyst. Power generation characteristics can be improved as compared with a conventional solid electrolyte fuel cell.
  • PdCo0 2 metal oxide particles with an oxidation catalyst was used as obtained cowpea the double decomposition method or a hot press pressure synthesis method.
  • PdCoO 2 PdCl 2 and CoO undergo a metathesis reaction under high temperature and high pressure in the metathesis method, and PdO and CoO are sealed in a platinum tube and heated in the high temperature and pressure synthesis method.
  • the obtained metal oxide particles had a large particle size and varied, so that the particles were made finer by pulverization and then uniformized by classification. This is because the oxidation catalyst This is because the higher the oxidizing ability is obtained, the finer the constituent metal oxide particles are.
  • An object of the present invention is to provide an oxidation catalyst for gaseous compounds having excellent oxidizing ability and comprising fine metal oxide particles without requiring a pulverizing step.
  • the oxidation catalyst for a gaseous compound of the present invention promotes an oxidation reaction of a gaseous compound by oxygen ions supplied via a solid electrolyte in an environment free of oxygen molecules.
  • the composition of the metal oxide particles is represented by the following formula:
  • A is a member selected from the group consisting of Pd, Pt, Cu and Ag;
  • B is a member selected from the group consisting of Co, Cr, Rh, Al, Ga, Fe, In, Sc and Tl;
  • the particle size of the finally obtained metal oxide particles is affected by the mixing state and particle size of the starting materials, and as a result, the catalytic ability of the oxidation catalyst is also affected You.
  • the oxidation catalyst of the present invention is a metal oxide obtained by calcining a precipitate obtained by mixing two metal hydrates obtained by a coprecipitation method from a mixed solution in which two metal salts having different metal ions are dissolved. Object particles.
  • the precipitate formed by mixing two types of metal hydrates obtained by the coprecipitation method has fine particles and uniform particle size. Therefore, the metal oxide obtained by calcining this precipitate The particles are fine and uniform in particle size. By using the metal oxide particles as an oxidation catalyst, high oxidizing ability can be obtained.
  • FIG. 1 is a cross-sectional view showing one embodiment of a solid oxide fuel cell suitable for applying the oxidation catalyst of the present invention.
  • FIG. 2 is a cross-sectional view showing another embodiment of a solid oxide fuel cell suitable for applying the oxidation catalyst of the present invention.
  • FIG. 3 is a chart showing an X-ray diffraction pattern of metal oxide particles (PdCoO 2) obtained by using the coprecipitation method according to the present invention.
  • FIG. 4 is a cross-sectional view showing a measuring device for measuring the power generation characteristics of the solid electrolytic device.
  • FIG. 5 shows the discharge characteristics of a solid electrolyte fuel cell obtained by using the metal oxide particles (PdCoO 2 ) as an oxidation catalyst in the anode of the solid electrolyte element according to the co-precipitation method of the method of the present invention.
  • the graph is shown in comparison with.
  • FIG. 6 shows metal oxide particles (PdCo ⁇ 2 ) obtained by the coprecipitation method of the method of the present invention.
  • 7 is a graph showing the power density of a solid electrolyte fuel cell in which a solid electrolyte element is used as an oxidation catalyst in an anode of a solid electrolyte element in comparison with a conventional example and a comparative example.
  • FIG. 7 is a graph for explaining the method of measuring the maximum current density.
  • FIG. 8 is a graph showing the method of the present invention in which the metal oxide particles (PdCo O 2 ) were co-precipitated in an anode of a solid electrolyte device.
  • 9 is a graph showing the maximum current density of a solid electrolyte fuel cell using an oxidation catalyst as compared with a conventional example and a comparative example.
  • FIG. 9 is a chart showing an X-ray diffraction pattern of metal oxide particles (PtCoO 2 ) obtained by using the coprecipitation method according to the present invention.
  • the metal oxide particles as the oxidation catalyst of the present invention are obtained by calcining a precipitate composed of two types of metal hydrates obtained by a coprecipitation method from a mixed solution in which two types of metal salts having different metal ions are dissolved. Obtained.
  • the metal salt a metal salt that can be dissolved in water or hot water is preferable.
  • the precipitate separated by filtration is a mixture of two metal hydrates.
  • the precipitate particles generated by coprecipitation from the solution are fine and uniform in particle size, and are not affected by the particle size of the metal salt as the starting material.
  • the precipitate separated by filtration is dried and then fired. Since secondary agglomeration of the particles occurs during drying, it is preferable to bake the particles after drying so that the particles are simply pulverized so as to break the secondary agglomeration.
  • the firing is performed by filling the precipitate in a sealed container such as a quartz glass tube and heating it. By this calcination, only hydrogen is eliminated from the two metal hydrates, and metal oxide particles in which the two metals are bonded via oxygen are generated.
  • the metal oxide particles have a composition shown by the following formula.
  • A is Pd, Pt, Cu or Ag
  • B is Co, Cr, Rh, Al, Ga, Fe, In, Sc or Tl.
  • the metal oxide particles of the present invention are fine and uniform in particle size, and have a high catalytic ability for the oxidation reaction of gaseous compounds such as methane and carbon monoxide.
  • the oxidation catalyst of the present invention comprising the metal oxide particles is a catalyst for promoting the oxidation reaction of a gaseous compound by oxygen ions supplied via a solid electrolyte in an environment free of oxygen molecules, Typically, it can be used as an oxidation catalyst for a solid oxide fuel cell, and is particularly suitable as an oxidation catalyst for a solid oxide fuel cell using methane as fuel.
  • the methane oxidation catalyst is typically a hexagonal metal oxide such as PtCoO 2 , PdCrO 2 , PdRhO 2 , PdCoO 2 , CuCoO 2 , CuAlO 2 , CuGaO 2 , CuFeO 2 , CuRhO 2 , AgCoO 2 , AgCoO 2 , AgFe0 2, AgCrO 2,
  • AgRh0 2, AgGa0 2, Agln0 2 , AgSc0 2, AgTl O 2 force are suitable S, PdCoO 2 and PtCoO 2 are preferred especially.
  • Solid metallic oxide particles of anodic 1 4 with the oxidation catalyst in a electrolyte element 1 6 A are formulated, anodic 1 4 a methane (CH 4) Gas is supplied.
  • the anode 14a is composed of a porous platinum layer 22a formed on one surface of the solid electrolyte substrate 10 and metal oxide particles for a methane oxidation catalyst on the outer surface of the porous platinum layer 22a. And an oxidation catalyst layer 22b formed by carrying a catalyst.
  • the porous platinum 22a is formed by applying platinum paste to one surface of a solid electrolyte substrate 10 made of a fired YSZ body, and then firing in the air.
  • the oxidation catalyst layer 22b is prepared by mixing a predetermined amount of metal oxide particles as a methane oxidation catalyst with an organic binder to form an oxide paste, which is applied on the porous platinum layer 22a. After that, it is formed by firing in air.
  • FIG. 2 Another embodiment in which the oxidation catalyst of the present invention is used in a solid electrolyte fuel cell using methane as a fuel will be described.
  • the structure of the solid oxide fuel cell shown in FIG. 2 is basically the same as the structure shown in FIG. 1, except that the anode 14b has a single-layer structure.
  • the anode 14b has a structure in which metal oxide particles 20 as a methane oxidation catalyst are dispersed in a porous platinum layer and exist as a large number of dispersed phases.
  • the anode 14b is prepared by mixing a predetermined amount of the metal oxide particles 20 with a platinum paste to form a composite paste, and applying the composite paste to one surface of a solid electrolyte substrate 10 made of a YSZ fired body. It is formed by firing in air.
  • a high oxidizing ability is exhibited by the oxidation catalyst comprising fine and uniform oxide particles according to the present invention.
  • PdCl 2 ⁇ (5-6 mmol) was added to 200 ml of distilled water and dissolved by stirring at 60-80 ° C. for 1 hour and 15 minutes. Then, after the solution temperature dropped to 40 to 50 ° C, 35% hydrochloric acid (0.03 ml) was added, and the mixture was stirred for 5 to 10 minutes. In this state, it was confirmed visually that PdCl 2 was completely dissolved.
  • a 0.125 M aqueous NaOH solution 100 ml was added dropwise little by little over 45 to 60 minutes to obtain a colloidal precipitate.
  • the precipitate was suction-filtered using filter paper (manufactured by Toyo Roshi Kaisha, standard 4A), and washed with 100 ml of distilled water at the same time. The filtered sediment and filter paper were then dried together in an oven at 70 ° C. for about 1 hour 30 minutes.
  • the X-ray diffraction pattern of the precipitate confirmed that the precipitate was a mixture of Pd (OH) 2 and Co (OH) 2 .
  • the dried precipitate was ground in a mortar, sealed in a quartz glass tube, and baked at 600 ° C. and 800 ° C. for 8 hours each.
  • PdCoO 2 was produced by RD Shannon, DB Rogers, and according to the method described in T. Preitt; Inorganic Chemistry, Vol. 10, N04, (1971), pp. 713-718.
  • the product removed from the transparent quartz tube was lightly pulverized with an agate mortar • pestle.
  • Example 2 Using the PdCoO 2 of Example 1 obtained by the coprecipitation method as an oxidation catalyst, a solid electrolyte fuel cell shown in FIG. 2 was produced.
  • the solid electrolyte substrate 10 is made of a YSZ fired body made of zirconia (YSZ) stabilized with 8 mol% of Y 2 O 3 .
  • the anode 14b has the PdCoO 2 particles obtained in Example 1 dispersed as metal oxide particles 20 in the porous platinum layer, and exists as a large number of dispersed phases.
  • Anode 14b was prepared by mixing a predetermined amount of PdCoO 2 obtained in Example 1 with platinum paste to form a composite paste, which was then sintered with YSZ. After being applied to one surface of a solid electrolyte substrate 10 made of a body, it was formed by firing in air at 130 ° C. for about 1 hour.
  • Example 2 the solid electrolyte fuel cell shown in FIG. 2 was produced.
  • the metal oxide particles 2 0 as an oxidation catalyst was used PdCo0 2 obtained in the double decomposition method of a conventional example 1.
  • Example 2 the solid electrolyte fuel cell shown in FIG. 2 was produced.
  • the metal oxide particles 2 0 as an oxidation catalyst, a weight ratio of 4: Sami Tsu preparative particles consisting of 1 nickel oxide is (NiO) and stabilized with 8 mol% Y 2 O 3 with di Rukoyua (YSZ) (Hereinafter referred to as Nicermet).
  • the measuring device shown in FIG. 4 is composed of a first ceramic device having one end and the other end closed in a hollow portion 32 of a heating furnace 30 by plugs 48 a and 48 b made of silicone rubber.
  • the cylindrical body 34 is inserted, and the second cylindrical body 36 made of ceramic is inserted into the first cylindrical body 34 through the plug 48 a at one end of the first cylindrical body 34.
  • One end of the second cylindrical body 36 is closed by a stopper 50 made of silicone rubber, and the other end is sealed by an anode 14 b of a solid electrolyte element 16 B disposed therein.
  • a methane gas supply pipe 38 extends through the plug 48a at one end of the second cylindrical body 36 to the vicinity of the anode 14b, and substantially contains moisture. Supply dry methane gas at a predetermined flow rate to the anode 14b.
  • a discharge pipe 42 is also inserted into the second cylindrical body through a plug 48a at one end of the second cylindrical body 36, and discharges combustion gas including methane combustion gas.
  • An oxygen supply pipe 40 extends through the plug 48 b at the other end of the first cylinder 34 to the vicinity of the power source 12 of the solid electrolyte element 16 B, and supplies oxygen at a predetermined flow rate. Feed force sword 1 2
  • the discharge pipe 44 also penetrates the plug 48 b at the other end of the first cylinder 34 and enters the first cylinder 34, and the unused remaining amount of the supplied oxygen described above. Discharge the minute.
  • thermocouple 46 extends through the plug 48 b at the other end of the first cylindrical body 34 to the vicinity of the solid electrolyte element 16 B, and reduces the ambient temperature near the solid electrolyte element 16. Measure.
  • the discharge characteristics were measured while controlling the furnace 30 so that the temperature measured by the thermocouple 46 was 850 ° C. That is, the extraction voltage was measured while changing the extraction current from the power source 12 and the anode 14b of the solid electrolyte element 16B.
  • FIG. 5 shows the measurement results of Example 2, Conventional Example 2, and Comparative Example as “coprecipitation method”, “metathesis method”, and “Nicermet”, respectively.
  • the horizontal axis shows the current density (the amount of extraction current per unit area of the electrode), and the vertical axis shows the extraction voltage.
  • FIG. 6 shows the generated power density curves obtained from the respective discharge characteristic curves in FIG. 5 as “coprecipitation method”, “double decomposition method”, and “Nicermet”.
  • the vertical axis represents power density (voltage X current density), and the horizontal axis represents current density. Indicates the degree.
  • the curve of the generated power density is ⁇ above, and the larger the maximum value of the generated power density and the larger the area surrounded by the curve, the larger the power generation amount.
  • the maximum current density was measured using the measuring device shown in FIG. 4 while changing the ambient temperature of the solid electrolyte element 16 B in various ways.
  • the maximum current density refers to the current density when the extraction voltage in the discharge measurement curve shown in FIG. 5 becomes zero, and indicates the power generation capacity of the solid electrolyte element 16B.
  • the extraction voltage was measured by changing the extraction current amount from the solid electrolyte element 16 B, and the current density at the point X obtained by extrapolating until the extraction voltage became zero port was obtained. Is the maximum current density.
  • FIG. 8 shows the relationship between the measured temperature and the maximum current density for Example 2, Conventional Example 2 and Comparative Example as “coprecipitation method”, “metalysis method”, and “N: i_cermet” as described above. .
  • the PtCl 2 reagent (1.12 mmol) was added to 400 ml of distilled water, and the mixture was stirred and dissolved at 60 to 80 ° C. for 1 hour and 15 minutes. Then the solution After the temperature was lowered to 40 to 50 ° C., stirring was carried out for 5 to 10 minutes while 35% hydrochloric acid was added dropwise at a rate of 0.06 ml with a mic mouth pipe. In this state, it was confirmed visually that PtCl 2 was completely dissolved.
  • the resulting PtCl 2 solution CoCl 2 ⁇ 6 H 2 O ( 1. 1 2 mmol) was added and stirred for 15 minutes. As a result, a mixed solution in which equimolar PtCl 2 and CoCl 2 were dissolved was obtained.
  • a 0.125 M aqueous NaOH solution 200 ml was added dropwise little by little over 45 to 60 minutes to obtain a colloidal precipitate.
  • the precipitate was suction-filtered using filter paper (manufactured by Toyo Roshi Kaisha, standard 4A), and washed simultaneously with 100 ml of distilled water. The filtered sediment and filter paper were then dried together in a dryer at 90-110 ° C for about 1 hour 30 minutes.
  • the X-ray diffraction pattern of the precipitate confirmed that the precipitate was a mixture of PtCl 2 and Co (OH) 2 .
  • the dried precipitate was ground in a mortar, filled in a platinum tube, sealed in a quartz glass tube, and baked at 75 ° C. for 8 hours. Filling the platinum tube is to prevent the reaction between the quartz and the powder sample during heating.
  • the oxidation catalyst according to the present invention is composed of metal oxide particles obtained by a coprecipitation method, it is finer and more finely divided than metal oxide particles obtained by a conventional metathesis method or a high-temperature pressure synthesis method. Particle size is uniform. As a result, the catalyst can exhibit higher catalytic performance than before, and at the same time, it does not require a pulverizing step for miniaturization and uniform particle size as in the conventional case, so that the cost of catalyst production can be reduced.
  • the solid electrolyte fuel cell using the oxidation catalyst according to the present invention can obtain remarkably excellent battery characteristics as compared with the conventional one.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Description

明 細 書 気体状化合物の酸化触媒 技術分野
本発明は、 気体状化合物の酸化触媒、 特に、 酸素分子の存在しな い環境下において、 固体電解質を介して供給される酸素ィオンによ る気体状化合物の酸化反応を促進するための触媒に関し、 更に詳細 には、 固体電解質燃料電池に好適に用いるこ とのできる気体状化合 物の酸化触媒に関する。 背景技術
固体電解質燃料電池は、 火力発電等に比較して、 高効率の発電効 率が期待できるため、 現在、 多くの研究がなされている。
本出願人は、 特開 2000- 348736号公報において、 図 1 に示す固体 電解質燃料電池を提案した。
図 1 に示す固体電解質燃料電池は、 固体電解質素子 1 6 Aが、 酸 素ィオン伝導型の固体電解質基板 1 0 と、 この固体電解質基板 1 0 の両面に形成した電極 1 2, 1 4 a とから成る。
固体電解質基板 1 0は、 8mol%のィ ッ ト リ ァ(Y203 )で安定化 したジルコニァ(Y S Ζ )焼成体から成る。
一方の電極 1 2は、 ランタンス ト ロ ンチウムマンガンォキサイ ド C(La0.85Sr0.15 )o.90 nO3] から成り、 酸素を供給されてカソー ドと して作用する。
他方の電極 1 4 aは、 実質的に多孔質白金層から成り、 燃料と し てのメ タンガスが供給されてアノー ドと して作用する。
力ソード 1 2に供給された酸素(O2 )は、 力ソード 1 2 と固体電 解質基板 1 0 との境界でイオン化されて酸素ィオン( o 2 - )となり、 固体電解質基板 1 0を介してアノー ド 1 4 aまで伝導される。 この 酸素イオン(O2-)が、 アノー ド 1 4 aに供給されたメ タン(CH4) ガスと反応して、 水(H2 O)、 二酸化炭素(C O2)、 水素(H2)、 一 酸化炭素(C O)を生成する。 この反応の際にアノー ド 1 4 aでは酸 素イオンから電子が放出されるので、 力ソー ド 1 2 とアノード 1 4 a との間に電位差が生じる。 力ソード 1 2 とアノー ド 1 4 a とを取 出線 1 8によつて電気的に接続すると、 アノー ド 1 4 aの電子は力 ソー ド 1 2の方向(図中の矢印の方向)に取出線 1 8を流れ、 固体電 解質燃料電池から電気を取り出すことができる。
アノー ド 1 4 aは、 固体電解質基板 1 0の一方の面に形成した多 孔質白金層 2 2 a と、 その外表面に PdCo02 から成る金属酸化物粒 子を担持させて形成した酸化触媒層 2 2 b とから成る。 この酸化触 媒層 2 2 bは、 アノー ド 1 4 a において酸素ィ才ン(O2-)とメ タン との酸化反応を促進する。
図 1 に示す固体電解質燃料電池は、 上記の酸化触媒を用いたこと によ り、 酸化触媒と して二ッケル(Ni)及び二ッケル酸化物(NiO )か ら成るサーメ ッ ト粒子を用いた従来の固体電解質燃料電池に比較し て、 発電特性を向上することができる。
図 1 に示す固体電解質燃料電池においては、 酸化触媒と しての PdCo02金属酸化物粒子は、 複分解法または高温加圧合成法によつ て得たものを用いていた。 PdCoO2を得るには、 複分解法では PdCl2 と CoOとを高温 · 高圧下で複分解反応させ、 高温加圧合成法では PdOと CoOとを白金チューブに封入して加熱する。
上記のどちらの方法でも、 得られた金属酸化物粒子は粒子サイズ が大きい上にばらついているため、 粉碎によ り粒子を微細化した上 で、 分級によ り粒子サイズを均一化していた。 これは、 酸化触媒を 構成する金属酸化物粒子が微細であるほど高い酸化能が得られるか らである。
しかし、 粉砕による粒子の微細化には限界がある上、 粉碎工程を 必要とするため酸化触媒の製造コス トが上昇する、 という問題点が あった。 発明の開示
本発明は、 粉碎工程を必要とせず、 微細な金属酸化物粒子から成 る、 酸化能の優れた気体状化合物の酸化触媒を提供することを目的 とする。
上記の目的を達成するために、 本発明の気体状化合物の酸化触媒 は、 酸素分子の存在しない環境下において、 固体電解質を介して供 給される酸素イオンによる気体状化合物の酸化反応を促進するため の触媒であって、
互いに金属陽ィオンが異なる二種の金属塩が溶解された混合溶液 から共沈法によつて得た二種の金属水和物が混合されて成る沈殿物 を焼成して生成した金属酸化物粒子から成り、 前記金属酸化物粒子 の組成が下記式 :
式 A B O 2
ここで、 Aは、 Pd, Pt, Cuおよび Agから成る群から選択され る一種、
Bは、 Co, Cr, Rh, Al, Ga, Fe, In, Scおよび Tlか ら成る群から選択される一種、
で表されることを特徴とする。
典型的には、 PdCl2と CoCl2 ' 6 H2 Oとを溶解した混合溶液から 共沈法によって得た Pd(O H)2と C0(O H)2とが混合された沈殿物を 焼成することによって、 微細な PdCo02から成る金属酸化物粒子を 得ることができる。
従来の複分解法又は高温加圧合成法では、 出発原料の混合状態や 粒子サイズによって、 最終的に得られる金属酸化物粒子の粒子サイ ズが影響され、 その結果、 酸化触媒の触媒能も影響される。
本発明の酸化触媒は、 互いに金属イオンが異なる二種の金属塩を 溶解した混合溶液から共沈法によつて得た二種の金属水和物が混合 されて成る沈殿物を焼成した金属酸化物粒子から成る。
共沈法によつて得た二種の金属水和物が混合されて成る沈殿物は 、 粒子が微細で且つ粒子サイズが揃っているので、 この沈殿物を焼 成して得られる金属酸化物粒子も微細で且つ粒子サイズが揃ってい る。 この金属酸化物粒子を酸化触媒として用いることにより、 高い 酸化能を得ることができる。 図面の簡単な説明
図 1は、 本発明の酸化触媒を適用するのに適した固体電解質燃料 電池の一実施形態を示す断面図である。
図 2は、 本発明の酸化触媒を適用するのに適した固体電解質燃料 電池の他の実施形態を示す断面図である。
図 3は、 本発明により共沈法を用いて得られた金属酸化物粒子 ( PdCo O 2 ) の X線回折パターンを示すチャートである。
図 4は、 固体電解素子の発電特性を測定する測定装置を示す断面 図である。
図 5は、 本発明の方法の共沈法による'金属酸化物粒子(PdCo O 2 ) を固体電解質素子のァノー ドにおける酸化触媒とした固体電解質燃 料電池の放電特性を、 従来例および比較例と比較して示すグラフで める。
図 6は、 本発明の方法の共沈法による金属酸化物粒子(PdCo〇 2 ) を固体電解質素子のァノードにおける酸化触媒と した固体電解質燃 料電池の発生電力密度を、 従来例および比較例と比較して示すダラ フである。
図 7は、 最大電流密度の測定方法を説明するためのグラフである 図 8は、 本発明の方法の共沈法による金属酸化物粒子(PdCo O 2 ) を固体電解質素子のアノ ^" ドにおける酸化触媒とした固体電解質燃 料電池の最大電流密度を、 従来例および比較例と比較して示すダラ. フである。
図 9は、 本発明によ り共沈法を用いて得られた金属酸化物粒子 (Pt Co O 2 )の X線回折パターンを示すチャートである。 発明を実施するための最良の形態
本発明の酸化触媒である金属酸化物粒子は、 互いに金属イオンが 異なる二種の金属塩が溶解された混合溶液から共沈法によって得た 二種の金属水和物から成る沈殿物を焼成して得られる。
金属塩と しては、 水又は熱水に溶解し得るものが好ましく、 溶解 し難い場合には、 若干の塩酸等を添加してもよい。
二種の金属塩が溶解された混合溶液に、 水酸化ナト リ ウム等を添 加して生成した二種の金属水和物を共沈させ、 沈殿物を濾別する。 濾別された沈殿物は、 二種の金属水和物が混合されたものである。 溶液から共沈によ り生成した沈殿物の粒子は、 微細で且つ粒子サ ィズが揃っており、 出発原料である金属塩の粒子サイズの影響を受 けない。
濾別した沈殿物を乾燥させた後、 焼成する。 乾燥の際に粒子同士 の二次凝集が生ずるため、 乾燥後に二次凝集を破壊する程度の簡単 な粉碎を施してから焼成することが好ましい。 焼成は、 沈殿物を石英ガラス管等の密閉容器に充填封入して加熱 することによ り行う。 この焼成によ り、 二種の金属水和物から水素 のみが脱離し、 二種の金属同士が酸素を介して結合した金属酸化物 粒子が生成する。
この金属酸化物粒子は、 下記式に示す組成を有する。
式 A B 02
ここで、 Aは、 Pd, Pt, Cuまたは Agであり、
Bは、 Co, Cr, Rh, Al, Ga, Fe, In, Scまたは Tl である。
本発明の金属酸化物粒子は、 微細で且つ粒子サイズが揃っており 、 メタンゃ一酸化炭素等の気体状化合物の酸化反応に高い触媒能を 有する。
この金属酸化物粒子から成る本発明の酸化触媒は、 酸素分子の存 在しない環境下において固体電解質を介して供給される酸素ィォン による気体状化合物の酸化反応を促進するための触媒であって、 代 表的には固体電解質燃料電池用の酸化触媒として使用でき、 特に、 メタンを燃料と して用いる固体電解質燃料電池用の酸化触媒と して 好適である。
メタンの酸化触媒としては、 典型的には六方晶系の金属酸化物、 例えば PtCo02, PdCrO2 , PdRhO2, PdCoO2, CuCoO2, CuAlO2 , CuGa02 , CuFe02 , CuRhO2 , AgCo02 , AgFe02, AgCrO2
AgRh02 , AgGa02 , Agln02 , AgSc02 , AgTl O 2力 S適しており、 特 に PdCoO2および PtCoO2が好適である。
図 1 を参照して、 本発明の酸化触媒を、 燃料としてメタンを用い る固体電解質燃料電池に用いた実施形態を説明する。
固体電解質素子 1 6 Aのアノー ド 1 4 a内に酸化触媒と しての金 属酸化物粒子が配合されており、 アノー ド 1 4 aにメタン(CH4 ) ガスが供給される。
アノー ド 1 4 aは、 固体電解質基板 1 0の一方の表面に形成され た多孔質白金層 2 2 a と、 多孔質白金層 2 2 aの外表面にメタン酸 化触媒用の金属酸化物粒子を担持させて形成した酸化触媒層 2 2 b とから成る 2層構造である。
多孔質白金 2 2 aは、 Y S Z焼成体から成る固体電解質基板 1 0 の一方の面に白金ペース トを塗布した後、 大気中で焼成することに よ り形成する。
酸化触媒層 2 2 bは、 メタン酸化触媒と しての金属酸化物粒子の 所定量を有機パインダ一に混合して酸化物ペース ト と し、 これを多 孔質白金層 2 2 a上に塗布した後、 大気中で焼成することにより形 成する。
図 2を参照して、 本発明の酸化触媒を、 燃料と してメタンを用い る固体電解質燃料電池に用いたも う一つの実施形態を説明する。 図 2に示す固体電解質燃料電池の構造は、 図 1に示した構造と基 本的に同様であるが、 アノード 1 4 bが単層構造である点のみが異 なる。
アノー ド 1 4 bは、 多孔質白金層内に、 メタン酸化触媒としての 金属酸化物粒子 2 0が分散して、 多数の分散相として存在している 構造である。 アノード 1 4 bは、 金属酸化物粒子 2 0の所定量を白 金ペース トに混合して複合ペース ト と し、 これを Y S Z焼成体から 成る固体電解質基板 1 0の一方の面に塗布した後、 大気中で焼成す ることによって形成する。
図 1および図 2のいずれの実施形態による構造においても、 本発 明による微細且つ粒子サイズの揃った酸化物粒子から成る酸化触媒 によ り、 高い酸化能が発揮される。
以下、 本発明を実施例によって更に詳細に説明する。 実施例
〔実施例 1〕
く共沈法による PdCo02 の生成〉
PdCl2 ^( 5 - 6 mmol)を蒸留水 2 0 0 mlに添カロし、 6 0〜 8 0 °Cにおいて 1時間 1 5分間の攪拌溶解 行った。 その後、 溶液温度 が 4 0〜 5 0 °Cに低下した後に、 3 5 %塩酸 ( 0. 0 3 ml) を加え て攪拌を 5〜 1 0分間行った。 この状態で、 目視によって PdCl2が 完全に溶解したことを確認した。
得られた PdCl2溶液に CoCl2 . 6 H2 O ( 5. 6 mmol)を添加して、 1 5分間攪拌した。 これにより、 等モルの PdCl2と CoCl2が溶解した 混合溶液を得た。
この混合溶液に、 0. 1 2 5 Mの NaO H水溶液 ( 1 0 0 ml) を 4 5〜 6 0分間かけて少量ずつ滴下して、 コロイ ド状の沈殿物を得た 。 この沈殿物を濾紙(東洋濾紙製、 規格 4 A)を用いて吸引濾過し、 同時に蒸留水 1 0 0 0 mlを加えて洗浄した。 次いで、 濾過された 沈殿物および濾紙を一緒に乾燥器中で 7 0 °Cで約 1時間 3 0分乾燥 した。
乾燥後、 沈殿物の X線回析パターンによ り、 沈殿物が Pd(OH)2 と Co(OH)2との混合物であることを確認した。
乾燥した沈殿物を乳鉢で粉砕した後、 石英ガラス管に封入し、 6 0 0 °C及び 8 0 0 °Cにおいて各 8時間の焼成を施した。
得られた焼成物の X線回析パターンにより、 焼成物が PdCoO2で あることを確認した。 焼成物の X線回析パターンを図 3に示す。 走査電子顕微鏡写真上での粒径測定によ り、 焼成物は平均粒径が 約 1 0 μ mであることが分かった。
〔従来例 1〕
く複分解法による PdCo02の生成〉 PdCoO2を R.D. Shannon , D. B. Rogers , and に T. Pre itt; Inor ganic Chemistry, Vol.10, N04, (1971), p.713- 718に記載された 方法に準拠して生成した。
すなわち、 PdCl2 ( 0. 0 1 5モル) と CoO ( 0. 0 3モル) とを 、 Fritschボールミル内で 2 4 0 0 rpm で 2 0分間乾式混合した後 、 混合物を透明石英管に封入し、 7 0 0 °Cにおいて 8時間の加熱処 理を施し、 下記の複分解反応をさせた。
PdCl2 + 2 CoO → PdCoO2 +CoCl2
加熱処理終了後に、 透明石英管から取出した生成物をメノウ乳鉢 • 乳棒で軽く粉砕した。
粉砕後、 生成物中に含まれている CoCl2を除去するために、 生成 物に蒸留水 1 0 0 mlを加えて攪拌してから 1時間放置する洗浄操 作を、 上澄液が無色透明となるまで 3〜 4回繰り返した。
洗浄後に、 大気中にて 8 0 °Cで 3時間の乾燥処理を行った。
得られた生成物の X線回析パターンによ り、 生成物が PdCoO2で あることを確認した。
走査電子顕微鏡写真上での粒径測定によ り、 生成物は粒径が約 1 0〜 1 0 0 μ πιの範囲で不均一な分布であることが分かった。 〔実施例 2〕
共沈法を用いて得た実施例 1の PdCoO2を酸化触媒と して用い、 図 2に示す固体電解質燃料電池を作製した。
固体電解質基板 1 0は、 8 mol%の Y2 O3 で安定化したジルコ ニァ(Y S Z )から成る Y S Z焼成体から成る。
アノー ド 1 4 bは、 多孔質白金層内に、 金属酸化物粒子 2 0 と し て、 実施例 1 で得た PdCoO2粒子が分散して、 多数の分散相と して 存在している。 アノー ド 1 4 bは、 実施例 1で得た PdCoO2の所定 量を白金ペース トに混合して複合ペース ト と し、 これを Y S Z焼成 体から成る固体電解質基板 1 0の一方の面に塗布した後、 大気中に て 1 3 0 0 °Cで約 1時間焼成することによって形成した。
固体電解質基板 1 0の他方の面には、 力ソード 1 2力 ランタン ス トロンチウムマンガンォキサイ ド 〔(: La。.85Sr0.15 )0.90MnO33 によって形成されている。
〔従来例 2 ]
実施例 2 と同様に、 図 2に示す固体電解質燃料電池を作製した。 ただし、 酸化触媒としての金属酸化物粒子 2 0 と して、 従来例 1の 複分解法で得た PdCo02 を用いた。
〔比較例〕
実施例 2 と同様に、 図 2に示す固体電解質燃料電池を作製した。 ただし酸化触媒としての金属酸化物粒子 2 0 として、 重量比が 4 : 1であるニッケル酸化物(NiO )と 8 mol%Y2 O3 で安定化したジ ルコユア(Y S Z )から成るサーメ ッ ト粒子(以下 Ni- cermetと称する )を用いた。
く放電特性および発生電力密度の測定 >
実施例 2、 従来例 2および比較例で作製した各固体電解質燃料電 池について、 図 4に示す測定装置によって電池特性を測定した。
図 4の測定装置は、 加熱炉 3 0の中空部 3 2内に、 一端および他 端をそれぞれシリ コーンゴム製の栓体 4 8 aおよび 4 8 bで閉じら れたセラミ ック製の第 1筒体 3 4が揷入され、 第 1筒体 3 4の一端 の栓体 4 8 a を貫通して、 セラミ ック製の第 2筒体 3 6が第 1筒体 3 4内に挿入されている。 第 2筒体 3 6は、 一端がシリ コーンゴム 製の栓体 5 0で閉じられており、 他端はそこに配された固体電解質 素子 1 6 Bのァノー ド 1 4 bによって密閉されている。
メ タンガス供給管 3 8が、 第 2筒体 3 6の一端の栓体 4 8 aを貫 通してアノー ド 1 4 bの近傍まで延びており、 実質的に水分を含有 しないドライなメタンガスを所定流量でアノード 1 4 bに供給する 。 排出管 4 2が、 同じく第 2筒体 3 6の一端の栓体 4 8 aを貫通し て第 2筒体内に挿入されており、 メタンの燃焼ガスを含む燃焼ガス を排出する。
酸素供給管 4 0が、 第 1筒体 3 4の他端の栓体 4 8 bを貫通して 固体電解質素子 1 6 Bの力ソー ド 1 2の近傍まで延びており、 酸素 を所定流量で力ソード 1 2に供給する。 排出管 4 4が、 同じく第 1 筒体 3 4の他端の栓体 4 8 bを貫通して第 1筒体 3 4内に揷入され ており、 上記の供給された酸素の未使用残分を排出する。
更に、 熱電対 4 6が、 第 1筒体 3 4の他端の栓体 4 8 bを貫通し て固体電解質素子 1 6 Bの近 まで延びており、 固体電解質素子 1 6近傍の雰囲気温度を測定する。
上記の測定装置を用い、 熱電対 4 6による測定温度が 8 5 0 °Cと なるように炉 3 0を制御した状態で、 放電特性を測定した。 すなわ ち、 固体電解質素子 1 6 Bの力ソード 1 2およびアノード 1 4 bか らの取出電流を変化させつつ取出電圧を測定した。
図 5に、 実施例 2、 従来例 2、 比較例の各測定結果をそれぞれ 「共沈法」 、 「複分解法」 、 「Ni- cermet」 として示す。 図 5にお いて、 横軸が電流密度(電極単位面積当 りの取出電流量)を示し、 縦 軸が取出電圧を示す。
図 5から、 共沈法で得た PdCo02を配合した実施例 2の固体電解 質燃科電池の放電特性は、 複分解法で得た PdCoO2を配合した従来 例 2および Ni- cermetを配合した比較例に比べて格段に優れている ことが分かる。
図 6に、 図 5の各放電特性曲線から求めた発生電力密度の各曲線 を、 同じく 「共沈法」 、 「複分解法」 、 「Ni- cermet」 として示す 。 図 6において、 縦軸は電力密度(電圧 X電流密度)、 横軸は電流密 度を示す。 図示したように、 発生電力密度の曲線は上に ΰであり、 発生電力密度の最大値が大きく且つ曲線で囲まれる面積が大である 程、 発電量が大きい。
図 6から、 共沈法で得た PdCo02を配合した実施例 2の固体電解 質燃料電池の発生電力密度は、 複分解法で得た PdCoO2を配合した 従来例 2および Ni_cermetを配合した比較例に比べて格段に大きい ことが分かる。
<最大電流密度の測定 >
実施例 2、 従来例 2および比較例で作製した各固体電解質燃料電 池について、 図 4の測定装置を用い固体電解質素子 1 6 Bの雰囲気 温度を種々に変えて最大電流密度を測定した。 最大電流密度とは、 図 5に示す放電測定曲線の取出電圧が零となったときの電流密度を いい、 固体電解質素子 1 6 Bの発電能力を表す。
すなわち、 図 7に示すよ うに、 固体電解質素子 1 6 Bからの取出 電流量を変化させて敢出電圧を測定し、 取出電圧が零ポルト となる まで外揷して求めた点 Xの電流密度を最大電流密度と した。
図 8に、 実施例 2、 従来例 2および比較例について、 測定温度と 最大電流密度との関係を、 前記と同じく 「共沈法」 、 「複分解法」 、 「N:i_cermet」 と して示す。
図 8から、 共沈法で得た PdCo02 を配合した実施例 2の固体電解 質燃料電池の発電能力は、 複分解法で得た PdCo02 を配合した従来 例 2および Ni- cermetを配合した比較例に比べて、 発電能力が格段 に優れていることが分かる。
〔実施例 3〕
く共沈法による PtCoO2 の生成〉
PtCl2試薬 ( 1. 1 2 mmol) を蒸留水 4 0 0 mlに添加し、 6 0〜 8 0 °Cにおいて 1時間 1 5分間の攪拌溶解を行った。 その後、 溶液 温度が 4 0〜 5 0 °Cに低下した後に、 3 5 %塩酸をマイク口ピぺッ トで 0. 0 6 mlずつ滴下しながら攪拌を 5〜 1 0分間行った。 この 状態で、 目視によって PtCl2 が完全に溶解したことを確認した。 得られた PtCl2溶液に CoCl2 · 6 H2 O ( 1. 1 2 mmol)を添加して 、 1 5分間攪拌した。 これによ り、 等モルの PtCl2と CoCl2が溶解し た混合溶液を得た。
この混合溶液に、 0. 1 2 5 Mの NaOH水溶液 ( 2 0 0 ml) を 4 5〜 6 0分間かけて少量ずつ滴下して、 コロイ ド状の沈殿物を得 た。 この沈殿物を濾紙(東洋濾紙製、 規格 4 A)を用いて吸引濾過し 、 同時に蒸留水 1 0 0 0 mlを加えて洗浄した。 次いで、 濾過され た沈殿物および濾紙を一緒に乾燥器中で 9 0〜 1 1 0 °Cで約 1時間 3 0分乾燥した。
乾燥後、 沈殿物の X線回析パターンによ り、 沈殿物が PtCl2と Co (OH )2との混合物であることを確認した。
乾燥した沈殿物を乳鉢で粉砕した後、 白金チューブに充填してか ら石英ガラス管に封入し、 7 5 0 °Cにおいて 8時間の焼成を施した 。 白金チューブへの充填は、 加熱中の石英と粉末状試料との反応を 防ぐためである。
得られた焼成物の X線回析パターンによ り、 焼成物が PtCoO2で あることを確認した。 焼成物の X線回析パターンを図 9に示す。 走査電子顕微鏡写真上での粒径測定によ り、 焼成物は平均粒径が 約 1 μ mであることが分かった。 産業上の利用可能性
本発明による酸化触媒は、 共沈法によつて得た金属酸化物粒子か ら成るため、 従来の複分解法又は高温加圧合成法によって得られた 金属酸化物粒子に比較して、 微細で且つ粒子サイズが揃っている。 そのため、 従来よ り も高い触媒能を発揮できると同時に、 従来の よ うに微細化と粒子サイズ均一化のための粉砕工程を必要としない ので、 触媒製造コス トの低減を図ることができる。
特に、 本発明による酸化触媒を用いた固体電解質燃科電池は、 従 来に比べて格段に優れた電池特性が得られる。

Claims

請 求 の 範 囲
1 . 酸素分子の存在しない環境下において、 固体電解質を介して 供給される酸素イオンによる気体状化合物の酸化反応を促進するた めの触媒であって、
互いに金属陽イオンが異なる二種の金属塩が溶解された混合溶液 から共沈法によつて得た二種の金属水和物が混合されて成る沈殿物 を焼成して生成した金属酸化物粒子から成り、
前記金属酸化物粒子の組成が下記式 :
式 A B O 2
ここで、 Aは、 Pd, Pt, Cuおよび Agから成る群から選択され る一種、
Bは、 Co , Cr, Rh , Al, Ga, Fe, In , Scおよび Tl力 ら成る群から選択される一種、
で表されるこ とを特徴とする気体状化合物の酸化触媒。
2 . 前記金属酸化物粒子を導電性多孔体の外表面に担持させて形 成した層から成ることを特徴とする請求項 1記載の酸化触媒。
3 . 前記金属酸化物粒子を導電性多孔体の内部に分散させて形成 した多数の分散相から成ることを特徴とする請求項 1記載の酸化触 媒。
4 . 前記気体状化合物がメタンであることを特徴とする請求項 1 から 3までのいずれか 1項記載の酸化触媒。
5 . 前記金属酸化物粒子が PdCo O 2 または PtCo 0 2 であることを 特徴とする請求項 1から 4までのいずれか 1項記載の酸化触媒。
6 . 固体電解質燃料電池に用いられることを特徴とする請求項 1 から 5までのいずれか 1項記載の酸化触媒。
PCT/JP2001/009454 2000-10-27 2001-10-26 Catalyseur d"oxydation de composé gazeux WO2002035621A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002538496A JPWO2002035621A1 (ja) 2000-10-27 2001-10-26 気体状化合物の酸化触媒
EP01976854A EP1345279A4 (en) 2000-10-27 2001-10-26 GAS COMPOSITION OXIDATION CATALYST
US10/149,399 US6720100B2 (en) 2000-10-27 2001-10-26 Catalyst for oxidation of gaseous compound
CA002395884A CA2395884A1 (en) 2000-10-27 2001-10-26 Catalyst for oxidation of gaseous compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000328466 2000-10-27
JP2000-328466 2000-10-27

Publications (1)

Publication Number Publication Date
WO2002035621A1 true WO2002035621A1 (fr) 2002-05-02

Family

ID=18805314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009454 WO2002035621A1 (fr) 2000-10-27 2001-10-26 Catalyseur d"oxydation de composé gazeux

Country Status (5)

Country Link
US (1) US6720100B2 (ja)
EP (1) EP1345279A4 (ja)
JP (1) JPWO2002035621A1 (ja)
CA (1) CA2395884A1 (ja)
WO (1) WO2002035621A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080038592A1 (en) * 2004-10-08 2008-02-14 Harlan Anderson Method of operating a solid oxide fuel cell having a porous electrolyte
US8067332B2 (en) * 2006-05-03 2011-11-29 Samsung Sdi Co., Ltd. Methanation catalyst, and carbon monoxide removing system, fuel processor, and fuel cell including the same
WO2012029743A1 (ja) * 2010-08-31 2012-03-08 本田技研工業株式会社 金属酸素電池
EP2937448A1 (en) * 2014-04-25 2015-10-28 Panasonic Intellectual Property Management Co., Ltd. Method for generating oxygen, and water electrolysis device
JP6715351B2 (ja) * 2016-12-27 2020-07-01 国立大学法人秋田大学 排気ガス浄化触媒用デラフォサイト型酸化物及びこれを用いた排気ガス浄化触媒
US10722870B2 (en) * 2016-12-27 2020-07-28 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purification catalyst
US20210388516A1 (en) * 2018-09-26 2021-12-16 Max Planck Gesellschaft Zur Förderung Der Wissenschaften eV Electrocatalysts for hydrogen evolution reactions (her) with delafossite oxides abo2
CN112758996B (zh) * 2020-12-14 2022-04-19 清华大学 一种双功能氧电催化剂及其制备和应用
WO2023139040A1 (en) 2022-01-21 2023-07-27 Basf Se Mixed platinum ruthenium oxide and electrodes for the oxygen evolution reaction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104873A (ja) * 1973-01-25 1974-10-03
EP0270203A1 (en) * 1986-12-03 1988-06-08 Catalysts and Chemicals Inc, Far East Heat resistant catalyst and method of producing the same
EP0602864A2 (en) * 1992-12-18 1994-06-22 Johnson Matthey Public Limited Company Palladium containing metal oxide catalyst
JP2000348736A (ja) * 1999-06-03 2000-12-15 Shinko Electric Ind Co Ltd 固体電解質燃料電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498931A (en) * 1968-04-02 1970-03-03 Du Pont Electrically conductive oxides containing palladium and their preparation
US3804740A (en) * 1972-02-01 1974-04-16 Nora Int Co Electrodes having a delafossite surface
US3862023A (en) * 1972-09-15 1975-01-21 Ppg Industries Inc Electrode having silicide surface
US4173518A (en) * 1974-10-23 1979-11-06 Sumitomo Aluminum Smelting Company, Limited Electrodes for aluminum reduction cells
LU76107A1 (ja) * 1976-10-29 1978-05-16
US4492811A (en) * 1983-08-01 1985-01-08 Union Oil Company Of California Heterojunction photovoltaic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104873A (ja) * 1973-01-25 1974-10-03
EP0270203A1 (en) * 1986-12-03 1988-06-08 Catalysts and Chemicals Inc, Far East Heat resistant catalyst and method of producing the same
EP0602864A2 (en) * 1992-12-18 1994-06-22 Johnson Matthey Public Limited Company Palladium containing metal oxide catalyst
JP2000348736A (ja) * 1999-06-03 2000-12-15 Shinko Electric Ind Co Ltd 固体電解質燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1345279A4 *

Also Published As

Publication number Publication date
US6720100B2 (en) 2004-04-13
JPWO2002035621A1 (ja) 2004-03-04
EP1345279A4 (en) 2004-11-10
EP1345279A1 (en) 2003-09-17
US20020183200A1 (en) 2002-12-05
CA2395884A1 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
Uchida et al. High‐Performance Electrode for Medium‐Temperature Solid Oxide Fuel Cells: Effects of Composition and Microstructures on Performance of Ceria‐Based Anodes
JP2020500692A (ja) 酸化スズ上に担持された貴金属酸化物を含む電極触媒組成物
WO2011081417A2 (ko) 복합 세라믹 재료 및 그 제조방법
Duran et al. Processing and characterisation of a fine nickel oxide/zirconia/composite prepared by polymeric complex solution synthesis
Xi et al. Effect of composition on microstructure and polarization resistance of solid oxide fuel cell anode Ni-YSZ composites made by co-precipitation
Yuan et al. Utilization of low-concentration coal-bed gas to generate power using a core-shell catalyst-modified solid oxide fuel cell
JP6255358B2 (ja) 固体酸化物形燃料電池用の電極材料とその利用
Xi et al. Novel Co-precipitation method to synthesize NiO–YSZ nanocomposite powder for solid oxide fuel cell
WO2002035621A1 (fr) Catalyseur d&#34;oxydation de composé gazeux
JP7201446B2 (ja) 複合酸化物粉末
JP5329869B2 (ja) 固体酸化物型電気化学セル、およびその製造方法
Jia et al. Pd nanoparticles supported on Mg–Al–CO 3 layered double hydroxide as an effective catalyst for methanol electro-oxidation
Hou et al. Electrochemical properties of La 0.5 Sr 0.5 Fe 0.95 Mo 0.05 O 3− δ as cathode materials for IT-SOEC
KR20200015060A (ko) 고체산화물 연료전지 및 이를 제조하는 방법
US8367273B2 (en) Method for preparation of the solid oxide fuel cell single cell
Li et al. Superior bifunctional oxygen electrocatalysts based on Co2MnO4 with mixed site occupancy, Mn-rich surfaces and twin defects
JP4716825B2 (ja) ガス拡散電極の製造方法
Singh et al. Lanthanum-based double perovskite oxides as cobalt-free catalyst for bifunctional application in electrocatalytic oxygen reactions
平田好洋 et al. Electrochemical properties of solid oxide fuel cell with Sm-doped ceria electrolyte and cermet electrodes
JP7140938B2 (ja) 複合酸化物粉末
WO2023234215A1 (ja) 複合伝導材料、複合酸化物、カソード、燃料電池及び複合伝導材料の製造方法
EP4180398A1 (en) Perovskite-type composite oxide powder
Wu et al. Synthesis of Flake‐Shaped NiO–YSZ Particles for High‐Porosity Anode of Solid Oxide Fuel Cell
JP2024055773A (ja) 電気化学触媒材料、電気化学セル、および、電力ガス変換システム
JP2010080304A (ja) 電気化学セル水素極材料の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10149399

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001976854

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 538496

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2395884

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001976854

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 2001976854

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001976854

Country of ref document: EP